if_upgt.c revision 1.12.2.3 1 /* $NetBSD: if_upgt.c,v 1.12.2.3 2018/08/08 10:17:11 martin Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12.2.3 2018/08/08 10:17:11 martin Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 &sc->sc_drvbpf);
467
468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471
472 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475
476 aprint_normal_dev(sc->sc_dev, "address %s\n",
477 ether_sprintf(ic->ic_myaddr));
478
479 ieee80211_announce(ic);
480
481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482
483 /* device attached */
484 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485
486 return;
487 fail:
488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 struct upgt_softc *sc = device_private(self);
495 struct ifnet *ifp = &sc->sc_if;
496 struct ieee80211com *ic = &sc->sc_ic;
497 int s;
498
499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500
501 s = splnet();
502
503 if (ifp->if_flags & IFF_RUNNING)
504 upgt_stop(sc);
505
506 /* remove tasks and timeouts */
507 callout_halt(&sc->scan_to, NULL);
508 callout_halt(&sc->led_to, NULL);
509 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
510 NULL);
511 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
512 NULL);
513 callout_destroy(&sc->scan_to);
514 callout_destroy(&sc->led_to);
515
516 /* abort and close TX / RX pipes */
517 if (sc->sc_tx_pipeh != NULL) {
518 usbd_abort_pipe(sc->sc_tx_pipeh);
519 }
520 if (sc->sc_rx_pipeh != NULL) {
521 usbd_abort_pipe(sc->sc_rx_pipeh);
522 }
523
524 /* free xfers */
525 upgt_free_tx(sc);
526 upgt_free_rx(sc);
527 upgt_free_cmd(sc);
528
529 /* Close TX / RX pipes */
530 if (sc->sc_tx_pipeh != NULL) {
531 usbd_close_pipe(sc->sc_tx_pipeh);
532 }
533 if (sc->sc_rx_pipeh != NULL) {
534 usbd_close_pipe(sc->sc_rx_pipeh);
535 }
536
537 /* free firmware */
538 upgt_fw_free(sc);
539
540 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
541 /* detach interface */
542 bpf_detach(ifp);
543 ieee80211_ifdetach(ic);
544 if_detach(ifp);
545 }
546
547 splx(s);
548
549 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
550
551 return 0;
552 }
553
554 static int
555 upgt_activate(device_t self, devact_t act)
556 {
557 struct upgt_softc *sc = device_private(self);
558
559 switch (act) {
560 case DVACT_DEACTIVATE:
561 if_deactivate(&sc->sc_if);
562 return 0;
563 default:
564 return EOPNOTSUPP;
565 }
566 }
567
568 static int
569 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
570 {
571
572 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
573 sc->sc_device_type = 1;
574 /* XXX */
575 aprint_error_dev(sc->sc_dev,
576 "version 1 devices not supported yet\n");
577 return 1;
578 } else
579 sc->sc_device_type = 2;
580
581 return 0;
582 }
583
584 static int
585 upgt_device_init(struct upgt_softc *sc)
586 {
587 struct upgt_data *data_cmd = &sc->cmd_data;
588 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
589 int len;
590
591 len = sizeof(init_cmd);
592 memcpy(data_cmd->buf, init_cmd, len);
593 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
594 aprint_error_dev(sc->sc_dev,
595 "could not send device init string\n");
596 return EIO;
597 }
598 usbd_delay_ms(sc->sc_udev, 100);
599
600 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
601
602 return 0;
603 }
604
605 static int
606 upgt_mem_init(struct upgt_softc *sc)
607 {
608 int i;
609
610 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
611 sc->sc_memory.page[i].used = 0;
612
613 if (i == 0) {
614 /*
615 * The first memory page is always reserved for
616 * command data.
617 */
618 sc->sc_memory.page[i].addr =
619 sc->sc_memaddr_frame_start + MCLBYTES;
620 } else {
621 sc->sc_memory.page[i].addr =
622 sc->sc_memory.page[i - 1].addr + MCLBYTES;
623 }
624
625 if (sc->sc_memory.page[i].addr + MCLBYTES >=
626 sc->sc_memaddr_frame_end)
627 break;
628
629 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
630 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
631 }
632
633 sc->sc_memory.pages = i;
634
635 DPRINTF(2, "%s: memory pages=%d\n",
636 device_xname(sc->sc_dev), sc->sc_memory.pages);
637
638 return 0;
639 }
640
641 static uint32_t
642 upgt_mem_alloc(struct upgt_softc *sc)
643 {
644 int i;
645
646 for (i = 0; i < sc->sc_memory.pages; i++) {
647 if (sc->sc_memory.page[i].used == 0) {
648 sc->sc_memory.page[i].used = 1;
649 return sc->sc_memory.page[i].addr;
650 }
651 }
652
653 return 0;
654 }
655
656 static void
657 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
658 {
659 int i;
660
661 for (i = 0; i < sc->sc_memory.pages; i++) {
662 if (sc->sc_memory.page[i].addr == addr) {
663 sc->sc_memory.page[i].used = 0;
664 return;
665 }
666 }
667
668 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
669 addr);
670 }
671
672
673 static int
674 upgt_fw_alloc(struct upgt_softc *sc)
675 {
676 const char *name = "upgt-gw3887";
677 int error;
678
679 if (sc->sc_fw == NULL) {
680 error = firmware_load("upgt", name, &sc->sc_fw,
681 &sc->sc_fw_size);
682 if (error != 0) {
683 if (error == ENOENT) {
684 /*
685 * The firmware file for upgt(4) is not in
686 * the default distribution due to its lisence
687 * so explicitly notify it if the firmware file
688 * is not found.
689 */
690 aprint_error_dev(sc->sc_dev,
691 "firmware file %s is not installed\n",
692 name);
693 aprint_error_dev(sc->sc_dev,
694 "(it is not included in the default"
695 " distribution)\n");
696 aprint_error_dev(sc->sc_dev,
697 "see upgt(4) man page for details about "
698 "firmware installation\n");
699 } else {
700 aprint_error_dev(sc->sc_dev,
701 "could not read firmware %s\n", name);
702 }
703 return EIO;
704 }
705 }
706
707 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
708 name);
709
710 return 0;
711 }
712
713 static void
714 upgt_fw_free(struct upgt_softc *sc)
715 {
716
717 if (sc->sc_fw != NULL) {
718 firmware_free(sc->sc_fw, sc->sc_fw_size);
719 sc->sc_fw = NULL;
720 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
721 }
722 }
723
724 static int
725 upgt_fw_verify(struct upgt_softc *sc)
726 {
727 struct upgt_fw_bra_option *bra_option;
728 uint32_t bra_option_type, bra_option_len;
729 uint32_t *uc;
730 int offset, bra_end = 0;
731
732 /*
733 * Seek to beginning of Boot Record Area (BRA).
