Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.12.4.12
      1 /*	$NetBSD: if_upgt.c,v 1.12.4.12 2016/05/29 08:44:31 skrll Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12.4.12 2016/05/29 08:44:31 skrll Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/callout.h>
     25 #include <sys/device.h>
     26 #include <sys/errno.h>
     27 #include <sys/kernel.h>
     28 #include <sys/kthread.h>
     29 #include <sys/mbuf.h>
     30 #include <sys/proc.h>
     31 #include <sys/sockio.h>
     32 #include <sys/systm.h>
     33 #include <sys/vnode.h>
     34 #include <sys/bus.h>
     35 #include <sys/endian.h>
     36 #include <sys/intr.h>
     37 
     38 #include <net/bpf.h>
     39 #include <net/if.h>
     40 #include <net/if_arp.h>
     41 #include <net/if_dl.h>
     42 #include <net/if_ether.h>
     43 #include <net/if_media.h>
     44 #include <net/if_types.h>
     45 
     46 #include <net80211/ieee80211_var.h>
     47 #include <net80211/ieee80211_radiotap.h>
     48 
     49 #include <dev/firmload.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 #include <dev/usb/usbdivar.h>
     55 #include <dev/usb/usbdevs.h>
     56 
     57 #include <dev/usb/if_upgtvar.h>
     58 
     59 /*
     60  * Driver for the USB PrismGT devices.
     61  *
     62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     64  *
     65  * TODO's:
     66  * - Fix MONITOR mode (MAC filter).
     67  * - Add HOSTAP mode.
     68  * - Add IBSS mode.
     69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     70  *
     71  * Parts of this driver has been influenced by reading the p54u driver
     72  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     73  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     74  */
     75 
     76 #ifdef UPGT_DEBUG
     77 int upgt_debug = 2;
     78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     79 #else
     80 #define DPRINTF(l, x...)
     81 #endif
     82 
     83 /*
     84  * Prototypes.
     85  */
     86 static int	upgt_match(device_t, cfdata_t, void *);
     87 static void	upgt_attach(device_t, device_t, void *);
     88 static int	upgt_detach(device_t, int);
     89 static int	upgt_activate(device_t, devact_t);
     90 
     91 static void	upgt_attach_hook(device_t);
     92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     93 static int	upgt_device_init(struct upgt_softc *);
     94 static int	upgt_mem_init(struct upgt_softc *);
     95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
     96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
     97 static int	upgt_fw_alloc(struct upgt_softc *);
     98 static void	upgt_fw_free(struct upgt_softc *);
     99 static int	upgt_fw_verify(struct upgt_softc *);
    100 static int	upgt_fw_load(struct upgt_softc *);
    101 static int	upgt_fw_copy(char *, char *, int);
    102 static int	upgt_eeprom_read(struct upgt_softc *);
    103 static int	upgt_eeprom_parse(struct upgt_softc *);
    104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    108 
    109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    110 static int	upgt_init(struct ifnet *);
    111 static void	upgt_stop(struct upgt_softc *);
    112 static int	upgt_media_change(struct ifnet *);
    113 static void	upgt_newassoc(struct ieee80211_node *, int);
    114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    115 		    int);
    116 static void	upgt_newstate_task(void *);
    117 static void	upgt_next_scan(void *);
    118 static void	upgt_start(struct ifnet *);
    119 static void	upgt_watchdog(struct ifnet *);
    120 static void	upgt_tx_task(void *);
    121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    122 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
    123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    124 static void	upgt_setup_rates(struct upgt_softc *);
    125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
    127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    128 static void	upgt_set_led(struct upgt_softc *, int);
    129 static void	upgt_set_led_blink(void *);
    130 static int	upgt_get_stats(struct upgt_softc *);
    131 
    132 static int	upgt_alloc_tx(struct upgt_softc *);
    133 static int	upgt_alloc_rx(struct upgt_softc *);
    134 static int	upgt_alloc_cmd(struct upgt_softc *);
    135 static void	upgt_free_tx(struct upgt_softc *);
    136 static void	upgt_free_rx(struct upgt_softc *);
    137 static void	upgt_free_cmd(struct upgt_softc *);
    138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    139 		    struct usbd_pipe *, uint32_t *, int);
    140 
    141 #if 0
    142 static void	upgt_hexdump(void *, int);
    143 #endif
    144 static uint32_t	upgt_crc32_le(const void *, size_t);
    145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    146 
    147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    149 
    150 static const struct usb_devno upgt_devs_1[] = {
    151 	/* version 1 devices */
    152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    153 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    154 };
    155 
    156 static const struct usb_devno upgt_devs_2[] = {
    157 	/* version 2 devices */
    158 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    159 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    160 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    162 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    163 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    164 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    166 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    167 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    168 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    170 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    171 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    172 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    173 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    174 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    175 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    176 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    177 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    178 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    179 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    181 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    182 };
    183 
    184 static int
    185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    186     size_t *sizep)
    187 {
    188 	firmware_handle_t fh;
    189 	int error;
    190 
    191 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    192 		return error;
    193 	*sizep = firmware_get_size(fh);
    194 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    195 		firmware_close(fh);
    196 		return ENOMEM;
    197 	}
    198 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    199 		firmware_free(*ucodep, *sizep);
    200 	firmware_close(fh);
    201 
    202 	return error;
    203 }
    204 
    205 static int
    206 upgt_match(device_t parent, cfdata_t match, void *aux)
    207 {
    208 	struct usb_attach_arg *uaa = aux;
    209 
    210 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    211 		return UMATCH_VENDOR_PRODUCT;
    212 
    213 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    214 		return UMATCH_VENDOR_PRODUCT;
    215 
    216 	return UMATCH_NONE;
    217 }
    218 
    219 static void
    220 upgt_attach(device_t parent, device_t self, void *aux)
    221 {
    222 	struct upgt_softc *sc = device_private(self);
    223 	struct usb_attach_arg *uaa = aux;
    224 	usb_interface_descriptor_t *id;
    225 	usb_endpoint_descriptor_t *ed;
    226 	usbd_status error;
    227 	char *devinfop;
    228 	int i;
    229 
    230 	aprint_naive("\n");
    231 	aprint_normal("\n");
    232 
    233 	/*
    234 	 * Attach USB device.
    235 	 */
    236 	sc->sc_dev = self;
    237 	sc->sc_udev = uaa->uaa_device;
    238 
    239 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    240 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    241 	usbd_devinfo_free(devinfop);
    242 
    243 	/* check device type */
    244 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
    245 		return;
    246 
    247 	/* set configuration number */
    248 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    249 	if (error != 0) {
    250 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    251 		    ", err=%s\n", usbd_errstr(error));
    252 		return;
    253 	}
    254 
    255 	/* get the first interface handle */
    256 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    257 	    &sc->sc_iface);
    258 	if (error != 0) {
    259 		aprint_error_dev(sc->sc_dev,
    260 		    "could not get interface handle\n");
    261 		return;
    262 	}
    263 
    264 	/* find endpoints */
    265 	id = usbd_get_interface_descriptor(sc->sc_iface);
    266 	sc->sc_rx_no = sc->sc_tx_no = -1;
    267 	for (i = 0; i < id->bNumEndpoints; i++) {
    268 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    269 		if (ed == NULL) {
    270 			aprint_error_dev(sc->sc_dev,
    271 			    "no endpoint descriptor for iface %d\n", i);
    272 			return;
    273 		}
    274 
    275 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    276 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    277 			sc->sc_tx_no = ed->bEndpointAddress;
    278 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    279 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    280 			sc->sc_rx_no = ed->bEndpointAddress;
    281 
    282 		/*
    283 		 * 0x01 TX pipe
    284 		 * 0x81 RX pipe
    285 		 *
    286 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    287 		 * 0x02 TX MGMT pipe
    288 		 * 0x82 TX MGMT pipe
    289 		 */
    290 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    291 			break;
    292 	}
    293 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    294 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    295 		return;
    296 	}
    297 
    298 	/* setup tasks and timeouts */
    299 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    300 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    301 	callout_init(&sc->scan_to, 0);
    302 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    303 	callout_init(&sc->led_to, 0);
    304 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    305 
    306 	/*
    307 	 * Open TX and RX USB bulk pipes.
    308 	 */
    309 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    310 	    &sc->sc_tx_pipeh);
    311 	if (error != 0) {
    312 		aprint_error_dev(sc->sc_dev,
    313 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    314 		goto fail;
    315 	}
    316 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    317 	    &sc->sc_rx_pipeh);
    318 	if (error != 0) {
    319 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    320 		    usbd_errstr(error));
    321 		goto fail;
    322 	}
    323 
    324 	/*
    325 	 * Allocate TX, RX, and CMD xfers.
