Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.19
      1 /*	$NetBSD: if_upgt.c,v 1.19 2018/02/08 09:05:20 dholland Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.19 2018/02/08 09:05:20 dholland Exp $");
     22 
     23 #ifdef _KERNEL_OPT
     24 #include "opt_usb.h"
     25 #endif
     26 
     27 #include <sys/param.h>
     28 #include <sys/callout.h>
     29 #include <sys/device.h>
     30 #include <sys/errno.h>
     31 #include <sys/kernel.h>
     32 #include <sys/kthread.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/proc.h>
     35 #include <sys/sockio.h>
     36 #include <sys/systm.h>
     37 #include <sys/vnode.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/intr.h>
     41 
     42 #include <net/bpf.h>
     43 #include <net/if.h>
     44 #include <net/if_arp.h>
     45 #include <net/if_dl.h>
     46 #include <net/if_ether.h>
     47 #include <net/if_media.h>
     48 #include <net/if_types.h>
     49 
     50 #include <net80211/ieee80211_var.h>
     51 #include <net80211/ieee80211_radiotap.h>
     52 
     53 #include <dev/firmload.h>
     54 
     55 #include <dev/usb/usb.h>
     56 #include <dev/usb/usbdi.h>
     57 #include <dev/usb/usbdi_util.h>
     58 #include <dev/usb/usbdivar.h>
     59 #include <dev/usb/usbdevs.h>
     60 
     61 #include <dev/usb/if_upgtvar.h>
     62 
     63 /*
     64  * Driver for the USB PrismGT devices.
     65  *
     66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     68  *
     69  * TODO's:
     70  * - Fix MONITOR mode (MAC filter).
     71  * - Add HOSTAP mode.
     72  * - Add IBSS mode.
     73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     74  *
     75  * Parts of this driver has been influenced by reading the p54u driver
     76  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     77  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     78  */
     79 
     80 #ifdef UPGT_DEBUG
     81 int upgt_debug = 2;
     82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     83 #else
     84 #define DPRINTF(l, x...)
     85 #endif
     86 
     87 /*
     88  * Prototypes.
     89  */
     90 static int	upgt_match(device_t, cfdata_t, void *);
     91 static void	upgt_attach(device_t, device_t, void *);
     92 static int	upgt_detach(device_t, int);
     93 static int	upgt_activate(device_t, devact_t);
     94 
     95 static void	upgt_attach_hook(device_t);
     96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     97 static int	upgt_device_init(struct upgt_softc *);
     98 static int	upgt_mem_init(struct upgt_softc *);
     99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
    100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
    101 static int	upgt_fw_alloc(struct upgt_softc *);
    102 static void	upgt_fw_free(struct upgt_softc *);
    103 static int	upgt_fw_verify(struct upgt_softc *);
    104 static int	upgt_fw_load(struct upgt_softc *);
    105 static int	upgt_fw_copy(char *, char *, int);
    106 static int	upgt_eeprom_read(struct upgt_softc *);
    107 static int	upgt_eeprom_parse(struct upgt_softc *);
    108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    112 
    113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    114 static int	upgt_init(struct ifnet *);
    115 static void	upgt_stop(struct upgt_softc *);
    116 static int	upgt_media_change(struct ifnet *);
    117 static void	upgt_newassoc(struct ieee80211_node *, int);
    118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    119 		    int);
    120 static void	upgt_newstate_task(void *);
    121 static void	upgt_next_scan(void *);
    122 static void	upgt_start(struct ifnet *);
    123 static void	upgt_watchdog(struct ifnet *);
    124 static void	upgt_tx_task(void *);
    125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
    127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    128 static void	upgt_setup_rates(struct upgt_softc *);
    129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
    131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    132 static void	upgt_set_led(struct upgt_softc *, int);
    133 static void	upgt_set_led_blink(void *);
    134 static int	upgt_get_stats(struct upgt_softc *);
    135 
    136 static int	upgt_alloc_tx(struct upgt_softc *);
    137 static int	upgt_alloc_rx(struct upgt_softc *);
    138 static int	upgt_alloc_cmd(struct upgt_softc *);
    139 static void	upgt_free_tx(struct upgt_softc *);
    140 static void	upgt_free_rx(struct upgt_softc *);
    141 static void	upgt_free_cmd(struct upgt_softc *);
    142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    143 		    struct usbd_pipe *, uint32_t *, int);
    144 
    145 #if 0
    146 static void	upgt_hexdump(void *, int);
    147 #endif
    148 static uint32_t	upgt_crc32_le(const void *, size_t);
    149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    150 
    151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    153 
    154 static const struct usb_devno upgt_devs_1[] = {
    155 	/* version 1 devices */
    156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    158 };
    159 
    160 static const struct usb_devno upgt_devs_2[] = {
    161 	/* version 2 devices */
    162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    186 };
    187 
    188 static int
    189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    190     size_t *sizep)
    191 {
    192 	firmware_handle_t fh;
    193 	int error;
    194 
    195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    196 		return error;
    197 	*sizep = firmware_get_size(fh);
    198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    199 		firmware_close(fh);
    200 		return ENOMEM;
    201 	}
    202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    203 		firmware_free(*ucodep, *sizep);
    204 	firmware_close(fh);
    205 
    206 	return error;
    207 }
    208 
    209 static int
    210 upgt_match(device_t parent, cfdata_t match, void *aux)
    211 {
    212 	struct usb_attach_arg *uaa = aux;
    213 
    214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    215 		return UMATCH_VENDOR_PRODUCT;
    216 
    217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    218 		return UMATCH_VENDOR_PRODUCT;
    219 
    220 	return UMATCH_NONE;
    221 }
    222 
    223 static void
    224 upgt_attach(device_t parent, device_t self, void *aux)
    225 {
    226 	struct upgt_softc *sc = device_private(self);
    227 	struct usb_attach_arg *uaa = aux;
    228 	usb_interface_descriptor_t *id;
    229 	usb_endpoint_descriptor_t *ed;
    230 	usbd_status error;
    231 	char *devinfop;
    232 	int i;
    233 
    234 	aprint_naive("\n");
    235 	aprint_normal("\n");
    236 
    237 	/*
    238 	 * Attach USB device.
    239 	 */
    240 	sc->sc_dev = self;
    241 	sc->sc_udev = uaa->uaa_device;
    242 
    243 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    244 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    245 	usbd_devinfo_free(devinfop);
    246 
    247 	/* check device type */
    248 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
    249 		return;
    250 
    251 	/* set configuration number */
    252 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    253 	if (error != 0) {
    254 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    255 		    ", err=%s\n", usbd_errstr(error));
    256 		return;
    257 	}
    258 
    259 	/* get the first interface handle */
    260 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    261 	    &sc->sc_iface);
    262 	if (error != 0) {
    263 		aprint_error_dev(sc->sc_dev,
    264 		    "could not get interface handle\n");
    265 		return;
    266 	}
    267 
    268 	/* find endpoints */
    269 	id = usbd_get_interface_descriptor(sc->sc_iface);
    270 	sc->sc_rx_no = sc->sc_tx_no = -1;
    271 	for (i = 0; i < id->bNumEndpoints; i++) {
    272 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    273 		if (ed == NULL) {
    274 			aprint_error_dev(sc->sc_dev,
    275 			    "no endpoint descriptor for iface %d\n", i);
    276 			return;
    277 		}
    278 
    279 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    280 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    281 			sc->sc_tx_no = ed->bEndpointAddress;
    282 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    283 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    284 			sc->sc_rx_no = ed->bEndpointAddress;
    285 
    286 		/*
    287 		 * 0x01 TX pipe
    288 		 * 0x81 RX pipe
    289 		 *
    290 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    291 		 * 0x02 TX MGMT pipe
    292 		 * 0x82 TX MGMT pipe
    293 		 */
    294 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    295 			break;
    296 	}
    297 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    298 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    299 		return;
    300 	}
    301 
    302 	/* setup tasks and timeouts */
    303 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    304 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    305 	callout_init(&sc->scan_to, 0);
    306 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    307 	callout_init(&sc->led_to, 0);
    308 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    309 
    310 	/*
    311 	 * Open TX and RX USB bulk pipes.