734 */
735 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
736 uc = (uint32_t *)(sc->sc_fw + offset);
737 if (*uc == 0)
738 break;
739 }
740 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
741 uc = (uint32_t *)(sc->sc_fw + offset);
742 if (*uc != 0)
743 break;
744 }
745 if (offset == sc->sc_fw_size) {
746 aprint_error_dev(sc->sc_dev,
747 "firmware Boot Record Area not found\n");
748 return EIO;
749 }
750 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
751 device_xname(sc->sc_dev), offset);
752
753 /*
754 * Parse Boot Record Area (BRA) options.
755 */
756 while (offset < sc->sc_fw_size && bra_end == 0) {
757 /* get current BRA option */
758 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
759 bra_option_type = le32toh(bra_option->type);
760 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
761
762 switch (bra_option_type) {
763 case UPGT_BRA_TYPE_FW:
764 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
765 device_xname(sc->sc_dev), bra_option_len);
766
767 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
768 aprint_error_dev(sc->sc_dev,
769 "wrong UPGT_BRA_TYPE_FW len\n");
770 return EIO;
771 }
772 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
773 bra_option_len) == 0) {
774 sc->sc_fw_type = UPGT_FWTYPE_LM86;
775 break;
776 }
777 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
778 bra_option_len) == 0) {
779 sc->sc_fw_type = UPGT_FWTYPE_LM87;
780 break;
781 }
782 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
783 bra_option_len) == 0) {
784 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
785 break;
786 }
787 aprint_error_dev(sc->sc_dev,
788 "unsupported firmware type\n");
789 return EIO;
790 case UPGT_BRA_TYPE_VERSION:
791 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
792 device_xname(sc->sc_dev), bra_option_len);
793 break;
794 case UPGT_BRA_TYPE_DEPIF:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 break;
798 case UPGT_BRA_TYPE_EXPIF:
799 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
800 device_xname(sc->sc_dev), bra_option_len);
801 break;
802 case UPGT_BRA_TYPE_DESCR:
803 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
804 device_xname(sc->sc_dev), bra_option_len);
805
806 struct upgt_fw_bra_descr *descr =
807 (struct upgt_fw_bra_descr *)bra_option->data;
808
809 sc->sc_memaddr_frame_start =
810 le32toh(descr->memaddr_space_start);
811 sc->sc_memaddr_frame_end =
812 le32toh(descr->memaddr_space_end);
813
814 DPRINTF(2, "%s: memory address space start=0x%08x\n",
815 device_xname(sc->sc_dev),
816 sc->sc_memaddr_frame_start);
817 DPRINTF(2, "%s: memory address space end=0x%08x\n",
818 device_xname(sc->sc_dev),
819 sc->sc_memaddr_frame_end);
820 break;
821 case UPGT_BRA_TYPE_END:
822 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
823 device_xname(sc->sc_dev), bra_option_len);
824 bra_end = 1;
825 break;
826 default:
827 DPRINTF(1, "%s: unknown BRA option len=%d\n",
828 device_xname(sc->sc_dev), bra_option_len);
829 return EIO;
830 }
831
832 /* jump to next BRA option */
833 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
834 }
835
836 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
837
838 return 0;
839 }
840
841 static int
842 upgt_fw_load(struct upgt_softc *sc)
843 {
844 struct upgt_data *data_cmd = &sc->cmd_data;
845 struct upgt_data *data_rx = &sc->rx_data;
846 struct upgt_fw_x2_header *x2;
847 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
848 int offset, bsize, n, i, len;
849 uint32_t crc;
850
851 /* send firmware start load command */
852 len = sizeof(start_fwload_cmd);
853 memcpy(data_cmd->buf, start_fwload_cmd, len);
854 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
855 aprint_error_dev(sc->sc_dev,
856 "could not send start_firmware_load command\n");
857 return EIO;
858 }
859
860 /* send X2 header */
861 len = sizeof(struct upgt_fw_x2_header);
862 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
863 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
864 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
865 x2->len = htole32(sc->sc_fw_size);
866 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
867 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
868 sizeof(uint32_t));
869 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
870 aprint_error_dev(sc->sc_dev,
871 "could not send firmware X2 header\n");
872 return EIO;
873 }
874
875 /* download firmware */
876 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
877 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
878 bsize = UPGT_FW_BLOCK_SIZE;
879 else
880 bsize = sc->sc_fw_size - offset;
881
882 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
883
884 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
885 device_xname(sc->sc_dev), offset, n, bsize);
886
887 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
888 != 0) {
889 aprint_error_dev(sc->sc_dev,
890 "error while downloading firmware block\n");
891 return EIO;
892 }
893
894 bsize = n;
895 }
896 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
897
898 /* load firmware */
899 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
900 *((uint32_t *)(data_cmd->buf) ) = crc;
901 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
902 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
903 len = 6;
904 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
905 aprint_error_dev(sc->sc_dev,
906 "could not send load_firmware command\n");
907 return EIO;
908 }
909
910 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
911 len = UPGT_FW_BLOCK_SIZE;
912 memset(data_rx->buf, 0, 2);
913 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
914 USBD_SHORT_XFER_OK) != 0) {
915 aprint_error_dev(sc->sc_dev,
916 "could not read firmware response\n");
917 return EIO;
918 }
919
920 if (memcmp(data_rx->buf, "OK", 2) == 0)
921 break; /* firmware load was successful */
922 }
923 if (i == UPGT_FIRMWARE_TIMEOUT) {
924 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
925 return EIO;
926 }
927 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
928
929 return 0;
930 }
931
932 /*
933 * While copying the version 2 firmware, we need to replace two characters:
934 *
935 * 0x7e -> 0x7d 0x5e
936 * 0x7d -> 0x7d 0x5d
937 */
938 static int
939 upgt_fw_copy(char *src, char *dst, int size)
940 {
941 int i, j;
942
943 for (i = 0, j = 0; i < size && j < size; i++) {
944 switch (src[i]) {
945 case 0x7e:
946 dst[j] = 0x7d;
947 j++;
948 dst[j] = 0x5e;
949 j++;
950 break;
951 case 0x7d:
952 dst[j] = 0x7d;
953 j++;
954 dst[j] = 0x5d;
955 j++;
956 break;
957 default:
958 dst[j] = src[i];
959 j++;
960 break;
961 }
962 }
963
964 return i;
965 }
966
967 static int
968 upgt_eeprom_read(struct upgt_softc *sc)
969 {
970 struct upgt_data *data_cmd = &sc->cmd_data;
971 struct upgt_lmac_mem *mem;
972 struct upgt_lmac_eeprom *eeprom;
973 int offset, block, len;
974
975 offset = 0;
976 block = UPGT_EEPROM_BLOCK_SIZE;
977 while (offset < UPGT_EEPROM_SIZE) {
978 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
979 device_xname(sc->sc_dev), offset, block);
980
981 /*
982 * Transmit the URB containing the CMD data.
