if_upgt.c revision 1.12.4.12 1 /* $NetBSD: if_upgt.c,v 1.12.4.12 2016/05/29 08:44:31 skrll Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.12.4.12 2016/05/29 08:44:31 skrll Exp $");
22
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/intr.h>
37
38 #include <net/bpf.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_ether.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45
46 #include <net80211/ieee80211_var.h>
47 #include <net80211/ieee80211_radiotap.h>
48
49 #include <dev/firmload.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 #include <dev/usb/usbdivar.h>
55 #include <dev/usb/usbdevs.h>
56
57 #include <dev/usb/if_upgtvar.h>
58
59 /*
60 * Driver for the USB PrismGT devices.
61 *
62 * For now just USB 2.0 devices with the GW3887 chipset are supported.
63 * The driver has been written based on the firmware version 2.13.1.0_LM87.
64 *
65 * TODO's:
66 * - Fix MONITOR mode (MAC filter).
67 * - Add HOSTAP mode.
68 * - Add IBSS mode.
69 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70 *
71 * Parts of this driver has been influenced by reading the p54u driver
72 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
73 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
74 */
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82
83 /*
84 * Prototypes.
85 */
86 static int upgt_match(device_t, cfdata_t, void *);
87 static void upgt_attach(device_t, device_t, void *);
88 static int upgt_detach(device_t, int);
89 static int upgt_activate(device_t, devact_t);
90
91 static void upgt_attach_hook(device_t);
92 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int upgt_device_init(struct upgt_softc *);
94 static int upgt_mem_init(struct upgt_softc *);
95 static uint32_t upgt_mem_alloc(struct upgt_softc *);
96 static void upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int upgt_fw_alloc(struct upgt_softc *);
98 static void upgt_fw_free(struct upgt_softc *);
99 static int upgt_fw_verify(struct upgt_softc *);
100 static int upgt_fw_load(struct upgt_softc *);
101 static int upgt_fw_copy(char *, char *, int);
102 static int upgt_eeprom_read(struct upgt_softc *);
103 static int upgt_eeprom_parse(struct upgt_softc *);
104 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108
109 static int upgt_ioctl(struct ifnet *, u_long, void *);
110 static int upgt_init(struct ifnet *);
111 static void upgt_stop(struct upgt_softc *);
112 static int upgt_media_change(struct ifnet *);
113 static void upgt_newassoc(struct ieee80211_node *, int);
114 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 int);
116 static void upgt_newstate_task(void *);
117 static void upgt_next_scan(void *);
118 static void upgt_start(struct ifnet *);
119 static void upgt_watchdog(struct ifnet *);
120 static void upgt_tx_task(void *);
121 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
123 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void upgt_setup_rates(struct upgt_softc *);
125 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
126 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
127 static int upgt_set_channel(struct upgt_softc *, unsigned);
128 static void upgt_set_led(struct upgt_softc *, int);
129 static void upgt_set_led_blink(void *);
130 static int upgt_get_stats(struct upgt_softc *);
131
132 static int upgt_alloc_tx(struct upgt_softc *);
133 static int upgt_alloc_rx(struct upgt_softc *);
134 static int upgt_alloc_cmd(struct upgt_softc *);
135 static void upgt_free_tx(struct upgt_softc *);
136 static void upgt_free_rx(struct upgt_softc *);
137 static void upgt_free_cmd(struct upgt_softc *);
138 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 struct usbd_pipe *, uint32_t *, int);
140
141 #if 0
142 static void upgt_hexdump(void *, int);
143 #endif
144 static uint32_t upgt_crc32_le(const void *, size_t);
145 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
146
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 upgt_match, upgt_attach, upgt_detach, upgt_activate);
149
150 static const struct usb_devno upgt_devs_1[] = {
151 /* version 1 devices */
152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
153 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
154 };
155
156 static const struct usb_devno upgt_devs_2[] = {
157 /* version 2 devices */
158 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
159 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
160 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
161 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
162 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
163 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
164 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
165 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
166 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
167 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
168 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
169 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
170 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
171 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
172 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
173 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
174 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
175 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
176 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
177 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
178 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
179 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
180 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
181 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
182 };
183
184 static int
185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
186 size_t *sizep)
187 {
188 firmware_handle_t fh;
189 int error;
190
191 if ((error = firmware_open(dname, iname, &fh)) != 0)
192 return error;
193 *sizep = firmware_get_size(fh);
194 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
195 firmware_close(fh);
196 return ENOMEM;
197 }
198 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
199 firmware_free(*ucodep, *sizep);
200 firmware_close(fh);
201
202 return error;
203 }
204
205 static int
206 upgt_match(device_t parent, cfdata_t match, void *aux)
207 {
208 struct usb_attach_arg *uaa = aux;
209
210 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
211 return UMATCH_VENDOR_PRODUCT;
212
213 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
214 return UMATCH_VENDOR_PRODUCT;
215
216 return UMATCH_NONE;
217 }
218
219 static void
220 upgt_attach(device_t parent, device_t self, void *aux)
221 {
222 struct upgt_softc *sc = device_private(self);
223 struct usb_attach_arg *uaa = aux;
224 usb_interface_descriptor_t *id;
225 usb_endpoint_descriptor_t *ed;
226 usbd_status error;
227 char *devinfop;
228 int i;
229
230 aprint_naive("\n");
231 aprint_normal("\n");
232
233 /*
234 * Attach USB device.
235 */
236 sc->sc_dev = self;
237 sc->sc_udev = uaa->uaa_device;
238
239 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
240 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
241 usbd_devinfo_free(devinfop);
242
243 /* check device type */
244 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
245 return;
246
247 /* set configuration number */
248 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
249 if (error != 0) {
250 aprint_error_dev(sc->sc_dev, "failed to set configuration"
251 ", err=%s\n", usbd_errstr(error));
252 return;
253 }
254
255 /* get the first interface handle */
256 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
257 &sc->sc_iface);
258 if (error != 0) {
259 aprint_error_dev(sc->sc_dev,
260 "could not get interface handle\n");
261 return;
262 }
263
264 /* find endpoints */
265 id = usbd_get_interface_descriptor(sc->sc_iface);
266 sc->sc_rx_no = sc->sc_tx_no = -1;
267 for (i = 0; i < id->bNumEndpoints; i++) {
268 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
269 if (ed == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "no endpoint descriptor for iface %d\n", i);
272 return;
273 }
274
275 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
276 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
277 sc->sc_tx_no = ed->bEndpointAddress;
278 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
279 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
280 sc->sc_rx_no = ed->bEndpointAddress;
281
282 /*
283 * 0x01 TX pipe
284 * 0x81 RX pipe
285 *
286 * Deprecated scheme (not used with fw version >2.5.6.x):
287 * 0x02 TX MGMT pipe
288 * 0x82 TX MGMT pipe
289 */
290 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
291 break;
292 }
293 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
294 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
295 return;
296 }
297
298 /* setup tasks and timeouts */
299 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
300 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
301 callout_init(&sc->scan_to, 0);
302 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
303 callout_init(&sc->led_to, 0);
304 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
305
306 /*
307 * Open TX and RX USB bulk pipes.
308 */
309 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
310 &sc->sc_tx_pipeh);
311 if (error != 0) {
312 aprint_error_dev(sc->sc_dev,
313 "could not open TX pipe: %s\n", usbd_errstr(error));
314 goto fail;
315 }
316 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
317 &sc->sc_rx_pipeh);
318 if (error != 0) {
319 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
320 usbd_errstr(error));
321 goto fail;
322 }
323
324 /*
325 * Allocate TX, RX, and CMD xfers.
326 */
327 if (upgt_alloc_tx(sc) != 0)
328 goto fail;
329 if (upgt_alloc_rx(sc) != 0)
330 goto fail;
331 if (upgt_alloc_cmd(sc) != 0)
332 goto fail;
333
334 /*
335 * We need the firmware loaded from file system to complete the attach.