    312 	 */
    313 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    314 	    &sc->sc_tx_pipeh);
    315 	if (error != 0) {
    316 		aprint_error_dev(sc->sc_dev,
    317 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    318 		goto fail;
    319 	}
    320 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    321 	    &sc->sc_rx_pipeh);
    322 	if (error != 0) {
    323 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    324 		    usbd_errstr(error));
    325 		goto fail;
    326 	}
    327 
    328 	/*
    329 	 * Allocate TX, RX, and CMD xfers.
    330 	 */
    331 	if (upgt_alloc_tx(sc) != 0)
    332 		goto fail;
    333 	if (upgt_alloc_rx(sc) != 0)
    334 		goto fail;
    335 	if (upgt_alloc_cmd(sc) != 0)
    336 		goto fail;
    337 
    338 	/*
    339 	 * We need the firmware loaded from file system to complete the attach.
    340 	 */
    341 	config_mountroot(self, upgt_attach_hook);
    342 
    343 	return;
    344 fail:
    345 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    346 }
    347 
    348 static void
    349 upgt_attach_hook(device_t arg)
    350 {
    351 	struct upgt_softc *sc = device_private(arg);
    352 	struct ieee80211com *ic = &sc->sc_ic;
    353 	struct ifnet *ifp = &sc->sc_if;
    354 	usbd_status error;
    355 	int i;
    356 
    357 	/*
    358 	 * Load firmware file into memory.
    359 	 */
    360 	if (upgt_fw_alloc(sc) != 0)
    361 		goto fail;
    362 
    363 	/*
    364 	 * Initialize the device.
    365 	 */
    366 	if (upgt_device_init(sc) != 0)
    367 		goto fail;
    368 
    369 	/*
    370 	 * Verify the firmware.
    371 	 */
    372 	if (upgt_fw_verify(sc) != 0)
    373 		goto fail;
    374 
    375 	/*
    376 	 * Calculate device memory space.
    377 	 */
    378 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    379 		aprint_error_dev(sc->sc_dev,
    380 		    "could not find memory space addresses on FW\n");
    381 		goto fail;
    382 	}
    383 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    384 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    385 
    386 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    387 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    388 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    390 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    391 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    392 
    393 	upgt_mem_init(sc);
    394 
    395 	/*
    396 	 * Load the firmware.
    397 	 */
    398 	if (upgt_fw_load(sc) != 0)
    399 		goto fail;
    400 
    401 	/*
    402 	 * Startup the RX pipe.
    403 	 */
    404 	struct upgt_data *data_rx = &sc->rx_data;
    405 
    406 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
    407 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    408 	error = usbd_transfer(data_rx->xfer);
    409 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    410 		aprint_error_dev(sc->sc_dev,
    411 		    "could not queue RX transfer\n");
    412 		goto fail;
    413 	}
    414 	usbd_delay_ms(sc->sc_udev, 100);
    415 
    416 	/*
    417 	 * Read the whole EEPROM content and parse it.
    418 	 */
    419 	if (upgt_eeprom_read(sc) != 0)
    420 		goto fail;
    421 	if (upgt_eeprom_parse(sc) != 0)
    422 		goto fail;
    423 
    424 	/*
    425 	 * Setup the 802.11 device.
    426 	 */
    427 	ic->ic_ifp = ifp;
    428 	ic->ic_phytype = IEEE80211_T_OFDM;
    429 	ic->ic_opmode = IEEE80211_M_STA;
    430 	ic->ic_state = IEEE80211_S_INIT;
    431 	ic->ic_caps =
    432 	    IEEE80211_C_MONITOR |
    433 	    IEEE80211_C_SHPREAMBLE |
    434 	    IEEE80211_C_SHSLOT;
    435 
    436 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    437 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    438 
    439 	for (i = 1; i <= 14; i++) {
    440 		ic->ic_channels[i].ic_freq =
    441 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    442 		ic->ic_channels[i].ic_flags =
    443 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    444 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    445 	}
    446 
    447 	ifp->if_softc = sc;
    448 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    449 	ifp->if_init = upgt_init;
    450 	ifp->if_ioctl = upgt_ioctl;
    451 	ifp->if_start = upgt_start;
    452 	ifp->if_watchdog = upgt_watchdog;
    453 	IFQ_SET_READY(&ifp->if_snd);
    454 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    455 
    456 	if_attach(ifp);
    457 	ieee80211_ifattach(ic);
    458 	ic->ic_newassoc = upgt_newassoc;
    459 
    460 	sc->sc_newstate = ic->ic_newstate;
    461 	ic->ic_newstate = upgt_newstate;
    462 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    463 
    464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    465 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    466 	    &sc->sc_drvbpf);
    467 
    468 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    469 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    470 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    471 
    472 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    473 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    474 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    475 
    476 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    477 	    ether_sprintf(ic->ic_myaddr));
    478 
    479 	ieee80211_announce(ic);
    480 
    481 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    482 
    483 	/* device attached */
    484 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    485 
    486 	return;
    487 fail:
    488 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    489 }
    490 
    491 static int
    492 upgt_detach(device_t self, int flags)
    493 {
    494 	struct upgt_softc *sc = device_private(self);
    495 	struct ifnet *ifp = &sc->sc_if;
    496 	struct ieee80211com *ic = &sc->sc_ic;
    497 	int s;
    498 
    499 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    500 
    501 	s = splnet();
    502 
    503 	if (ifp->if_flags & IFF_RUNNING)
    504 		upgt_stop(sc);
    505 
    506 	/* remove tasks and timeouts */
    507 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    508 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    509 	callout_destroy(&sc->scan_to);
    510 	callout_destroy(&sc->led_to);
    511 
    512 	/* abort and close TX / RX pipes */
    513 	if (sc->sc_tx_pipeh != NULL) {
    514 		usbd_abort_pipe(sc->sc_tx_pipeh);
    515 	}
    516 	if (sc->sc_rx_pipeh != NULL) {
    517 		usbd_abort_pipe(sc->sc_rx_pipeh);
    518 	}
    519 
    520 	/* free xfers */
    521 	upgt_free_tx(sc);
    522 	upgt_free_rx(sc);
    523 	upgt_free_cmd(sc);
    524 
    525 	/* Close TX / RX pipes */
    526 	if (sc->sc_tx_pipeh != NULL) {
    527 		usbd_close_pipe(sc->sc_tx_pipeh);
    528 	}
    529 	if (sc->sc_rx_pipeh != NULL) {
    530 		usbd_close_pipe(sc->sc_rx_pipeh);
    531 	}
    532 
    533 	/* free firmware */
    534 	upgt_fw_free(sc);
    535 
    536 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    537 		/* detach interface */
    538 		bpf_detach(ifp);
    539 		ieee80211_ifdetach(ic);
    540 		if_detach(ifp);
    541 	}
    542 
    543 	splx(s);
    544 
    545 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    546 
    547 	return 0;
    548 }
    549 
    550 static int
    551 upgt_activate(device_t self, devact_t act)
    552 {
    553 	struct upgt_softc *sc = device_private(self);
    554 
    555 	switch (act) {
    556 	case DVACT_DEACTIVATE:
    557 		if_deactivate(&sc->sc_if);
    558 		return 0;
    559 	default:
    560 		return EOPNOTSUPP;
    561 	}
    562 }
    563 
    564 static int
    565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    566 {
    567 
    568 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    569 		sc->sc_device_type = 1;
    570 		/* XXX */
    571 		aprint_error_dev(sc->sc_dev,
    572 		    "version 1 devices not supported yet\n");
    573 		return 1;
    574 	} else
    575 		sc->sc_device_type = 2;
    576 
    577 	return 0;
    578 }
    579 
    580 static int
    581 upgt_device_init(struct upgt_softc *sc)
    582 {
    583 	struct upgt_data *data_cmd = &sc->cmd_data;
    584 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    585 	int len;
    586 
    587 	len = sizeof(init_cmd);
    588 	memcpy(data_cmd->buf, init_cmd, len);
    589 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    590 		aprint_error_dev(sc->sc_dev,
    591 		    "could not send device init string\n");
    592 		return EIO;
    593 	}
    594 	usbd_delay_ms(sc->sc_udev, 100);
    595 
    596 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    597 
    598 	return 0;
    599 }
    600 
    601 static int
    602 upgt_mem_init(struct upgt_softc *sc)
    603 {
    604 	int i;
    605 
    606 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    607 		sc->sc_memory.page[i].used = 0;
    608 
    609 		if (i == 0) {
    610 			/*
    611 			 * The first memory page is always reserved for
    612 			 * command data.