    326 	 */
    327 	if (upgt_alloc_tx(sc) != 0)
    328 		goto fail;
    329 	if (upgt_alloc_rx(sc) != 0)
    330 		goto fail;
    331 	if (upgt_alloc_cmd(sc) != 0)
    332 		goto fail;
    333 
    334 	/*
    335 	 * We need the firmware loaded from file system to complete the attach.
    336 	 */
    337 	config_mountroot(self, upgt_attach_hook);
    338 
    339 	return;
    340 fail:
    341 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    342 }
    343 
    344 static void
    345 upgt_attach_hook(device_t arg)
    346 {
    347 	struct upgt_softc *sc = device_private(arg);
    348 	struct ieee80211com *ic = &sc->sc_ic;
    349 	struct ifnet *ifp = &sc->sc_if;
    350 	usbd_status error;
    351 	int i;
    352 
    353 	/*
    354 	 * Load firmware file into memory.
    355 	 */
    356 	if (upgt_fw_alloc(sc) != 0)
    357 		goto fail;
    358 
    359 	/*
    360 	 * Initialize the device.
    361 	 */
    362 	if (upgt_device_init(sc) != 0)
    363 		goto fail;
    364 
    365 	/*
    366 	 * Verify the firmware.
    367 	 */
    368 	if (upgt_fw_verify(sc) != 0)
    369 		goto fail;
    370 
    371 	/*
    372 	 * Calculate device memory space.
    373 	 */
    374 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    375 		aprint_error_dev(sc->sc_dev,
    376 		    "could not find memory space addresses on FW\n");
    377 		goto fail;
    378 	}
    379 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    380 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    381 
    382 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    384 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    385 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    386 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    387 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    388 
    389 	upgt_mem_init(sc);
    390 
    391 	/*
    392 	 * Load the firmware.
    393 	 */
    394 	if (upgt_fw_load(sc) != 0)
    395 		goto fail;
    396 
    397 	/*
    398 	 * Startup the RX pipe.
    399 	 */
    400 	struct upgt_data *data_rx = &sc->rx_data;
    401 
    402 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
    403 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    404 	error = usbd_transfer(data_rx->xfer);
    405 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    406 		aprint_error_dev(sc->sc_dev,
    407 		    "could not queue RX transfer\n");
    408 		goto fail;
    409 	}
    410 	usbd_delay_ms(sc->sc_udev, 100);
    411 
    412 	/*
    413 	 * Read the whole EEPROM content and parse it.
    414 	 */
    415 	if (upgt_eeprom_read(sc) != 0)
    416 		goto fail;
    417 	if (upgt_eeprom_parse(sc) != 0)
    418 		goto fail;
    419 
    420 	/*
    421 	 * Setup the 802.11 device.
    422 	 */
    423 	ic->ic_ifp = ifp;
    424 	ic->ic_phytype = IEEE80211_T_OFDM;
    425 	ic->ic_opmode = IEEE80211_M_STA;
    426 	ic->ic_state = IEEE80211_S_INIT;
    427 	ic->ic_caps =
    428 	    IEEE80211_C_MONITOR |
    429 	    IEEE80211_C_SHPREAMBLE |
    430 	    IEEE80211_C_SHSLOT;
    431 
    432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    434 
    435 	for (i = 1; i <= 14; i++) {
    436 		ic->ic_channels[i].ic_freq =
    437 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    438 		ic->ic_channels[i].ic_flags =
    439 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    440 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    441 	}
    442 
    443 	ifp->if_softc = sc;
    444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    445 	ifp->if_init = upgt_init;
    446 	ifp->if_ioctl = upgt_ioctl;
    447 	ifp->if_start = upgt_start;
    448 	ifp->if_watchdog = upgt_watchdog;
    449 	IFQ_SET_READY(&ifp->if_snd);
    450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    451 
    452 	if_attach(ifp);
    453 	ieee80211_ifattach(ic);
    454 	ic->ic_newassoc = upgt_newassoc;
    455 
    456 	sc->sc_newstate = ic->ic_newstate;
    457 	ic->ic_newstate = upgt_newstate;
    458 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    459 
    460 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    461 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    462 	    &sc->sc_drvbpf);
    463 
    464 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    465 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    466 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    467 
    468 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    469 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    470 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    471 
    472 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    473 	    ether_sprintf(ic->ic_myaddr));
    474 
    475 	ieee80211_announce(ic);
    476 
    477 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    478 
    479 	/* device attached */
    480 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    481 
    482 	return;
    483 fail:
    484 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    485 }
    486 
    487 static int
    488 upgt_detach(device_t self, int flags)
    489 {
    490 	struct upgt_softc *sc = device_private(self);
    491 	struct ifnet *ifp = &sc->sc_if;
    492 	struct ieee80211com *ic = &sc->sc_ic;
    493 	int s;
    494 
    495 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    496 
    497 	s = splnet();
    498 
    499 	if (ifp->if_flags & IFF_RUNNING)
    500 		upgt_stop(sc);
    501 
    502 	/* remove tasks and timeouts */
    503 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    504 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    505 	callout_destroy(&sc->scan_to);
    506 	callout_destroy(&sc->led_to);
    507 
    508 	/* abort and close TX / RX pipes */
    509 	if (sc->sc_tx_pipeh != NULL) {
    510 		usbd_abort_pipe(sc->sc_tx_pipeh);
    511 	}
    512 	if (sc->sc_rx_pipeh != NULL) {
    513 		usbd_abort_pipe(sc->sc_rx_pipeh);
    514 	}
    515 
    516 	/* free xfers */
    517 	upgt_free_tx(sc);
    518 	upgt_free_rx(sc);
    519 	upgt_free_cmd(sc);
    520 
    521 	/* Close TX / RX pipes */
    522 	if (sc->sc_tx_pipeh != NULL) {
    523 		usbd_close_pipe(sc->sc_tx_pipeh);
    524 	}
    525 	if (sc->sc_rx_pipeh != NULL) {
    526 		usbd_close_pipe(sc->sc_rx_pipeh);
    527 	}
    528 
    529 	/* free firmware */
    530 	upgt_fw_free(sc);
    531 
    532 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    533 		/* detach interface */
    534 		bpf_detach(ifp);
    535 		ieee80211_ifdetach(ic);
    536 		if_detach(ifp);
    537 	}
    538 
    539 	splx(s);
    540 
    541 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    542 
    543 	return 0;
    544 }
    545 
    546 static int
    547 upgt_activate(device_t self, devact_t act)
    548 {
    549 	struct upgt_softc *sc = device_private(self);
    550 
    551 	switch (act) {
    552 	case DVACT_DEACTIVATE:
    553 		if_deactivate(&sc->sc_if);
    554 		return 0;
    555 	default:
    556 		return EOPNOTSUPP;
    557 	}
    558 }
    559 
    560 static int
    561 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    562 {
    563 
    564 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    565 		sc->sc_device_type = 1;
    566 		/* XXX */
    567 		aprint_error_dev(sc->sc_dev,
    568 		    "version 1 devices not supported yet\n");
    569 		return 1;
    570 	} else
    571 		sc->sc_device_type = 2;
    572 
    573 	return 0;
    574 }
    575 
    576 static int
    577 upgt_device_init(struct upgt_softc *sc)
    578 {
    579 	struct upgt_data *data_cmd = &sc->cmd_data;
    580 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    581 	int len;
    582 
    583 	len = sizeof(init_cmd);
    584 	memcpy(data_cmd->buf, init_cmd, len);
    585 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    586 		aprint_error_dev(sc->sc_dev,
    587 		    "could not send device init string\n");
    588 		return EIO;
    589 	}
    590 	usbd_delay_ms(sc->sc_udev, 100);
    591 
    592 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    593 
    594 	return 0;
    595 }
    596 
    597 static int
    598 upgt_mem_init(struct upgt_softc *sc)
    599 {
    600 	int i;
    601 
    602 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    603 		sc->sc_memory.page[i].used = 0;
    604 
    605 		if (i == 0) {
    606 			/*
    607 			 * The first memory page is always reserved for
    608 			 * command data.