336 */
337 config_mountroot(self, upgt_attach_hook);
338
339 return;
340 fail:
341 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
342 }
343
344 static void
345 upgt_attach_hook(device_t arg)
346 {
347 struct upgt_softc *sc = device_private(arg);
348 struct ieee80211com *ic = &sc->sc_ic;
349 struct ifnet *ifp = &sc->sc_if;
350 usbd_status error;
351 int i;
352
353 /*
354 * Load firmware file into memory.
355 */
356 if (upgt_fw_alloc(sc) != 0)
357 goto fail;
358
359 /*
360 * Initialize the device.
361 */
362 if (upgt_device_init(sc) != 0)
363 goto fail;
364
365 /*
366 * Verify the firmware.
367 */
368 if (upgt_fw_verify(sc) != 0)
369 goto fail;
370
371 /*
372 * Calculate device memory space.
373 */
374 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
375 aprint_error_dev(sc->sc_dev,
376 "could not find memory space addresses on FW\n");
377 goto fail;
378 }
379 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
380 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
381
382 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
383 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
384 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
385 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
386 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
388
389 upgt_mem_init(sc);
390
391 /*
392 * Load the firmware.
393 */
394 if (upgt_fw_load(sc) != 0)
395 goto fail;
396
397 /*
398 * Startup the RX pipe.
399 */
400 struct upgt_data *data_rx = &sc->rx_data;
401
402 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
403 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
404 error = usbd_transfer(data_rx->xfer);
405 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
406 aprint_error_dev(sc->sc_dev,
407 "could not queue RX transfer\n");
408 goto fail;
409 }
410 usbd_delay_ms(sc->sc_udev, 100);
411
412 /*
413 * Read the whole EEPROM content and parse it.
414 */
415 if (upgt_eeprom_read(sc) != 0)
416 goto fail;
417 if (upgt_eeprom_parse(sc) != 0)
418 goto fail;
419
420 /*
421 * Setup the 802.11 device.
422 */
423 ic->ic_ifp = ifp;
424 ic->ic_phytype = IEEE80211_T_OFDM;
425 ic->ic_opmode = IEEE80211_M_STA;
426 ic->ic_state = IEEE80211_S_INIT;
427 ic->ic_caps =
428 IEEE80211_C_MONITOR |
429 IEEE80211_C_SHPREAMBLE |
430 IEEE80211_C_SHSLOT;
431
432 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434
435 for (i = 1; i <= 14; i++) {
436 ic->ic_channels[i].ic_freq =
437 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
438 ic->ic_channels[i].ic_flags =
439 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
440 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
441 }
442
443 ifp->if_softc = sc;
444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 ifp->if_init = upgt_init;
446 ifp->if_ioctl = upgt_ioctl;
447 ifp->if_start = upgt_start;
448 ifp->if_watchdog = upgt_watchdog;
449 IFQ_SET_READY(&ifp->if_snd);
450 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
451
452 if_attach(ifp);
453 ieee80211_ifattach(ic);
454 ic->ic_newassoc = upgt_newassoc;
455
456 sc->sc_newstate = ic->ic_newstate;
457 ic->ic_newstate = upgt_newstate;
458 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
459
460 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
461 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
462 &sc->sc_drvbpf);
463
464 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
465 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
466 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
467
468 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
469 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
470 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
471
472 aprint_normal_dev(sc->sc_dev, "address %s\n",
473 ether_sprintf(ic->ic_myaddr));
474
475 ieee80211_announce(ic);
476
477 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
478
479 /* device attached */
480 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
481
482 return;
483 fail:
484 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
485 }
486
487 static int
488 upgt_detach(device_t self, int flags)
489 {
490 struct upgt_softc *sc = device_private(self);
491 struct ifnet *ifp = &sc->sc_if;
492 struct ieee80211com *ic = &sc->sc_ic;
493 int s;
494
495 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
496
497 s = splnet();
498
499 if (ifp->if_flags & IFF_RUNNING)
500 upgt_stop(sc);
501
502 /* remove tasks and timeouts */
503 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
504 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
505 callout_destroy(&sc->scan_to);
506 callout_destroy(&sc->led_to);
507
508 /* abort and close TX / RX pipes */
509 if (sc->sc_tx_pipeh != NULL) {
510 usbd_abort_pipe(sc->sc_tx_pipeh);
511 }
512 if (sc->sc_rx_pipeh != NULL) {
513 usbd_abort_pipe(sc->sc_rx_pipeh);
514 }
515
516 /* free xfers */
517 upgt_free_tx(sc);
518 upgt_free_rx(sc);
519 upgt_free_cmd(sc);
520
521 /* Close TX / RX pipes */
522 if (sc->sc_tx_pipeh != NULL) {
523 usbd_close_pipe(sc->sc_tx_pipeh);
524 }
525 if (sc->sc_rx_pipeh != NULL) {
526 usbd_close_pipe(sc->sc_rx_pipeh);
527 }
528
529 /* free firmware */
530 upgt_fw_free(sc);
531
532 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
533 /* detach interface */
534 bpf_detach(ifp);
535 ieee80211_ifdetach(ic);
536 if_detach(ifp);
537 }
538
539 splx(s);
540
541 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
542
543 return 0;
544 }
545
546 static int
547 upgt_activate(device_t self, devact_t act)
548 {
549 struct upgt_softc *sc = device_private(self);
550
551 switch (act) {
552 case DVACT_DEACTIVATE:
553 if_deactivate(&sc->sc_if);
554 return 0;
555 default:
556 return EOPNOTSUPP;
557 }
558 }
559
560 static int
561 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
562 {
563
564 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
565 sc->sc_device_type = 1;
566 /* XXX */
567 aprint_error_dev(sc->sc_dev,
568 "version 1 devices not supported yet\n");
569 return 1;
570 } else
571 sc->sc_device_type = 2;
572
573 return 0;
574 }
575
576 static int
577 upgt_device_init(struct upgt_softc *sc)
578 {
579 struct upgt_data *data_cmd = &sc->cmd_data;
580 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
581 int len;
582
583 len = sizeof(init_cmd);
584 memcpy(data_cmd->buf, init_cmd, len);
585 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
586 aprint_error_dev(sc->sc_dev,
587 "could not send device init string\n");
588 return EIO;
589 }
590 usbd_delay_ms(sc->sc_udev, 100);
591
592 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
593
594 return 0;
595 }
596
597 static int
598 upgt_mem_init(struct upgt_softc *sc)
599 {
600 int i;
601
602 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
603 sc->sc_memory.page[i].used = 0;
604
605 if (i == 0) {
606 /*
607 * The first memory page is always reserved for
608 * command data.
609 */
610 sc->sc_memory.page[i].addr =
611 sc->sc_memaddr_frame_start + MCLBYTES;
612 } else {
613 sc->sc_memory.page[i].addr =
614 sc->sc_memory.page[i - 1].addr + MCLBYTES;
615 }
616
617 if (sc->sc_memory.page[i].addr + MCLBYTES >=
618 sc->sc_memaddr_frame_end)
619 break;
620
621 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
622 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
623 }
624
625 sc->sc_memory.pages = i;
626
627 DPRINTF(2, "%s: memory pages=%d\n",
628 device_xname(sc->sc_dev), sc->sc_memory.pages);
629
630 return 0;
631 }
632
633 static uint32_t
634 upgt_mem_alloc(struct upgt_softc *sc)
635 {
636 int i;
637
638 for (i = 0; i < sc->sc_memory.pages; i++) {
639 if (sc->sc_memory.page[i].used == 0) {
640 sc->sc_memory.page[i].used = 1;
641 return sc->sc_memory.page[i].addr;
642 }
643 }
644
645 return 0;
646 }
647
648 static void
649 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
650 {
651 int i;
652
653 for (i = 0; i < sc->sc_memory.pages; i++) {
654 if (sc->sc_memory.page[i].addr == addr) {
655 sc->sc_memory.page[i].used = 0;
656 return;
657 }
658 }
659
660 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
661 addr);
662 }
663
664
665 static int
666 upgt_fw_alloc(struct upgt_softc *sc)
667 {
668 const char *name = "upgt-gw3887";
669 int error;
670
671 if (sc->sc_fw == NULL) {
672 error = firmware_load("upgt", name, &sc->sc_fw,
673 &sc->sc_fw_size);
674 if (error != 0) {
675 if (error == ENOENT) {
676 /*
677 * The firmware file for upgt(4) is not in
678 * the default distribution due to its lisence
679 * so explicitly notify it if the firmware file
680 * is not found.