    613 			 */
    614 			sc->sc_memory.page[i].addr =
    615 			    sc->sc_memaddr_frame_start + MCLBYTES;
    616 		} else {
    617 			sc->sc_memory.page[i].addr =
    618 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    619 		}
    620 
    621 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    622 		    sc->sc_memaddr_frame_end)
    623 			break;
    624 
    625 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    626 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    627 	}
    628 
    629 	sc->sc_memory.pages = i;
    630 
    631 	DPRINTF(2, "%s: memory pages=%d\n",
    632 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    633 
    634 	return 0;
    635 }
    636 
    637 static uint32_t
    638 upgt_mem_alloc(struct upgt_softc *sc)
    639 {
    640 	int i;
    641 
    642 	for (i = 0; i < sc->sc_memory.pages; i++) {
    643 		if (sc->sc_memory.page[i].used == 0) {
    644 			sc->sc_memory.page[i].used = 1;
    645 			return sc->sc_memory.page[i].addr;
    646 		}
    647 	}
    648 
    649 	return 0;
    650 }
    651 
    652 static void
    653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    654 {
    655 	int i;
    656 
    657 	for (i = 0; i < sc->sc_memory.pages; i++) {
    658 		if (sc->sc_memory.page[i].addr == addr) {
    659 			sc->sc_memory.page[i].used = 0;
    660 			return;
    661 		}
    662 	}
    663 
    664 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    665 	    addr);
    666 }
    667 
    668 
    669 static int
    670 upgt_fw_alloc(struct upgt_softc *sc)
    671 {
    672 	const char *name = "upgt-gw3887";
    673 	int error;
    674 
    675 	if (sc->sc_fw == NULL) {
    676 		error = firmware_load("upgt", name, &sc->sc_fw,
    677 		    &sc->sc_fw_size);
    678 		if (error != 0) {
    679 			if (error == ENOENT) {
    680 				/*
    681 				 * The firmware file for upgt(4) is not in
    682 				 * the default distribution due to its lisence
    683 				 * so explicitly notify it if the firmware file
    684 				 * is not found.
    685 				 */
    686 				aprint_error_dev(sc->sc_dev,
    687 				    "firmware file %s is not installed\n",
    688 				    name);
    689 				aprint_error_dev(sc->sc_dev,
    690 				    "(it is not included in the default"
    691 				    " distribution)\n");
    692 				aprint_error_dev(sc->sc_dev,
    693 				    "see upgt(4) man page for details about "
    694 				    "firmware installation\n");
    695 			} else {
    696 				aprint_error_dev(sc->sc_dev,
    697 				    "could not read firmware %s\n", name);
    698 			}
    699 			return EIO;
    700 		}
    701 	}
    702 
    703 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    704 	    name);
    705 
    706 	return 0;
    707 }
    708 
    709 static void
    710 upgt_fw_free(struct upgt_softc *sc)
    711 {
    712 
    713 	if (sc->sc_fw != NULL) {
    714 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    715 		sc->sc_fw = NULL;
    716 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    717 	}
    718 }
    719 
    720 static int
    721 upgt_fw_verify(struct upgt_softc *sc)
    722 {
    723 	struct upgt_fw_bra_option *bra_option;
    724 	uint32_t bra_option_type, bra_option_len;
    725 	uint32_t *uc;
    726 	int offset, bra_end = 0;
    727 
    728 	/*
    729 	 * Seek to beginning of Boot Record Area (BRA).
    730 	 */
    731 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    732 		uc = (uint32_t *)(sc->sc_fw + offset);
    733 		if (*uc == 0)
    734 			break;
    735 	}
    736 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    737 		uc = (uint32_t *)(sc->sc_fw + offset);
    738 		if (*uc != 0)
    739 			break;
    740 	}
    741 	if (offset == sc->sc_fw_size) {
    742 		aprint_error_dev(sc->sc_dev,
    743 		    "firmware Boot Record Area not found\n");
    744 		return EIO;
    745 	}
    746 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    747 	    device_xname(sc->sc_dev), offset);
    748 
    749 	/*
    750 	 * Parse Boot Record Area (BRA) options.
    751 	 */
    752 	while (offset < sc->sc_fw_size && bra_end == 0) {
    753 		/* get current BRA option */
    754 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    755 		bra_option_type = le32toh(bra_option->type);
    756 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    757 
    758 		switch (bra_option_type) {
    759 		case UPGT_BRA_TYPE_FW:
    760 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    761 			    device_xname(sc->sc_dev), bra_option_len);
    762 
    763 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    764 				aprint_error_dev(sc->sc_dev,
    765 				    "wrong UPGT_BRA_TYPE_FW len\n");
    766 				return EIO;
    767 			}
    768 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    769 			    bra_option_len) == 0) {
    770 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    771 				break;
    772 			}
    773 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    774 			    bra_option_len) == 0) {
    775 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    776 				break;
    777 			}
    778 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    779 			    bra_option_len) == 0) {
    780 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    781 				break;
    782 			}
    783 			aprint_error_dev(sc->sc_dev,
    784 			    "unsupported firmware type\n");
    785 			return EIO;
    786 		case UPGT_BRA_TYPE_VERSION:
    787 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    788 			    device_xname(sc->sc_dev), bra_option_len);
    789 			break;
    790 		case UPGT_BRA_TYPE_DEPIF:
    791 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    792 			    device_xname(sc->sc_dev), bra_option_len);
    793 			break;
    794 		case UPGT_BRA_TYPE_EXPIF:
    795 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    796 			    device_xname(sc->sc_dev), bra_option_len);
    797 			break;
    798 		case UPGT_BRA_TYPE_DESCR:
    799 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    800 			    device_xname(sc->sc_dev), bra_option_len);
    801 
    802 			struct upgt_fw_bra_descr *descr =
    803 				(struct upgt_fw_bra_descr *)bra_option->data;
    804 
    805 			sc->sc_memaddr_frame_start =
    806 			    le32toh(descr->memaddr_space_start);
    807 			sc->sc_memaddr_frame_end =
    808 			    le32toh(descr->memaddr_space_end);
    809 
    810 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    811 			    device_xname(sc->sc_dev),
    812 			    sc->sc_memaddr_frame_start);
    813 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    814 			    device_xname(sc->sc_dev),
    815 			    sc->sc_memaddr_frame_end);
    816 			break;
    817 		case UPGT_BRA_TYPE_END:
    818 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    819 			    device_xname(sc->sc_dev), bra_option_len);
    820 			bra_end = 1;
    821 			break;
    822 		default:
    823 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    824 			    device_xname(sc->sc_dev), bra_option_len);
    825 			return EIO;
    826 		}
    827 
    828 		/* jump to next BRA option */
    829 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    830 	}
    831 
    832 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    833 
    834 	return 0;
    835 }
    836 
    837 static int
    838 upgt_fw_load(struct upgt_softc *sc)
    839 {
    840 	struct upgt_data *data_cmd = &sc->cmd_data;
    841 	struct upgt_data *data_rx = &sc->rx_data;
    842 	struct upgt_fw_x2_header *x2;
    843 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    844 	int offset, bsize, n, i, len;
    845 	uint32_t crc;
    846 
    847 	/* send firmware start load command */
    848 	len = sizeof(start_fwload_cmd);
    849 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    850 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    851 		aprint_error_dev(sc->sc_dev,
    852 		    "could not send start_firmware_load command\n");
    853 		return EIO;
    854 	}
    855 
    856 	/* send X2 header */
    857 	len = sizeof(struct upgt_fw_x2_header);
    858 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    859 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    860 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    861 	x2->len = htole32(sc->sc_fw_size);
    862 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    863 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    864 	    sizeof(uint32_t));
    865 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    866 		aprint_error_dev(sc->sc_dev,
    867 		    "could not send firmware X2 header\n");
    868 		return EIO;
    869 	}
    870 
    871 	/* download firmware */