    609 			 */
    610 			sc->sc_memory.page[i].addr =
    611 			    sc->sc_memaddr_frame_start + MCLBYTES;
    612 		} else {
    613 			sc->sc_memory.page[i].addr =
    614 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    615 		}
    616 
    617 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    618 		    sc->sc_memaddr_frame_end)
    619 			break;
    620 
    621 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    622 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    623 	}
    624 
    625 	sc->sc_memory.pages = i;
    626 
    627 	DPRINTF(2, "%s: memory pages=%d\n",
    628 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    629 
    630 	return 0;
    631 }
    632 
    633 static uint32_t
    634 upgt_mem_alloc(struct upgt_softc *sc)
    635 {
    636 	int i;
    637 
    638 	for (i = 0; i < sc->sc_memory.pages; i++) {
    639 		if (sc->sc_memory.page[i].used == 0) {
    640 			sc->sc_memory.page[i].used = 1;
    641 			return sc->sc_memory.page[i].addr;
    642 		}
    643 	}
    644 
    645 	return 0;
    646 }
    647 
    648 static void
    649 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    650 {
    651 	int i;
    652 
    653 	for (i = 0; i < sc->sc_memory.pages; i++) {
    654 		if (sc->sc_memory.page[i].addr == addr) {
    655 			sc->sc_memory.page[i].used = 0;
    656 			return;
    657 		}
    658 	}
    659 
    660 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    661 	    addr);
    662 }
    663 
    664 
    665 static int
    666 upgt_fw_alloc(struct upgt_softc *sc)
    667 {
    668 	const char *name = "upgt-gw3887";
    669 	int error;
    670 
    671 	if (sc->sc_fw == NULL) {
    672 		error = firmware_load("upgt", name, &sc->sc_fw,
    673 		    &sc->sc_fw_size);
    674 		if (error != 0) {
    675 			if (error == ENOENT) {
    676 				/*
    677 				 * The firmware file for upgt(4) is not in
    678 				 * the default distribution due to its lisence
    679 				 * so explicitly notify it if the firmware file
    680 				 * is not found.
    681 				 */
    682 				aprint_error_dev(sc->sc_dev,
    683 				    "firmware file %s is not installed\n",
    684 				    name);
    685 				aprint_error_dev(sc->sc_dev,
    686 				    "(it is not included in the default"
    687 				    " distribution)\n");
    688 				aprint_error_dev(sc->sc_dev,
    689 				    "see upgt(4) man page for details about "
    690 				    "firmware installation\n");
    691 			} else {
    692 				aprint_error_dev(sc->sc_dev,
    693 				    "could not read firmware %s\n", name);
    694 			}
    695 			return EIO;
    696 		}
    697 	}
    698 
    699 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    700 	    name);
    701 
    702 	return 0;
    703 }
    704 
    705 static void
    706 upgt_fw_free(struct upgt_softc *sc)
    707 {
    708 
    709 	if (sc->sc_fw != NULL) {
    710 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    711 		sc->sc_fw = NULL;
    712 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    713 	}
    714 }
    715 
    716 static int
    717 upgt_fw_verify(struct upgt_softc *sc)
    718 {
    719 	struct upgt_fw_bra_option *bra_option;
    720 	uint32_t bra_option_type, bra_option_len;
    721 	uint32_t *uc;
    722 	int offset, bra_end = 0;
    723 
    724 	/*
    725 	 * Seek to beginning of Boot Record Area (BRA).
    726 	 */
    727 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    728 		uc = (uint32_t *)(sc->sc_fw + offset);
    729 		if (*uc == 0)
    730 			break;
    731 	}
    732 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    733 		uc = (uint32_t *)(sc->sc_fw + offset);
    734 		if (*uc != 0)
    735 			break;
    736 	}
    737 	if (offset == sc->sc_fw_size) {
    738 		aprint_error_dev(sc->sc_dev,
    739 		    "firmware Boot Record Area not found\n");
    740 		return EIO;
    741 	}
    742 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    743 	    device_xname(sc->sc_dev), offset);
    744 
    745 	/*
    746 	 * Parse Boot Record Area (BRA) options.
    747 	 */
    748 	while (offset < sc->sc_fw_size && bra_end == 0) {
    749 		/* get current BRA option */
    750 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    751 		bra_option_type = le32toh(bra_option->type);
    752 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    753 
    754 		switch (bra_option_type) {
    755 		case UPGT_BRA_TYPE_FW:
    756 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    757 			    device_xname(sc->sc_dev), bra_option_len);
    758 
    759 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    760 				aprint_error_dev(sc->sc_dev,
    761 				    "wrong UPGT_BRA_TYPE_FW len\n");
    762 				return EIO;
    763 			}
    764 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    765 			    bra_option_len) == 0) {
    766 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    767 				break;
    768 			}
    769 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    770 			    bra_option_len) == 0) {
    771 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    772 				break;
    773 			}
    774 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    775 			    bra_option_len) == 0) {
    776 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    777 				break;
    778 			}
    779 			aprint_error_dev(sc->sc_dev,
    780 			    "unsupported firmware type\n");
    781 			return EIO;
    782 		case UPGT_BRA_TYPE_VERSION:
    783 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    784 			    device_xname(sc->sc_dev), bra_option_len);
    785 			break;
    786 		case UPGT_BRA_TYPE_DEPIF:
    787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    788 			    device_xname(sc->sc_dev), bra_option_len);
    789 			break;
    790 		case UPGT_BRA_TYPE_EXPIF:
    791 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    792 			    device_xname(sc->sc_dev), bra_option_len);
    793 			break;
    794 		case UPGT_BRA_TYPE_DESCR:
    795 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    796 			    device_xname(sc->sc_dev), bra_option_len);
    797 
    798 			struct upgt_fw_bra_descr *descr =
    799 				(struct upgt_fw_bra_descr *)bra_option->data;
    800 
    801 			sc->sc_memaddr_frame_start =
    802 			    le32toh(descr->memaddr_space_start);
    803 			sc->sc_memaddr_frame_end =
    804 			    le32toh(descr->memaddr_space_end);
    805 
    806 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    807 			    device_xname(sc->sc_dev),
    808 			    sc->sc_memaddr_frame_start);
    809 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    810 			    device_xname(sc->sc_dev),
    811 			    sc->sc_memaddr_frame_end);
    812 			break;
    813 		case UPGT_BRA_TYPE_END:
    814 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    815 			    device_xname(sc->sc_dev), bra_option_len);
    816 			bra_end = 1;
    817 			break;
    818 		default:
    819 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    820 			    device_xname(sc->sc_dev), bra_option_len);
    821 			return EIO;
    822 		}
    823 
    824 		/* jump to next BRA option */
    825 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    826 	}
    827 
    828 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    829 
    830 	return 0;
    831 }
    832 
    833 static int
    834 upgt_fw_load(struct upgt_softc *sc)
    835 {
    836 	struct upgt_data *data_cmd = &sc->cmd_data;
    837 	struct upgt_data *data_rx = &sc->rx_data;
    838 	struct upgt_fw_x2_header *x2;
    839 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    840 	int offset, bsize, n, i, len;
    841 	uint32_t crc;
    842 
    843 	/* send firmware start load command */
    844 	len = sizeof(start_fwload_cmd);
    845 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    846 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    847 		aprint_error_dev(sc->sc_dev,
    848 		    "could not send start_firmware_load command\n");
    849 		return EIO;
    850 	}
    851 
    852 	/* send X2 header */
    853 	len = sizeof(struct upgt_fw_x2_header);
    854 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    855 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    856 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    857 	x2->len = htole32(sc->sc_fw_size);
    858 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    859 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    860 	    sizeof(uint32_t));
    861 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    862 		aprint_error_dev(sc->sc_dev,
    863 		    "could not send firmware X2 header\n");
    864 		return EIO;
    865 	}
    866 
    867 	/* download firmware */
    868 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    869 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    870 			bsize = UPGT_FW_BLOCK_SIZE;
    871 		else
    872 			bsize = sc->sc_fw_size - offset;
    873 
    874 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    875 
    876 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    877 		    device_xname(sc->sc_dev), offset, n, bsize);
    878 
    879 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    880 		    != 0) {
    881 			aprint_error_dev(sc->sc_dev,
    882 			    "error while downloading firmware block\n");
    883 			return EIO;
    884 		}
    885 
    886 		bsize = n;
    887 	}
    888 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    889 
    890 	/* load firmware */
    891 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    892 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    893 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    894 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    895 	len = 6;
    896 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    897 		aprint_error_dev(sc->sc_dev,
    898 		    "could not send load_firmware command\n");
    899 		return EIO;
    900 	}
    901 
    902 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    903 		len = UPGT_FW_BLOCK_SIZE;
    904 		memset(data_rx->buf, 0, 2);
    905 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    906 		    USBD_SHORT_XFER_OK) != 0) {
    907 			aprint_error_dev(sc->sc_dev,
    908 			    "could not read firmware response\n");
    909 			return EIO;
    910 		}
    911 
    912 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    913 			break;	/* firmware load was successful */
    914 	}
    915 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    916 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    917 		return EIO;
    918 	}
    919 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    920 
    921 	return 0;
    922 }
    923 
    924 /*
    925  * While copying the version 2 firmware, we need to replace two characters:
    926  *
    927  * 0x7e -> 0x7d 0x5e
    928  * 0x7d -> 0x7d 0x5d
    929  */
    930 static int
    931 upgt_fw_copy(char *src, char *dst, int size)
    932 {
    933 	int i, j;
    934 
    935 	for (i = 0, j = 0; i < size && j < size; i++) {
    936 		switch (src[i]) {
    937 		case 0x7e:
    938 			dst[j] = 0x7d;
    939 			j++;
    940 			dst[j] = 0x5e;
    941 			j++;
    942 			break;
    943 		case 0x7d:
    944 			dst[j] = 0x7d;
    945 			j++;
    946 			dst[j] = 0x5d;
    947 			j++;
    948 			break;
    949 		default:
    950 			dst[j] = src[i];
    951 			j++;
    952 			break;
    953 		}
    954 	}
    955 
    956 	return i;
    957 }
    958 
    959 static int
    960 upgt_eeprom_read(struct upgt_softc *sc)
    961 {
    962 	struct upgt_data *data_cmd = &sc->cmd_data;
    963 	struct upgt_lmac_mem *mem;
    964 	struct upgt_lmac_eeprom	*eeprom;
    965 	int offset, block, len;
    966 
    967 	offset = 0;
    968 	block = UPGT_EEPROM_BLOCK_SIZE;
    969 	while (offset < UPGT_EEPROM_SIZE) {
    970 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    971 		    device_xname(sc->sc_dev), offset, block);
    972 
    973 		/*
    974 		 * Transmit the URB containing the CMD data.