681 */
682 aprint_error_dev(sc->sc_dev,
683 "firmware file %s is not installed\n",
684 name);
685 aprint_error_dev(sc->sc_dev,
686 "(it is not included in the default"
687 " distribution)\n");
688 aprint_error_dev(sc->sc_dev,
689 "see upgt(4) man page for details about "
690 "firmware installation\n");
691 } else {
692 aprint_error_dev(sc->sc_dev,
693 "could not read firmware %s\n", name);
694 }
695 return EIO;
696 }
697 }
698
699 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
700 name);
701
702 return 0;
703 }
704
705 static void
706 upgt_fw_free(struct upgt_softc *sc)
707 {
708
709 if (sc->sc_fw != NULL) {
710 firmware_free(sc->sc_fw, sc->sc_fw_size);
711 sc->sc_fw = NULL;
712 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
713 }
714 }
715
716 static int
717 upgt_fw_verify(struct upgt_softc *sc)
718 {
719 struct upgt_fw_bra_option *bra_option;
720 uint32_t bra_option_type, bra_option_len;
721 uint32_t *uc;
722 int offset, bra_end = 0;
723
724 /*
725 * Seek to beginning of Boot Record Area (BRA).
726 */
727 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
728 uc = (uint32_t *)(sc->sc_fw + offset);
729 if (*uc == 0)
730 break;
731 }
732 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
733 uc = (uint32_t *)(sc->sc_fw + offset);
734 if (*uc != 0)
735 break;
736 }
737 if (offset == sc->sc_fw_size) {
738 aprint_error_dev(sc->sc_dev,
739 "firmware Boot Record Area not found\n");
740 return EIO;
741 }
742 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
743 device_xname(sc->sc_dev), offset);
744
745 /*
746 * Parse Boot Record Area (BRA) options.
747 */
748 while (offset < sc->sc_fw_size && bra_end == 0) {
749 /* get current BRA option */
750 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
751 bra_option_type = le32toh(bra_option->type);
752 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
753
754 switch (bra_option_type) {
755 case UPGT_BRA_TYPE_FW:
756 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
757 device_xname(sc->sc_dev), bra_option_len);
758
759 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
760 aprint_error_dev(sc->sc_dev,
761 "wrong UPGT_BRA_TYPE_FW len\n");
762 return EIO;
763 }
764 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
765 bra_option_len) == 0) {
766 sc->sc_fw_type = UPGT_FWTYPE_LM86;
767 break;
768 }
769 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
770 bra_option_len) == 0) {
771 sc->sc_fw_type = UPGT_FWTYPE_LM87;
772 break;
773 }
774 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
775 bra_option_len) == 0) {
776 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
777 break;
778 }
779 aprint_error_dev(sc->sc_dev,
780 "unsupported firmware type\n");
781 return EIO;
782 case UPGT_BRA_TYPE_VERSION:
783 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
784 device_xname(sc->sc_dev), bra_option_len);
785 break;
786 case UPGT_BRA_TYPE_DEPIF:
787 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
788 device_xname(sc->sc_dev), bra_option_len);
789 break;
790 case UPGT_BRA_TYPE_EXPIF:
791 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
792 device_xname(sc->sc_dev), bra_option_len);
793 break;
794 case UPGT_BRA_TYPE_DESCR:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797
798 struct upgt_fw_bra_descr *descr =
799 (struct upgt_fw_bra_descr *)bra_option->data;
800
801 sc->sc_memaddr_frame_start =
802 le32toh(descr->memaddr_space_start);
803 sc->sc_memaddr_frame_end =
804 le32toh(descr->memaddr_space_end);
805
806 DPRINTF(2, "%s: memory address space start=0x%08x\n",
807 device_xname(sc->sc_dev),
808 sc->sc_memaddr_frame_start);
809 DPRINTF(2, "%s: memory address space end=0x%08x\n",
810 device_xname(sc->sc_dev),
811 sc->sc_memaddr_frame_end);
812 break;
813 case UPGT_BRA_TYPE_END:
814 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
815 device_xname(sc->sc_dev), bra_option_len);
816 bra_end = 1;
817 break;
818 default:
819 DPRINTF(1, "%s: unknown BRA option len=%d\n",
820 device_xname(sc->sc_dev), bra_option_len);
821 return EIO;
822 }
823
824 /* jump to next BRA option */
825 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
826 }
827
828 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
829
830 return 0;
831 }
832
833 static int
834 upgt_fw_load(struct upgt_softc *sc)
835 {
836 struct upgt_data *data_cmd = &sc->cmd_data;
837 struct upgt_data *data_rx = &sc->rx_data;
838 struct upgt_fw_x2_header *x2;
839 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
840 int offset, bsize, n, i, len;
841 uint32_t crc;
842
843 /* send firmware start load command */
844 len = sizeof(start_fwload_cmd);
845 memcpy(data_cmd->buf, start_fwload_cmd, len);
846 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
847 aprint_error_dev(sc->sc_dev,
848 "could not send start_firmware_load command\n");
849 return EIO;
850 }
851
852 /* send X2 header */
853 len = sizeof(struct upgt_fw_x2_header);
854 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
855 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
856 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
857 x2->len = htole32(sc->sc_fw_size);
858 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
859 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
860 sizeof(uint32_t));
861 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
862 aprint_error_dev(sc->sc_dev,
863 "could not send firmware X2 header\n");
864 return EIO;
865 }
866
867 /* download firmware */
868 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
869 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
870 bsize = UPGT_FW_BLOCK_SIZE;
871 else
872 bsize = sc->sc_fw_size - offset;
873
874 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
875
876 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
877 device_xname(sc->sc_dev), offset, n, bsize);
878
879 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
880 != 0) {
881 aprint_error_dev(sc->sc_dev,
882 "error while downloading firmware block\n");
883 return EIO;
884 }
885
886 bsize = n;
887 }
888 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
889
890 /* load firmware */
891 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
892 *((uint32_t *)(data_cmd->buf) ) = crc;
893 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
894 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
895 len = 6;
896 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
897 aprint_error_dev(sc->sc_dev,
898 "could not send load_firmware command\n");
899 return EIO;
900 }
901
902 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
903 len = UPGT_FW_BLOCK_SIZE;
904 memset(data_rx->buf, 0, 2);
905 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
906 USBD_SHORT_XFER_OK) != 0) {
907 aprint_error_dev(sc->sc_dev,
908 "could not read firmware response\n");
909 return EIO;
910 }
911
912 if (memcmp(data_rx->buf, "OK", 2) == 0)
913 break; /* firmware load was successful */
914 }
915 if (i == UPGT_FIRMWARE_TIMEOUT) {
916 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
917 return EIO;
918 }
919 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
920
921 return 0;
922 }
923
924 /*
925 * While copying the version 2 firmware, we need to replace two characters:
926 *
927 * 0x7e -> 0x7d 0x5e
928 * 0x7d -> 0x7d 0x5d
929 */
930 static int
931 upgt_fw_copy(char *src, char *dst, int size)
932 {
933 int i, j;
934
935 for (i = 0, j = 0; i < size && j < size; i++) {
936 switch (src[i]) {
937 case 0x7e:
938 dst[j] = 0x7d;
939 j++;
940 dst[j] = 0x5e;
941 j++;
942 break;
943 case 0x7d:
944 dst[j] = 0x7d;
945 j++;
946 dst[j] = 0x5d;
947 j++;
948 break;
949 default:
950 dst[j] = src[i];
951 j++;
952 break;
953 }
954 }
955
956 return i;
957 }
958
959 static int
960 upgt_eeprom_read(struct upgt_softc *sc)
961 {
962 struct upgt_data *data_cmd = &sc->cmd_data;
963 struct upgt_lmac_mem *mem;
964 struct upgt_lmac_eeprom *eeprom;
965 int offset, block, len;
966
967 offset = 0;
968 block = UPGT_EEPROM_BLOCK_SIZE;
969 while (offset < UPGT_EEPROM_SIZE) {
970 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
971 device_xname(sc->sc_dev), offset, block);
972
973 /*
974 * Transmit the URB containing the CMD data.