    872 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    873 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    874 			bsize = UPGT_FW_BLOCK_SIZE;
    875 		else
    876 			bsize = sc->sc_fw_size - offset;
    877 
    878 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    879 
    880 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    881 		    device_xname(sc->sc_dev), offset, n, bsize);
    882 
    883 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    884 		    != 0) {
    885 			aprint_error_dev(sc->sc_dev,
    886 			    "error while downloading firmware block\n");
    887 			return EIO;
    888 		}
    889 
    890 		bsize = n;
    891 	}
    892 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    893 
    894 	/* load firmware */
    895 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    896 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    897 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    898 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    899 	len = 6;
    900 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    901 		aprint_error_dev(sc->sc_dev,
    902 		    "could not send load_firmware command\n");
    903 		return EIO;
    904 	}
    905 
    906 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    907 		len = UPGT_FW_BLOCK_SIZE;
    908 		memset(data_rx->buf, 0, 2);
    909 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    910 		    USBD_SHORT_XFER_OK) != 0) {
    911 			aprint_error_dev(sc->sc_dev,
    912 			    "could not read firmware response\n");
    913 			return EIO;
    914 		}
    915 
    916 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    917 			break;	/* firmware load was successful */
    918 	}
    919 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    920 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    921 		return EIO;
    922 	}
    923 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    924 
    925 	return 0;
    926 }
    927 
    928 /*
    929  * While copying the version 2 firmware, we need to replace two characters:
    930  *
    931  * 0x7e -> 0x7d 0x5e
    932  * 0x7d -> 0x7d 0x5d
    933  */
    934 static int
    935 upgt_fw_copy(char *src, char *dst, int size)
    936 {
    937 	int i, j;
    938 
    939 	for (i = 0, j = 0; i < size && j < size; i++) {
    940 		switch (src[i]) {
    941 		case 0x7e:
    942 			dst[j] = 0x7d;
    943 			j++;
    944 			dst[j] = 0x5e;
    945 			j++;
    946 			break;
    947 		case 0x7d:
    948 			dst[j] = 0x7d;
    949 			j++;
    950 			dst[j] = 0x5d;
    951 			j++;
    952 			break;
    953 		default:
    954 			dst[j] = src[i];
    955 			j++;
    956 			break;
    957 		}
    958 	}
    959 
    960 	return i;
    961 }
    962 
    963 static int
    964 upgt_eeprom_read(struct upgt_softc *sc)
    965 {
    966 	struct upgt_data *data_cmd = &sc->cmd_data;
    967 	struct upgt_lmac_mem *mem;
    968 	struct upgt_lmac_eeprom	*eeprom;
    969 	int offset, block, len;
    970 
    971 	offset = 0;
    972 	block = UPGT_EEPROM_BLOCK_SIZE;
    973 	while (offset < UPGT_EEPROM_SIZE) {
    974 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    975 		    device_xname(sc->sc_dev), offset, block);
    976 
    977 		/*
    978 		 * Transmit the URB containing the CMD data.
    979 		 */
    980 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    981 
    982 		memset(data_cmd->buf, 0, len);
    983 
    984 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    985 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    986 		    UPGT_MEMSIZE_FRAME_HEAD);
    987 
    988 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    989 		eeprom->header1.flags = 0;
    990 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    991 		eeprom->header1.len = htole16((
    992 		    sizeof(struct upgt_lmac_eeprom) -
    993 		    sizeof(struct upgt_lmac_header)) + block);
    994 
    995 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    996 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    997 		eeprom->header2.flags = 0;
    998 
    999 		eeprom->offset = htole16(offset);
   1000 		eeprom->len = htole16(block);
   1001 
   1002 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
   1003 		    len - sizeof(*mem));
   1004 
   1005 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
   1006 		    USBD_FORCE_SHORT_XFER) != 0) {
   1007 			aprint_error_dev(sc->sc_dev,
   1008 			    "could not transmit EEPROM data URB\n");
   1009 			return EIO;
   1010 		}
   1011 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
   1012 			aprint_error_dev(sc->sc_dev,
   1013 			    "timeout while waiting for EEPROM data\n");
   1014 			return EIO;
   1015 		}
   1016 
   1017 		offset += block;
   1018 		if (UPGT_EEPROM_SIZE - offset < block)
   1019 			block = UPGT_EEPROM_SIZE - offset;
   1020 	}
   1021 
   1022 	return 0;
   1023 }
   1024 
   1025 static int
   1026 upgt_eeprom_parse(struct upgt_softc *sc)
   1027 {
   1028 	struct ieee80211com *ic = &sc->sc_ic;
   1029 	struct upgt_eeprom_header *eeprom_header;
   1030 	struct upgt_eeprom_option *eeprom_option;
   1031 	uint16_t option_len;
   1032 	uint16_t option_type;
   1033 	uint16_t preamble_len;
   1034 	int option_end = 0;
   1035 
   1036 	/* calculate eeprom options start offset */
   1037 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1038 	preamble_len = le16toh(eeprom_header->preamble_len);
   1039 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1040 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1041 
   1042 	while (!option_end) {
   1043 		/* the eeprom option length is stored in words */
   1044 		option_len =
   1045 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1046 		option_type =
   1047 		    le16toh(eeprom_option->type);
   1048 
   1049 		switch (option_type) {
   1050 		case UPGT_EEPROM_TYPE_NAME:
   1051 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1052 			    device_xname(sc->sc_dev), option_len);
   1053 			break;
   1054 		case UPGT_EEPROM_TYPE_SERIAL:
   1055 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1056 			    device_xname(sc->sc_dev), option_len);
   1057 			break;
   1058 		case UPGT_EEPROM_TYPE_MAC:
   1059 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1060 			    device_xname(sc->sc_dev), option_len);
   1061 
   1062 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1063 			break;
   1064 		case UPGT_EEPROM_TYPE_HWRX:
   1065 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1066 			    device_xname(sc->sc_dev), option_len);
   1067 
   1068 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1069 			break;
   1070 		case UPGT_EEPROM_TYPE_CHIP:
   1071 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1072 			    device_xname(sc->sc_dev), option_len);
   1073 			break;
   1074 		case UPGT_EEPROM_TYPE_FREQ3:
   1075 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1076 			    device_xname(sc->sc_dev), option_len);
   1077 
   1078 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1079 			    option_len);
   1080 			break;
   1081 		case UPGT_EEPROM_TYPE_FREQ4:
   1082 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1083 			    device_xname(sc->sc_dev), option_len);
   1084 
   1085 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1086 			    option_len);
   1087 			break;
   1088 		case UPGT_EEPROM_TYPE_FREQ5:
   1089 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1090 			    device_xname(sc->sc_dev), option_len);
   1091 			break;
   1092 		case UPGT_EEPROM_TYPE_FREQ6:
   1093 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1094 			    device_xname(sc->sc_dev), option_len);
   1095 
   1096 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1097 			    option_len);
   1098 			break;
   1099 		case UPGT_EEPROM_TYPE_END:
   1100 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1101 			    device_xname(sc->sc_dev), option_len);
   1102 			option_end = 1;
   1103 			break;
   1104 		case UPGT_EEPROM_TYPE_OFF:
   1105 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1106 			    device_xname(sc->sc_dev));
   1107 			return EIO;
   1108 		default:
   1109 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1110 			    device_xname(sc->sc_dev), option_type, option_len);
   1111 			break;
   1112 		}
   1113 
   1114 		/* jump to next EEPROM option */
   1115 		eeprom_option = (struct upgt_eeprom_option *)
   1116 		    (eeprom_option->data + option_len);
   1117 	}
   1118 
   1119 	return 0;
   1120 }
   1121 
   1122 static void
   1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1124 {
   1125 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1126 
   1127 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1128 