983 */
984 len = sizeof(*mem) + sizeof(*eeprom) + block;
985
986 memset(data_cmd->buf, 0, len);
987
988 mem = (struct upgt_lmac_mem *)data_cmd->buf;
989 mem->addr = htole32(sc->sc_memaddr_frame_start +
990 UPGT_MEMSIZE_FRAME_HEAD);
991
992 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
993 eeprom->header1.flags = 0;
994 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
995 eeprom->header1.len = htole16((
996 sizeof(struct upgt_lmac_eeprom) -
997 sizeof(struct upgt_lmac_header)) + block);
998
999 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1000 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1001 eeprom->header2.flags = 0;
1002
1003 eeprom->offset = htole16(offset);
1004 eeprom->len = htole16(block);
1005
1006 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1007 len - sizeof(*mem));
1008
1009 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1010 USBD_FORCE_SHORT_XFER) != 0) {
1011 aprint_error_dev(sc->sc_dev,
1012 "could not transmit EEPROM data URB\n");
1013 return EIO;
1014 }
1015
1016 mutex_enter(&sc->sc_mtx);
1017 int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1018 mutex_exit(&sc->sc_mtx);
1019 if (res) {
1020 aprint_error_dev(sc->sc_dev,
1021 "timeout while waiting for EEPROM data\n");
1022 return EIO;
1023 }
1024
1025 offset += block;
1026 if (UPGT_EEPROM_SIZE - offset < block)
1027 block = UPGT_EEPROM_SIZE - offset;
1028 }
1029
1030 return 0;
1031 }
1032
1033 static int
1034 upgt_eeprom_parse(struct upgt_softc *sc)
1035 {
1036 struct ieee80211com *ic = &sc->sc_ic;
1037 struct upgt_eeprom_header *eeprom_header;
1038 struct upgt_eeprom_option *eeprom_option;
1039 uint16_t option_len;
1040 uint16_t option_type;
1041 uint16_t preamble_len;
1042 int option_end = 0;
1043
1044 /* calculate eeprom options start offset */
1045 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1046 preamble_len = le16toh(eeprom_header->preamble_len);
1047 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1048 (sizeof(struct upgt_eeprom_header) + preamble_len));
1049
1050 while (!option_end) {
1051 /* the eeprom option length is stored in words */
1052 option_len =
1053 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1054 option_type =
1055 le16toh(eeprom_option->type);
1056
1057 switch (option_type) {
1058 case UPGT_EEPROM_TYPE_NAME:
1059 DPRINTF(1, "%s: EEPROM name len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061 break;
1062 case UPGT_EEPROM_TYPE_SERIAL:
1063 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1064 device_xname(sc->sc_dev), option_len);
1065 break;
1066 case UPGT_EEPROM_TYPE_MAC:
1067 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1068 device_xname(sc->sc_dev), option_len);
1069
1070 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1071 break;
1072 case UPGT_EEPROM_TYPE_HWRX:
1073 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1074 device_xname(sc->sc_dev), option_len);
1075
1076 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1077 break;
1078 case UPGT_EEPROM_TYPE_CHIP:
1079 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1080 device_xname(sc->sc_dev), option_len);
1081 break;
1082 case UPGT_EEPROM_TYPE_FREQ3:
1083 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1084 device_xname(sc->sc_dev), option_len);
1085
1086 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1087 option_len);
1088 break;
1089 case UPGT_EEPROM_TYPE_FREQ4:
1090 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1091 device_xname(sc->sc_dev), option_len);
1092
1093 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1094 option_len);
1095 break;
1096 case UPGT_EEPROM_TYPE_FREQ5:
1097 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1098 device_xname(sc->sc_dev), option_len);
1099 break;
1100 case UPGT_EEPROM_TYPE_FREQ6:
1101 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1102 device_xname(sc->sc_dev), option_len);
1103
1104 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1105 option_len);
1106 break;
1107 case UPGT_EEPROM_TYPE_END:
1108 DPRINTF(1, "%s: EEPROM end len=%d\n",
1109 device_xname(sc->sc_dev), option_len);
1110 option_end = 1;
1111 break;
1112 case UPGT_EEPROM_TYPE_OFF:
1113 DPRINTF(1, "%s: EEPROM off without end option\n",
1114 device_xname(sc->sc_dev));
1115 return EIO;
1116 default:
1117 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1118 device_xname(sc->sc_dev), option_type, option_len);
1119 break;
1120 }
1121
1122 /* jump to next EEPROM option */
1123 eeprom_option = (struct upgt_eeprom_option *)
1124 (eeprom_option->data + option_len);
1125 }
1126
1127 return 0;
1128 }
1129
1130 static void
1131 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1132 {
1133 struct upgt_eeprom_option_hwrx *option_hwrx;
1134
1135 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1136
1137 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1138
1139 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1140 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1141 }
1142
1143 static void
1144 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1145 {
1146 struct upgt_eeprom_freq3_header *freq3_header;
1147 struct upgt_lmac_freq3 *freq3;
1148 int i, elements, flags;
1149 unsigned channel;
1150
1151 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1152 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1153
1154 flags = freq3_header->flags;
1155 elements = freq3_header->elements;
1156
1157 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1158 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1159 __USE(flags);
1160
1161 for (i = 0; i < elements; i++) {
1162 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1163
1164 sc->sc_eeprom_freq3[channel] = freq3[i];
1165
1166 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1167 device_xname(sc->sc_dev),
1168 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1169 }
1170 }
1171
1172 static void
1173 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1174 {
1175 struct upgt_eeprom_freq4_header *freq4_header;
1176 struct upgt_eeprom_freq4_1 *freq4_1;
1177 struct upgt_eeprom_freq4_2 *freq4_2;
1178 int i, j, elements, settings, flags;
1179 unsigned channel;
1180
1181 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1182 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1183
1184 flags = freq4_header->flags;
1185 elements = freq4_header->elements;
1186 settings = freq4_header->settings;
1187
1188 /* we need this value later */
1189 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1190
