Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.12.2.2
      1 /*	$NetBSD: if_upgt.c,v 1.12.2.2 2018/02/19 19:33:06 snj Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12.2.2 2018/02/19 19:33:06 snj Exp $");
     22 
     23 #ifdef _KERNEL_OPT
     24 #include "opt_usb.h"
     25 #endif
     26 
     27 #include <sys/param.h>
     28 #include <sys/callout.h>
     29 #include <sys/device.h>
     30 #include <sys/errno.h>
     31 #include <sys/kernel.h>
     32 #include <sys/kthread.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/proc.h>
     35 #include <sys/sockio.h>
     36 #include <sys/systm.h>
     37 #include <sys/vnode.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/intr.h>
     41 
     42 #include <net/bpf.h>
     43 #include <net/if.h>
     44 #include <net/if_arp.h>
     45 #include <net/if_dl.h>
     46 #include <net/if_ether.h>
     47 #include <net/if_media.h>
     48 #include <net/if_types.h>
     49 
     50 #include <net80211/ieee80211_var.h>
     51 #include <net80211/ieee80211_radiotap.h>
     52 
     53 #include <dev/firmload.h>
     54 
     55 #include <dev/usb/usb.h>
     56 #include <dev/usb/usbdi.h>
     57 #include <dev/usb/usbdi_util.h>
     58 #include <dev/usb/usbdivar.h>
     59 #include <dev/usb/usbdevs.h>
     60 
     61 #include <dev/usb/if_upgtvar.h>
     62 
     63 /*
     64  * Driver for the USB PrismGT devices.
     65  *
     66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     68  *
     69  * TODO's:
     70  * - Fix MONITOR mode (MAC filter).
     71  * - Add HOSTAP mode.
     72  * - Add IBSS mode.
     73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     74  *
     75  * Parts of this driver has been influenced by reading the p54u driver
     76  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     77  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     78  */
     79 
     80 #ifdef UPGT_DEBUG
     81 int upgt_debug = 2;
     82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     83 #else
     84 #define DPRINTF(l, x...)
     85 #endif
     86 
     87 /*
     88  * Prototypes.
     89  */
     90 static int	upgt_match(device_t, cfdata_t, void *);
     91 static void	upgt_attach(device_t, device_t, void *);
     92 static int	upgt_detach(device_t, int);
     93 static int	upgt_activate(device_t, devact_t);
     94 
     95 static void	upgt_attach_hook(device_t);
     96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     97 static int	upgt_device_init(struct upgt_softc *);
     98 static int	upgt_mem_init(struct upgt_softc *);
     99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
    100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
    101 static int	upgt_fw_alloc(struct upgt_softc *);
    102 static void	upgt_fw_free(struct upgt_softc *);
    103 static int	upgt_fw_verify(struct upgt_softc *);
    104 static int	upgt_fw_load(struct upgt_softc *);
    105 static int	upgt_fw_copy(char *, char *, int);
    106 static int	upgt_eeprom_read(struct upgt_softc *);
    107 static int	upgt_eeprom_parse(struct upgt_softc *);
    108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    112 
    113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    114 static int	upgt_init(struct ifnet *);
    115 static void	upgt_stop(struct upgt_softc *);
    116 static int	upgt_media_change(struct ifnet *);
    117 static void	upgt_newassoc(struct ieee80211_node *, int);
    118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    119 		    int);
    120 static void	upgt_newstate_task(void *);
    121 static void	upgt_next_scan(void *);
    122 static void	upgt_start(struct ifnet *);
    123 static void	upgt_watchdog(struct ifnet *);
    124 static void	upgt_tx_task(void *);
    125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
    127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    128 static void	upgt_setup_rates(struct upgt_softc *);
    129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
    131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    132 static void	upgt_set_led(struct upgt_softc *, int);
    133 static void	upgt_set_led_blink(void *);
    134 static int	upgt_get_stats(struct upgt_softc *);
    135 
    136 static int	upgt_alloc_tx(struct upgt_softc *);
    137 static int	upgt_alloc_rx(struct upgt_softc *);
    138 static int	upgt_alloc_cmd(struct upgt_softc *);
    139 static void	upgt_free_tx(struct upgt_softc *);
    140 static void	upgt_free_rx(struct upgt_softc *);
    141 static void	upgt_free_cmd(struct upgt_softc *);
    142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    143 		    struct usbd_pipe *, uint32_t *, int);
    144 
    145 #if 0
    146 static void	upgt_hexdump(void *, int);
    147 #endif
    148 static uint32_t	upgt_crc32_le(const void *, size_t);
    149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    150 
    151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    153 
    154 static const struct usb_devno upgt_devs_1[] = {
    155 	/* version 1 devices */
    156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    158 };
    159 
    160 static const struct usb_devno upgt_devs_2[] = {
    161 	/* version 2 devices */
    162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    186 };
    187 
    188 static int
    189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    190     size_t *sizep)
    191 {
    192 	firmware_handle_t fh;
    193 	int error;
    194 
    195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    196 		return error;
    197 	*sizep = firmware_get_size(fh);
    198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    199 		firmware_close(fh);
    200 		return ENOMEM;
    201 	}
    202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    203 		firmware_free(*ucodep, *sizep);
    204 	firmware_close(fh);
    205 
    206 	return error;
    207 }
    208 
    209 static int
    210 upgt_match(device_t parent, cfdata_t match, void *aux)
    211 {
    212 	struct usb_attach_arg *uaa = aux;
    213 
    214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    215 		return UMATCH_VENDOR_PRODUCT;
    216 
    217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    218 		return UMATCH_VENDOR_PRODUCT;
    219 
    220 	return UMATCH_NONE;
    221 }
    222 
    223 static void
    224 upgt_attach(device_t parent, device_t self, void *aux)
    225 {
    226 	struct upgt_softc *sc = device_private(self);
    227 	struct usb_attach_arg *uaa = aux;
    228 	usb_interface_descriptor_t *id;
    229 	usb_endpoint_descriptor_t *ed;
    230 	usbd_status error;
    231 	char *devinfop;
    232 	int i;
    233 
    234 	aprint_naive("\n");
    235 	aprint_normal("\n");
    236 
    237 	/*
    238 	 * Attach USB device.
    239 	 */
    240 	sc->sc_dev = self;
    241 	sc->sc_udev = uaa->uaa_device;
    242 
    243 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    244 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    245 	usbd_devinfo_free(devinfop);
    246 
    247 	/* check device type */
    248 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
    249 		return;
    250 
    251 	/* set configuration number */
    252 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    253 	if (error != 0) {
    254 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    255 		    ", err=%s\n", usbd_errstr(error));
    256 		return;
    257 	}
    258 
    259 	/* get the first interface handle */
    260 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    261 	    &sc->sc_iface);
    262 	if (error != 0) {
    263 		aprint_error_dev(sc->sc_dev,
    264 		    "could not get interface handle\n");
    265 		return;
    266 	}
    267 
    268 	/* find endpoints */
    269 	id = usbd_get_interface_descriptor(sc->sc_iface);
    270 	sc->sc_rx_no = sc->sc_tx_no = -1;
    271 	for (i = 0; i < id->bNumEndpoints; i++) {
    272 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    273 		if (ed == NULL) {
    274 			aprint_error_dev(sc->sc_dev,
    275 			    "no endpoint descriptor for iface %d\n", i);
    276 			return;
    277 		}
    278 
    279 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    280 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    281 			sc->sc_tx_no = ed->bEndpointAddress;
    282 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    283 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    284 			sc->sc_rx_no = ed->bEndpointAddress;
    285 
    286 		/*
    287 		 * 0x01 TX pipe
    288 		 * 0x81 RX pipe
    289 		 *
    290 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    291 		 * 0x02 TX MGMT pipe
    292 		 * 0x82 TX MGMT pipe
    293 		 */
    294 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    295 			break;
    296 	}
    297 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    298 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    299 		return;
    300 	}
    301 
    302 	/* setup tasks and timeouts */
    303 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    304 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    305 	callout_init(&sc->scan_to, 0);
    306 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    307 	callout_init(&sc->led_to, 0);
    308 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    309 
    310 	/*
    311 	 * Open TX and RX USB bulk pipes.
    312 	 */
    313 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    314 	    &sc->sc_tx_pipeh);
    315 	if (error != 0) {
    316 		aprint_error_dev(sc->sc_dev,
    317 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    318 		goto fail;
    319 	}
    320 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    321 	    &sc->sc_rx_pipeh);
    322 	if (error != 0) {
    323 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    324 		    usbd_errstr(error));
    325 		goto fail;
    326 	}
    327 
    328 	/*
    329 	 * Allocate TX, RX, and CMD xfers.