975 */
976 len = sizeof(*mem) + sizeof(*eeprom) + block;
977
978 memset(data_cmd->buf, 0, len);
979
980 mem = (struct upgt_lmac_mem *)data_cmd->buf;
981 mem->addr = htole32(sc->sc_memaddr_frame_start +
982 UPGT_MEMSIZE_FRAME_HEAD);
983
984 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
985 eeprom->header1.flags = 0;
986 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
987 eeprom->header1.len = htole16((
988 sizeof(struct upgt_lmac_eeprom) -
989 sizeof(struct upgt_lmac_header)) + block);
990
991 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
992 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
993 eeprom->header2.flags = 0;
994
995 eeprom->offset = htole16(offset);
996 eeprom->len = htole16(block);
997
998 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
999 len - sizeof(*mem));
1000
1001 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1002 USBD_FORCE_SHORT_XFER) != 0) {
1003 aprint_error_dev(sc->sc_dev,
1004 "could not transmit EEPROM data URB\n");
1005 return EIO;
1006 }
1007
1008 mutex_enter(&sc->sc_mtx);
1009 int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1010 mutex_exit(&sc->sc_mtx);
1011 if (res) {
1012 aprint_error_dev(sc->sc_dev,
1013 "timeout while waiting for EEPROM data\n");
1014 return EIO;
1015 }
1016
1017 offset += block;
1018 if (UPGT_EEPROM_SIZE - offset < block)
1019 block = UPGT_EEPROM_SIZE - offset;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static int
1026 upgt_eeprom_parse(struct upgt_softc *sc)
1027 {
1028 struct ieee80211com *ic = &sc->sc_ic;
1029 struct upgt_eeprom_header *eeprom_header;
1030 struct upgt_eeprom_option *eeprom_option;
1031 uint16_t option_len;
1032 uint16_t option_type;
1033 uint16_t preamble_len;
1034 int option_end = 0;
1035
1036 /* calculate eeprom options start offset */
1037 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1038 preamble_len = le16toh(eeprom_header->preamble_len);
1039 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1040 (sizeof(struct upgt_eeprom_header) + preamble_len));
1041
1042 while (!option_end) {
1043 /* the eeprom option length is stored in words */
1044 option_len =
1045 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1046 option_type =
1047 le16toh(eeprom_option->type);
1048
1049 switch (option_type) {
1050 case UPGT_EEPROM_TYPE_NAME:
1051 DPRINTF(1, "%s: EEPROM name len=%d\n",
1052 device_xname(sc->sc_dev), option_len);
1053 break;
1054 case UPGT_EEPROM_TYPE_SERIAL:
1055 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1056 device_xname(sc->sc_dev), option_len);
1057 break;
1058 case UPGT_EEPROM_TYPE_MAC:
1059 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061
1062 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1063 break;
1064 case UPGT_EEPROM_TYPE_HWRX:
1065 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1066 device_xname(sc->sc_dev), option_len);
1067
1068 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1069 break;
1070 case UPGT_EEPROM_TYPE_CHIP:
1071 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1072 device_xname(sc->sc_dev), option_len);
1073 break;
1074 case UPGT_EEPROM_TYPE_FREQ3:
1075 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1076 device_xname(sc->sc_dev), option_len);
1077
1078 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1079 option_len);
1080 break;
1081 case UPGT_EEPROM_TYPE_FREQ4:
1082 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1083 device_xname(sc->sc_dev), option_len);
1084
1085 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1086 option_len);
1087 break;
1088 case UPGT_EEPROM_TYPE_FREQ5:
1089 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1090 device_xname(sc->sc_dev), option_len);
1091 break;
1092 case UPGT_EEPROM_TYPE_FREQ6:
1093 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1094 device_xname(sc->sc_dev), option_len);
1095
1096 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1097 option_len);
1098 break;
1099 case UPGT_EEPROM_TYPE_END:
1100 DPRINTF(1, "%s: EEPROM end len=%d\n",
1101 device_xname(sc->sc_dev), option_len);
1102 option_end = 1;
1103 break;
1104 case UPGT_EEPROM_TYPE_OFF:
1105 DPRINTF(1, "%s: EEPROM off without end option\n",
1106 device_xname(sc->sc_dev));
1107 return EIO;
1108 default:
1109 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1110 device_xname(sc->sc_dev), option_type, option_len);
1111 break;
1112 }
1113
1114 /* jump to next EEPROM option */
1115 eeprom_option = (struct upgt_eeprom_option *)
1116 (eeprom_option->data + option_len);
1117 }
1118
1119 return 0;
1120 }
1121
1122 static void
1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1124 {
1125 struct upgt_eeprom_option_hwrx *option_hwrx;
1126
1127 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1128
1129 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1130
1131 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1132 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1133 }
1134
1135 static void
1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1137 {
1138 struct upgt_eeprom_freq3_header *freq3_header;
1139 struct upgt_lmac_freq3 *freq3;
1140 int i, elements, flags;
1141 unsigned channel;
1142
1143 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1144 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1145
1146 flags = freq3_header->flags;
1147 elements = freq3_header->elements;
1148
1149 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1150 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1151 __USE(flags);
1152
1153 for (i = 0; i < elements; i++) {
1154 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1155
1156 sc->sc_eeprom_freq3[channel] = freq3[i];
1157
1158 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1159 device_xname(sc->sc_dev),
1160 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1161 }
1162 }
1163
1164 static void
1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1166 {
1167 struct upgt_eeprom_freq4_header *freq4_header;
1168 struct upgt_eeprom_freq4_1 *freq4_1;
1169 struct upgt_eeprom_freq4_2 *freq4_2;
1170 int i, j, elements, settings, flags;
1171 unsigned channel;
1172
1173 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1174 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1175
1176 flags = freq4_header->flags;
1177 elements = freq4_header->elements;
1178 settings = freq4_header->settings;
1179
1180 /* we need this value later */
1181 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1182
1183 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1184 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1185 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1186 __USE(flags);
1187
1188 for (i = 0; i < elements; i++) {
1189 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1190
1191 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1192
1193 for (j = 0; j < settings; j++) {
1194 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1195 sc->sc_eeprom_freq4[channel][j].pad = 0;
1196 }
1197
1198 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1199 device_xname(sc->sc_dev),
1200 le16toh(freq4_1[i].freq), channel);
1201 }
1202 }
1203
1204 static void
1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1206 {
1207 struct upgt_lmac_freq6 *freq6;
1208 int i, elements;
1209 unsigned channel;
1210
1211 freq6 = (struct upgt_lmac_freq6 *)data;
1212
1213 elements = len / sizeof(struct upgt_lmac_freq6);
1214
1215 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1216
1217 for (i = 0; i < elements; i++) {
1218 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1219
1220 sc->sc_eeprom_freq6[channel] = freq6[i];
1221
1222 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1223 device_xname(sc->sc_dev),
1224 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1225 }
1226 }
1227
1228 static int
1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1230 {
1231 struct upgt_softc *sc = ifp->if_softc;
1232 struct ieee80211com *ic = &sc->sc_ic;
1233 int s, error = 0;
1234
1235 s = splnet();
1236
1237 switch (cmd) {
1238 case SIOCSIFFLAGS:
1239 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1240 break;
1241 if (ifp->if_flags & IFF_UP) {
1242 if ((ifp->if_flags & IFF_RUNNING) == 0)
1243 upgt_init(ifp);
1244 } else {
1245 if (ifp->if_flags & IFF_RUNNING)
1246 upgt_stop(sc);
1247 }
1248 break;
1249 case SIOCADDMULTI:
1250 case SIOCDELMULTI:
1251 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1252 /* setup multicast filter, etc */
1253 error = 0;