1191 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1192 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1193 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1194 __USE(flags);
1195
1196 for (i = 0; i < elements; i++) {
1197 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1198
1199 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1200
1201 for (j = 0; j < settings; j++) {
1202 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1203 sc->sc_eeprom_freq4[channel][j].pad = 0;
1204 }
1205
1206 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1207 device_xname(sc->sc_dev),
1208 le16toh(freq4_1[i].freq), channel);
1209 }
1210 }
1211
1212 static void
1213 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1214 {
1215 struct upgt_lmac_freq6 *freq6;
1216 int i, elements;
1217 unsigned channel;
1218
1219 freq6 = (struct upgt_lmac_freq6 *)data;
1220
1221 elements = len / sizeof(struct upgt_lmac_freq6);
1222
1223 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1224
1225 for (i = 0; i < elements; i++) {
1226 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1227
1228 sc->sc_eeprom_freq6[channel] = freq6[i];
1229
1230 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1231 device_xname(sc->sc_dev),
1232 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1233 }
1234 }
1235
1236 static int
1237 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1238 {
1239 struct upgt_softc *sc = ifp->if_softc;
1240 struct ieee80211com *ic = &sc->sc_ic;
1241 int s, error = 0;
1242
1243 s = splnet();
1244
1245 switch (cmd) {
1246 case SIOCSIFFLAGS:
1247 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1248 break;
1249 if (ifp->if_flags & IFF_UP) {
1250 if ((ifp->if_flags & IFF_RUNNING) == 0)
1251 upgt_init(ifp);
1252 } else {
1253 if (ifp->if_flags & IFF_RUNNING)
1254 upgt_stop(sc);
1255 }
1256 break;
1257 case SIOCADDMULTI:
1258 case SIOCDELMULTI:
1259 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1260 /* setup multicast filter, etc */
1261 error = 0;
1262 }
1263 break;
1264 default:
1265 error = ieee80211_ioctl(ic, cmd, data);
1266 break;
1267 }
1268
1269 if (error == ENETRESET) {
1270 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1271 (IFF_UP | IFF_RUNNING))
1272 upgt_init(ifp);
1273 error = 0;
1274 }
1275
1276 splx(s);
1277
1278 return error;
1279 }
1280
1281 static int
1282 upgt_init(struct ifnet *ifp)
1283 {
1284 struct upgt_softc *sc = ifp->if_softc;
1285 struct ieee80211com *ic = &sc->sc_ic;
1286
1287 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1288
1289 if (ifp->if_flags & IFF_RUNNING)
1290 upgt_stop(sc);
1291
1292 ifp->if_flags |= IFF_RUNNING;
1293 ifp->if_flags &= ~IFF_OACTIVE;
1294
1295 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1296
1297 /* setup device rates */
1298 upgt_setup_rates(sc);
1299
1300 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1301 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1302 else
1303 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1304
1305 return 0;
1306 }
1307
1308 static void
1309 upgt_stop(struct upgt_softc *sc)
1310 {
1311 struct ieee80211com *ic = &sc->sc_ic;
1312 struct ifnet *ifp = &sc->sc_if;
1313
1314 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1315
1316 /* device down */
1317 ifp->if_timer = 0;
1318 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1319
1320 /* change device back to initial state */
1321 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1322 }
1323
1324 static int
1325 upgt_media_change(struct ifnet *ifp)
1326 {
1327 struct upgt_softc *sc = ifp->if_softc;
1328 int error;
1329
1330 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1331
1332 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1333 return error;
1334
1335 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1336 (IFF_UP | IFF_RUNNING)) {
1337 /* give pending USB transfers a chance to finish */
1338 usbd_delay_ms(sc->sc_udev, 100);
1339 upgt_init(ifp);
1340 }
1341
1342 return 0;
1343 }
1344
1345 static void
1346 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1347 {
1348
1349 ni->ni_txrate = 0;
1350 }
1351
1352 static int
1353 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1354 {
1355 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1356
1357 /*
1358 * XXXSMP: This does not wait for the task, if it is in flight,
1359 * to complete. If this code works at all, it must rely on the
1360 * kernel lock to serialize with the USB task thread.
1361 */
1362 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1363 callout_stop(&sc->scan_to);
1364
1365 /* do it in a process context */
1366 sc->sc_state = nstate;
1367 sc->sc_arg = arg;
1368 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1369
1370 return 0;
1371 }
1372
1373 static void
1374 upgt_newstate_task(void *arg)
1375 {
1376 struct upgt_softc *sc = arg;
1377 struct ieee80211com *ic = &sc->sc_ic;
1378 struct ieee80211_node *ni;
1379 unsigned channel;
1380
1381 mutex_enter(&sc->sc_mtx);
1382
1383 switch (sc->sc_state) {
1384 case IEEE80211_S_INIT:
1385 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1386 device_xname(sc->sc_dev));
1387
1388 /* do not accept any frames if the device is down */
1389 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1390 upgt_set_led(sc, UPGT_LED_OFF);
1391 break;
1392 case IEEE80211_S_SCAN:
1393 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1394 device_xname(sc->sc_dev));
1395
1396 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1397 upgt_set_channel(sc, channel);
1398 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1399 callout_schedule(&sc->scan_to, hz / 5);
1400 break;
1401 case IEEE80211_S_AUTH:
1402 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1403 device_xname(sc->sc_dev));
1404
1405 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1406 upgt_set_channel(sc, channel);
1407 break;
1408 case IEEE80211_S_ASSOC:
1409 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1410 device_xname(sc->sc_dev));
1411
1412 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1413 upgt_set_channel(sc, channel);
1414 break;
1415 case IEEE80211_S_RUN:
1416 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1417 device_xname(sc->sc_dev));
1418
1419 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1420 upgt_set_channel(sc, channel);
1421
1422 ni = ic->ic_bss;
1423
1424 /*
1425 * TX rate control is done by the firmware.
1426 * Report the maximum rate which is available therefore.