   1129 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1130 
   1131 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1132 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1133 }
   1134 
   1135 static void
   1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1137 {
   1138 	struct upgt_eeprom_freq3_header *freq3_header;
   1139 	struct upgt_lmac_freq3 *freq3;
   1140 	int i, elements, flags;
   1141 	unsigned channel;
   1142 
   1143 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1144 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1145 
   1146 	flags = freq3_header->flags;
   1147 	elements = freq3_header->elements;
   1148 
   1149 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1150 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1151 	__USE(flags);
   1152 
   1153 	for (i = 0; i < elements; i++) {
   1154 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1155 
   1156 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1157 
   1158 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1159 		    device_xname(sc->sc_dev),
   1160 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1161 	}
   1162 }
   1163 
   1164 static void
   1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1166 {
   1167 	struct upgt_eeprom_freq4_header *freq4_header;
   1168 	struct upgt_eeprom_freq4_1 *freq4_1;
   1169 	struct upgt_eeprom_freq4_2 *freq4_2;
   1170 	int i, j, elements, settings, flags;
   1171 	unsigned channel;
   1172 
   1173 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1174 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1175 
   1176 	flags = freq4_header->flags;
   1177 	elements = freq4_header->elements;
   1178 	settings = freq4_header->settings;
   1179 
   1180 	/* we need this value later */
   1181 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1182 
   1183 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1184 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1185 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1186 	__USE(flags);
   1187 
   1188 	for (i = 0; i < elements; i++) {
   1189 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1190 
   1191 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1192 
   1193 		for (j = 0; j < settings; j++) {
   1194 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1195 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1196 		}
   1197 
   1198 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1199 		    device_xname(sc->sc_dev),
   1200 		    le16toh(freq4_1[i].freq), channel);
   1201 	}
   1202 }
   1203 
   1204 static void
   1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1206 {
   1207 	struct upgt_lmac_freq6 *freq6;
   1208 	int i, elements;
   1209 	unsigned channel;
   1210 
   1211 	freq6 = (struct upgt_lmac_freq6 *)data;
   1212 
   1213 	elements = len / sizeof(struct upgt_lmac_freq6);
   1214 
   1215 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1216 
   1217 	for (i = 0; i < elements; i++) {
   1218 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1219 
   1220 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1221 
   1222 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1223 		    device_xname(sc->sc_dev),
   1224 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1225 	}
   1226 }
   1227 
   1228 static int
   1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1230 {
   1231 	struct upgt_softc *sc = ifp->if_softc;
   1232 	struct ieee80211com *ic = &sc->sc_ic;
   1233 	int s, error = 0;
   1234 
   1235 	s = splnet();
   1236 
   1237 	switch (cmd) {
   1238 	case SIOCSIFFLAGS:
   1239 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1240 			break;
   1241 		if (ifp->if_flags & IFF_UP) {
   1242 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1243 				upgt_init(ifp);
   1244 		} else {
   1245 			if (ifp->if_flags & IFF_RUNNING)
   1246 				upgt_stop(sc);
   1247 		}
   1248 		break;
   1249 	case SIOCADDMULTI:
   1250 	case SIOCDELMULTI:
   1251 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1252 			/* setup multicast filter, etc */
   1253 			error = 0;
   1254 		}
   1255 		break;
   1256 	default:
   1257 		error = ieee80211_ioctl(ic, cmd, data);
   1258 		break;
   1259 	}
   1260 
   1261 	if (error == ENETRESET) {
   1262 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1263 		    (IFF_UP | IFF_RUNNING))
   1264 			upgt_init(ifp);
   1265 		error = 0;
   1266 	}
   1267 
   1268 	splx(s);
   1269 
   1270 	return error;
   1271 }
   1272 
   1273 static int
   1274 upgt_init(struct ifnet *ifp)
   1275 {
   1276 	struct upgt_softc *sc = ifp->if_softc;
   1277 	struct ieee80211com *ic = &sc->sc_ic;
   1278 
   1279 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1280 
   1281 	if (ifp->if_flags & IFF_RUNNING)
   1282 		upgt_stop(sc);
   1283 
   1284 	ifp->if_flags |= IFF_RUNNING;
   1285 	ifp->if_flags &= ~IFF_OACTIVE;
   1286 
   1287 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1288 
   1289 	/* setup device rates */
   1290 	upgt_setup_rates(sc);
   1291 
   1292 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1294 	else
   1295 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1296 
   1297 	return 0;
   1298 }
   1299 
   1300 static void
   1301 upgt_stop(struct upgt_softc *sc)
   1302 {
   1303 	struct ieee80211com *ic = &sc->sc_ic;
   1304 	struct ifnet *ifp = &sc->sc_if;
   1305 
   1306 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1307 
   1308 	/* device down */
   1309 	ifp->if_timer = 0;
   1310 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1311 
   1312 	/* change device back to initial state */
   1313 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1314 }
   1315 
   1316 static int
   1317 upgt_media_change(struct ifnet *ifp)
   1318 {
   1319 	struct upgt_softc *sc = ifp->if_softc;
   1320 	int error;
   1321 
   1322 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1323 
   1324 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
   1325 		return error;
   1326 
   1327 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1328 	    (IFF_UP | IFF_RUNNING)) {
   1329 		/* give pending USB transfers a chance to finish */
   1330 		usbd_delay_ms(sc->sc_udev, 100);
   1331 		upgt_init(ifp);
   1332 	}
   1333 
   1334 	return 0;
   1335 }
   1336 
   1337 static void
   1338 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1339 {
   1340 
   1341 	ni->ni_txrate = 0;
   1342 }
   1343 
   1344 static int
   1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1346 {
   1347 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1348 
   1349 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1350 	callout_stop(&sc->scan_to);
   1351 
   1352 	/* do it in a process context */
   1353 	sc->sc_state = nstate;
   1354 	sc->sc_arg = arg;
   1355 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1356 
   1357 	return 0;
   1358 }
   1359 
   1360 static void
   1361 upgt_newstate_task(void *arg)
   1362 {
   1363 	struct upgt_softc *sc = arg;
   1364 	struct ieee80211com *ic = &sc->sc_ic;
   1365 	struct ieee80211_node *ni;
   1366 	unsigned channel;
   1367 
   1368 	mutex_enter(&sc->sc_mtx);
   1369 
   1370 	switch (sc->sc_state) {
   1371 	case IEEE80211_S_INIT:
   1372 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1373 		    device_xname(sc->sc_dev));
   1374 
   1375 		/* do not accept any frames if the device is down */
   1376 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1377 		upgt_set_led(sc, UPGT_LED_OFF);
   1378 		break;
   1379 	case IEEE80211_S_SCAN:
   1380 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1381 		    device_xname(sc->sc_dev));
   1382 
   1383 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1384 		upgt_set_channel(sc, channel);
   1385 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1386 		callout_schedule(&sc->scan_to, hz / 5);
   1387 		break;
   1388 	case IEEE80211_S_AUTH:
   1389 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1390 		    device_xname(sc->sc_dev));
   1391 
   1392 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1393 		upgt_set_channel(sc, channel);
   1394 		break;
   1395 	case IEEE80211_S_ASSOC:
   1396 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1397 		    device_xname(sc->sc_dev));
   1398 
   1399 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1400 		upgt_set_channel(sc, channel);
   1401 		break;
   1402 	case IEEE80211_S_RUN:
   1403 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1404 		    device_xname(sc->sc_dev));
   1405 
   1406 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1407 		upgt_set_channel(sc, channel);
   1408 
   1409 		ni = ic->ic_bss;
   1410 
   1411 		/*
   1412 		 * TX rate control is done by the firmware.