    330 	 */
    331 	if (upgt_alloc_tx(sc) != 0)
    332 		goto fail;
    333 	if (upgt_alloc_rx(sc) != 0)
    334 		goto fail;
    335 	if (upgt_alloc_cmd(sc) != 0)
    336 		goto fail;
    337 
    338 	/*
    339 	 * We need the firmware loaded from file system to complete the attach.
    340 	 */
    341 	config_mountroot(self, upgt_attach_hook);
    342 
    343 	return;
    344 fail:
    345 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    346 }
    347 
    348 static void
    349 upgt_attach_hook(device_t arg)
    350 {
    351 	struct upgt_softc *sc = device_private(arg);
    352 	struct ieee80211com *ic = &sc->sc_ic;
    353 	struct ifnet *ifp = &sc->sc_if;
    354 	usbd_status error;
    355 	int i;
    356 
    357 	/*
    358 	 * Load firmware file into memory.
    359 	 */
    360 	if (upgt_fw_alloc(sc) != 0)
    361 		goto fail;
    362 
    363 	/*
    364 	 * Initialize the device.
    365 	 */
    366 	if (upgt_device_init(sc) != 0)
    367 		goto fail;
    368 
    369 	/*
    370 	 * Verify the firmware.
    371 	 */
    372 	if (upgt_fw_verify(sc) != 0)
    373 		goto fail;
    374 
    375 	/*
    376 	 * Calculate device memory space.
    377 	 */
    378 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    379 		aprint_error_dev(sc->sc_dev,
    380 		    "could not find memory space addresses on FW\n");
    381 		goto fail;
    382 	}
    383 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    384 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    385 
    386 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    387 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    388 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    390 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    391 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    392 
    393 	upgt_mem_init(sc);
    394 
    395 	/*
    396 	 * Load the firmware.
    397 	 */
    398 	if (upgt_fw_load(sc) != 0)
    399 		goto fail;
    400 
    401 	/*
    402 	 * Startup the RX pipe.
    403 	 */
    404 	struct upgt_data *data_rx = &sc->rx_data;
    405 
    406 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
    407 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    408 	error = usbd_transfer(data_rx->xfer);
    409 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    410 		aprint_error_dev(sc->sc_dev,
    411 		    "could not queue RX transfer\n");
    412 		goto fail;
    413 	}
    414 	usbd_delay_ms(sc->sc_udev, 100);
    415 
    416 	/*
    417 	 * Read the whole EEPROM content and parse it.
    418 	 */
    419 	if (upgt_eeprom_read(sc) != 0)
    420 		goto fail;
    421 	if (upgt_eeprom_parse(sc) != 0)
    422 		goto fail;
    423 
    424 	/*
    425 	 * Setup the 802.11 device.
    426 	 */
    427 	ic->ic_ifp = ifp;
    428 	ic->ic_phytype = IEEE80211_T_OFDM;
    429 	ic->ic_opmode = IEEE80211_M_STA;
    430 	ic->ic_state = IEEE80211_S_INIT;
    431 	ic->ic_caps =
    432 	    IEEE80211_C_MONITOR |
    433 	    IEEE80211_C_SHPREAMBLE |
    434 	    IEEE80211_C_SHSLOT;
    435 
    436 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    437 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    438 
    439 	for (i = 1; i <= 14; i++) {
    440 		ic->ic_channels[i].ic_freq =
    441 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    442 		ic->ic_channels[i].ic_flags =
    443 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    444 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    445 	}
    446 
    447 	ifp->if_softc = sc;
    448 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    449 	ifp->if_init = upgt_init;
    450 	ifp->if_ioctl = upgt_ioctl;
    451 	ifp->if_start = upgt_start;
    452 	ifp->if_watchdog = upgt_watchdog;
    453 	IFQ_SET_READY(&ifp->if_snd);
    454 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    455 
    456 	if_attach(ifp);
    457 	ieee80211_ifattach(ic);
    458 	ic->ic_newassoc = upgt_newassoc;
    459 
    460 	sc->sc_newstate = ic->ic_newstate;
    461 	ic->ic_newstate = upgt_newstate;
    462 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    463 
    464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    465 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    466 	    &sc->sc_drvbpf);
    467 
    468 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    469 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    470 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    471 
    472 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    473 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    474 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    475 
    476 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    477 	    ether_sprintf(ic->ic_myaddr));
    478 
    479 	ieee80211_announce(ic);
    480 
    481 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    482 
    483 	/* device attached */
    484 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    485 
    486 	return;
    487 fail:
    488 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    489 }
    490 
    491 static int
    492 upgt_detach(device_t self, int flags)
    493 {
    494 	struct upgt_softc *sc = device_private(self);
    495 	struct ifnet *ifp = &sc->sc_if;
    496 	struct ieee80211com *ic = &sc->sc_ic;
    497 	int s;
    498 
    499 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    500 
    501 	s = splnet();
    502 
    503 	if (ifp->if_flags & IFF_RUNNING)
    504 		upgt_stop(sc);
    505 
    506 	/* remove tasks and timeouts */
    507 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    508 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    509 	callout_destroy(&sc->scan_to);
    510 	callout_destroy(&sc->led_to);
    511 
    512 	/* abort and close TX / RX pipes */
    513 	if (sc->sc_tx_pipeh != NULL) {
    514 		usbd_abort_pipe(sc->sc_tx_pipeh);
    515 	}
    516 	if (sc->sc_rx_pipeh != NULL) {
    517 		usbd_abort_pipe(sc->sc_rx_pipeh);
    518 	}
    519 
    520 	/* free xfers */
    521 	upgt_free_tx(sc);
    522 	upgt_free_rx(sc);
    523 	upgt_free_cmd(sc);
    524 
    525 	/* Close TX / RX pipes */
    526 	if (sc->sc_tx_pipeh != NULL) {
    527 		usbd_close_pipe(sc->sc_tx_pipeh);
    528 	}
    529 	if (sc->sc_rx_pipeh != NULL) {
    530 		usbd_close_pipe(sc->sc_rx_pipeh);
    531 	}
    532 
    533 	/* free firmware */
    534 	upgt_fw_free(sc);
    535 
    536 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    537 		/* detach interface */
    538 		bpf_detach(ifp);
    539 		ieee80211_ifdetach(ic);
    540 		if_detach(ifp);
    541 	}
    542 
    543 	splx(s);
    544 
    545 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    546 
    547 	return 0;
    548 }
    549 
    550 static int
    551 upgt_activate(device_t self, devact_t act)
    552 {
    553 	struct upgt_softc *sc = device_private(self);
    554 
    555 	switch (act) {
    556 	case DVACT_DEACTIVATE:
    557 		if_deactivate(&sc->sc_if);
    558 		return 0;
    559 	default:
    560 		return EOPNOTSUPP;
    561 	}
    562 }
    563 
    564 static int
    565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    566 {
    567 
    568 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    569 		sc->sc_device_type = 1;
    570 		/* XXX */
    571 		aprint_error_dev(sc->sc_dev,
    572 		    "version 1 devices not supported yet\n");
    573 		return 1;
    574 	} else
    575 		sc->sc_device_type = 2;
    576 
    577 	return 0;
    578 }
    579 
    580 static int
    581 upgt_device_init(struct upgt_softc *sc)
    582 {
    583 	struct upgt_data *data_cmd = &sc->cmd_data;
    584 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    585 	int len;
    586 
    587 	len = sizeof(init_cmd);
    588 	memcpy(data_cmd->buf, init_cmd, len);
    589 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    590 		aprint_error_dev(sc->sc_dev,
    591 		    "could not send device init string\n");
    592 		return EIO;
    593 	}
    594 	usbd_delay_ms(sc->sc_udev, 100);
    595 
    596 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    597 
    598 	return 0;
    599 }
    600 
    601 static int
    602 upgt_mem_init(struct upgt_softc *sc)
    603 {
    604 	int i;
    605 
    606 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    607 		sc->sc_memory.page[i].used = 0;
    608 
    609 		if (i == 0) {
    610 			/*
    611 			 * The first memory page is always reserved for
    612 			 * command data.