1427 */
1428 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1429
1430 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1431 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1432 upgt_set_led(sc, UPGT_LED_ON);
1433 break;
1434 }
1435
1436 mutex_exit(&sc->sc_mtx);
1437
1438 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1439 }
1440
1441 static void
1442 upgt_next_scan(void *arg)
1443 {
1444 struct upgt_softc *sc = arg;
1445 struct ieee80211com *ic = &sc->sc_ic;
1446
1447 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1448
1449 if (ic->ic_state == IEEE80211_S_SCAN)
1450 ieee80211_next_scan(ic);
1451 }
1452
1453 static void
1454 upgt_start(struct ifnet *ifp)
1455 {
1456 struct upgt_softc *sc = ifp->if_softc;
1457 struct ieee80211com *ic = &sc->sc_ic;
1458 struct ether_header *eh;
1459 struct ieee80211_node *ni;
1460 struct mbuf *m;
1461 int i;
1462
1463 /* don't transmit packets if interface is busy or down */
1464 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1465 return;
1466
1467 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1468
1469 for (i = 0; i < UPGT_TX_COUNT; i++) {
1470 struct upgt_data *data_tx = &sc->tx_data[i];
1471
1472 if (data_tx->m != NULL)
1473 continue;
1474
1475 IF_POLL(&ic->ic_mgtq, m);
1476 if (m != NULL) {
1477 /* management frame */
1478 IF_DEQUEUE(&ic->ic_mgtq, m);
1479
1480 ni = M_GETCTX(m, struct ieee80211_node *);
1481 M_CLEARCTX(m);
1482
1483 bpf_mtap3(ic->ic_rawbpf, m);
1484
1485 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1486 aprint_error_dev(sc->sc_dev,
1487 "no free prism memory\n");
1488 m_freem(m);
1489 ifp->if_oerrors++;
1490 break;
1491 }
1492 data_tx->ni = ni;
1493 data_tx->m = m;
1494 sc->tx_queued++;
1495 } else {
1496 /* data frame */
1497 if (ic->ic_state != IEEE80211_S_RUN)
1498 break;
1499
1500 IFQ_POLL(&ifp->if_snd, m);
1501 if (m == NULL)
1502 break;
1503
1504 IFQ_DEQUEUE(&ifp->if_snd, m);
1505 if (m->m_len < sizeof(struct ether_header) &&
1506 !(m = m_pullup(m, sizeof(struct ether_header))))
1507 continue;
1508
1509 eh = mtod(m, struct ether_header *);
1510 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1511 if (ni == NULL) {
1512 m_freem(m);
1513 continue;
1514 }
1515
1516 bpf_mtap(ifp, m);
1517
1518 m = ieee80211_encap(ic, m, ni);
1519 if (m == NULL) {
1520 ieee80211_free_node(ni);
1521 continue;
1522 }
1523
1524 bpf_mtap3(ic->ic_rawbpf, m);
1525
1526 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1527 aprint_error_dev(sc->sc_dev,
1528 "no free prism memory\n");
1529 m_freem(m);
1530 ieee80211_free_node(ni);
1531 ifp->if_oerrors++;
1532 break;
1533 }
1534 data_tx->ni = ni;
1535 data_tx->m = m;
1536 sc->tx_queued++;
1537 }
1538 }
1539
1540 if (sc->tx_queued > 0) {
1541 DPRINTF(2, "%s: tx_queued=%d\n",
1542 device_xname(sc->sc_dev), sc->tx_queued);
1543 /* process the TX queue in process context */
1544 ifp->if_timer = 5;
1545 ifp->if_flags |= IFF_OACTIVE;
1546 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1547 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1548 }
1549 }
1550
1551 static void
1552 upgt_watchdog(struct ifnet *ifp)
1553 {
1554 struct upgt_softc *sc = ifp->if_softc;
1555 struct ieee80211com *ic = &sc->sc_ic;
1556
1557 if (ic->ic_state == IEEE80211_S_INIT)
1558 return;
1559
1560 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1561
1562 /* TODO: what shall we do on TX timeout? */
1563
1564 ieee80211_watchdog(ic);
1565 }
1566
1567 static void
1568 upgt_tx_task(void *arg)
1569 {
1570 struct upgt_softc *sc = arg;
1571 struct ieee80211com *ic = &sc->sc_ic;
1572 struct ieee80211_frame *wh;
1573 struct ieee80211_key *k;
1574 struct ifnet *ifp = &sc->sc_if;
1575 struct upgt_lmac_mem *mem;
1576 struct upgt_lmac_tx_desc *txdesc;
1577 struct mbuf *m;
1578 uint32_t addr;
1579 int i, len, pad, s;
1580 usbd_status error;
1581
1582 mutex_enter(&sc->sc_mtx);
1583 upgt_set_led(sc, UPGT_LED_BLINK);
1584 mutex_exit(&sc->sc_mtx);
1585
1586 s = splnet();
1587
1588 for (i = 0; i < UPGT_TX_COUNT; i++) {
1589 struct upgt_data *data_tx = &sc->tx_data[i];
1590
1591 if (data_tx->m == NULL)
1592 continue;
1593
1594 m = data_tx->m;
1595 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1596
1597 /*
1598 * Software crypto.
1599 */
1600 wh = mtod(m, struct ieee80211_frame *);
1601
1602 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1603 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1604 if (k == NULL) {
1605 m_freem(m);
1606 data_tx->m = NULL;
1607 ieee80211_free_node(data_tx->ni);
1608 data_tx->ni = NULL;
1609 ifp->if_oerrors++;
1610 break;
1611 }
1612
1613 /* in case packet header moved, reset pointer */
1614 wh = mtod(m, struct ieee80211_frame *);
1615 }
1616
1617 /*
1618 * Transmit the URB containing the TX data.
1619 */
1620 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1621
1622 mem = (struct upgt_lmac_mem *)data_tx->buf;
1623 mem->addr = htole32(addr);
1624
1625 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1626
1627 /* XXX differ between data and mgmt frames? */
1628 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1629 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1630 txdesc->header1.len = htole16(m->m_pkthdr.len);
1631
1632 txdesc->header2.reqid = htole32(data_tx->addr);
1633 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1634 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1635
1636 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1637 IEEE80211_FC0_TYPE_MGT) {
1638 /* always send mgmt frames at lowest rate (DS1) */
1639 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1640 } else {
1641 memcpy(txdesc->rates, sc->sc_cur_rateset,
1642 sizeof(txdesc->rates));
1643 }
1644 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1645 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1646
1647 if (sc->sc_drvbpf != NULL) {
1648 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1649
1650 tap->wt_flags = 0;
1651 tap->wt_rate = 0; /* TODO: where to get from? */
1652 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1653 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1654
1655 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1656 }
1657
1658 /* copy frame below our TX descriptor header */
1659 m_copydata(m, 0, m->m_pkthdr.len,
1660 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1661
1662 /* calculate frame size */
1663 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1664
1665 if (len & 3) {
1666 /* we need to align the frame to a 4 byte boundary */
1667 pad = 4 - (len & 3);
1668 memset(data_tx->buf + len, 0, pad);
1669 len += pad;
1670 }
1671
1672 /* calculate frame checksum */
1673 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1674 len - sizeof(*mem));
1675
1676 /* we do not need the mbuf anymore */
1677 m_freem(m);
1678 data_tx->m = NULL;
1679
1680 ieee80211_free_node(data_tx->ni);
1681 data_tx->ni = NULL;
1682
1683 DPRINTF(2, "%s: TX start data sending\n",
1684 device_xname(sc->sc_dev));
1685
1686 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1687 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1688 error = usbd_transfer(data_tx->xfer);
1689 if (error != USBD_NORMAL_COMPLETION &&
1690 error != USBD_IN_PROGRESS) {
1691 aprint_error_dev(sc->sc_dev,
1692 "could not transmit TX data URB\n");
1693 ifp->if_oerrors++;
1694 break;
1695 }
1696
1697 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1698 device_xname(sc->sc_dev), len);
1699 }
1700
1701 splx(s);
1702
1703 /*
1704 * If we don't regulary read the device statistics, the RX queue
1705 * will stall. It's strange, but it works, so we keep reading
1706 * the statistics here. *shrug*
1707 */
1708 mutex_enter(&sc->sc_mtx);
1709 upgt_get_stats(sc);
1710 mutex_exit(&sc->sc_mtx);
1711 }
1712
1713 static void
1714 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1715 {
1716 struct ifnet *ifp = &sc->sc_if;
1717 struct upgt_lmac_tx_done_desc *desc;
1718 int i, s;
1719
1720 s = splnet();
1721
1722 desc = (struct upgt_lmac_tx_done_desc *)data;
1723
1724 for (i = 0; i < UPGT_TX_COUNT; i++) {
1725 struct upgt_data *data_tx = &sc->tx_data[i];
1726
1727 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1728 upgt_mem_free(sc, data_tx->addr);
1729 data_tx->addr = 0;
1730
1731 sc->tx_queued--;
1732 ifp->if_opackets++;
1733
1734 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1735 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1736 le32toh(desc->header2.reqid),
1737 le16toh(desc->status),
1738 le16toh(desc->rssi));
1739 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1740 break;
1741 }
1742 }
1743
1744 if (sc->tx_queued == 0) {
1745 /* TX queued was processed, continue */
1746 ifp->if_timer = 0;
1747 ifp->if_flags &= ~IFF_OACTIVE;
1748 upgt_start(ifp);
1749 }
1750
1751 splx(s);
1752 }
1753
1754 static void
1755 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1756 {
1757 struct upgt_data *data_rx = priv;
1758 struct upgt_softc *sc = data_rx->sc;
1759 int len;
1760 struct upgt_lmac_header *header;
1761 struct upgt_lmac_eeprom *eeprom;
1762 uint8_t h1_type;
1763 uint16_t h2_type;
1764
1765 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1766
1767 if (status != USBD_NORMAL_COMPLETION) {
1768 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1769 return;
1770 if (status == USBD_STALLED)
1771 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1772 goto skip;
1773 }
1774 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1775
1776 /*
1777 * Check what type of frame came in.