   1413 		 * Report the maximum rate which is available therefore.
   1414 		 */
   1415 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1416 
   1417 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1418 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1419 		upgt_set_led(sc, UPGT_LED_ON);
   1420 		break;
   1421 	}
   1422 
   1423 	mutex_exit(&sc->sc_mtx);
   1424 
   1425 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1426 }
   1427 
   1428 static void
   1429 upgt_next_scan(void *arg)
   1430 {
   1431 	struct upgt_softc *sc = arg;
   1432 	struct ieee80211com *ic = &sc->sc_ic;
   1433 
   1434 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1435 
   1436 	if (ic->ic_state == IEEE80211_S_SCAN)
   1437 		ieee80211_next_scan(ic);
   1438 }
   1439 
   1440 static void
   1441 upgt_start(struct ifnet *ifp)
   1442 {
   1443 	struct upgt_softc *sc = ifp->if_softc;
   1444 	struct ieee80211com *ic = &sc->sc_ic;
   1445 	struct ether_header *eh;
   1446 	struct ieee80211_node *ni;
   1447 	struct mbuf *m;
   1448 	int i;
   1449 
   1450 	/* don't transmit packets if interface is busy or down */
   1451 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1452 		return;
   1453 
   1454 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1455 
   1456 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1457 		struct upgt_data *data_tx = &sc->tx_data[i];
   1458 
   1459 		if (data_tx->m != NULL)
   1460 			continue;
   1461 
   1462 		IF_POLL(&ic->ic_mgtq, m);
   1463 		if (m != NULL) {
   1464 			/* management frame */
   1465 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1466 
   1467 			ni = M_GETCTX(m, struct ieee80211_node *);
   1468 			M_CLEARCTX(m);
   1469 
   1470 			bpf_mtap3(ic->ic_rawbpf, m);
   1471 
   1472 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1473 				aprint_error_dev(sc->sc_dev,
   1474 				    "no free prism memory\n");
   1475 				m_freem(m);
   1476 				ifp->if_oerrors++;
   1477 				break;
   1478 			}
   1479 			data_tx->ni = ni;
   1480 			data_tx->m = m;
   1481 			sc->tx_queued++;
   1482 		} else {
   1483 			/* data frame */
   1484 			if (ic->ic_state != IEEE80211_S_RUN)
   1485 				break;
   1486 
   1487 			IFQ_POLL(&ifp->if_snd, m);
   1488 			if (m == NULL)
   1489 				break;
   1490 
   1491 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1492 			if (m->m_len < sizeof(struct ether_header) &&
   1493 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1494 				continue;
   1495 
   1496 			eh = mtod(m, struct ether_header *);
   1497 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1498 			if (ni == NULL) {
   1499 				m_freem(m);
   1500 				continue;
   1501 			}
   1502 
   1503 			bpf_mtap(ifp, m);
   1504 
   1505 			m = ieee80211_encap(ic, m, ni);
   1506 			if (m == NULL) {
   1507 				ieee80211_free_node(ni);
   1508 				continue;
   1509 			}
   1510 
   1511 			bpf_mtap3(ic->ic_rawbpf, m);
   1512 
   1513 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1514 				aprint_error_dev(sc->sc_dev,
   1515 				    "no free prism memory\n");
   1516 				m_freem(m);
   1517 				ieee80211_free_node(ni);
   1518 				ifp->if_oerrors++;
   1519 				break;
   1520 			}
   1521 			data_tx->ni = ni;
   1522 			data_tx->m = m;
   1523 			sc->tx_queued++;
   1524 		}
   1525 	}
   1526 
   1527 	if (sc->tx_queued > 0) {
   1528 		DPRINTF(2, "%s: tx_queued=%d\n",
   1529 		    device_xname(sc->sc_dev), sc->tx_queued);
   1530 		/* process the TX queue in process context */
   1531 		ifp->if_timer = 5;
   1532 		ifp->if_flags |= IFF_OACTIVE;
   1533 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1534 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1535 	}
   1536 }
   1537 
   1538 static void
   1539 upgt_watchdog(struct ifnet *ifp)
   1540 {
   1541 	struct upgt_softc *sc = ifp->if_softc;
   1542 	struct ieee80211com *ic = &sc->sc_ic;
   1543 
   1544 	if (ic->ic_state == IEEE80211_S_INIT)
   1545 		return;
   1546 
   1547 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1548 
   1549 	/* TODO: what shall we do on TX timeout? */
   1550 
   1551 	ieee80211_watchdog(ic);
   1552 }
   1553 
   1554 static void
   1555 upgt_tx_task(void *arg)
   1556 {
   1557 	struct upgt_softc *sc = arg;
   1558 	struct ieee80211com *ic = &sc->sc_ic;
   1559 	struct ieee80211_frame *wh;
   1560 	struct ieee80211_key *k;
   1561 	struct ifnet *ifp = &sc->sc_if;
   1562 	struct upgt_lmac_mem *mem;
   1563 	struct upgt_lmac_tx_desc *txdesc;
   1564 	struct mbuf *m;
   1565 	uint32_t addr;
   1566 	int i, len, pad, s;
   1567 	usbd_status error;
   1568 
   1569 	mutex_enter(&sc->sc_mtx);
   1570 	upgt_set_led(sc, UPGT_LED_BLINK);
   1571 	mutex_exit(&sc->sc_mtx);
   1572 
   1573 	s = splnet();
   1574 
   1575 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1576 		struct upgt_data *data_tx = &sc->tx_data[i];
   1577 
   1578 		if (data_tx->m == NULL)
   1579 			continue;
   1580 
   1581 		m = data_tx->m;
   1582 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1583 
   1584 		/*
   1585 		 * Software crypto.
   1586 		 */
   1587 		wh = mtod(m, struct ieee80211_frame *);
   1588 
   1589 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1590 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1591 			if (k == NULL) {
   1592 				m_freem(m);
   1593 				data_tx->m = NULL;
   1594 				ieee80211_free_node(data_tx->ni);
   1595 				data_tx->ni = NULL;
   1596 				ifp->if_oerrors++;
   1597 				break;
   1598 			}
   1599 
   1600 			/* in case packet header moved, reset pointer */
   1601 			wh = mtod(m, struct ieee80211_frame *);
   1602 		}
   1603 
   1604 		/*
   1605 		 * Transmit the URB containing the TX data.