    613 			 */
    614 			sc->sc_memory.page[i].addr =
    615 			    sc->sc_memaddr_frame_start + MCLBYTES;
    616 		} else {
    617 			sc->sc_memory.page[i].addr =
    618 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    619 		}
    620 
    621 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    622 		    sc->sc_memaddr_frame_end)
    623 			break;
    624 
    625 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    626 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    627 	}
    628 
    629 	sc->sc_memory.pages = i;
    630 
    631 	DPRINTF(2, "%s: memory pages=%d\n",
    632 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    633 
    634 	return 0;
    635 }
    636 
    637 static uint32_t
    638 upgt_mem_alloc(struct upgt_softc *sc)
    639 {
    640 	int i;
    641 
    642 	for (i = 0; i < sc->sc_memory.pages; i++) {
    643 		if (sc->sc_memory.page[i].used == 0) {
    644 			sc->sc_memory.page[i].used = 1;
    645 			return sc->sc_memory.page[i].addr;
    646 		}
    647 	}
    648 
    649 	return 0;
    650 }
    651 
    652 static void
    653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    654 {
    655 	int i;
    656 
    657 	for (i = 0; i < sc->sc_memory.pages; i++) {
    658 		if (sc->sc_memory.page[i].addr == addr) {
    659 			sc->sc_memory.page[i].used = 0;
    660 			return;
    661 		}
    662 	}
    663 
    664 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    665 	    addr);
    666 }
    667 
    668 
    669 static int
    670 upgt_fw_alloc(struct upgt_softc *sc)
    671 {
    672 	const char *name = "upgt-gw3887";
    673 	int error;
    674 
    675 	if (sc->sc_fw == NULL) {
    676 		error = firmware_load("upgt", name, &sc->sc_fw,
    677 		    &sc->sc_fw_size);
    678 		if (error != 0) {
    679 			if (error == ENOENT) {
    680 				/*
    681 				 * The firmware file for upgt(4) is not in
    682 				 * the default distribution due to its lisence
    683 				 * so explicitly notify it if the firmware file
    684 				 * is not found.
    685 				 */
    686 				aprint_error_dev(sc->sc_dev,
    687 				    "firmware file %s is not installed\n",
    688 				    name);
    689 				aprint_error_dev(sc->sc_dev,
    690 				    "(it is not included in the default"
    691 				    " distribution)\n");
    692 				aprint_error_dev(sc->sc_dev,
    693 				    "see upgt(4) man page for details about "
    694 				    "firmware installation\n");
    695 			} else {
    696 				aprint_error_dev(sc->sc_dev,
    697 				    "could not read firmware %s\n", name);
    698 			}
    699 			return EIO;
    700 		}
    701 	}
    702 
    703 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    704 	    name);
    705 
    706 	return 0;
    707 }
    708 
    709 static void
    710 upgt_fw_free(struct upgt_softc *sc)
    711 {
    712 
    713 	if (sc->sc_fw != NULL) {
    714 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    715 		sc->sc_fw = NULL;
    716 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    717 	}
    718 }
    719 
    720 static int
    721 upgt_fw_verify(struct upgt_softc *sc)
    722 {
    723 	struct upgt_fw_bra_option *bra_option;
    724 	uint32_t bra_option_type, bra_option_len;
    725 	uint32_t *uc;
    726 	int offset, bra_end = 0;
    727 
    728 	/*
    729 	 * Seek to beginning of Boot Record Area (BRA).
    730 	 */
    731 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    732 		uc = (uint32_t *)(sc->sc_fw + offset);
    733 		if (*uc == 0)
    734 			break;
    735 	}
    736 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    737 		uc = (uint32_t *)(sc->sc_fw + offset);
    738 		if (*uc != 0)
    739 			break;
    740 	}
    741 	if (offset == sc->sc_fw_size) {
    742 		aprint_error_dev(sc->sc_dev,
    743 		    "firmware Boot Record Area not found\n");
    744 		return EIO;
    745 	}
    746 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    747 	    device_xname(sc->sc_dev), offset);
    748 
    749 	/*
    750 	 * Parse Boot Record Area (BRA) options.
    751 	 */
    752 	while (offset < sc->sc_fw_size && bra_end == 0) {
    753 		/* get current BRA option */
    754 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    755 		bra_option_type = le32toh(bra_option->type);
    756 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    757 
    758 		switch (bra_option_type) {
    759 		case UPGT_BRA_TYPE_FW:
    760 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    761 			    device_xname(sc->sc_dev), bra_option_len);
    762 
    763 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    764 				aprint_error_dev(sc->sc_dev,
    765 				    "wrong UPGT_BRA_TYPE_FW len\n");
    766 				return EIO;
    767 			}
    768 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    769 			    bra_option_len) == 0) {
    770 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    771 				break;
    772 			}
    773 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    774 			    bra_option_len) == 0) {
    775 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    776 				break;
    777 			}
    778 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    779 			    bra_option_len) == 0) {
    780 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    781 				break;
    782 			}
    783 			aprint_error_dev(sc->sc_dev,
    784 			    "unsupported firmware type\n");
    785 			return EIO;
    786 		case UPGT_BRA_TYPE_VERSION:
    787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    788 			    device_xname(sc->sc_dev), bra_option_len);
    789 			break;
    790 		case UPGT_BRA_TYPE_DEPIF:
    791 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    792 			    device_xname(sc->sc_dev), bra_option_len);
    793 			break;
    794 		case UPGT_BRA_TYPE_EXPIF:
    795 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    796 			    device_xname(sc->sc_dev), bra_option_len);
    797 			break;
    798 		case UPGT_BRA_TYPE_DESCR:
    799 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    800 			    device_xname(sc->sc_dev), bra_option_len);
    801 
    802 			struct upgt_fw_bra_descr *descr =
    803 				(struct upgt_fw_bra_descr *)bra_option->data;
    804 
    805 			sc->sc_memaddr_frame_start =
    806 			    le32toh(descr->memaddr_space_start);
    807 			sc->sc_memaddr_frame_end =
    808 			    le32toh(descr->memaddr_space_end);
    809 
    810 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    811 			    device_xname(sc->sc_dev),
    812 			    sc->sc_memaddr_frame_start);
    813 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    814 			    device_xname(sc->sc_dev),
    815 			    sc->sc_memaddr_frame_end);
    816 			break;
    817 		case UPGT_BRA_TYPE_END:
    818 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    819 			    device_xname(sc->sc_dev), bra_option_len);
    820 			bra_end = 1;
    821 			break;
    822 		default:
    823 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    824 			    device_xname(sc->sc_dev), bra_option_len);
    825 			return EIO;
    826 		}
    827 
    828 		/* jump to next BRA option */
    829 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    830 	}
    831 
    832 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    833 
    834 	return 0;
    835 }
    836 
    837 static int
    838 upgt_fw_load(struct upgt_softc *sc)
    839 {
    840 	struct upgt_data *data_cmd = &sc->cmd_data;
    841 	struct upgt_data *data_rx = &sc->rx_data;
    842 	struct upgt_fw_x2_header *x2;
    843 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    844 	int offset, bsize, n, i, len;
    845 	uint32_t crc;
    846 
    847 	/* send firmware start load command */
    848 	len = sizeof(start_fwload_cmd);
    849 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    850 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    851 		aprint_error_dev(sc->sc_dev,
    852 		    "could not send start_firmware_load command\n");
    853 		return EIO;
    854 	}
    855 
    856 	/* send X2 header */
    857 	len = sizeof(struct upgt_fw_x2_header);
    858 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    859 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    860 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    861 	x2->len = htole32(sc->sc_fw_size);
    862 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    863 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    864 	    sizeof(uint32_t));
    865 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    866 		aprint_error_dev(sc->sc_dev,
    867 		    "could not send firmware X2 header\n");
    868 		return EIO;
    869 	}
    870 
    871 	/* download firmware */
    872 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    873 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    874 			bsize = UPGT_FW_BLOCK_SIZE;
    875 		else
    876 			bsize = sc->sc_fw_size - offset;
    877 
    878 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    879 
    880 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    881 		    device_xname(sc->sc_dev), offset, n, bsize);
    882 
    883 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    884 		    != 0) {
    885 			aprint_error_dev(sc->sc_dev,
    886 			    "error while downloading firmware block\n");
    887 			return EIO;
    888 		}
    889 
    890 		bsize = n;
    891 	}
    892 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    893 
    894 	/* load firmware */
    895 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    896 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    897 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    898 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    899 	len = 6;
    900 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    901 		aprint_error_dev(sc->sc_dev,
    902 		    "could not send load_firmware command\n");
    903 		return EIO;
    904 	}
    905 
    906 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    907 		len = UPGT_FW_BLOCK_SIZE;
    908 		memset(data_rx->buf, 0, 2);
    909 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    910 		    USBD_SHORT_XFER_OK) != 0) {
    911 			aprint_error_dev(sc->sc_dev,
    912 			    "could not read firmware response\n");
    913 			return EIO;
    914 		}
    915 
    916 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    917 			break;	/* firmware load was successful */
    918 	}
    919 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    920 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    921 		return EIO;
    922 	}
    923 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    924 
    925 	return 0;
    926 }
    927 
    928 /*
    929  * While copying the version 2 firmware, we need to replace two characters:
    930  *
    931  * 0x7e -> 0x7d 0x5e
    932  * 0x7d -> 0x7d 0x5d
    933  */
    934 static int
    935 upgt_fw_copy(char *src, char *dst, int size)
    936 {
    937 	int i, j;
    938 
    939 	for (i = 0, j = 0; i < size && j < size; i++) {
    940 		switch (src[i]) {
    941 		case 0x7e:
    942 			dst[j] = 0x7d;
    943 			j++;
    944 			dst[j] = 0x5e;
    945 			j++;
    946 			break;
    947 		case 0x7d:
    948 			dst[j] = 0x7d;
    949 			j++;
    950 			dst[j] = 0x5d;
    951 			j++;
    952 			break;
    953 		default:
    954 			dst[j] = src[i];
    955 			j++;
    956 			break;
    957 		}
    958 	}
    959 
    960 	return i;
    961 }
    962 
    963 static int
    964 upgt_eeprom_read(struct upgt_softc *sc)
    965 {
    966 	struct upgt_data *data_cmd = &sc->cmd_data;
    967 	struct upgt_lmac_mem *mem;
    968 	struct upgt_lmac_eeprom	*eeprom;
    969 	int offset, block, len;
    970 
    971 	offset = 0;
    972 	block = UPGT_EEPROM_BLOCK_SIZE;
    973 	while (offset < UPGT_EEPROM_SIZE) {
    974 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    975 		    device_xname(sc->sc_dev), offset, block);
    976 
    977 		/*
    978 		 * Transmit the URB containing the CMD data.