1254 }
1255 break;
1256 default:
1257 error = ieee80211_ioctl(ic, cmd, data);
1258 break;
1259 }
1260
1261 if (error == ENETRESET) {
1262 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1263 (IFF_UP | IFF_RUNNING))
1264 upgt_init(ifp);
1265 error = 0;
1266 }
1267
1268 splx(s);
1269
1270 return error;
1271 }
1272
1273 static int
1274 upgt_init(struct ifnet *ifp)
1275 {
1276 struct upgt_softc *sc = ifp->if_softc;
1277 struct ieee80211com *ic = &sc->sc_ic;
1278
1279 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1280
1281 if (ifp->if_flags & IFF_RUNNING)
1282 upgt_stop(sc);
1283
1284 ifp->if_flags |= IFF_RUNNING;
1285 ifp->if_flags &= ~IFF_OACTIVE;
1286
1287 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1288
1289 /* setup device rates */
1290 upgt_setup_rates(sc);
1291
1292 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1293 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1294 else
1295 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1296
1297 return 0;
1298 }
1299
1300 static void
1301 upgt_stop(struct upgt_softc *sc)
1302 {
1303 struct ieee80211com *ic = &sc->sc_ic;
1304 struct ifnet *ifp = &sc->sc_if;
1305
1306 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1307
1308 /* device down */
1309 ifp->if_timer = 0;
1310 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1311
1312 /* change device back to initial state */
1313 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1314 }
1315
1316 static int
1317 upgt_media_change(struct ifnet *ifp)
1318 {
1319 struct upgt_softc *sc = ifp->if_softc;
1320 int error;
1321
1322 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1323
1324 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1325 return error;
1326
1327 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1328 (IFF_UP | IFF_RUNNING)) {
1329 /* give pending USB transfers a chance to finish */
1330 usbd_delay_ms(sc->sc_udev, 100);
1331 upgt_init(ifp);
1332 }
1333
1334 return 0;
1335 }
1336
1337 static void
1338 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1339 {
1340
1341 ni->ni_txrate = 0;
1342 }
1343
1344 static int
1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1346 {
1347 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1348
1349 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1350 callout_stop(&sc->scan_to);
1351
1352 /* do it in a process context */
1353 sc->sc_state = nstate;
1354 sc->sc_arg = arg;
1355 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1356
1357 return 0;
1358 }
1359
1360 static void
1361 upgt_newstate_task(void *arg)
1362 {
1363 struct upgt_softc *sc = arg;
1364 struct ieee80211com *ic = &sc->sc_ic;
1365 struct ieee80211_node *ni;
1366 unsigned channel;
1367
1368 mutex_enter(&sc->sc_mtx);
1369
1370 switch (sc->sc_state) {
1371 case IEEE80211_S_INIT:
1372 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1373 device_xname(sc->sc_dev));
1374
1375 /* do not accept any frames if the device is down */
1376 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1377 upgt_set_led(sc, UPGT_LED_OFF);
1378 break;
1379 case IEEE80211_S_SCAN:
1380 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1381 device_xname(sc->sc_dev));
1382
1383 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1384 upgt_set_channel(sc, channel);
1385 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1386 callout_schedule(&sc->scan_to, hz / 5);
1387 break;
1388 case IEEE80211_S_AUTH:
1389 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1390 device_xname(sc->sc_dev));
1391
1392 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 upgt_set_channel(sc, channel);
1394 break;
1395 case IEEE80211_S_ASSOC:
1396 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1397 device_xname(sc->sc_dev));
1398
1399 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1400 upgt_set_channel(sc, channel);
1401 break;
1402 case IEEE80211_S_RUN:
1403 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1404 device_xname(sc->sc_dev));
1405
1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 upgt_set_channel(sc, channel);
1408
1409 ni = ic->ic_bss;
1410
1411 /*
1412 * TX rate control is done by the firmware.
1413 * Report the maximum rate which is available therefore.
1414 */
1415 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1416
1417 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1418 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1419 upgt_set_led(sc, UPGT_LED_ON);
1420 break;
1421 }
1422
1423 mutex_exit(&sc->sc_mtx);
1424
1425 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1426 }
1427
1428 static void
1429 upgt_next_scan(void *arg)
1430 {
1431 struct upgt_softc *sc = arg;
1432 struct ieee80211com *ic = &sc->sc_ic;
1433
1434 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1435
1436 if (ic->ic_state == IEEE80211_S_SCAN)
1437 ieee80211_next_scan(ic);
1438 }
1439
1440 static void
1441 upgt_start(struct ifnet *ifp)
1442 {
1443 struct upgt_softc *sc = ifp->if_softc;
1444 struct ieee80211com *ic = &sc->sc_ic;
1445 struct ether_header *eh;
1446 struct ieee80211_node *ni;
1447 struct mbuf *m;
1448 int i;
1449
1450 /* don't transmit packets if interface is busy or down */
1451 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1452 return;
1453
1454 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1455
1456 for (i = 0; i < UPGT_TX_COUNT; i++) {
1457 struct upgt_data *data_tx = &sc->tx_data[i];
1458
1459 if (data_tx->m != NULL)
1460 continue;
1461
1462 IF_POLL(&ic->ic_mgtq, m);
1463 if (m != NULL) {
1464 /* management frame */
1465 IF_DEQUEUE(&ic->ic_mgtq, m);
1466
1467 ni = M_GETCTX(m, struct ieee80211_node *);
1468 M_CLEARCTX(m);
1469
1470 bpf_mtap3(ic->ic_rawbpf, m);
1471
1472 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1473 aprint_error_dev(sc->sc_dev,
1474 "no free prism memory\n");
1475 m_freem(m);
1476 ifp->if_oerrors++;
1477 break;
1478 }
1479 data_tx->ni = ni;
1480 data_tx->m = m;
1481 sc->tx_queued++;
1482 } else {
1483 /* data frame */
1484 if (ic->ic_state != IEEE80211_S_RUN)
1485 break;
1486
1487 IFQ_POLL(&ifp->if_snd, m);
1488 if (m == NULL)
1489 break;
1490
1491 IFQ_DEQUEUE(&ifp->if_snd, m);
1492 if (m->m_len < sizeof(struct ether_header) &&
1493 !(m = m_pullup(m, sizeof(struct ether_header))))
1494 continue;
1495
1496 eh = mtod(m, struct ether_header *);
1497 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1498 if (ni == NULL) {
1499 m_freem(m);
1500 continue;
1501 }
1502
1503 bpf_mtap(ifp, m);
1504
1505 m = ieee80211_encap(ic, m, ni);
1506 if (m == NULL) {
1507 ieee80211_free_node(ni);
1508 continue;
1509 }
1510
1511 bpf_mtap3(ic->ic_rawbpf, m);
1512
1513 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1514 aprint_error_dev(sc->sc_dev,
1515 "no free prism memory\n");
1516 m_freem(m);
1517 ieee80211_free_node(ni);
1518 ifp->if_oerrors++;
1519 break;
1520 }
1521 data_tx->ni = ni;
1522 data_tx->m = m;
1523 sc->tx_queued++;
1524 }
1525 }
1526
1527 if (sc->tx_queued > 0) {
1528 DPRINTF(2, "%s: tx_queued=%d\n",
1529 device_xname(sc->sc_dev), sc->tx_queued);
1530 /* process the TX queue in process context */
1531 ifp->if_timer = 5;
1532 ifp->if_flags |= IFF_OACTIVE;
1533 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1534 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1535 }
1536 }
1537
1538 static void
1539 upgt_watchdog(struct ifnet *ifp)
1540 {
1541 struct upgt_softc *sc = ifp->if_softc;
1542 struct ieee80211com *ic = &sc->sc_ic;
1543
1544 if (ic->ic_state == IEEE80211_S_INIT)
1545 return;
1546
1547 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1548
1549 /* TODO: what shall we do on TX timeout? */
1550
1551 ieee80211_watchdog(ic);
1552 }
1553
1554 static void
1555 upgt_tx_task(void *arg)
1556 {
1557 struct upgt_softc *sc = arg;
1558 struct ieee80211com *ic = &sc->sc_ic;
1559 struct ieee80211_frame *wh;
1560 struct ieee80211_key *k;
1561 struct ifnet *ifp = &sc->sc_if;
1562 struct upgt_lmac_mem *mem;
1563 struct upgt_lmac_tx_desc *txdesc;
1564 struct mbuf *m;
1565 uint32_t addr;
1566 int i, len, pad, s;
1567 usbd_status error;
1568
1569 mutex_enter(&sc->sc_mtx);
1570 upgt_set_led(sc, UPGT_LED_BLINK);
1571 mutex_exit(&sc->sc_mtx);
1572
1573 s = splnet();
1574
1575 for (i = 0; i < UPGT_TX_COUNT; i++) {
1576 struct upgt_data *data_tx = &sc->tx_data[i];
1577
1578 if (data_tx->m == NULL)
1579 continue;
1580
1581 m = data_tx->m;
1582 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1583
1584 /*
1585 * Software crypto.