   1606 		 */
   1607 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1608 
   1609 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1610 		mem->addr = htole32(addr);
   1611 
   1612 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1613 
   1614 		/* XXX differ between data and mgmt frames? */
   1615 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1616 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1617 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1618 
   1619 		txdesc->header2.reqid = htole32(data_tx->addr);
   1620 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1621 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1622 
   1623 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1624 		    IEEE80211_FC0_TYPE_MGT) {
   1625 			/* always send mgmt frames at lowest rate (DS1) */
   1626 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1627 		} else {
   1628 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1629 			    sizeof(txdesc->rates));
   1630 		}
   1631 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1632 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1633 
   1634 		if (sc->sc_drvbpf != NULL) {
   1635 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1636 
   1637 			tap->wt_flags = 0;
   1638 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1639 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1640 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1641 
   1642 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1643 		}
   1644 
   1645 		/* copy frame below our TX descriptor header */
   1646 		m_copydata(m, 0, m->m_pkthdr.len,
   1647 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1648 
   1649 		/* calculate frame size */
   1650 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1651 
   1652 		if (len & 3) {
   1653 			/* we need to align the frame to a 4 byte boundary */
   1654 			pad = 4 - (len & 3);
   1655 			memset(data_tx->buf + len, 0, pad);
   1656 			len += pad;
   1657 		}
   1658 
   1659 		/* calculate frame checksum */
   1660 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1661 		    len - sizeof(*mem));
   1662 
   1663 		/* we do not need the mbuf anymore */
   1664 		m_freem(m);
   1665 		data_tx->m = NULL;
   1666 
   1667 		ieee80211_free_node(data_tx->ni);
   1668 		data_tx->ni = NULL;
   1669 
   1670 		DPRINTF(2, "%s: TX start data sending\n",
   1671 		    device_xname(sc->sc_dev));
   1672 
   1673 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
   1674 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
   1675 		error = usbd_transfer(data_tx->xfer);
   1676 		if (error != USBD_NORMAL_COMPLETION &&
   1677 		    error != USBD_IN_PROGRESS) {
   1678 			aprint_error_dev(sc->sc_dev,
   1679 			    "could not transmit TX data URB\n");
   1680 			ifp->if_oerrors++;
   1681 			break;
   1682 		}
   1683 
   1684 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1685 		    device_xname(sc->sc_dev), len);
   1686 	}
   1687 
   1688 	splx(s);
   1689 
   1690 	/*
   1691 	 * If we don't regulary read the device statistics, the RX queue
   1692 	 * will stall.  It's strange, but it works, so we keep reading
   1693 	 * the statistics here.  *shrug*
   1694 	 */
   1695 	mutex_enter(&sc->sc_mtx);
   1696 	upgt_get_stats(sc);
   1697 	mutex_exit(&sc->sc_mtx);
   1698 }
   1699 
   1700 static void
   1701 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1702 {
   1703 	struct ifnet *ifp = &sc->sc_if;
   1704 	struct upgt_lmac_tx_done_desc *desc;
   1705 	int i, s;
   1706 
   1707 	s = splnet();
   1708 
   1709 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1710 
   1711 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1712 		struct upgt_data *data_tx = &sc->tx_data[i];
   1713 
   1714 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1715 			upgt_mem_free(sc, data_tx->addr);
   1716 			data_tx->addr = 0;
   1717 
   1718 			sc->tx_queued--;
   1719 			ifp->if_opackets++;
   1720 
   1721 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1722 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1723 			    le32toh(desc->header2.reqid),
   1724 			    le16toh(desc->status),
   1725 			    le16toh(desc->rssi));
   1726 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1727 			break;
   1728 		}
   1729 	}
   1730 
   1731 	if (sc->tx_queued == 0) {
   1732 		/* TX queued was processed, continue */
   1733 		ifp->if_timer = 0;
   1734 		ifp->if_flags &= ~IFF_OACTIVE;
   1735 		upgt_start(ifp);
   1736 	}
   1737 
   1738 	splx(s);
   1739 }
   1740 
   1741 static void
   1742 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
   1743 {
   1744 	struct upgt_data *data_rx = priv;
   1745 	struct upgt_softc *sc = data_rx->sc;
   1746 	int len;
   1747 	struct upgt_lmac_header *header;
   1748 	struct upgt_lmac_eeprom *eeprom;
   1749 	uint8_t h1_type;
   1750 	uint16_t h2_type;
   1751 
   1752 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1753 
   1754 	if (status != USBD_NORMAL_COMPLETION) {
   1755 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1756 			return;
   1757 		if (status == USBD_STALLED)
   1758 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1759 		goto skip;
   1760 	}
   1761 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1762 
   1763 	/*
   1764 	 * Check what type of frame came in.
   1765 	 */
   1766 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1767 
   1768 	h1_type = header->header1.type;
   1769 	h2_type = le16toh(header->header2.type);
   1770 
   1771 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1772 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1773 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1774 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1775 		uint16_t eeprom_len = le16toh(eeprom->len);
   1776 
   1777 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1778 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1779 
   1780 		memcpy(sc->sc_eeprom + eeprom_offset,
   1781 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1782 		    eeprom_len);
   1783 
   1784 		/* EEPROM data has arrived in time, wakeup tsleep() */
   1785 		wakeup(sc);
   1786 	} else
   1787 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1788 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1789 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1790 		    device_xname(sc->sc_dev));
   1791 
   1792 		upgt_tx_done(sc, data_rx->buf + 4);
   1793 	} else
   1794 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1795 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1796 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1797 		    device_xname(sc->sc_dev));
   1798 
   1799 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1800 	} else
   1801 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1802 	    h2_type == UPGT_H2_TYPE_STATS) {
   1803 		DPRINTF(2, "%s: received statistic data\n",
   1804 		    device_xname(sc->sc_dev));
   1805 
   1806 		/* TODO: what could we do with the statistic data? */
   1807 	} else {
   1808 		/* ignore unknown frame types */
   1809 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1810 		    device_xname(sc->sc_dev), header->header1.type);
   1811 	}
   1812 
   1813 skip:	/* setup new transfer */
   1814 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
   1815 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1816 	(void)usbd_transfer(xfer);
   1817 }
   1818 
   1819 static void
   1820 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1821 {
   1822 	struct ieee80211com *ic = &sc->sc_ic;
   1823 	struct ifnet *ifp = &sc->sc_if;
   1824 	struct upgt_lmac_rx_desc *rxdesc;
   1825 	struct ieee80211_frame *wh;
   1826 	struct ieee80211_node *ni;
   1827 	struct mbuf *m;
   1828 	int s;
   1829 
   1830 	/* access RX packet descriptor */
   1831 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1832 
   1833 	/* create mbuf which is suitable for strict alignment archs */
   1834 #define ETHER_ALIGN	0
   1835 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1836 	if (m == NULL) {
   1837 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1838 		   device_xname(sc->sc_dev));
   1839 		ifp->if_ierrors++;
   1840 		return;
   1841 	}
   1842 
   1843 	s = splnet();
   1844 
   1845 	if (sc->sc_drvbpf != NULL) {
   1846 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1847 
   1848 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1849 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1850 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1851 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1852 		tap->wr_antsignal = rxdesc->rssi;
   1853 
   1854 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1855 	}
   1856 
   1857 	/* trim FCS */
   1858 	m_adj(m, -IEEE80211_CRC_LEN);
   1859 
   1860 	wh = mtod(m, struct ieee80211_frame *);
   1861 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1862 
   1863 	/* push the frame up to the 802.11 stack */
   1864 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1865 
   1866 	/* node is no longer needed */
   1867 	ieee80211_free_node(ni);
   1868 
   1869 	splx(s);
   1870 
   1871 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1872 }
   1873 
   1874 static void
   1875 upgt_setup_rates(struct upgt_softc *sc)
   1876 {
   1877 	struct ieee80211com *ic = &sc->sc_ic;
   1878 
   1879 	/*
   1880 	 * 0x01 = OFMD6   0x10 = DS1
   1881 	 * 0x04 = OFDM9   0x11 = DS2
   1882 	 * 0x06 = OFDM12  0x12 = DS5
   1883 	 * 0x07 = OFDM18  0x13 = DS11
   1884 	 * 0x08 = OFDM24
   1885 	 * 0x09 = OFDM36
   1886 	 * 0x0a = OFDM48
   1887 	 * 0x0b = OFDM54
   1888 	 */
   1889 	const uint8_t rateset_auto_11b[] =
   1890 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1891 	const uint8_t rateset_auto_11g[] =
   1892 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1893 	const uint8_t rateset_fix_11bg[] =
   1894 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1895 	      0x08, 0x09, 0x0a, 0x0b };
   1896 
   1897 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1898 		/*
   1899 		 * Automatic rate control is done by the device.
   1900 		 * We just pass the rateset from which the device
   1901 		 * will pickup a rate.