    979 		 */
    980 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    981 
    982 		memset(data_cmd->buf, 0, len);
    983 
    984 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    985 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    986 		    UPGT_MEMSIZE_FRAME_HEAD);
    987 
    988 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    989 		eeprom->header1.flags = 0;
    990 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    991 		eeprom->header1.len = htole16((
    992 		    sizeof(struct upgt_lmac_eeprom) -
    993 		    sizeof(struct upgt_lmac_header)) + block);
    994 
    995 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    996 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    997 		eeprom->header2.flags = 0;
    998 
    999 		eeprom->offset = htole16(offset);
   1000 		eeprom->len = htole16(block);
   1001 
   1002 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
   1003 		    len - sizeof(*mem));
   1004 
   1005 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
   1006 		    USBD_FORCE_SHORT_XFER) != 0) {
   1007 			aprint_error_dev(sc->sc_dev,
   1008 			    "could not transmit EEPROM data URB\n");
   1009 			return EIO;
   1010 		}
   1011 
   1012 		mutex_enter(&sc->sc_mtx);
   1013 		int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
   1014 		mutex_exit(&sc->sc_mtx);
   1015 		if (res) {
   1016 			aprint_error_dev(sc->sc_dev,
   1017 			    "timeout while waiting for EEPROM data\n");
   1018 			return EIO;
   1019 		}
   1020 
   1021 		offset += block;
   1022 		if (UPGT_EEPROM_SIZE - offset < block)
   1023 			block = UPGT_EEPROM_SIZE - offset;
   1024 	}
   1025 
   1026 	return 0;
   1027 }
   1028 
   1029 static int
   1030 upgt_eeprom_parse(struct upgt_softc *sc)
   1031 {
   1032 	struct ieee80211com *ic = &sc->sc_ic;
   1033 	struct upgt_eeprom_header *eeprom_header;
   1034 	struct upgt_eeprom_option *eeprom_option;
   1035 	uint16_t option_len;
   1036 	uint16_t option_type;
   1037 	uint16_t preamble_len;
   1038 	int option_end = 0;
   1039 
   1040 	/* calculate eeprom options start offset */
   1041 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1042 	preamble_len = le16toh(eeprom_header->preamble_len);
   1043 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1044 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1045 
   1046 	while (!option_end) {
   1047 		/* the eeprom option length is stored in words */
   1048 		option_len =
   1049 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1050 		option_type =
   1051 		    le16toh(eeprom_option->type);
   1052 
   1053 		switch (option_type) {
   1054 		case UPGT_EEPROM_TYPE_NAME:
   1055 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1056 			    device_xname(sc->sc_dev), option_len);
   1057 			break;
   1058 		case UPGT_EEPROM_TYPE_SERIAL:
   1059 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1060 			    device_xname(sc->sc_dev), option_len);
   1061 			break;
   1062 		case UPGT_EEPROM_TYPE_MAC:
   1063 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1064 			    device_xname(sc->sc_dev), option_len);
   1065 
   1066 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1067 			break;
   1068 		case UPGT_EEPROM_TYPE_HWRX:
   1069 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1070 			    device_xname(sc->sc_dev), option_len);
   1071 
   1072 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1073 			break;
   1074 		case UPGT_EEPROM_TYPE_CHIP:
   1075 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1076 			    device_xname(sc->sc_dev), option_len);
   1077 			break;
   1078 		case UPGT_EEPROM_TYPE_FREQ3:
   1079 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1080 			    device_xname(sc->sc_dev), option_len);
   1081 
   1082 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1083 			    option_len);
   1084 			break;
   1085 		case UPGT_EEPROM_TYPE_FREQ4:
   1086 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1087 			    device_xname(sc->sc_dev), option_len);
   1088 
   1089 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1090 			    option_len);
   1091 			break;
   1092 		case UPGT_EEPROM_TYPE_FREQ5:
   1093 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1094 			    device_xname(sc->sc_dev), option_len);
   1095 			break;
   1096 		case UPGT_EEPROM_TYPE_FREQ6:
   1097 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1098 			    device_xname(sc->sc_dev), option_len);
   1099 
   1100 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1101 			    option_len);
   1102 			break;
   1103 		case UPGT_EEPROM_TYPE_END:
   1104 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1105 			    device_xname(sc->sc_dev), option_len);
   1106 			option_end = 1;
   1107 			break;
   1108 		case UPGT_EEPROM_TYPE_OFF:
   1109 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1110 			    device_xname(sc->sc_dev));
   1111 			return EIO;
   1112 		default:
   1113 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1114 			    device_xname(sc->sc_dev), option_type, option_len);
   1115 			break;
   1116 		}
   1117 
   1118 		/* jump to next EEPROM option */
   1119 		eeprom_option = (struct upgt_eeprom_option *)
   1120 		    (eeprom_option->data + option_len);
   1121 	}
   1122 
   1123 	return 0;
   1124 }
   1125 
   1126 static void
   1127 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1128 {
   1129 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1130 
   1131 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1132 
   1133 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1134 
   1135 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1136 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1137 }
   1138 
   1139 static void
   1140 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1141 {
   1142 	struct upgt_eeprom_freq3_header *freq3_header;
   1143 	struct upgt_lmac_freq3 *freq3;
   1144 	int i, elements, flags;
   1145 	unsigned channel;
   1146 
   1147 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1148 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1149 
   1150 	flags = freq3_header->flags;
   1151 	elements = freq3_header->elements;
   1152 
   1153 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1154 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1155 	__USE(flags);
   1156 
   1157 	for (i = 0; i < elements; i++) {
   1158 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1159 
   1160 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1161 
   1162 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1163 		    device_xname(sc->sc_dev),
   1164 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1165 	}
   1166 }
   1167 
   1168 static void
   1169 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1170 {
   1171 	struct upgt_eeprom_freq4_header *freq4_header;
   1172 	struct upgt_eeprom_freq4_1 *freq4_1;
   1173 	struct upgt_eeprom_freq4_2 *freq4_2;
   1174 	int i, j, elements, settings, flags;
   1175 	unsigned channel;
   1176 
   1177 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1178 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1179 
   1180 	flags = freq4_header->flags;
   1181 	elements = freq4_header->elements;
   1182 	settings = freq4_header->settings;
   1183 
   1184 	/* we need this value later */
   1185 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1186 
   1187 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1188 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1189 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1190 	__USE(flags);
   1191 
   1192 	for (i = 0; i < elements; i++) {
   1193 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1194 
   1195 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1196 
   1197 		for (j = 0; j < settings; j++) {
   1198 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1199 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1200 		}
   1201 
   1202 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1203 		    device_xname(sc->sc_dev),
   1204 		    le16toh(freq4_1[i].freq), channel);
   1205 	}
   1206 }
   1207 
   1208 static void
   1209 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1210 {
   1211 	struct upgt_lmac_freq6 *freq6;
   1212 	int i, elements;
   1213 	unsigned channel;
   1214 
   1215 	freq6 = (struct upgt_lmac_freq6 *)data;
   1216 
   1217 	elements = len / sizeof(struct upgt_lmac_freq6);
   1218 
   1219 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1220 
   1221 	for (i = 0; i < elements; i++) {
   1222 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1223 
   1224 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1225 
   1226 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1227 		    device_xname(sc->sc_dev),
   1228 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1229 	}
   1230 }
   1231 
   1232 static int
   1233 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1234 {
   1235 	struct upgt_softc *sc = ifp->if_softc;
   1236 	struct ieee80211com *ic = &sc->sc_ic;
   1237 	int s, error = 0;
   1238 
   1239 	s = splnet();
   1240 
   1241 	switch (cmd) {
   1242 	case SIOCSIFFLAGS:
   1243 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1244 			break;
   1245 		if (ifp->if_flags & IFF_UP) {
   1246 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1247 				upgt_init(ifp);
   1248 		} else {
   1249 			if (ifp->if_flags & IFF_RUNNING)
   1250 				upgt_stop(sc);
   1251 		}
   1252 		break;
   1253 	case SIOCADDMULTI:
   1254 	case SIOCDELMULTI:
   1255 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1256 			/* setup multicast filter, etc */
   1257 			error = 0;
   1258 		}
   1259 		break;
   1260 	default:
   1261 		error = ieee80211_ioctl(ic, cmd, data);
   1262 		break;
   1263 	}
   1264 
   1265 	if (error == ENETRESET) {
   1266 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1267 		    (IFF_UP | IFF_RUNNING))
   1268 			upgt_init(ifp);
   1269 		error = 0;
   1270 	}
   1271 
   1272 	splx(s);
   1273 
   1274 	return error;
   1275 }
   1276 
   1277 static int
   1278 upgt_init(struct ifnet *ifp)
   1279 {
   1280 	struct upgt_softc *sc = ifp->if_softc;
   1281 	struct ieee80211com *ic = &sc->sc_ic;
   1282 
   1283 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1284 
   1285 	if (ifp->if_flags & IFF_RUNNING)
   1286 		upgt_stop(sc);
   1287 
   1288 	ifp->if_flags |= IFF_RUNNING;
   1289 	ifp->if_flags &= ~IFF_OACTIVE;
   1290 
   1291 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1292 
   1293 	/* setup device rates */
   1294 	upgt_setup_rates(sc);
   1295 
   1296 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1297 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1298 	else
   1299 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1300 
   1301 	return 0;
   1302 }
   1303 
   1304 static void
   1305 upgt_stop(struct upgt_softc *sc)
   1306 {
   1307 	struct ieee80211com *ic = &sc->sc_ic;
   1308 	struct ifnet *ifp = &sc->sc_if;
   1309 
   1310 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1311 
   1312 	/* device down */
   1313 	ifp->if_timer = 0;
   1314 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1315 
   1316 	/* change device back to initial state */
   1317 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1318 }
   1319 
   1320 static int
   1321 upgt_media_change(struct ifnet *ifp)
   1322 {
   1323 	struct upgt_softc *sc = ifp->if_softc;
   1324 	int error;
   1325 
   1326 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1327 
   1328 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
   1329 		return error;
   1330 
   1331 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1332 	    (IFF_UP | IFF_RUNNING)) {
   1333 		/* give pending USB transfers a chance to finish */
   1334 		usbd_delay_ms(sc->sc_udev, 100);
   1335 		upgt_init(ifp);
   1336 	}
   1337 
   1338 	return 0;
   1339 }
   1340 
   1341 static void
   1342 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1343 {
   1344 
   1345 	ni->ni_txrate = 0;
   1346 }
   1347 
   1348 static int
   1349 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1350 {
   1351 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1352 
   1353 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1354 	callout_stop(&sc->scan_to);
   1355 
   1356 	/* do it in a process context */
   1357 	sc->sc_state = nstate;
   1358 	sc->sc_arg = arg;
   1359 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1360 
   1361 	return 0;
   1362 }
   1363 
   1364 static void
   1365 upgt_newstate_task(void *arg)
   1366 {
   1367 	struct upgt_softc *sc = arg;
   1368 	struct ieee80211com *ic = &sc->sc_ic;
   1369 	struct ieee80211_node *ni;
   1370 	unsigned channel;
   1371 
   1372 	mutex_enter(&sc->sc_mtx);
   1373 
   1374 	switch (sc->sc_state) {
   1375 	case IEEE80211_S_INIT:
   1376 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1377 		    device_xname(sc->sc_dev));
   1378 
   1379 		/* do not accept any frames if the device is down */
   1380 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1381 		upgt_set_led(sc, UPGT_LED_OFF);
   1382 		break;
   1383 	case IEEE80211_S_SCAN:
   1384 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1385 		    device_xname(sc->sc_dev));
   1386 
   1387 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1388 		upgt_set_channel(sc, channel);
   1389 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1390 		callout_schedule(&sc->scan_to, hz / 5);
   1391 		break;
   1392 	case IEEE80211_S_AUTH:
   1393 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1394 		    device_xname(sc->sc_dev));
   1395 
   1396 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1397 		upgt_set_channel(sc, channel);
   1398 		break;
   1399 	case IEEE80211_S_ASSOC:
   1400 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1401 		    device_xname(sc->sc_dev));
   1402 
   1403 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1404 		upgt_set_channel(sc, channel);
   1405 		break;
   1406 	case IEEE80211_S_RUN:
   1407 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1408 		    device_xname(sc->sc_dev));
   1409 
   1410 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1411 		upgt_set_channel(sc, channel);
   1412 
   1413 		ni = ic->ic_bss;
   1414 
   1415 		/*
   1416 		 * TX rate control is done by the firmware.
   1417 		 * Report the maximum rate which is available therefore.
   1418 		 */
   1419 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1420 
   1421 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1422 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1423 		upgt_set_led(sc, UPGT_LED_ON);
   1424 		break;
   1425 	}
   1426 
   1427 	mutex_exit(&sc->sc_mtx);
   1428 
   1429 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1430 }
   1431 
   1432 static void
   1433 upgt_next_scan(void *arg)
   1434 {
   1435 	struct upgt_softc *sc = arg;
   1436 	struct ieee80211com *ic = &sc->sc_ic;
   1437 
   1438 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1439 
   1440 	if (ic->ic_state == IEEE80211_S_SCAN)
   1441 		ieee80211_next_scan(ic);
   1442 }
   1443 
   1444 static void
   1445 upgt_start(struct ifnet *ifp)
   1446 {
   1447 	struct upgt_softc *sc = ifp->if_softc;
   1448 	struct ieee80211com *ic = &sc->sc_ic;
   1449 	struct ether_header *eh;
   1450 	struct ieee80211_node *ni;
   1451 	struct mbuf *m;
   1452 	int i;
   1453 
   1454 	/* don't transmit packets if interface is busy or down */
   1455 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1456 		return;
   1457 
   1458 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1459 
   1460 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1461 		struct upgt_data *data_tx = &sc->tx_data[i];
   1462 
   1463 		if (data_tx->m != NULL)
   1464 			continue;
   1465 
   1466 		IF_POLL(&ic->ic_mgtq, m);
   1467 		if (m != NULL) {
   1468 			/* management frame */
   1469 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1470 
   1471 			ni = M_GETCTX(m, struct ieee80211_node *);
   1472 			M_CLEARCTX(m);
   1473 
   1474 			bpf_mtap3(ic->ic_rawbpf, m);
   1475 
   1476 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1477 				aprint_error_dev(sc->sc_dev,
   1478 				    "no free prism memory\n");
   1479 				m_freem(m);
   1480 				ifp->if_oerrors++;
   1481 				break;
   1482 			}
   1483 			data_tx->ni = ni;
   1484 			data_tx->m = m;
   1485 			sc->tx_queued++;
   1486 		} else {
   1487 			/* data frame */
   1488 			if (ic->ic_state != IEEE80211_S_RUN)
   1489 				break;
   1490 
   1491 			IFQ_POLL(&ifp->if_snd, m);
   1492 			if (m == NULL)
   1493 				break;
   1494 
   1495 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1496 			if (m->m_len < sizeof(struct ether_header) &&
   1497 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1498 				continue;
   1499 
   1500 			eh = mtod(m, struct ether_header *);
   1501 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1502 			if (ni == NULL) {
   1503 				m_freem(m);
   1504 				continue;
   1505 			}
   1506 
   1507 			bpf_mtap(ifp, m);
   1508 
   1509 			m = ieee80211_encap(ic, m, ni);
   1510 			if (m == NULL) {
   1511 				ieee80211_free_node(ni);
   1512 				continue;
   1513 			}
   1514 
   1515 			bpf_mtap3(ic->ic_rawbpf, m);
   1516 
   1517 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1518 				aprint_error_dev(sc->sc_dev,
   1519 				    "no free prism memory\n");
   1520 				m_freem(m);
   1521 				ieee80211_free_node(ni);
   1522 				ifp->if_oerrors++;
   1523 				break;
   1524 			}
   1525 			data_tx->ni = ni;
   1526 			data_tx->m = m;
   1527 			sc->tx_queued++;
   1528 		}
   1529 	}
   1530 
   1531 	if (sc->tx_queued > 0) {
   1532 		DPRINTF(2, "%s: tx_queued=%d\n",
   1533 		    device_xname(sc->sc_dev), sc->tx_queued);
   1534 		/* process the TX queue in process context */
   1535 		ifp->if_timer = 5;
   1536 		ifp->if_flags |= IFF_OACTIVE;
   1537 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1538 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1539 	}
   1540 }
   1541 
   1542 static void
   1543 upgt_watchdog(struct ifnet *ifp)
   1544 {
   1545 	struct upgt_softc *sc = ifp->if_softc;
   1546 	struct ieee80211com *ic = &sc->sc_ic;
   1547 
   1548 	if (ic->ic_state == IEEE80211_S_INIT)
   1549 		return;
   1550 
   1551 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1552 
   1553 	/* TODO: what shall we do on TX timeout? */
   1554 
   1555 	ieee80211_watchdog(ic);
   1556 }
   1557 
   1558 static void
   1559 upgt_tx_task(void *arg)
   1560 {
   1561 	struct upgt_softc *sc = arg;
   1562 	struct ieee80211com *ic = &sc->sc_ic;
   1563 	struct ieee80211_frame *wh;
   1564 	struct ieee80211_key *k;
   1565 	struct ifnet *ifp = &sc->sc_if;
   1566 	struct upgt_lmac_mem *mem;
   1567 	struct upgt_lmac_tx_desc *txdesc;
   1568 	struct mbuf *m;
   1569 	uint32_t addr;
   1570 	int i, len, pad, s;
   1571 	usbd_status error;
   1572 
   1573 	mutex_enter(&sc->sc_mtx);
   1574 	upgt_set_led(sc, UPGT_LED_BLINK);
   1575 	mutex_exit(&sc->sc_mtx);
   1576 
   1577 	s = splnet();
   1578 
   1579 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1580 		struct upgt_data *data_tx = &sc->tx_data[i];
   1581 
   1582 		if (data_tx->m == NULL)
   1583 			continue;
   1584 
   1585 		m = data_tx->m;
   1586 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1587 
   1588 		/*
   1589 		 * Software crypto.