    975 		 */
    976 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    977 
    978 		memset(data_cmd->buf, 0, len);
    979 
    980 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    981 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    982 		    UPGT_MEMSIZE_FRAME_HEAD);
    983 
    984 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    985 		eeprom->header1.flags = 0;
    986 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    987 		eeprom->header1.len = htole16((
    988 		    sizeof(struct upgt_lmac_eeprom) -
    989 		    sizeof(struct upgt_lmac_header)) + block);
    990 
    991 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    992 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    993 		eeprom->header2.flags = 0;
    994 
    995 		eeprom->offset = htole16(offset);
    996 		eeprom->len = htole16(block);
    997 
    998 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
    999 		    len - sizeof(*mem));
   1000 
   1001 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
   1002 		    USBD_FORCE_SHORT_XFER) != 0) {
   1003 			aprint_error_dev(sc->sc_dev,
   1004 			    "could not transmit EEPROM data URB\n");
   1005 			return EIO;
   1006 		}
   1007 
   1008 		mutex_enter(&sc->sc_mtx);
   1009 		int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
   1010 		mutex_exit(&sc->sc_mtx);
   1011 		if (res) {
   1012 			aprint_error_dev(sc->sc_dev,
   1013 			    "timeout while waiting for EEPROM data\n");
   1014 			return EIO;
   1015 		}
   1016 
   1017 		offset += block;
   1018 		if (UPGT_EEPROM_SIZE - offset < block)
   1019 			block = UPGT_EEPROM_SIZE - offset;
   1020 	}
   1021 
   1022 	return 0;
   1023 }
   1024 
   1025 static int
   1026 upgt_eeprom_parse(struct upgt_softc *sc)
   1027 {
   1028 	struct ieee80211com *ic = &sc->sc_ic;
   1029 	struct upgt_eeprom_header *eeprom_header;
   1030 	struct upgt_eeprom_option *eeprom_option;
   1031 	uint16_t option_len;
   1032 	uint16_t option_type;
   1033 	uint16_t preamble_len;
   1034 	int option_end = 0;
   1035 
   1036 	/* calculate eeprom options start offset */
   1037 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1038 	preamble_len = le16toh(eeprom_header->preamble_len);
   1039 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1040 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1041 
   1042 	while (!option_end) {
   1043 		/* the eeprom option length is stored in words */
   1044 		option_len =
   1045 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1046 		option_type =
   1047 		    le16toh(eeprom_option->type);
   1048 
   1049 		switch (option_type) {
   1050 		case UPGT_EEPROM_TYPE_NAME:
   1051 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1052 			    device_xname(sc->sc_dev), option_len);
   1053 			break;
   1054 		case UPGT_EEPROM_TYPE_SERIAL:
   1055 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1056 			    device_xname(sc->sc_dev), option_len);
   1057 			break;
   1058 		case UPGT_EEPROM_TYPE_MAC:
   1059 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1060 			    device_xname(sc->sc_dev), option_len);
   1061 
   1062 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1063 			break;
   1064 		case UPGT_EEPROM_TYPE_HWRX:
   1065 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1066 			    device_xname(sc->sc_dev), option_len);
   1067 
   1068 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1069 			break;
   1070 		case UPGT_EEPROM_TYPE_CHIP:
   1071 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1072 			    device_xname(sc->sc_dev), option_len);
   1073 			break;
   1074 		case UPGT_EEPROM_TYPE_FREQ3:
   1075 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1076 			    device_xname(sc->sc_dev), option_len);
   1077 
   1078 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1079 			    option_len);
   1080 			break;
   1081 		case UPGT_EEPROM_TYPE_FREQ4:
   1082 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1083 			    device_xname(sc->sc_dev), option_len);
   1084 
   1085 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1086 			    option_len);
   1087 			break;
   1088 		case UPGT_EEPROM_TYPE_FREQ5:
   1089 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1090 			    device_xname(sc->sc_dev), option_len);
   1091 			break;
   1092 		case UPGT_EEPROM_TYPE_FREQ6:
   1093 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1094 			    device_xname(sc->sc_dev), option_len);
   1095 
   1096 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1097 			    option_len);
   1098 			break;
   1099 		case UPGT_EEPROM_TYPE_END:
   1100 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1101 			    device_xname(sc->sc_dev), option_len);
   1102 			option_end = 1;
   1103 			break;
   1104 		case UPGT_EEPROM_TYPE_OFF:
   1105 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1106 			    device_xname(sc->sc_dev));
   1107 			return EIO;
   1108 		default:
   1109 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1110 			    device_xname(sc->sc_dev), option_type, option_len);
   1111 			break;
   1112 		}
   1113 
   1114 		/* jump to next EEPROM option */
   1115 		eeprom_option = (struct upgt_eeprom_option *)
   1116 		    (eeprom_option->data + option_len);
   1117 	}
   1118 
   1119 	return 0;
   1120 }
   1121 
   1122 static void
   1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1124 {
   1125 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1126 
   1127 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1128 
   1129 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1130 
   1131 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1132 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1133 }
   1134 
   1135 static void
   1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1137 {
   1138 	struct upgt_eeprom_freq3_header *freq3_header;
   1139 	struct upgt_lmac_freq3 *freq3;
   1140 	int i, elements, flags;
   1141 	unsigned channel;
   1142 
   1143 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1144 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1145 
   1146 	flags = freq3_header->flags;
   1147 	elements = freq3_header->elements;
   1148 
   1149 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1150 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1151 	__USE(flags);
   1152 
   1153 	for (i = 0; i < elements; i++) {
   1154 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1155 
   1156 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1157 
   1158 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1159 		    device_xname(sc->sc_dev),
   1160 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1161 	}
   1162 }
   1163 
   1164 static void
   1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1166 {
   1167 	struct upgt_eeprom_freq4_header *freq4_header;
   1168 	struct upgt_eeprom_freq4_1 *freq4_1;
   1169 	struct upgt_eeprom_freq4_2 *freq4_2;
   1170 	int i, j, elements, settings, flags;
   1171 	unsigned channel;
   1172 
   1173 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1174 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1175 
   1176 	flags = freq4_header->flags;
   1177 	elements = freq4_header->elements;
   1178 	settings = freq4_header->settings;
   1179 
   1180 	/* we need this value later */
   1181 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1182 
   1183 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1184 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1185 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1186 	__USE(flags);
   1187 
   1188 	for (i = 0; i < elements; i++) {
   1189 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1190 
   1191 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1192 
   1193 		for (j = 0; j < settings; j++) {
   1194 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1195 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1196 		}
   1197 
   1198 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1199 		    device_xname(sc->sc_dev),
   1200 		    le16toh(freq4_1[i].freq), channel);
   1201 	}
   1202 }
   1203 
   1204 static void
   1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1206 {
   1207 	struct upgt_lmac_freq6 *freq6;
   1208 	int i, elements;
   1209 	unsigned channel;
   1210 
   1211 	freq6 = (struct upgt_lmac_freq6 *)data;
   1212 
   1213 	elements = len / sizeof(struct upgt_lmac_freq6);
   1214 
   1215 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1216 
   1217 	for (i = 0; i < elements; i++) {
   1218 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1219 
   1220 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1221 
   1222 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1223 		    device_xname(sc->sc_dev),
   1224 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1225 	}
   1226 }
   1227 
   1228 static int
   1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1230 {
   1231 	struct upgt_softc *sc = ifp->if_softc;
   1232 	struct ieee80211com *ic = &sc->sc_ic;
   1233 	int s, error = 0;
   1234 
   1235 	s = splnet();
   1236 
   1237 	switch (cmd) {
   1238 	case SIOCSIFFLAGS:
   1239 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1240 			break;
   1241 		if (ifp->if_flags & IFF_UP) {
   1242 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1243 				upgt_init(ifp);
   1244 		} else {
   1245 			if (ifp->if_flags & IFF_RUNNING)
   1246 				upgt_stop(sc);
   1247 		}
   1248 		break;
   1249 	case SIOCADDMULTI:
   1250 	case SIOCDELMULTI:
   1251 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1252 			/* setup multicast filter, etc */
   1253 			error = 0;
   1254 		}
   1255 		break;