1778 */
1779 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1780
1781 h1_type = header->header1.type;
1782 h2_type = le16toh(header->header2.type);
1783
1784 if (h1_type == UPGT_H1_TYPE_CTRL &&
1785 h2_type == UPGT_H2_TYPE_EEPROM) {
1786 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1787 uint16_t eeprom_offset = le16toh(eeprom->offset);
1788 uint16_t eeprom_len = le16toh(eeprom->len);
1789
1790 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1791 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1792
1793 mutex_enter(&sc->sc_mtx);
1794 memcpy(sc->sc_eeprom + eeprom_offset,
1795 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1796 eeprom_len);
1797
1798 /* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1799 /* Note eeprom data arrived */
1800 cv_broadcast(&sc->sc_cv);
1801 mutex_exit(&sc->sc_mtx);
1802 } else
1803 if (h1_type == UPGT_H1_TYPE_CTRL &&
1804 h2_type == UPGT_H2_TYPE_TX_DONE) {
1805 DPRINTF(2, "%s: received 802.11 TX done\n",
1806 device_xname(sc->sc_dev));
1807
1808 upgt_tx_done(sc, data_rx->buf + 4);
1809 } else
1810 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1811 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1812 DPRINTF(3, "%s: received 802.11 RX data\n",
1813 device_xname(sc->sc_dev));
1814
1815 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1816 } else
1817 if (h1_type == UPGT_H1_TYPE_CTRL &&
1818 h2_type == UPGT_H2_TYPE_STATS) {
1819 DPRINTF(2, "%s: received statistic data\n",
1820 device_xname(sc->sc_dev));
1821
1822 /* TODO: what could we do with the statistic data? */
1823 } else {
1824 /* ignore unknown frame types */
1825 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1826 device_xname(sc->sc_dev), header->header1.type);
1827 }
1828
1829 skip: /* setup new transfer */
1830 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1831 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1832 (void)usbd_transfer(xfer);
1833 }
1834
1835 static void
1836 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1837 {
1838 struct ieee80211com *ic = &sc->sc_ic;
1839 struct ifnet *ifp = &sc->sc_if;
1840 struct upgt_lmac_rx_desc *rxdesc;
1841 struct ieee80211_frame *wh;
1842 struct ieee80211_node *ni;
1843 struct mbuf *m;
1844 int s;
1845
1846 /* access RX packet descriptor */
1847 rxdesc = (struct upgt_lmac_rx_desc *)data;
1848
1849 /* create mbuf which is suitable for strict alignment archs */
1850 #define ETHER_ALIGN 0
1851 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1852 if (m == NULL) {
1853 DPRINTF(1, "%s: could not create RX mbuf\n",
1854 device_xname(sc->sc_dev));
1855 ifp->if_ierrors++;
1856 return;
1857 }
1858
1859 s = splnet();
1860
1861 if (sc->sc_drvbpf != NULL) {
1862 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1863
1864 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1865 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1866 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1867 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1868 tap->wr_antsignal = rxdesc->rssi;
1869
1870 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1871 }
1872
1873 /* trim FCS */
1874 m_adj(m, -IEEE80211_CRC_LEN);
1875
1876 wh = mtod(m, struct ieee80211_frame *);
1877 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1878
1879 /* push the frame up to the 802.11 stack */
1880 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1881
1882 /* node is no longer needed */
1883 ieee80211_free_node(ni);
1884
1885 splx(s);
1886
1887 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1888 }
1889
1890 static void
1891 upgt_setup_rates(struct upgt_softc *sc)
1892 {
1893 struct ieee80211com *ic = &sc->sc_ic;
1894
1895 /*
1896 * 0x01 = OFMD6 0x10 = DS1
1897 * 0x04 = OFDM9 0x11 = DS2
1898 * 0x06 = OFDM12 0x12 = DS5
1899 * 0x07 = OFDM18 0x13 = DS11
1900 * 0x08 = OFDM24
1901 * 0x09 = OFDM36
1902 * 0x0a = OFDM48
1903 * 0x0b = OFDM54
1904 */
1905 const uint8_t rateset_auto_11b[] =
1906 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1907 const uint8_t rateset_auto_11g[] =
1908 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1909 const uint8_t rateset_fix_11bg[] =
1910 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1911 0x08, 0x09, 0x0a, 0x0b };
1912
1913 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1914 /*
1915 * Automatic rate control is done by the device.
1916 * We just pass the rateset from which the device
1917 * will pickup a rate.