   1590 		 */
   1591 		wh = mtod(m, struct ieee80211_frame *);
   1592 
   1593 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1594 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1595 			if (k == NULL) {
   1596 				m_freem(m);
   1597 				data_tx->m = NULL;
   1598 				ieee80211_free_node(data_tx->ni);
   1599 				data_tx->ni = NULL;
   1600 				ifp->if_oerrors++;
   1601 				break;
   1602 			}
   1603 
   1604 			/* in case packet header moved, reset pointer */
   1605 			wh = mtod(m, struct ieee80211_frame *);
   1606 		}
   1607 
   1608 		/*
   1609 		 * Transmit the URB containing the TX data.
   1610 		 */
   1611 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1612 
   1613 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1614 		mem->addr = htole32(addr);
   1615 
   1616 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1617 
   1618 		/* XXX differ between data and mgmt frames? */
   1619 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1620 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1621 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1622 
   1623 		txdesc->header2.reqid = htole32(data_tx->addr);
   1624 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1625 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1626 
   1627 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1628 		    IEEE80211_FC0_TYPE_MGT) {
   1629 			/* always send mgmt frames at lowest rate (DS1) */
   1630 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1631 		} else {
   1632 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1633 			    sizeof(txdesc->rates));
   1634 		}
   1635 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1636 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1637 
   1638 		if (sc->sc_drvbpf != NULL) {
   1639 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1640 
   1641 			tap->wt_flags = 0;
   1642 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1643 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1644 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1645 
   1646 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1647 		}
   1648 
   1649 		/* copy frame below our TX descriptor header */
   1650 		m_copydata(m, 0, m->m_pkthdr.len,
   1651 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1652 
   1653 		/* calculate frame size */
   1654 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1655 
   1656 		if (len & 3) {
   1657 			/* we need to align the frame to a 4 byte boundary */
   1658 			pad = 4 - (len & 3);
   1659 			memset(data_tx->buf + len, 0, pad);
   1660 			len += pad;
   1661 		}
   1662 
   1663 		/* calculate frame checksum */
   1664 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1665 		    len - sizeof(*mem));
   1666 
   1667 		/* we do not need the mbuf anymore */
   1668 		m_freem(m);
   1669 		data_tx->m = NULL;
   1670 
   1671 		ieee80211_free_node(data_tx->ni);
   1672 		data_tx->ni = NULL;
   1673 
   1674 		DPRINTF(2, "%s: TX start data sending\n",
   1675 		    device_xname(sc->sc_dev));
   1676 
   1677 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
   1678 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
   1679 		error = usbd_transfer(data_tx->xfer);
   1680 		if (error != USBD_NORMAL_COMPLETION &&
   1681 		    error != USBD_IN_PROGRESS) {
   1682 			aprint_error_dev(sc->sc_dev,
   1683 			    "could not transmit TX data URB\n");
   1684 			ifp->if_oerrors++;
   1685 			break;
   1686 		}
   1687 
   1688 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1689 		    device_xname(sc->sc_dev), len);
   1690 	}
   1691 
   1692 	splx(s);
   1693 
   1694 	/*
   1695 	 * If we don't regulary read the device statistics, the RX queue
   1696 	 * will stall.  It's strange, but it works, so we keep reading
   1697 	 * the statistics here.  *shrug*
   1698 	 */
   1699 	mutex_enter(&sc->sc_mtx);
   1700 	upgt_get_stats(sc);
   1701 	mutex_exit(&sc->sc_mtx);
   1702 }
   1703 
   1704 static void
   1705 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1706 {
   1707 	struct ifnet *ifp = &sc->sc_if;
   1708 	struct upgt_lmac_tx_done_desc *desc;
   1709 	int i, s;
   1710 
   1711 	s = splnet();
   1712 
   1713 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1714 
   1715 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1716 		struct upgt_data *data_tx = &sc->tx_data[i];
   1717 
   1718 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1719 			upgt_mem_free(sc, data_tx->addr);
   1720 			data_tx->addr = 0;
   1721 
   1722 			sc->tx_queued--;
   1723 			ifp->if_opackets++;
   1724 
   1725 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1726 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1727 			    le32toh(desc->header2.reqid),
   1728 			    le16toh(desc->status),
   1729 			    le16toh(desc->rssi));
   1730 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1731 			break;
   1732 		}
   1733 	}
   1734 
   1735 	if (sc->tx_queued == 0) {
   1736 		/* TX queued was processed, continue */
   1737 		ifp->if_timer = 0;
   1738 		ifp->if_flags &= ~IFF_OACTIVE;
   1739 		upgt_start(ifp);
   1740 	}
   1741 
   1742 	splx(s);
   1743 }
   1744 
   1745 static void
   1746 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
   1747 {
   1748 	struct upgt_data *data_rx = priv;
   1749 	struct upgt_softc *sc = data_rx->sc;
   1750 	int len;
   1751 	struct upgt_lmac_header *header;
   1752 	struct upgt_lmac_eeprom *eeprom;
   1753 	uint8_t h1_type;
   1754 	uint16_t h2_type;
   1755 
   1756 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1757 
   1758 	if (status != USBD_NORMAL_COMPLETION) {
   1759 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1760 			return;
   1761 		if (status == USBD_STALLED)
   1762 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1763 		goto skip;
   1764 	}
   1765 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1766 
   1767 	/*
   1768 	 * Check what type of frame came in.