   1256 	default:
   1257 		error = ieee80211_ioctl(ic, cmd, data);
   1258 		break;
   1259 	}
   1260 
   1261 	if (error == ENETRESET) {
   1262 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1263 		    (IFF_UP | IFF_RUNNING))
   1264 			upgt_init(ifp);
   1265 		error = 0;
   1266 	}
   1267 
   1268 	splx(s);
   1269 
   1270 	return error;
   1271 }
   1272 
   1273 static int
   1274 upgt_init(struct ifnet *ifp)
   1275 {
   1276 	struct upgt_softc *sc = ifp->if_softc;
   1277 	struct ieee80211com *ic = &sc->sc_ic;
   1278 
   1279 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1280 
   1281 	if (ifp->if_flags & IFF_RUNNING)
   1282 		upgt_stop(sc);
   1283 
   1284 	ifp->if_flags |= IFF_RUNNING;
   1285 	ifp->if_flags &= ~IFF_OACTIVE;
   1286 
   1287 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1288 
   1289 	/* setup device rates */
   1290 	upgt_setup_rates(sc);
   1291 
   1292 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1294 	else
   1295 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1296 
   1297 	return 0;
   1298 }
   1299 
   1300 static void
   1301 upgt_stop(struct upgt_softc *sc)
   1302 {
   1303 	struct ieee80211com *ic = &sc->sc_ic;
   1304 	struct ifnet *ifp = &sc->sc_if;
   1305 
   1306 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1307 
   1308 	/* device down */
   1309 	ifp->if_timer = 0;
   1310 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1311 
   1312 	/* change device back to initial state */
   1313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1314 }
   1315 
   1316 static int
   1317 upgt_media_change(struct ifnet *ifp)
   1318 {
   1319 	struct upgt_softc *sc = ifp->if_softc;
   1320 	int error;
   1321 
   1322 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1323 
   1324 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
   1325 		return error;
   1326 
   1327 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1328 	    (IFF_UP | IFF_RUNNING)) {
   1329 		/* give pending USB transfers a chance to finish */
   1330 		usbd_delay_ms(sc->sc_udev, 100);
   1331 		upgt_init(ifp);
   1332 	}
   1333 
   1334 	return 0;
   1335 }
   1336 
   1337 static void
   1338 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1339 {
   1340 
   1341 	ni->ni_txrate = 0;
   1342 }
   1343 
   1344 static int
   1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1346 {
   1347 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1348 
   1349 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1350 	callout_stop(&sc->scan_to);
   1351 
   1352 	/* do it in a process context */
   1353 	sc->sc_state = nstate;
   1354 	sc->sc_arg = arg;
   1355 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1356 
   1357 	return 0;
   1358 }
   1359 
   1360 static void
   1361 upgt_newstate_task(void *arg)
   1362 {
   1363 	struct upgt_softc *sc = arg;
   1364 	struct ieee80211com *ic = &sc->sc_ic;
   1365 	struct ieee80211_node *ni;
   1366 	unsigned channel;
   1367 
   1368 	mutex_enter(&sc->sc_mtx);
   1369 
   1370 	switch (sc->sc_state) {
   1371 	case IEEE80211_S_INIT:
   1372 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1373 		    device_xname(sc->sc_dev));
   1374 
   1375 		/* do not accept any frames if the device is down */
   1376 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1377 		upgt_set_led(sc, UPGT_LED_OFF);
   1378 		break;
   1379 	case IEEE80211_S_SCAN:
   1380 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1381 		    device_xname(sc->sc_dev));
   1382 
   1383 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1384 		upgt_set_channel(sc, channel);
   1385 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1386 		callout_schedule(&sc->scan_to, hz / 5);
   1387 		break;
   1388 	case IEEE80211_S_AUTH:
   1389 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1390 		    device_xname(sc->sc_dev));
   1391 
   1392 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1393 		upgt_set_channel(sc, channel);
   1394 		break;
   1395 	case IEEE80211_S_ASSOC:
   1396 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1397 		    device_xname(sc->sc_dev));
   1398 
   1399 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1400 		upgt_set_channel(sc, channel);
   1401 		break;
   1402 	case IEEE80211_S_RUN:
   1403 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1404 		    device_xname(sc->sc_dev));
   1405 
   1406 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1407 		upgt_set_channel(sc, channel);
   1408 
   1409 		ni = ic->ic_bss;
   1410 
   1411 		/*
   1412 		 * TX rate control is done by the firmware.
   1413 		 * Report the maximum rate which is available therefore.
   1414 		 */
   1415 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1416 
   1417 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1418 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1419 		upgt_set_led(sc, UPGT_LED_ON);
   1420 		break;
   1421 	}
   1422 
   1423 	mutex_exit(&sc->sc_mtx);
   1424 
   1425 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1426 }
   1427 
   1428 static void
   1429 upgt_next_scan(void *arg)
   1430 {
   1431 	struct upgt_softc *sc = arg;
   1432 	struct ieee80211com *ic = &sc->sc_ic;
   1433 
   1434 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1435 
   1436 	if (ic->ic_state == IEEE80211_S_SCAN)
   1437 		ieee80211_next_scan(ic);
   1438 }
   1439 
   1440 static void
   1441 upgt_start(struct ifnet *ifp)
   1442 {
   1443 	struct upgt_softc *sc = ifp->if_softc;
   1444 	struct ieee80211com *ic = &sc->sc_ic;
   1445 	struct ether_header *eh;
   1446 	struct ieee80211_node *ni;
   1447 	struct mbuf *m;
   1448 	int i;
   1449 
   1450 	/* don't transmit packets if interface is busy or down */
   1451 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1452 		return;
   1453 
   1454 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1455 
   1456 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1457 		struct upgt_data *data_tx = &sc->tx_data[i];
   1458 
   1459 		if (data_tx->m != NULL)
   1460 			continue;
   1461 
   1462 		IF_POLL(&ic->ic_mgtq, m);
   1463 		if (m != NULL) {
   1464 			/* management frame */
   1465 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1466 
   1467 			ni = M_GETCTX(m, struct ieee80211_node *);
   1468 			M_CLEARCTX(m);
   1469 
   1470 			bpf_mtap3(ic->ic_rawbpf, m);
   1471 
   1472 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1473 				aprint_error_dev(sc->sc_dev,
   1474 				    "no free prism memory\n");
   1475 				m_freem(m);
   1476 				ifp->if_oerrors++;
   1477 				break;
   1478 			}
   1479 			data_tx->ni = ni;
   1480 			data_tx->m = m;
   1481 			sc->tx_queued++;
   1482 		} else {
   1483 			/* data frame */
   1484 			if (ic->ic_state != IEEE80211_S_RUN)
   1485 				break;
   1486 
   1487 			IFQ_POLL(&ifp->if_snd, m);
   1488 			if (m == NULL)
   1489 				break;
   1490 
   1491 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1492 			if (m->m_len < sizeof(struct ether_header) &&
   1493 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1494 				continue;
   1495 
   1496 			eh = mtod(m, struct ether_header *);
   1497 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1498 			if (ni == NULL) {
   1499 				m_freem(m);
   1500 				continue;
   1501 			}
   1502 
   1503 			bpf_mtap(ifp, m);
   1504 
   1505 			m = ieee80211_encap(ic, m, ni);
   1506 			if (m == NULL) {
   1507 				ieee80211_free_node(ni);
   1508 				continue;
   1509 			}
   1510 
   1511 			bpf_mtap3(ic->ic_rawbpf, m);
   1512 
   1513 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1514 				aprint_error_dev(sc->sc_dev,
   1515 				    "no free prism memory\n");
   1516 				m_freem(m);
   1517 				ieee80211_free_node(ni);
   1518 				ifp->if_oerrors++;
   1519 				break;
   1520 			}
   1521 			data_tx->ni = ni;
   1522 			data_tx->m = m;
   1523 			sc->tx_queued++;
   1524 		}
   1525 	}
   1526 
   1527 	if (sc->tx_queued > 0) {
   1528 		DPRINTF(2, "%s: tx_queued=%d\n",
   1529 		    device_xname(sc->sc_dev), sc->tx_queued);
   1530 		/* process the TX queue in process context */
   1531 		ifp->if_timer = 5;
   1532 		ifp->if_flags |= IFF_OACTIVE;
   1533 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1534 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1535 	}
   1536 }
   1537 
   1538 static void
   1539 upgt_watchdog(struct ifnet *ifp)
   1540 {
   1541 	struct upgt_softc *sc = ifp->if_softc;
   1542 	struct ieee80211com *ic = &sc->sc_ic;
   1543 
   1544 	if (ic->ic_state == IEEE80211_S_INIT)
   1545 		return;
   1546 
   1547 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1548 
   1549 	/* TODO: what shall we do on TX timeout? */
   1550 
   1551 	ieee80211_watchdog(ic);
   1552 }
   1553 
   1554 static void
   1555 upgt_tx_task(void *arg)
   1556 {
   1557 	struct upgt_softc *sc = arg;
   1558 	struct ieee80211com *ic = &sc->sc_ic;
   1559 	struct ieee80211_frame *wh;
   1560 	struct ieee80211_key *k;
   1561 	struct ifnet *ifp = &sc->sc_if;
   1562 	struct upgt_lmac_mem *mem;
   1563 	struct upgt_lmac_tx_desc *txdesc;
   1564 	struct mbuf *m;
   1565 	uint32_t addr;
   1566 	int i, len, pad, s;
   1567 	usbd_status error;
   1568 
   1569 	mutex_enter(&sc->sc_mtx);
   1570 	upgt_set_led(sc, UPGT_LED_BLINK);
   1571 	mutex_exit(&sc->sc_mtx);
   1572 
   1573 	s = splnet();
   1574 
   1575 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1576 		struct upgt_data *data_tx = &sc->tx_data[i];
   1577 
   1578 		if (data_tx->m == NULL)
   1579 			continue;
   1580 
   1581 		m = data_tx->m;
   1582 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1583 
   1584 		/*
   1585 		 * Software crypto.