1586 */
1587 wh = mtod(m, struct ieee80211_frame *);
1588
1589 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1590 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1591 if (k == NULL) {
1592 m_freem(m);
1593 data_tx->m = NULL;
1594 ieee80211_free_node(data_tx->ni);
1595 data_tx->ni = NULL;
1596 ifp->if_oerrors++;
1597 break;
1598 }
1599
1600 /* in case packet header moved, reset pointer */
1601 wh = mtod(m, struct ieee80211_frame *);
1602 }
1603
1604 /*
1605 * Transmit the URB containing the TX data.
1606 */
1607 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1608
1609 mem = (struct upgt_lmac_mem *)data_tx->buf;
1610 mem->addr = htole32(addr);
1611
1612 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1613
1614 /* XXX differ between data and mgmt frames? */
1615 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1616 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1617 txdesc->header1.len = htole16(m->m_pkthdr.len);
1618
1619 txdesc->header2.reqid = htole32(data_tx->addr);
1620 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1621 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1622
1623 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1624 IEEE80211_FC0_TYPE_MGT) {
1625 /* always send mgmt frames at lowest rate (DS1) */
1626 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1627 } else {
1628 memcpy(txdesc->rates, sc->sc_cur_rateset,
1629 sizeof(txdesc->rates));
1630 }
1631 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1632 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1633
1634 if (sc->sc_drvbpf != NULL) {
1635 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1636
1637 tap->wt_flags = 0;
1638 tap->wt_rate = 0; /* TODO: where to get from? */
1639 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1640 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1641
1642 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1643 }
1644
1645 /* copy frame below our TX descriptor header */
1646 m_copydata(m, 0, m->m_pkthdr.len,
1647 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1648
1649 /* calculate frame size */
1650 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1651
1652 if (len & 3) {
1653 /* we need to align the frame to a 4 byte boundary */
1654 pad = 4 - (len & 3);
1655 memset(data_tx->buf + len, 0, pad);
1656 len += pad;
1657 }
1658
1659 /* calculate frame checksum */
1660 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1661 len - sizeof(*mem));
1662
1663 /* we do not need the mbuf anymore */
1664 m_freem(m);
1665 data_tx->m = NULL;
1666
1667 ieee80211_free_node(data_tx->ni);
1668 data_tx->ni = NULL;
1669
1670 DPRINTF(2, "%s: TX start data sending\n",
1671 device_xname(sc->sc_dev));
1672
1673 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1674 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1675 error = usbd_transfer(data_tx->xfer);
1676 if (error != USBD_NORMAL_COMPLETION &&
1677 error != USBD_IN_PROGRESS) {
1678 aprint_error_dev(sc->sc_dev,
1679 "could not transmit TX data URB\n");
1680 ifp->if_oerrors++;
1681 break;
1682 }
1683
1684 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1685 device_xname(sc->sc_dev), len);
1686 }
1687
1688 splx(s);
1689
1690 /*
1691 * If we don't regulary read the device statistics, the RX queue
1692 * will stall. It's strange, but it works, so we keep reading
1693 * the statistics here. *shrug*
1694 */
1695 mutex_enter(&sc->sc_mtx);
1696 upgt_get_stats(sc);
1697 mutex_exit(&sc->sc_mtx);
1698 }
1699
1700 static void
1701 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1702 {
1703 struct ifnet *ifp = &sc->sc_if;
1704 struct upgt_lmac_tx_done_desc *desc;
1705 int i, s;
1706
1707 s = splnet();
1708
1709 desc = (struct upgt_lmac_tx_done_desc *)data;
1710
1711 for (i = 0; i < UPGT_TX_COUNT; i++) {
1712 struct upgt_data *data_tx = &sc->tx_data[i];
1713
1714 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1715 upgt_mem_free(sc, data_tx->addr);
1716 data_tx->addr = 0;
1717
1718 sc->tx_queued--;
1719 ifp->if_opackets++;
1720
1721 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1722 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1723 le32toh(desc->header2.reqid),
1724 le16toh(desc->status),
1725 le16toh(desc->rssi));
1726 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1727 break;
1728 }
1729 }
1730
1731 if (sc->tx_queued == 0) {
1732 /* TX queued was processed, continue */
1733 ifp->if_timer = 0;
1734 ifp->if_flags &= ~IFF_OACTIVE;
1735 upgt_start(ifp);
1736 }
1737
1738 splx(s);
1739 }
1740
1741 static void
1742 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1743 {
1744 struct upgt_data *data_rx = priv;
1745 struct upgt_softc *sc = data_rx->sc;
1746 int len;
1747 struct upgt_lmac_header *header;
1748 struct upgt_lmac_eeprom *eeprom;
1749 uint8_t h1_type;
1750 uint16_t h2_type;
1751
1752 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1753
1754 if (status != USBD_NORMAL_COMPLETION) {
1755 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1756 return;
1757 if (status == USBD_STALLED)
1758 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1759 goto skip;
1760 }
1761 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1762
1763 /*
1764 * Check what type of frame came in.