   1769 	 */
   1770 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1771 
   1772 	h1_type = header->header1.type;
   1773 	h2_type = le16toh(header->header2.type);
   1774 
   1775 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1776 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1777 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1778 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1779 		uint16_t eeprom_len = le16toh(eeprom->len);
   1780 
   1781 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1782 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1783 
   1784 		mutex_enter(&sc->sc_mtx);
   1785 		memcpy(sc->sc_eeprom + eeprom_offset,
   1786 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1787 		    eeprom_len);
   1788 
   1789 		/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
   1790 		/* Note eeprom data arrived */
   1791 		cv_broadcast(&sc->sc_cv);
   1792 		mutex_exit(&sc->sc_mtx);
   1793 	} else
   1794 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1795 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1796 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1797 		    device_xname(sc->sc_dev));
   1798 
   1799 		upgt_tx_done(sc, data_rx->buf + 4);
   1800 	} else
   1801 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1802 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1803 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1804 		    device_xname(sc->sc_dev));
   1805 
   1806 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1807 	} else
   1808 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1809 	    h2_type == UPGT_H2_TYPE_STATS) {
   1810 		DPRINTF(2, "%s: received statistic data\n",
   1811 		    device_xname(sc->sc_dev));
   1812 
   1813 		/* TODO: what could we do with the statistic data? */
   1814 	} else {
   1815 		/* ignore unknown frame types */
   1816 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1817 		    device_xname(sc->sc_dev), header->header1.type);
   1818 	}
   1819 
   1820 skip:	/* setup new transfer */
   1821 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
   1822 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1823 	(void)usbd_transfer(xfer);
   1824 }
   1825 
   1826 static void
   1827 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1828 {
   1829 	struct ieee80211com *ic = &sc->sc_ic;
   1830 	struct ifnet *ifp = &sc->sc_if;
   1831 	struct upgt_lmac_rx_desc *rxdesc;
   1832 	struct ieee80211_frame *wh;
   1833 	struct ieee80211_node *ni;
   1834 	struct mbuf *m;
   1835 	int s;
   1836 
   1837 	/* access RX packet descriptor */
   1838 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1839 
   1840 	/* create mbuf which is suitable for strict alignment archs */
   1841 #define ETHER_ALIGN	0
   1842 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1843 	if (m == NULL) {
   1844 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1845 		   device_xname(sc->sc_dev));
   1846 		ifp->if_ierrors++;
   1847 		return;
   1848 	}
   1849 
   1850 	s = splnet();
   1851 
   1852 	if (sc->sc_drvbpf != NULL) {
   1853 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1854 
   1855 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1856 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1857 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1858 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1859 		tap->wr_antsignal = rxdesc->rssi;
   1860 
   1861 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1862 	}
   1863 
   1864 	/* trim FCS */
   1865 	m_adj(m, -IEEE80211_CRC_LEN);
   1866 
   1867 	wh = mtod(m, struct ieee80211_frame *);
   1868 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1869 
   1870 	/* push the frame up to the 802.11 stack */
   1871 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1872 
   1873 	/* node is no longer needed */
   1874 	ieee80211_free_node(ni);
   1875 
   1876 	splx(s);
   1877 
   1878 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1879 }
   1880 
   1881 static void
   1882 upgt_setup_rates(struct upgt_softc *sc)
   1883 {
   1884 	struct ieee80211com *ic = &sc->sc_ic;
   1885 
   1886 	/*
   1887 	 * 0x01 = OFMD6   0x10 = DS1
   1888 	 * 0x04 = OFDM9   0x11 = DS2
   1889 	 * 0x06 = OFDM12  0x12 = DS5
   1890 	 * 0x07 = OFDM18  0x13 = DS11
   1891 	 * 0x08 = OFDM24
   1892 	 * 0x09 = OFDM36
   1893 	 * 0x0a = OFDM48
   1894 	 * 0x0b = OFDM54
   1895 	 */
   1896 	const uint8_t rateset_auto_11b[] =
   1897 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1898 	const uint8_t rateset_auto_11g[] =
   1899 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1900 	const uint8_t rateset_fix_11bg[] =
   1901 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1902 	      0x08, 0x09, 0x0a, 0x0b };
   1903 
   1904 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1905 		/*
   1906 		 * Automatic rate control is done by the device.
   1907 		 * We just pass the rateset from which the device
   1908 		 * will pickup a rate.
   1909 		 */
   1910 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1911 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1912 			    sizeof(sc->sc_cur_rateset));
   1913 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1914 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1915 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1916 			    sizeof(sc->sc_cur_rateset));
   1917 	} else {
   1918 		/* set a fixed rate */
   1919 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1920 		    sizeof(sc->sc_cur_rateset));
   1921 	}
   1922 }
   1923 
   1924 static uint8_t
   1925 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1926 {
   1927 	struct ieee80211com *ic = &sc->sc_ic;
   1928 
   1929 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1930 		if (rate < 0 || rate > 3)
   1931 			/* invalid rate */
   1932 			return 0;
   1933 
   1934 		switch (rate) {
   1935 		case 0:
   1936 			return 2;
   1937 		case 1:
   1938 			return 4;
   1939 		case 2:
   1940 			return 11;
   1941 		case 3:
   1942 			return 22;
   1943 		default:
   1944 			return 0;
   1945 		}
   1946 	}
   1947 
   1948 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1949 		if (rate < 0 || rate > 11)
   1950 			/* invalid rate */
   1951 			return 0;
   1952 
   1953 		switch (rate) {
   1954 		case 0:
   1955 			return 2;
   1956 		case 1:
   1957 			return 4;
   1958 		case 2:
   1959 			return 11;
   1960 		case 3:
   1961 			return 22;
   1962 		case 4:
   1963 			return 12;
   1964 		case 5:
   1965 			return 18;
   1966 		case 6:
   1967 			return 24;
   1968 		case 7:
   1969 			return 36;
   1970 		case 8:
   1971 			return 48;
   1972 		case 9:
   1973 			return 72;
   1974 		case 10:
   1975 			return 96;
   1976 		case 11:
   1977 			return 108;
   1978 		default:
   1979 			return 0;
   1980 		}
   1981 	}
   1982 
   1983 	return 0;
   1984 }
   1985 
   1986 static int
   1987 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1988 {
   1989 	struct ieee80211com *ic = &sc->sc_ic;
   1990 	struct ieee80211_node *ni = ic->ic_bss;
   1991 	struct upgt_data *data_cmd = &sc->cmd_data;
   1992 	struct upgt_lmac_mem *mem;
   1993 	struct upgt_lmac_filter *filter;
   1994 	int len;
   1995 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1996 
   1997 	/*
   1998 	 * Transmit the URB containing the CMD data.
   1999 	 */
   2000 	len = sizeof(*mem) + sizeof(*filter);
   2001 
   2002 	memset(data_cmd->buf, 0, len);
   2003 
   2004 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2005 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2006 	    UPGT_MEMSIZE_FRAME_HEAD);
   2007 
   2008 	filter = (struct upgt_lmac_filter *)(mem + 1);
   2009 
   2010 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2011 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   2012 	filter->header1.len = htole16(
   2013 	    sizeof(struct upgt_lmac_filter) -
   2014 	    sizeof(struct upgt_lmac_header));
   2015 
   2016 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2017 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2018 	filter->header2.flags = 0;
   2019 
   2020 	switch (state) {
   2021 	case IEEE80211_S_INIT:
   2022 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2023 		    device_xname(sc->sc_dev));
   2024 
   2025 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2026 		break;
   2027 	case IEEE80211_S_SCAN:
   2028 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2029 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2030 
   2031 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2032 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2033 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2034 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2035 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2036 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2037 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2038 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2039 		break;
   2040 	case IEEE80211_S_RUN:
   2041 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2042 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2043 
   2044 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2045 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2046 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2047 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2048 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2049 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2050 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2051 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2052 		break;
   2053 	default:
   2054 		aprint_error_dev(sc->sc_dev,
   2055 		    "MAC filter does not know that state\n");
   2056 		break;
   2057 	}
   2058 
   2059 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2060 
   2061 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2062 		aprint_error_dev(sc->sc_dev,
   2063 		    "could not transmit macfilter CMD data URB\n");
   2064 		return EIO;
   2065 	}
   2066 
   2067 	return 0;
   2068 }
   2069 
   2070 static int
   2071 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2072 {
   2073 	struct upgt_data *data_cmd = &sc->cmd_data;
   2074 	struct upgt_lmac_mem *mem;
   2075 	struct upgt_lmac_channel *chan;
   2076 	int len;
   2077 
   2078 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2079 	    channel);
   2080 
   2081 	/*
   2082 	 * Transmit the URB containing the CMD data.
   2083 	 */
   2084 	len = sizeof(*mem) + sizeof(*chan);
   2085 
   2086 	memset(data_cmd->buf, 0, len);
   2087 
   2088 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2089 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2090 	    UPGT_MEMSIZE_FRAME_HEAD);
   2091 
   2092 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2093 
   2094 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2095 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2096 	chan->header1.len = htole16(
   2097 	    sizeof(struct upgt_lmac_channel) -
   2098 	    sizeof(struct upgt_lmac_header));
   2099 
   2100 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2101 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2102 	chan->header2.flags = 0;
   2103 
   2104 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2105 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2106 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2107 	chan->settings = sc->sc_eeprom_freq6_settings;
   2108 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2109 
   2110 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2111 	    sizeof(chan->freq3_1));
   2112 
   2113 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2114 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2115 
   2116 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2117 	    sizeof(chan->freq3_2));
   2118 
   2119 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2120 
   2121 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2122 		aprint_error_dev(sc->sc_dev,
   2123 		    "could not transmit channel CMD data URB\n");
   2124 		return EIO;
   2125 	}
   2126 
   2127 	return 0;
   2128 }
   2129 
   2130 static void
   2131 upgt_set_led(struct upgt_softc *sc, int action)
   2132 {
   2133 	struct ieee80211com *ic = &sc->sc_ic;
   2134 	struct upgt_data *data_cmd = &sc->cmd_data;
   2135 	struct upgt_lmac_mem *mem;
   2136 	struct upgt_lmac_led *led;
   2137 	struct timeval t;
   2138 	int len;
   2139 
   2140 	/*
   2141 	 * Transmit the URB containing the CMD data.