   1586 		 */
   1587 		wh = mtod(m, struct ieee80211_frame *);
   1588 
   1589 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1590 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1591 			if (k == NULL) {
   1592 				m_freem(m);
   1593 				data_tx->m = NULL;
   1594 				ieee80211_free_node(data_tx->ni);
   1595 				data_tx->ni = NULL;
   1596 				ifp->if_oerrors++;
   1597 				break;
   1598 			}
   1599 
   1600 			/* in case packet header moved, reset pointer */
   1601 			wh = mtod(m, struct ieee80211_frame *);
   1602 		}
   1603 
   1604 		/*
   1605 		 * Transmit the URB containing the TX data.
   1606 		 */
   1607 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1608 
   1609 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1610 		mem->addr = htole32(addr);
   1611 
   1612 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1613 
   1614 		/* XXX differ between data and mgmt frames? */
   1615 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1616 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1617 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1618 
   1619 		txdesc->header2.reqid = htole32(data_tx->addr);
   1620 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1621 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1622 
   1623 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1624 		    IEEE80211_FC0_TYPE_MGT) {
   1625 			/* always send mgmt frames at lowest rate (DS1) */
   1626 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1627 		} else {
   1628 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1629 			    sizeof(txdesc->rates));
   1630 		}
   1631 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1632 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1633 
   1634 		if (sc->sc_drvbpf != NULL) {
   1635 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1636 
   1637 			tap->wt_flags = 0;
   1638 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1639 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1640 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1641 
   1642 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1643 		}
   1644 
   1645 		/* copy frame below our TX descriptor header */
   1646 		m_copydata(m, 0, m->m_pkthdr.len,
   1647 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1648 
   1649 		/* calculate frame size */
   1650 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1651 
   1652 		if (len & 3) {
   1653 			/* we need to align the frame to a 4 byte boundary */
   1654 			pad = 4 - (len & 3);
   1655 			memset(data_tx->buf + len, 0, pad);
   1656 			len += pad;
   1657 		}
   1658 
   1659 		/* calculate frame checksum */
   1660 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1661 		    len - sizeof(*mem));
   1662 
   1663 		/* we do not need the mbuf anymore */
   1664 		m_freem(m);
   1665 		data_tx->m = NULL;
   1666 
   1667 		ieee80211_free_node(data_tx->ni);
   1668 		data_tx->ni = NULL;
   1669 
   1670 		DPRINTF(2, "%s: TX start data sending\n",
   1671 		    device_xname(sc->sc_dev));
   1672 
   1673 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
   1674 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
   1675 		error = usbd_transfer(data_tx->xfer);
   1676 		if (error != USBD_NORMAL_COMPLETION &&
   1677 		    error != USBD_IN_PROGRESS) {
   1678 			aprint_error_dev(sc->sc_dev,
   1679 			    "could not transmit TX data URB\n");
   1680 			ifp->if_oerrors++;
   1681 			break;
   1682 		}
   1683 
   1684 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1685 		    device_xname(sc->sc_dev), len);
   1686 	}
   1687 
   1688 	splx(s);
   1689 
   1690 	/*
   1691 	 * If we don't regulary read the device statistics, the RX queue
   1692 	 * will stall.  It's strange, but it works, so we keep reading
   1693 	 * the statistics here.  *shrug*
   1694 	 */
   1695 	mutex_enter(&sc->sc_mtx);
   1696 	upgt_get_stats(sc);
   1697 	mutex_exit(&sc->sc_mtx);
   1698 }
   1699 
   1700 static void
   1701 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1702 {
   1703 	struct ifnet *ifp = &sc->sc_if;
   1704 	struct upgt_lmac_tx_done_desc *desc;
   1705 	int i, s;
   1706 
   1707 	s = splnet();
   1708 
   1709 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1710 
   1711 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1712 		struct upgt_data *data_tx = &sc->tx_data[i];
   1713 
   1714 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1715 			upgt_mem_free(sc, data_tx->addr);
   1716 			data_tx->addr = 0;
   1717 
   1718 			sc->tx_queued--;
   1719 			ifp->if_opackets++;
   1720 
   1721 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1722 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1723 			    le32toh(desc->header2.reqid),
   1724 			    le16toh(desc->status),
   1725 			    le16toh(desc->rssi));
   1726 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1727 			break;
   1728 		}
   1729 	}
   1730 
   1731 	if (sc->tx_queued == 0) {
   1732 		/* TX queued was processed, continue */
   1733 		ifp->if_timer = 0;
   1734 		ifp->if_flags &= ~IFF_OACTIVE;
   1735 		upgt_start(ifp);
   1736 	}
   1737 
   1738 	splx(s);
   1739 }
   1740 
   1741 static void
   1742 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
   1743 {
   1744 	struct upgt_data *data_rx = priv;
   1745 	struct upgt_softc *sc = data_rx->sc;
   1746 	int len;
   1747 	struct upgt_lmac_header *header;
   1748 	struct upgt_lmac_eeprom *eeprom;
   1749 	uint8_t h1_type;
   1750 	uint16_t h2_type;
   1751 
   1752 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1753 
   1754 	if (status != USBD_NORMAL_COMPLETION) {
   1755 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1756 			return;
   1757 		if (status == USBD_STALLED)
   1758 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1759 		goto skip;
   1760 	}
   1761 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1762 
   1763 	/*
   1764 	 * Check what type of frame came in.