1765 */
1766 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1767
1768 h1_type = header->header1.type;
1769 h2_type = le16toh(header->header2.type);
1770
1771 if (h1_type == UPGT_H1_TYPE_CTRL &&
1772 h2_type == UPGT_H2_TYPE_EEPROM) {
1773 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1774 uint16_t eeprom_offset = le16toh(eeprom->offset);
1775 uint16_t eeprom_len = le16toh(eeprom->len);
1776
1777 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1778 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1779
1780 mutex_enter(&sc->sc_mtx);
1781 memcpy(sc->sc_eeprom + eeprom_offset,
1782 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1783 eeprom_len);
1784
1785 /* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1786 /* Note eeprom data arrived */
1787 cv_broadcast(&sc->sc_cv);
1788 mutex_exit(&sc->sc_mtx);
1789 } else
1790 if (h1_type == UPGT_H1_TYPE_CTRL &&
1791 h2_type == UPGT_H2_TYPE_TX_DONE) {
1792 DPRINTF(2, "%s: received 802.11 TX done\n",
1793 device_xname(sc->sc_dev));
1794
1795 upgt_tx_done(sc, data_rx->buf + 4);
1796 } else
1797 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1798 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1799 DPRINTF(3, "%s: received 802.11 RX data\n",
1800 device_xname(sc->sc_dev));
1801
1802 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1803 } else
1804 if (h1_type == UPGT_H1_TYPE_CTRL &&
1805 h2_type == UPGT_H2_TYPE_STATS) {
1806 DPRINTF(2, "%s: received statistic data\n",
1807 device_xname(sc->sc_dev));
1808
1809 /* TODO: what could we do with the statistic data? */
1810 } else {
1811 /* ignore unknown frame types */
1812 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1813 device_xname(sc->sc_dev), header->header1.type);
1814 }
1815
1816 skip: /* setup new transfer */
1817 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1818 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1819 (void)usbd_transfer(xfer);
1820 }
1821
1822 static void
1823 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1824 {
1825 struct ieee80211com *ic = &sc->sc_ic;
1826 struct ifnet *ifp = &sc->sc_if;
1827 struct upgt_lmac_rx_desc *rxdesc;
1828 struct ieee80211_frame *wh;
1829 struct ieee80211_node *ni;
1830 struct mbuf *m;
1831 int s;
1832
1833 /* access RX packet descriptor */
1834 rxdesc = (struct upgt_lmac_rx_desc *)data;
1835
1836 /* create mbuf which is suitable for strict alignment archs */
1837 #define ETHER_ALIGN 0
1838 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1839 if (m == NULL) {
1840 DPRINTF(1, "%s: could not create RX mbuf\n",
1841 device_xname(sc->sc_dev));
1842 ifp->if_ierrors++;
1843 return;
1844 }
1845
1846 s = splnet();
1847
1848 if (sc->sc_drvbpf != NULL) {
1849 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1850
1851 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1852 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1853 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1854 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1855 tap->wr_antsignal = rxdesc->rssi;
1856
1857 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1858 }
1859
1860 /* trim FCS */
1861 m_adj(m, -IEEE80211_CRC_LEN);
1862
1863 wh = mtod(m, struct ieee80211_frame *);
1864 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1865
1866 /* push the frame up to the 802.11 stack */
1867 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1868
1869 /* node is no longer needed */
1870 ieee80211_free_node(ni);
1871
1872 splx(s);
1873
1874 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1875 }
1876
1877 static void
1878 upgt_setup_rates(struct upgt_softc *sc)
1879 {
1880 struct ieee80211com *ic = &sc->sc_ic;
1881
1882 /*
1883 * 0x01 = OFMD6 0x10 = DS1
1884 * 0x04 = OFDM9 0x11 = DS2
1885 * 0x06 = OFDM12 0x12 = DS5
1886 * 0x07 = OFDM18 0x13 = DS11
1887 * 0x08 = OFDM24
1888 * 0x09 = OFDM36
1889 * 0x0a = OFDM48
1890 * 0x0b = OFDM54
1891 */
1892 const uint8_t rateset_auto_11b[] =
1893 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1894 const uint8_t rateset_auto_11g[] =
1895 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1896 const uint8_t rateset_fix_11bg[] =
1897 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1898 0x08, 0x09, 0x0a, 0x0b };
1899
1900 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1901 /*
1902 * Automatic rate control is done by the device.
1903 * We just pass the rateset from which the device
1904 * will pickup a rate.
1905 */
1906 if (ic->ic_curmode == IEEE80211_MODE_11B)
1907 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1908 sizeof(sc->sc_cur_rateset));
1909 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1910 ic->ic_curmode == IEEE80211_MODE_AUTO)
1911 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1912 sizeof(sc->sc_cur_rateset));
1913 } else {
1914 /* set a fixed rate */
1915 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1916 sizeof(sc->sc_cur_rateset));
1917 }
1918 }
1919
1920 static uint8_t
1921 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1922 {
1923 struct ieee80211com *ic = &sc->sc_ic;
1924
1925 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1926 if (rate < 0 || rate > 3)
1927 /* invalid rate */
1928 return 0;
1929
1930 switch (rate) {
1931 case 0:
1932 return 2;
1933 case 1:
1934 return 4;
1935 case 2:
1936 return 11;
1937 case 3:
1938 return 22;
1939 default:
1940 return 0;
1941 }
1942 }
1943
1944 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1945 if (rate < 0 || rate > 11)
1946 /* invalid rate */
1947 return 0;
1948
1949 switch (rate) {
1950 case 0:
1951 return 2;
1952 case 1:
1953 return 4;
1954 case 2:
1955 return 11;
1956 case 3:
1957 return 22;
1958 case 4:
1959 return 12;
1960 case 5:
1961 return 18;
1962 case 6:
1963 return 24;
1964 case 7:
1965 return 36;
1966 case 8:
1967 return 48;
1968 case 9:
1969 return 72;
1970 case 10:
1971 return 96;
1972 case 11:
1973 return 108;
1974 default:
1975 return 0;
1976 }
1977 }
1978
1979 return 0;
1980 }
1981
1982 static int
1983 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1984 {
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 struct ieee80211_node *ni = ic->ic_bss;
1987 struct upgt_data *data_cmd = &sc->cmd_data;
1988 struct upgt_lmac_mem *mem;
1989 struct upgt_lmac_filter *filter;
1990 int len;
1991 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1992
1993 /*
1994 * Transmit the URB containing the CMD data.
1995 */
1996 len = sizeof(*mem) + sizeof(*filter);
1997
1998 memset(data_cmd->buf, 0, len);
1999
2000 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2001 mem->addr = htole32(sc->sc_memaddr_frame_start +
2002 UPGT_MEMSIZE_FRAME_HEAD);
2003
2004 filter = (struct upgt_lmac_filter *)(mem + 1);
2005
2006 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2007 filter->header1.type = UPGT_H1_TYPE_CTRL;
2008 filter->header1.len = htole16(
2009 sizeof(struct upgt_lmac_filter) -
2010 sizeof(struct upgt_lmac_header));
2011
2012 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2013 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2014 filter->header2.flags = 0;
2015
2016 switch (state) {
2017 case IEEE80211_S_INIT:
2018 DPRINTF(1, "%s: set MAC filter to INIT\n",
2019 device_xname(sc->sc_dev));
2020
2021 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2022 break;
2023 case IEEE80211_S_SCAN:
2024 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2025 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2026
2027 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2028 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2029 IEEE80211_ADDR_COPY(filter->src, broadcast);
2030 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2031 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2032 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2033 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2034 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2035 break;
2036 case IEEE80211_S_RUN:
2037 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2038 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2039
2040 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2041 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2042 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2043 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2044 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2045 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2046 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2047 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2048 break;
2049 default:
2050 aprint_error_dev(sc->sc_dev,
2051 "MAC filter does not know that state\n");
2052 break;
2053 }
2054
2055 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2056
2057 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2058 aprint_error_dev(sc->sc_dev,
2059 "could not transmit macfilter CMD data URB\n");
2060 return EIO;
2061 }
2062
2063 return 0;
2064 }
2065
2066 static int
2067 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2068 {
2069 struct upgt_data *data_cmd = &sc->cmd_data;
2070 struct upgt_lmac_mem *mem;
2071 struct upgt_lmac_channel *chan;
2072 int len;
2073
2074 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2075 channel);
2076
2077 /*
2078 * Transmit the URB containing the CMD data.
2079 */
2080 len = sizeof(*mem) + sizeof(*chan);
2081
2082 memset(data_cmd->buf, 0, len);
2083
2084 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2085 mem->addr = htole32(sc->sc_memaddr_frame_start +
2086 UPGT_MEMSIZE_FRAME_HEAD);
2087
2088 chan = (struct upgt_lmac_channel *)(mem + 1);
2089
2090 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2091 chan->header1.type = UPGT_H1_TYPE_CTRL;
2092 chan->header1.len = htole16(
2093 sizeof(struct upgt_lmac_channel) -
2094 sizeof(struct upgt_lmac_header));
2095
2096 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2097 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2098 chan->header2.flags = 0;
2099
2100 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2101 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2102 chan->freq6 = sc->sc_eeprom_freq6[channel];
2103 chan->settings = sc->sc_eeprom_freq6_settings;
2104 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2105
2106 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2107 sizeof(chan->freq3_1));
2108
2109 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2110 sizeof(sc->sc_eeprom_freq4[channel]));
2111
2112 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2113 sizeof(chan->freq3_2));
2114
2115 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2116
2117 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2118 aprint_error_dev(sc->sc_dev,
2119 "could not transmit channel CMD data URB\n");
2120 return EIO;
2121 }
2122
2123 return 0;
2124 }
2125
2126 static void
2127 upgt_set_led(struct upgt_softc *sc, int action)
2128 {
2129 struct ieee80211com *ic = &sc->sc_ic;
2130 struct upgt_data *data_cmd = &sc->cmd_data;
2131 struct upgt_lmac_mem *mem;
2132 struct upgt_lmac_led *led;
2133 struct timeval t;
2134 int len;
2135
2136 /*
2137 * Transmit the URB containing the CMD data.