   2142 	 */
   2143 	len = sizeof(*mem) + sizeof(*led);
   2144 
   2145 	memset(data_cmd->buf, 0, len);
   2146 
   2147 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2148 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2149 	    UPGT_MEMSIZE_FRAME_HEAD);
   2150 
   2151 	led = (struct upgt_lmac_led *)(mem + 1);
   2152 
   2153 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2154 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2155 	led->header1.len = htole16(
   2156 	    sizeof(struct upgt_lmac_led) -
   2157 	    sizeof(struct upgt_lmac_header));
   2158 
   2159 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2160 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2161 	led->header2.flags = 0;
   2162 
   2163 	switch (action) {
   2164 	case UPGT_LED_OFF:
   2165 		led->mode = htole16(UPGT_LED_MODE_SET);
   2166 		led->action_fix = 0;
   2167 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2168 		led->action_tmp_dur = 0;
   2169 		break;
   2170 	case UPGT_LED_ON:
   2171 		led->mode = htole16(UPGT_LED_MODE_SET);
   2172 		led->action_fix = 0;
   2173 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2174 		led->action_tmp_dur = 0;
   2175 		break;
   2176 	case UPGT_LED_BLINK:
   2177 		if (ic->ic_state != IEEE80211_S_RUN)
   2178 			return;
   2179 		if (sc->sc_led_blink)
   2180 			/* previous blink was not finished */
   2181 			return;
   2182 		led->mode = htole16(UPGT_LED_MODE_SET);
   2183 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2184 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2185 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2186 		/* lock blink */
   2187 		sc->sc_led_blink = 1;
   2188 		t.tv_sec = 0;
   2189 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2190 		callout_schedule(&sc->led_to, tvtohz(&t));
   2191 		break;
   2192 	default:
   2193 		return;
   2194 	}
   2195 
   2196 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2197 
   2198 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2199 		aprint_error_dev(sc->sc_dev,
   2200 		    "could not transmit led CMD URB\n");
   2201 	}
   2202 }
   2203 
   2204 static void
   2205 upgt_set_led_blink(void *arg)
   2206 {
   2207 	struct upgt_softc *sc = arg;
   2208 
   2209 	/* blink finished, we are ready for a next one */
   2210 	sc->sc_led_blink = 0;
   2211 	callout_stop(&sc->led_to);
   2212 }
   2213 
   2214 static int
   2215 upgt_get_stats(struct upgt_softc *sc)
   2216 {
   2217 	struct upgt_data *data_cmd = &sc->cmd_data;
   2218 	struct upgt_lmac_mem *mem;
   2219 	struct upgt_lmac_stats *stats;
   2220 	int len;
   2221 
   2222 	/*
   2223 	 * Transmit the URB containing the CMD data.
   2224 	 */
   2225 	len = sizeof(*mem) + sizeof(*stats);
   2226 
   2227 	memset(data_cmd->buf, 0, len);
   2228 
   2229 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2230 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2231 	    UPGT_MEMSIZE_FRAME_HEAD);
   2232 
   2233 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2234 
   2235 	stats->header1.flags = 0;
   2236 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2237 	stats->header1.len = htole16(
   2238 	    sizeof(struct upgt_lmac_stats) -
   2239 	    sizeof(struct upgt_lmac_header));
   2240 
   2241 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2242 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2243 	stats->header2.flags = 0;
   2244 
   2245 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2246 
   2247 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2248 		aprint_error_dev(sc->sc_dev,
   2249 		    "could not transmit statistics CMD data URB\n");
   2250 		return EIO;
   2251 	}
   2252 
   2253 	return 0;
   2254 
   2255 }
   2256 
   2257 static int
   2258 upgt_alloc_tx(struct upgt_softc *sc)
   2259 {
   2260 	int i;
   2261 
   2262 	sc->tx_queued = 0;
   2263 
   2264 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2265 		struct upgt_data *data_tx = &sc->tx_data[i];
   2266 
   2267 		data_tx->sc = sc;
   2268 
   2269 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2270 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
   2271 		if (err) {
   2272 			aprint_error_dev(sc->sc_dev,
   2273 			    "could not allocate TX xfer\n");
   2274 			return err;
   2275 		}
   2276 
   2277 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
   2278 	}
   2279 
   2280 	return 0;
   2281 }
   2282 
   2283 static int
   2284 upgt_alloc_rx(struct upgt_softc *sc)
   2285 {
   2286 	struct upgt_data *data_rx = &sc->rx_data;
   2287 
   2288 	data_rx->sc = sc;
   2289 
   2290 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
   2291 	    0, 0, &data_rx->xfer);
   2292 	if (err) {
   2293 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2294 		return err;
   2295 	}
   2296 
   2297 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
   2298 
   2299 	return 0;
   2300 }
   2301 
   2302 static int
   2303 upgt_alloc_cmd(struct upgt_softc *sc)
   2304 {
   2305 	struct upgt_data *data_cmd = &sc->cmd_data;
   2306 
   2307 	data_cmd->sc = sc;
   2308 
   2309 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2310 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
   2311 	if (err) {
   2312 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2313 		return err;
   2314 	}
   2315 
   2316 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
   2317 
   2318 	cv_init(&sc->sc_cv, "upgteeprom");
   2319 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
   2320 
   2321 	return 0;
   2322 }
   2323 
   2324 static void
   2325 upgt_free_tx(struct upgt_softc *sc)
   2326 {
   2327 	int i;
   2328 
   2329 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2330 		struct upgt_data *data_tx = &sc->tx_data[i];
   2331 
   2332 		if (data_tx->xfer != NULL) {
   2333 			usbd_destroy_xfer(data_tx->xfer);
   2334 			data_tx->xfer = NULL;
   2335 		}
   2336 
   2337 		data_tx->ni = NULL;
   2338 	}
   2339 }
   2340 
   2341 static void
   2342 upgt_free_rx(struct upgt_softc *sc)
   2343 {
   2344 	struct upgt_data *data_rx = &sc->rx_data;
   2345 
   2346 	if (data_rx->xfer != NULL) {
   2347 		usbd_destroy_xfer(data_rx->xfer);
   2348 		data_rx->xfer = NULL;
   2349 	}
   2350 
   2351 	data_rx->ni = NULL;
   2352 }
   2353 
   2354 static void
   2355 upgt_free_cmd(struct upgt_softc *sc)
   2356 {
   2357 	struct upgt_data *data_cmd = &sc->cmd_data;
   2358 
   2359 	if (data_cmd->xfer != NULL) {
   2360 		usbd_destroy_xfer(data_cmd->xfer);
   2361 		data_cmd->xfer = NULL;
   2362 	}
   2363 
   2364 	mutex_destroy(&sc->sc_mtx);
   2365 	cv_destroy(&sc->sc_cv);
   2366 }
   2367 
   2368 static int
   2369 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2370     struct usbd_pipe *pipeh, uint32_t *size, int flags)
   2371 {
   2372         usbd_status status;
   2373 
   2374 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
   2375 	    data->buf, size);
   2376 	if (status != USBD_NORMAL_COMPLETION) {
   2377 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2378 		    usbd_errstr(status));
   2379 		return EIO;
   2380 	}
   2381 
   2382 	return 0;
   2383 }
   2384 
   2385 #if 0
   2386 static void
   2387 upgt_hexdump(void *buf, int len)
   2388 {
   2389 	int i;
   2390 
   2391 	for (i = 0; i < len; i++) {
   2392 		if (i % 16 == 0)
   2393 			printf("%s%5i:", i ? "\n" : "", i);
   2394 		if (i % 4 == 0)
   2395 			printf(" ");
   2396 		printf("%02x", (int)*((uint8_t *)buf + i));
   2397 	}
   2398 	printf("\n");
   2399 }
   2400 #endif
   2401 
   2402 static uint32_t
   2403 upgt_crc32_le(const void *buf, size_t size)
   2404 {
   2405 	uint32_t crc;
   2406 
   2407 	crc = ether_crc32_le(buf, size);
   2408 
   2409 	/* apply final XOR value as common for CRC-32 */
   2410 	crc = htole32(crc ^ 0xffffffffU);
   2411 
   2412 	return crc;
   2413 }
   2414 
   2415 /*
   2416  * The firmware awaits a checksum for each frame we send to it.
   2417  * The algorithm used therefor is uncommon but somehow similar to CRC32.
   2418  */
   2419 static uint32_t
   2420 upgt_chksum_le(const uint32_t *buf, size_t size)
   2421 {
   2422 	int i;
   2423 	uint32_t crc = 0;
   2424 
   2425 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2426 		crc = htole32(crc ^ *buf++);
   2427 		crc = htole32((crc >> 5) ^ (crc << 3));
   2428 	}
   2429 
   2430 	return crc;
   2431 }
   2432