   1765 	 */
   1766 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1767 
   1768 	h1_type = header->header1.type;
   1769 	h2_type = le16toh(header->header2.type);
   1770 
   1771 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1772 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1773 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1774 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1775 		uint16_t eeprom_len = le16toh(eeprom->len);
   1776 
   1777 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1778 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1779 
   1780 		mutex_enter(&sc->sc_mtx);
   1781 		memcpy(sc->sc_eeprom + eeprom_offset,
   1782 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1783 		    eeprom_len);
   1784 
   1785 		/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
   1786 		/* Note eeprom data arrived */
   1787 		cv_broadcast(&sc->sc_cv);
   1788 		mutex_exit(&sc->sc_mtx);
   1789 	} else
   1790 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1791 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1792 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1793 		    device_xname(sc->sc_dev));
   1794 
   1795 		upgt_tx_done(sc, data_rx->buf + 4);
   1796 	} else
   1797 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1798 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1799 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1800 		    device_xname(sc->sc_dev));
   1801 
   1802 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1803 	} else
   1804 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1805 	    h2_type == UPGT_H2_TYPE_STATS) {
   1806 		DPRINTF(2, "%s: received statistic data\n",
   1807 		    device_xname(sc->sc_dev));
   1808 
   1809 		/* TODO: what could we do with the statistic data? */
   1810 	} else {
   1811 		/* ignore unknown frame types */
   1812 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1813 		    device_xname(sc->sc_dev), header->header1.type);
   1814 	}
   1815 
   1816 skip:	/* setup new transfer */
   1817 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
   1818 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1819 	(void)usbd_transfer(xfer);
   1820 }
   1821 
   1822 static void
   1823 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1824 {
   1825 	struct ieee80211com *ic = &sc->sc_ic;
   1826 	struct ifnet *ifp = &sc->sc_if;
   1827 	struct upgt_lmac_rx_desc *rxdesc;
   1828 	struct ieee80211_frame *wh;
   1829 	struct ieee80211_node *ni;
   1830 	struct mbuf *m;
   1831 	int s;
   1832 
   1833 	/* access RX packet descriptor */
   1834 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1835 
   1836 	/* create mbuf which is suitable for strict alignment archs */
   1837 #define ETHER_ALIGN	0
   1838 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1839 	if (m == NULL) {
   1840 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1841 		   device_xname(sc->sc_dev));
   1842 		ifp->if_ierrors++;
   1843 		return;
   1844 	}
   1845 
   1846 	s = splnet();
   1847 
   1848 	if (sc->sc_drvbpf != NULL) {
   1849 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1850 
   1851 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1852 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1853 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1854 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1855 		tap->wr_antsignal = rxdesc->rssi;
   1856 
   1857 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1858 	}
   1859 
   1860 	/* trim FCS */
   1861 	m_adj(m, -IEEE80211_CRC_LEN);
   1862 
   1863 	wh = mtod(m, struct ieee80211_frame *);
   1864 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1865 
   1866 	/* push the frame up to the 802.11 stack */
   1867 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1868 
   1869 	/* node is no longer needed */
   1870 	ieee80211_free_node(ni);
   1871 
   1872 	splx(s);
   1873 
   1874 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1875 }
   1876 
   1877 static void
   1878 upgt_setup_rates(struct upgt_softc *sc)
   1879 {
   1880 	struct ieee80211com *ic = &sc->sc_ic;
   1881 
   1882 	/*
   1883 	 * 0x01 = OFMD6   0x10 = DS1
   1884 	 * 0x04 = OFDM9   0x11 = DS2
   1885 	 * 0x06 = OFDM12  0x12 = DS5
   1886 	 * 0x07 = OFDM18  0x13 = DS11
   1887 	 * 0x08 = OFDM24
   1888 	 * 0x09 = OFDM36
   1889 	 * 0x0a = OFDM48
   1890 	 * 0x0b = OFDM54
   1891 	 */
   1892 	const uint8_t rateset_auto_11b[] =
   1893 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1894 	const uint8_t rateset_auto_11g[] =
   1895 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1896 	const uint8_t rateset_fix_11bg[] =
   1897 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1898 	      0x08, 0x09, 0x0a, 0x0b };
   1899 
   1900 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1901 		/*
   1902 		 * Automatic rate control is done by the device.
   1903 		 * We just pass the rateset from which the device
   1904 		 * will pickup a rate.
   1905 		 */
   1906 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1907 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1908 			    sizeof(sc->sc_cur_rateset));
   1909 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1910 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1911 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1912 			    sizeof(sc->sc_cur_rateset));
   1913 	} else {
   1914 		/* set a fixed rate */
   1915 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1916 		    sizeof(sc->sc_cur_rateset));
   1917 	}
   1918 }
   1919 
   1920 static uint8_t
   1921 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1922 {
   1923 	struct ieee80211com *ic = &sc->sc_ic;
   1924 
   1925 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1926 		if (rate < 0 || rate > 3)
   1927 			/* invalid rate */
   1928 			return 0;
   1929 
   1930 		switch (rate) {
   1931 		case 0:
   1932 			return 2;
   1933 		case 1:
   1934 			return 4;
   1935 		case 2:
   1936 			return 11;
   1937 		case 3:
   1938 			return 22;
   1939 		default:
   1940 			return 0;
   1941 		}
   1942 	}
   1943 
   1944 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1945 		if (rate < 0 || rate > 11)
   1946 			/* invalid rate */
   1947 			return 0;
   1948 
   1949 		switch (rate) {
   1950 		case 0:
   1951 			return 2;
   1952 		case 1:
   1953 			return 4;
   1954 		case 2:
   1955 			return 11;
   1956 		case 3:
   1957 			return 22;
   1958 		case 4:
   1959 			return 12;
   1960 		case 5:
   1961 			return 18;
   1962 		case 6:
   1963 			return 24;
   1964 		case 7:
   1965 			return 36;
   1966 		case 8:
   1967 			return 48;
   1968 		case 9:
   1969 			return 72;
   1970 		case 10:
   1971 			return 96;
   1972 		case 11:
   1973 			return 108;
   1974 		default:
   1975 			return 0;
   1976 		}
   1977 	}
   1978 
   1979 	return 0;
   1980 }
   1981 
   1982 static int
   1983 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1984 {
   1985 	struct ieee80211com *ic = &sc->sc_ic;
   1986 	struct ieee80211_node *ni = ic->ic_bss;
   1987 	struct upgt_data *data_cmd = &sc->cmd_data;
   1988 	struct upgt_lmac_mem *mem;
   1989 	struct upgt_lmac_filter *filter;
   1990 	int len;
   1991 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1992 
   1993 	/*
   1994 	 * Transmit the URB containing the CMD data.
   1995 	 */
   1996 	len = sizeof(*mem) + sizeof(*filter);
   1997 
   1998 	memset(data_cmd->buf, 0, len);
   1999 
   2000 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2001 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2002 	    UPGT_MEMSIZE_FRAME_HEAD);
   2003 
   2004 	filter = (struct upgt_lmac_filter *)(mem + 1);
   2005 
   2006 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2007 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   2008 	filter->header1.len = htole16(
   2009 	    sizeof(struct upgt_lmac_filter) -
   2010 	    sizeof(struct upgt_lmac_header));
   2011 
   2012 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2013 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2014 	filter->header2.flags = 0;
   2015 
   2016 	switch (state) {
   2017 	case IEEE80211_S_INIT:
   2018 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2019 		    device_xname(sc->sc_dev));
   2020 
   2021 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2022 		break;
   2023 	case IEEE80211_S_SCAN:
   2024 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2025 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2026 
   2027 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2028 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2029 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2030 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2031 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2032 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2033 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2034 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2035 		break;
   2036 	case IEEE80211_S_RUN:
   2037 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2038 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2039 
   2040 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2041 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2042 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2043 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2044 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2045 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2046 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2047 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2048 		break;
   2049 	default:
   2050 		aprint_error_dev(sc->sc_dev,
   2051 		    "MAC filter does not know that state\n");
   2052 		break;
   2053 	}
   2054 
   2055 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2056 
   2057 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2058 		aprint_error_dev(sc->sc_dev,
   2059 		    "could not transmit macfilter CMD data URB\n");
   2060 		return EIO;
   2061 	}
   2062 
   2063 	return 0;
   2064 }
   2065 
   2066 static int
   2067 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2068 {
   2069 	struct upgt_data *data_cmd = &sc->cmd_data;
   2070 	struct upgt_lmac_mem *mem;
   2071 	struct upgt_lmac_channel *chan;
   2072 	int len;
   2073 
   2074 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2075 	    channel);
   2076 
   2077 	/*
   2078 	 * Transmit the URB containing the CMD data.
   2079 	 */
   2080 	len = sizeof(*mem) + sizeof(*chan);
   2081 
   2082 	memset(data_cmd->buf, 0, len);
   2083 
   2084 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2085 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2086 	    UPGT_MEMSIZE_FRAME_HEAD);
   2087 
   2088 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2089 
   2090 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2091 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2092 	chan->header1.len = htole16(
   2093 	    sizeof(struct upgt_lmac_channel) -
   2094 	    sizeof(struct upgt_lmac_header));
   2095 
   2096 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2097 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2098 	chan->header2.flags = 0;
   2099 
   2100 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2101 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2102 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2103 	chan->settings = sc->sc_eeprom_freq6_settings;
   2104 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2105 
   2106 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2107 	    sizeof(chan->freq3_1));
   2108 
   2109 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2110 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2111 
   2112 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2113 	    sizeof(chan->freq3_2));
   2114 
   2115 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2116 
   2117 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2118 		aprint_error_dev(sc->sc_dev,
   2119 		    "could not transmit channel CMD data URB\n");
   2120 		return EIO;
   2121 	}
   2122 
   2123 	return 0;
   2124 }
   2125 
   2126 static void
   2127 upgt_set_led(struct upgt_softc *sc, int action)
   2128 {
   2129 	struct ieee80211com *ic = &sc->sc_ic;
   2130 	struct upgt_data *data_cmd = &sc->cmd_data;
   2131 	struct upgt_lmac_mem *mem;
   2132 	struct upgt_lmac_led *led;
   2133 	struct timeval t;
   2134 	int len;
   2135 
   2136 	/*
   2137 	 * Transmit the URB containing the CMD data.