1918 */
1919 if (ic->ic_curmode == IEEE80211_MODE_11B)
1920 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1921 sizeof(sc->sc_cur_rateset));
1922 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1923 ic->ic_curmode == IEEE80211_MODE_AUTO)
1924 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1925 sizeof(sc->sc_cur_rateset));
1926 } else {
1927 /* set a fixed rate */
1928 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1929 sizeof(sc->sc_cur_rateset));
1930 }
1931 }
1932
1933 static uint8_t
1934 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1935 {
1936 struct ieee80211com *ic = &sc->sc_ic;
1937
1938 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1939 if (rate < 0 || rate > 3)
1940 /* invalid rate */
1941 return 0;
1942
1943 switch (rate) {
1944 case 0:
1945 return 2;
1946 case 1:
1947 return 4;
1948 case 2:
1949 return 11;
1950 case 3:
1951 return 22;
1952 default:
1953 return 0;
1954 }
1955 }
1956
1957 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1958 if (rate < 0 || rate > 11)
1959 /* invalid rate */
1960 return 0;
1961
1962 switch (rate) {
1963 case 0:
1964 return 2;
1965 case 1:
1966 return 4;
1967 case 2:
1968 return 11;
1969 case 3:
1970 return 22;
1971 case 4:
1972 return 12;
1973 case 5:
1974 return 18;
1975 case 6:
1976 return 24;
1977 case 7:
1978 return 36;
1979 case 8:
1980 return 48;
1981 case 9:
1982 return 72;
1983 case 10:
1984 return 96;
1985 case 11:
1986 return 108;
1987 default:
1988 return 0;
1989 }
1990 }
1991
1992 return 0;
1993 }
1994
1995 static int
1996 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1997 {
1998 struct ieee80211com *ic = &sc->sc_ic;
1999 struct ieee80211_node *ni = ic->ic_bss;
2000 struct upgt_data *data_cmd = &sc->cmd_data;
2001 struct upgt_lmac_mem *mem;
2002 struct upgt_lmac_filter *filter;
2003 int len;
2004 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2005
2006 /*
2007 * Transmit the URB containing the CMD data.
2008 */
2009 len = sizeof(*mem) + sizeof(*filter);
2010
2011 memset(data_cmd->buf, 0, len);
2012
2013 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2014 mem->addr = htole32(sc->sc_memaddr_frame_start +
2015 UPGT_MEMSIZE_FRAME_HEAD);
2016
2017 filter = (struct upgt_lmac_filter *)(mem + 1);
2018
2019 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2020 filter->header1.type = UPGT_H1_TYPE_CTRL;
2021 filter->header1.len = htole16(
2022 sizeof(struct upgt_lmac_filter) -
2023 sizeof(struct upgt_lmac_header));
2024
2025 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2026 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2027 filter->header2.flags = 0;
2028
2029 switch (state) {
2030 case IEEE80211_S_INIT:
2031 DPRINTF(1, "%s: set MAC filter to INIT\n",
2032 device_xname(sc->sc_dev));
2033
2034 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2035 break;
2036 case IEEE80211_S_SCAN:
2037 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2038 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2039
2040 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2041 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2042 IEEE80211_ADDR_COPY(filter->src, broadcast);
2043 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2044 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2045 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2046 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2047 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2048 break;
2049 case IEEE80211_S_RUN:
2050 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2051 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2052
2053 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2054 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2055 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2056 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2057 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2058 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2059 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2060 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2061 break;
2062 default:
2063 aprint_error_dev(sc->sc_dev,
2064 "MAC filter does not know that state\n");
2065 break;
2066 }
2067
2068 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2069
2070 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2071 aprint_error_dev(sc->sc_dev,
2072 "could not transmit macfilter CMD data URB\n");
2073 return EIO;
2074 }
2075
2076 return 0;
2077 }
2078
2079 static int
2080 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2081 {
2082 struct upgt_data *data_cmd = &sc->cmd_data;
2083 struct upgt_lmac_mem *mem;
2084 struct upgt_lmac_channel *chan;
2085 int len;
2086
2087 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2088 channel);
2089
2090 /*
2091 * Transmit the URB containing the CMD data.
2092 */
2093 len = sizeof(*mem) + sizeof(*chan);
2094
2095 memset(data_cmd->buf, 0, len);
2096
2097 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2098 mem->addr = htole32(sc->sc_memaddr_frame_start +
2099 UPGT_MEMSIZE_FRAME_HEAD);
2100
2101 chan = (struct upgt_lmac_channel *)(mem + 1);
2102
2103 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2104 chan->header1.type = UPGT_H1_TYPE_CTRL;
2105 chan->header1.len = htole16(
2106 sizeof(struct upgt_lmac_channel) -
2107 sizeof(struct upgt_lmac_header));
2108
2109 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2110 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2111 chan->header2.flags = 0;
2112
2113 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2114 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2115 chan->freq6 = sc->sc_eeprom_freq6[channel];
2116 chan->settings = sc->sc_eeprom_freq6_settings;
2117 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2118
2119 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2120 sizeof(chan->freq3_1));
2121
2122 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2123 sizeof(sc->sc_eeprom_freq4[channel]));
2124
2125 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2126 sizeof(chan->freq3_2));
2127
2128 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2129
2130 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2131 aprint_error_dev(sc->sc_dev,
2132 "could not transmit channel CMD data URB\n");
2133 return EIO;
2134 }
2135
2136 return 0;
2137 }
2138
2139 static void
2140 upgt_set_led(struct upgt_softc *sc, int action)
2141 {
2142 struct ieee80211com *ic = &sc->sc_ic;
2143 struct upgt_data *data_cmd = &sc->cmd_data;
2144 struct upgt_lmac_mem *mem;
2145 struct upgt_lmac_led *led;
2146 struct timeval t;
2147 int len;
2148
2149 /*
2150 * Transmit the URB containing the CMD data.