2138 */
2139 len = sizeof(*mem) + sizeof(*led);
2140
2141 memset(data_cmd->buf, 0, len);
2142
2143 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2144 mem->addr = htole32(sc->sc_memaddr_frame_start +
2145 UPGT_MEMSIZE_FRAME_HEAD);
2146
2147 led = (struct upgt_lmac_led *)(mem + 1);
2148
2149 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2150 led->header1.type = UPGT_H1_TYPE_CTRL;
2151 led->header1.len = htole16(
2152 sizeof(struct upgt_lmac_led) -
2153 sizeof(struct upgt_lmac_header));
2154
2155 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2156 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2157 led->header2.flags = 0;
2158
2159 switch (action) {
2160 case UPGT_LED_OFF:
2161 led->mode = htole16(UPGT_LED_MODE_SET);
2162 led->action_fix = 0;
2163 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2164 led->action_tmp_dur = 0;
2165 break;
2166 case UPGT_LED_ON:
2167 led->mode = htole16(UPGT_LED_MODE_SET);
2168 led->action_fix = 0;
2169 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2170 led->action_tmp_dur = 0;
2171 break;
2172 case UPGT_LED_BLINK:
2173 if (ic->ic_state != IEEE80211_S_RUN)
2174 return;
2175 if (sc->sc_led_blink)
2176 /* previous blink was not finished */
2177 return;
2178 led->mode = htole16(UPGT_LED_MODE_SET);
2179 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2180 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2181 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2182 /* lock blink */
2183 sc->sc_led_blink = 1;
2184 t.tv_sec = 0;
2185 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2186 callout_schedule(&sc->led_to, tvtohz(&t));
2187 break;
2188 default:
2189 return;
2190 }
2191
2192 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2193
2194 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2195 aprint_error_dev(sc->sc_dev,
2196 "could not transmit led CMD URB\n");
2197 }
2198 }
2199
2200 static void
2201 upgt_set_led_blink(void *arg)
2202 {
2203 struct upgt_softc *sc = arg;
2204
2205 /* blink finished, we are ready for a next one */
2206 sc->sc_led_blink = 0;
2207 callout_stop(&sc->led_to);
2208 }
2209
2210 static int
2211 upgt_get_stats(struct upgt_softc *sc)
2212 {
2213 struct upgt_data *data_cmd = &sc->cmd_data;
2214 struct upgt_lmac_mem *mem;
2215 struct upgt_lmac_stats *stats;
2216 int len;
2217
2218 /*
2219 * Transmit the URB containing the CMD data.
2220 */
2221 len = sizeof(*mem) + sizeof(*stats);
2222
2223 memset(data_cmd->buf, 0, len);
2224
2225 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2226 mem->addr = htole32(sc->sc_memaddr_frame_start +
2227 UPGT_MEMSIZE_FRAME_HEAD);
2228
2229 stats = (struct upgt_lmac_stats *)(mem + 1);
2230
2231 stats->header1.flags = 0;
2232 stats->header1.type = UPGT_H1_TYPE_CTRL;
2233 stats->header1.len = htole16(
2234 sizeof(struct upgt_lmac_stats) -
2235 sizeof(struct upgt_lmac_header));
2236
2237 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2238 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2239 stats->header2.flags = 0;
2240
2241 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2242
2243 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2244 aprint_error_dev(sc->sc_dev,
2245 "could not transmit statistics CMD data URB\n");
2246 return EIO;
2247 }
2248
2249 return 0;
2250
2251 }
2252
2253 static int
2254 upgt_alloc_tx(struct upgt_softc *sc)
2255 {
2256 int i;
2257
2258 sc->tx_queued = 0;
2259
2260 for (i = 0; i < UPGT_TX_COUNT; i++) {
2261 struct upgt_data *data_tx = &sc->tx_data[i];
2262
2263 data_tx->sc = sc;
2264
2265 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES, 0, 0,
2266 &data_tx->xfer);
2267 if (err) {
2268 aprint_error_dev(sc->sc_dev,
2269 "could not allocate TX xfer\n");
2270 return err;
2271 }
2272
2273 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2274 }
2275
2276 return 0;
2277 }
2278
2279 static int
2280 upgt_alloc_rx(struct upgt_softc *sc)
2281 {
2282 struct upgt_data *data_rx = &sc->rx_data;
2283
2284 data_rx->sc = sc;
2285
2286 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2287 USBD_SHORT_XFER_OK, 0, &data_rx->xfer);
2288 if (err) {
2289 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2290 return err;
2291 }
2292
2293 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2294
2295 return 0;
2296 }
2297
2298 static int
2299 upgt_alloc_cmd(struct upgt_softc *sc)
2300 {
2301 struct upgt_data *data_cmd = &sc->cmd_data;
2302
2303 data_cmd->sc = sc;
2304
2305 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2306 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2307 if (err) {
2308 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2309 return err;
2310 }
2311
2312 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2313
2314 cv_init(&sc->sc_cv, "upgteeprom");
2315 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2316
2317 return 0;
2318 }
2319
2320 static void
2321 upgt_free_tx(struct upgt_softc *sc)
2322 {
2323 int i;
2324
2325 for (i = 0; i < UPGT_TX_COUNT; i++) {
2326 struct upgt_data *data_tx = &sc->tx_data[i];
2327
2328 if (data_tx->xfer != NULL) {
2329 usbd_destroy_xfer(data_tx->xfer);
2330 data_tx->xfer = NULL;
2331 }
2332
2333 data_tx->ni = NULL;
2334 }
2335 }
2336
2337 static void
2338 upgt_free_rx(struct upgt_softc *sc)
2339 {
2340 struct upgt_data *data_rx = &sc->rx_data;
2341
2342 if (data_rx->xfer != NULL) {
2343 usbd_destroy_xfer(data_rx->xfer);
2344 data_rx->xfer = NULL;
2345 }
2346
2347 data_rx->ni = NULL;
2348 }
2349
2350 static void
2351 upgt_free_cmd(struct upgt_softc *sc)
2352 {
2353 struct upgt_data *data_cmd = &sc->cmd_data;
2354
2355 if (data_cmd->xfer != NULL) {
2356 usbd_destroy_xfer(data_cmd->xfer);
2357 data_cmd->xfer = NULL;
2358 }
2359
2360 mutex_destroy(&sc->sc_mtx);
2361 cv_destroy(&sc->sc_cv);
2362 }
2363
2364 static int
2365 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2366 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2367 {
2368 usbd_status status;
2369
2370 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2371 data->buf, size);
2372 if (status != USBD_NORMAL_COMPLETION) {
2373 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2374 usbd_errstr(status));
2375 return EIO;
2376 }
2377
2378 return 0;
2379 }
2380
2381 #if 0
2382 static void
2383 upgt_hexdump(void *buf, int len)
2384 {
2385 int i;
2386
2387 for (i = 0; i < len; i++) {
2388 if (i % 16 == 0)
2389 printf("%s%5i:", i ? "\n" : "", i);
2390 if (i % 4 == 0)
2391 printf(" ");
2392 printf("%02x", (int)*((uint8_t *)buf + i));
2393 }
2394 printf("\n");
2395 }
2396 #endif
2397
2398 static uint32_t
2399 upgt_crc32_le(const void *buf, size_t size)
2400 {
2401 uint32_t crc;
2402
2403 crc = ether_crc32_le(buf, size);
2404
2405 /* apply final XOR value as common for CRC-32 */
2406 crc = htole32(crc ^ 0xffffffffU);
2407
2408 return crc;
2409 }
2410
2411 /*
2412 * The firmware awaits a checksum for each frame we send to it.
2413 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2414 */
2415 static uint32_t
2416 upgt_chksum_le(const uint32_t *buf, size_t size)
2417 {
2418 int i;
2419 uint32_t crc = 0;
2420
2421 for (i = 0; i < size; i += sizeof(uint32_t)) {
2422 crc = htole32(crc ^ *buf++);
2423 crc = htole32((crc >> 5) ^ (crc << 3));
2424 }
2425
2426 return crc;
2427 }
2428