   2138 	 */
   2139 	len = sizeof(*mem) + sizeof(*led);
   2140 
   2141 	memset(data_cmd->buf, 0, len);
   2142 
   2143 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2144 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2145 	    UPGT_MEMSIZE_FRAME_HEAD);
   2146 
   2147 	led = (struct upgt_lmac_led *)(mem + 1);
   2148 
   2149 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2150 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2151 	led->header1.len = htole16(
   2152 	    sizeof(struct upgt_lmac_led) -
   2153 	    sizeof(struct upgt_lmac_header));
   2154 
   2155 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2156 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2157 	led->header2.flags = 0;
   2158 
   2159 	switch (action) {
   2160 	case UPGT_LED_OFF:
   2161 		led->mode = htole16(UPGT_LED_MODE_SET);
   2162 		led->action_fix = 0;
   2163 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2164 		led->action_tmp_dur = 0;
   2165 		break;
   2166 	case UPGT_LED_ON:
   2167 		led->mode = htole16(UPGT_LED_MODE_SET);
   2168 		led->action_fix = 0;
   2169 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2170 		led->action_tmp_dur = 0;
   2171 		break;
   2172 	case UPGT_LED_BLINK:
   2173 		if (ic->ic_state != IEEE80211_S_RUN)
   2174 			return;
   2175 		if (sc->sc_led_blink)
   2176 			/* previous blink was not finished */
   2177 			return;
   2178 		led->mode = htole16(UPGT_LED_MODE_SET);
   2179 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2180 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2181 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2182 		/* lock blink */
   2183 		sc->sc_led_blink = 1;
   2184 		t.tv_sec = 0;
   2185 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2186 		callout_schedule(&sc->led_to, tvtohz(&t));
   2187 		break;
   2188 	default:
   2189 		return;
   2190 	}
   2191 
   2192 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2193 
   2194 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2195 		aprint_error_dev(sc->sc_dev,
   2196 		    "could not transmit led CMD URB\n");
   2197 	}
   2198 }
   2199 
   2200 static void
   2201 upgt_set_led_blink(void *arg)
   2202 {
   2203 	struct upgt_softc *sc = arg;
   2204 
   2205 	/* blink finished, we are ready for a next one */
   2206 	sc->sc_led_blink = 0;
   2207 	callout_stop(&sc->led_to);
   2208 }
   2209 
   2210 static int
   2211 upgt_get_stats(struct upgt_softc *sc)
   2212 {
   2213 	struct upgt_data *data_cmd = &sc->cmd_data;
   2214 	struct upgt_lmac_mem *mem;
   2215 	struct upgt_lmac_stats *stats;
   2216 	int len;
   2217 
   2218 	/*
   2219 	 * Transmit the URB containing the CMD data.
   2220 	 */
   2221 	len = sizeof(*mem) + sizeof(*stats);
   2222 
   2223 	memset(data_cmd->buf, 0, len);
   2224 
   2225 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2226 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2227 	    UPGT_MEMSIZE_FRAME_HEAD);
   2228 
   2229 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2230 
   2231 	stats->header1.flags = 0;
   2232 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2233 	stats->header1.len = htole16(
   2234 	    sizeof(struct upgt_lmac_stats) -
   2235 	    sizeof(struct upgt_lmac_header));
   2236 
   2237 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2238 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2239 	stats->header2.flags = 0;
   2240 
   2241 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2242 
   2243 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2244 		aprint_error_dev(sc->sc_dev,
   2245 		    "could not transmit statistics CMD data URB\n");
   2246 		return EIO;
   2247 	}
   2248 
   2249 	return 0;
   2250 
   2251 }
   2252 
   2253 static int
   2254 upgt_alloc_tx(struct upgt_softc *sc)
   2255 {
   2256 	int i;
   2257 
   2258 	sc->tx_queued = 0;
   2259 
   2260 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2261 		struct upgt_data *data_tx = &sc->tx_data[i];
   2262 
   2263 		data_tx->sc = sc;
   2264 
   2265 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 0, 0,
   2266 		    &data_tx->xfer);
   2267 		if (err) {
   2268 			aprint_error_dev(sc->sc_dev,
   2269 			    "could not allocate TX xfer\n");
   2270 			return err;
   2271 		}
   2272 
   2273 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
   2274 	}
   2275 
   2276 	return 0;
   2277 }
   2278 
   2279 static int
   2280 upgt_alloc_rx(struct upgt_softc *sc)
   2281 {
   2282 	struct upgt_data *data_rx = &sc->rx_data;
   2283 
   2284 	data_rx->sc = sc;
   2285 
   2286 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
   2287 	    USBD_SHORT_XFER_OK, 0, &data_rx->xfer);
   2288 	if (err) {
   2289 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2290 		return err;
   2291 	}
   2292 
   2293 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
   2294 
   2295 	return 0;
   2296 }
   2297 
   2298 static int
   2299 upgt_alloc_cmd(struct upgt_softc *sc)
   2300 {
   2301 	struct upgt_data *data_cmd = &sc->cmd_data;
   2302 
   2303 	data_cmd->sc = sc;
   2304 
   2305 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2306 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
   2307 	if (err) {
   2308 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2309 		return err;
   2310 	}
   2311 
   2312 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
   2313 
   2314 	cv_init(&sc->sc_cv, "upgteeprom");
   2315 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
   2316 
   2317 	return 0;
   2318 }
   2319 
   2320 static void
   2321 upgt_free_tx(struct upgt_softc *sc)
   2322 {
   2323 	int i;
   2324 
   2325 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2326 		struct upgt_data *data_tx = &sc->tx_data[i];
   2327 
   2328 		if (data_tx->xfer != NULL) {
   2329 			usbd_destroy_xfer(data_tx->xfer);
   2330 			data_tx->xfer = NULL;
   2331 		}
   2332 
   2333 		data_tx->ni = NULL;
   2334 	}
   2335 }
   2336 
   2337 static void
   2338 upgt_free_rx(struct upgt_softc *sc)
   2339 {
   2340 	struct upgt_data *data_rx = &sc->rx_data;
   2341 
   2342 	if (data_rx->xfer != NULL) {
   2343 		usbd_destroy_xfer(data_rx->xfer);
   2344 		data_rx->xfer = NULL;
   2345 	}
   2346 
   2347 	data_rx->ni = NULL;
   2348 }
   2349 
   2350 static void
   2351 upgt_free_cmd(struct upgt_softc *sc)
   2352 {
   2353 	struct upgt_data *data_cmd = &sc->cmd_data;
   2354 
   2355 	if (data_cmd->xfer != NULL) {
   2356 		usbd_destroy_xfer(data_cmd->xfer);
   2357 		data_cmd->xfer = NULL;
   2358 	}
   2359 
   2360 	mutex_destroy(&sc->sc_mtx);
   2361 	cv_destroy(&sc->sc_cv);
   2362 }
   2363 
   2364 static int
   2365 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2366     struct usbd_pipe *pipeh, uint32_t *size, int flags)
   2367 {
   2368         usbd_status status;
   2369 
   2370 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
   2371 	    data->buf, size);
   2372 	if (status != USBD_NORMAL_COMPLETION) {
   2373 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2374 		    usbd_errstr(status));
   2375 		return EIO;
   2376 	}
   2377 
   2378 	return 0;
   2379 }
   2380 
   2381 #if 0
   2382 static void
   2383 upgt_hexdump(void *buf, int len)
   2384 {
   2385 	int i;
   2386 
   2387 	for (i = 0; i < len; i++) {
   2388 		if (i % 16 == 0)
   2389 			printf("%s%5i:", i ? "\n" : "", i);
   2390 		if (i % 4 == 0)
   2391 			printf(" ");
   2392 		printf("%02x", (int)*((uint8_t *)buf + i));
   2393 	}
   2394 	printf("\n");
   2395 }
   2396 #endif
   2397 
   2398 static uint32_t
   2399 upgt_crc32_le(const void *buf, size_t size)
   2400 {
   2401 	uint32_t crc;
   2402 
   2403 	crc = ether_crc32_le(buf, size);
   2404 
   2405 	/* apply final XOR value as common for CRC-32 */
   2406 	crc = htole32(crc ^ 0xffffffffU);
   2407 
   2408 	return crc;
   2409 }
   2410 
   2411 /*
   2412  * The firmware awaits a checksum for each frame we send to it.
   2413  * The algorithm used therefor is uncommon but somehow similar to CRC32.
   2414  */
   2415 static uint32_t
   2416 upgt_chksum_le(const uint32_t *buf, size_t size)
   2417 {
   2418 	int i;
   2419 	uint32_t crc = 0;
   2420 
   2421 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2422 		crc = htole32(crc ^ *buf++);
   2423 		crc = htole32((crc >> 5) ^ (crc << 3));
   2424 	}
   2425 
   2426 	return crc;
   2427 }
   2428