2151 */
2152 len = sizeof(*mem) + sizeof(*led);
2153
2154 memset(data_cmd->buf, 0, len);
2155
2156 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2157 mem->addr = htole32(sc->sc_memaddr_frame_start +
2158 UPGT_MEMSIZE_FRAME_HEAD);
2159
2160 led = (struct upgt_lmac_led *)(mem + 1);
2161
2162 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2163 led->header1.type = UPGT_H1_TYPE_CTRL;
2164 led->header1.len = htole16(
2165 sizeof(struct upgt_lmac_led) -
2166 sizeof(struct upgt_lmac_header));
2167
2168 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2169 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2170 led->header2.flags = 0;
2171
2172 switch (action) {
2173 case UPGT_LED_OFF:
2174 led->mode = htole16(UPGT_LED_MODE_SET);
2175 led->action_fix = 0;
2176 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2177 led->action_tmp_dur = 0;
2178 break;
2179 case UPGT_LED_ON:
2180 led->mode = htole16(UPGT_LED_MODE_SET);
2181 led->action_fix = 0;
2182 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2183 led->action_tmp_dur = 0;
2184 break;
2185 case UPGT_LED_BLINK:
2186 if (ic->ic_state != IEEE80211_S_RUN)
2187 return;
2188 if (sc->sc_led_blink)
2189 /* previous blink was not finished */
2190 return;
2191 led->mode = htole16(UPGT_LED_MODE_SET);
2192 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2193 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2194 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2195 /* lock blink */
2196 sc->sc_led_blink = 1;
2197 t.tv_sec = 0;
2198 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2199 callout_schedule(&sc->led_to, tvtohz(&t));
2200 break;
2201 default:
2202 return;
2203 }
2204
2205 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2206
2207 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2208 aprint_error_dev(sc->sc_dev,
2209 "could not transmit led CMD URB\n");
2210 }
2211 }
2212
2213 static void
2214 upgt_set_led_blink(void *arg)
2215 {
2216 struct upgt_softc *sc = arg;
2217
2218 /* blink finished, we are ready for a next one */
2219 sc->sc_led_blink = 0;
2220 callout_stop(&sc->led_to);
2221 }
2222
2223 static int
2224 upgt_get_stats(struct upgt_softc *sc)
2225 {
2226 struct upgt_data *data_cmd = &sc->cmd_data;
2227 struct upgt_lmac_mem *mem;
2228 struct upgt_lmac_stats *stats;
2229 int len;
2230
2231 /*
2232 * Transmit the URB containing the CMD data.
2233 */
2234 len = sizeof(*mem) + sizeof(*stats);
2235
2236 memset(data_cmd->buf, 0, len);
2237
2238 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2239 mem->addr = htole32(sc->sc_memaddr_frame_start +
2240 UPGT_MEMSIZE_FRAME_HEAD);
2241
2242 stats = (struct upgt_lmac_stats *)(mem + 1);
2243
2244 stats->header1.flags = 0;
2245 stats->header1.type = UPGT_H1_TYPE_CTRL;
2246 stats->header1.len = htole16(
2247 sizeof(struct upgt_lmac_stats) -
2248 sizeof(struct upgt_lmac_header));
2249
2250 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2251 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2252 stats->header2.flags = 0;
2253
2254 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2255
2256 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2257 aprint_error_dev(sc->sc_dev,
2258 "could not transmit statistics CMD data URB\n");
2259 return EIO;
2260 }
2261
2262 return 0;
2263
2264 }
2265
2266 static int
2267 upgt_alloc_tx(struct upgt_softc *sc)
2268 {
2269 int i;
2270
2271 sc->tx_queued = 0;
2272
2273 for (i = 0; i < UPGT_TX_COUNT; i++) {
2274 struct upgt_data *data_tx = &sc->tx_data[i];
2275
2276 data_tx->sc = sc;
2277
2278 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2279 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2280 if (err) {
2281 aprint_error_dev(sc->sc_dev,
2282 "could not allocate TX xfer\n");
2283 return err;
2284 }
2285
2286 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2287 }
2288
2289 return 0;
2290 }
2291
2292 static int
2293 upgt_alloc_rx(struct upgt_softc *sc)
2294 {
2295 struct upgt_data *data_rx = &sc->rx_data;
2296
2297 data_rx->sc = sc;
2298
2299 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2300 0, 0, &data_rx->xfer);
2301 if (err) {
2302 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2303 return err;
2304 }
2305
2306 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2307
2308 return 0;
2309 }
2310
2311 static int
2312 upgt_alloc_cmd(struct upgt_softc *sc)
2313 {
2314 struct upgt_data *data_cmd = &sc->cmd_data;
2315
2316 data_cmd->sc = sc;
2317
2318 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2319 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2320 if (err) {
2321 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2322 return err;
2323 }
2324
2325 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2326
2327 cv_init(&sc->sc_cv, "upgteeprom");
2328 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2329
2330 return 0;
2331 }
2332
2333 static void
2334 upgt_free_tx(struct upgt_softc *sc)
2335 {
2336 int i;
2337
2338 for (i = 0; i < UPGT_TX_COUNT; i++) {
2339 struct upgt_data *data_tx = &sc->tx_data[i];
2340
2341 if (data_tx->xfer != NULL) {
2342 usbd_destroy_xfer(data_tx->xfer);
2343 data_tx->xfer = NULL;
2344 }
2345
2346 data_tx->ni = NULL;
2347 }
2348 }
2349
2350 static void
2351 upgt_free_rx(struct upgt_softc *sc)
2352 {
2353 struct upgt_data *data_rx = &sc->rx_data;
2354
2355 if (data_rx->xfer != NULL) {
2356 usbd_destroy_xfer(data_rx->xfer);
2357 data_rx->xfer = NULL;
2358 }
2359
2360 data_rx->ni = NULL;
2361 }
2362
2363 static void
2364 upgt_free_cmd(struct upgt_softc *sc)
2365 {
2366 struct upgt_data *data_cmd = &sc->cmd_data;
2367
2368 if (data_cmd->xfer != NULL) {
2369 usbd_destroy_xfer(data_cmd->xfer);
2370 data_cmd->xfer = NULL;
2371 }
2372
2373 mutex_destroy(&sc->sc_mtx);
2374 cv_destroy(&sc->sc_cv);
2375 }
2376
2377 static int
2378 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2379 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2380 {
2381 usbd_status status;
2382
2383 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2384 data->buf, size);
2385 if (status != USBD_NORMAL_COMPLETION) {
2386 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2387 usbd_errstr(status));
2388 return EIO;
2389 }
2390
2391 return 0;
2392 }
2393
2394 #if 0
2395 static void
2396 upgt_hexdump(void *buf, int len)
2397 {
2398 int i;
2399
2400 for (i = 0; i < len; i++) {
2401 if (i % 16 == 0)
2402 printf("%s%5i:", i ? "\n" : "", i);
2403 if (i % 4 == 0)
2404 printf(" ");
2405 printf("%02x", (int)*((uint8_t *)buf + i));
2406 }
2407 printf("\n");
2408 }
2409 #endif
2410
2411 static uint32_t
2412 upgt_crc32_le(const void *buf, size_t size)
2413 {
2414 uint32_t crc;
2415
2416 crc = ether_crc32_le(buf, size);
2417
2418 /* apply final XOR value as common for CRC-32 */
2419 crc = htole32(crc ^ 0xffffffffU);
2420
2421 return crc;
2422 }
2423
2424 /*
2425 * The firmware awaits a checksum for each frame we send to it.
2426 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2427 */
2428 static uint32_t
2429 upgt_chksum_le(const uint32_t *buf, size_t size)
2430 {
2431 int i;
2432 uint32_t crc = 0;
2433
2434 for (i = 0; i < size; i += sizeof(uint32_t)) {
2435 crc = htole32(crc ^ *buf++);
2436 crc = htole32((crc >> 5) ^ (crc << 3));
2437 }
2438
2439 return crc;
2440 }
2441