   1902 		 */
   1903 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1904 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1905 			    sizeof(sc->sc_cur_rateset));
   1906 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1907 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1908 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1909 			    sizeof(sc->sc_cur_rateset));
   1910 	} else {
   1911 		/* set a fixed rate */
   1912 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1913 		    sizeof(sc->sc_cur_rateset));
   1914 	}
   1915 }
   1916 
   1917 static uint8_t
   1918 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1919 {
   1920 	struct ieee80211com *ic = &sc->sc_ic;
   1921 
   1922 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1923 		if (rate < 0 || rate > 3)
   1924 			/* invalid rate */
   1925 			return 0;
   1926 
   1927 		switch (rate) {
   1928 		case 0:
   1929 			return 2;
   1930 		case 1:
   1931 			return 4;
   1932 		case 2:
   1933 			return 11;
   1934 		case 3:
   1935 			return 22;
   1936 		default:
   1937 			return 0;
   1938 		}
   1939 	}
   1940 
   1941 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1942 		if (rate < 0 || rate > 11)
   1943 			/* invalid rate */
   1944 			return 0;
   1945 
   1946 		switch (rate) {
   1947 		case 0:
   1948 			return 2;
   1949 		case 1:
   1950 			return 4;
   1951 		case 2:
   1952 			return 11;
   1953 		case 3:
   1954 			return 22;
   1955 		case 4:
   1956 			return 12;
   1957 		case 5:
   1958 			return 18;
   1959 		case 6:
   1960 			return 24;
   1961 		case 7:
   1962 			return 36;
   1963 		case 8:
   1964 			return 48;
   1965 		case 9:
   1966 			return 72;
   1967 		case 10:
   1968 			return 96;
   1969 		case 11:
   1970 			return 108;
   1971 		default:
   1972 			return 0;
   1973 		}
   1974 	}
   1975 
   1976 	return 0;
   1977 }
   1978 
   1979 static int
   1980 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1981 {
   1982 	struct ieee80211com *ic = &sc->sc_ic;
   1983 	struct ieee80211_node *ni = ic->ic_bss;
   1984 	struct upgt_data *data_cmd = &sc->cmd_data;
   1985 	struct upgt_lmac_mem *mem;
   1986 	struct upgt_lmac_filter *filter;
   1987 	int len;
   1988 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1989 
   1990 	/*
   1991 	 * Transmit the URB containing the CMD data.
   1992 	 */
   1993 	len = sizeof(*mem) + sizeof(*filter);
   1994 
   1995 	memset(data_cmd->buf, 0, len);
   1996 
   1997 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   1998 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   1999 	    UPGT_MEMSIZE_FRAME_HEAD);
   2000 
   2001 	filter = (struct upgt_lmac_filter *)(mem + 1);
   2002 
   2003 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2004 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   2005 	filter->header1.len = htole16(
   2006 	    sizeof(struct upgt_lmac_filter) -
   2007 	    sizeof(struct upgt_lmac_header));
   2008 
   2009 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2010 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2011 	filter->header2.flags = 0;
   2012 
   2013 	switch (state) {
   2014 	case IEEE80211_S_INIT:
   2015 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2016 		    device_xname(sc->sc_dev));
   2017 
   2018 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2019 		break;
   2020 	case IEEE80211_S_SCAN:
   2021 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2022 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2023 
   2024 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2025 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2026 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2027 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2028 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2029 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2030 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2031 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2032 		break;
   2033 	case IEEE80211_S_RUN:
   2034 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2035 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2036 
   2037 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2038 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2039 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2040 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2041 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2042 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2043 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2044 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2045 		break;
   2046 	default:
   2047 		aprint_error_dev(sc->sc_dev,
   2048 		    "MAC filter does not know that state\n");
   2049 		break;
   2050 	}
   2051 
   2052 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2053 
   2054 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2055 		aprint_error_dev(sc->sc_dev,
   2056 		    "could not transmit macfilter CMD data URB\n");
   2057 		return EIO;
   2058 	}
   2059 
   2060 	return 0;
   2061 }
   2062 
   2063 static int
   2064 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2065 {
   2066 	struct upgt_data *data_cmd = &sc->cmd_data;
   2067 	struct upgt_lmac_mem *mem;
   2068 	struct upgt_lmac_channel *chan;
   2069 	int len;
   2070 
   2071 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2072 	    channel);
   2073 
   2074 	/*
   2075 	 * Transmit the URB containing the CMD data.
   2076 	 */
   2077 	len = sizeof(*mem) + sizeof(*chan);
   2078 
   2079 	memset(data_cmd->buf, 0, len);
   2080 
   2081 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2082 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2083 	    UPGT_MEMSIZE_FRAME_HEAD);
   2084 
   2085 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2086 
   2087 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2088 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2089 	chan->header1.len = htole16(
   2090 	    sizeof(struct upgt_lmac_channel) -
   2091 	    sizeof(struct upgt_lmac_header));
   2092 
   2093 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2094 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2095 	chan->header2.flags = 0;
   2096 
   2097 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2098 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2099 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2100 	chan->settings = sc->sc_eeprom_freq6_settings;
   2101 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2102 
   2103 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2104 	    sizeof(chan->freq3_1));
   2105 
   2106 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2107 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2108 
   2109 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2110 	    sizeof(chan->freq3_2));
   2111 
   2112 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2113 
   2114 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2115 		aprint_error_dev(sc->sc_dev,
   2116 		    "could not transmit channel CMD data URB\n");
   2117 		return EIO;
   2118 	}
   2119 
   2120 	return 0;
   2121 }
   2122 
   2123 static void
   2124 upgt_set_led(struct upgt_softc *sc, int action)
   2125 {
   2126 	struct ieee80211com *ic = &sc->sc_ic;
   2127 	struct upgt_data *data_cmd = &sc->cmd_data;
   2128 	struct upgt_lmac_mem *mem;
   2129 	struct upgt_lmac_led *led;
   2130 	struct timeval t;
   2131 	int len;
   2132 
   2133 	/*
   2134 	 * Transmit the URB containing the CMD data.
   2135 	 */
   2136 	len = sizeof(*mem) + sizeof(*led);
   2137 
   2138 	memset(data_cmd->buf, 0, len);
   2139 
   2140 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2141 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2142 	    UPGT_MEMSIZE_FRAME_HEAD);
   2143 
   2144 	led = (struct upgt_lmac_led *)(mem + 1);
   2145 
   2146 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2147 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2148 	led->header1.len = htole16(
   2149 	    sizeof(struct upgt_lmac_led) -
   2150 	    sizeof(struct upgt_lmac_header));
   2151 
   2152 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2153 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2154 	led->header2.flags = 0;
   2155 
   2156 	switch (action) {
   2157 	case UPGT_LED_OFF:
   2158 		led->mode = htole16(UPGT_LED_MODE_SET);
   2159 		led->action_fix = 0;
   2160 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2161 		led->action_tmp_dur = 0;
   2162 		break;
   2163 	case UPGT_LED_ON:
   2164 		led->mode = htole16(UPGT_LED_MODE_SET);
   2165 		led->action_fix = 0;
   2166 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2167 		led->action_tmp_dur = 0;
   2168 		break;
   2169 	case UPGT_LED_BLINK:
   2170 		if (ic->ic_state != IEEE80211_S_RUN)
   2171 			return;
   2172 		if (sc->sc_led_blink)
   2173 			/* previous blink was not finished */
   2174 			return;
   2175 		led->mode = htole16(UPGT_LED_MODE_SET);
   2176 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2177 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2178 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2179 		/* lock blink */
   2180 		sc->sc_led_blink = 1;
   2181 		t.tv_sec = 0;
   2182 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2183 		callout_schedule(&sc->led_to, tvtohz(&t));
   2184 		break;
   2185 	default:
   2186 		return;
   2187 	}
   2188 
   2189 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2190 
   2191 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2192 		aprint_error_dev(sc->sc_dev,
   2193 		    "could not transmit led CMD URB\n");
   2194 	}
   2195 }
   2196 
   2197 static void
   2198 upgt_set_led_blink(void *arg)
   2199 {
   2200 	struct upgt_softc *sc = arg;
   2201 
   2202 	/* blink finished, we are ready for a next one */
   2203 	sc->sc_led_blink = 0;
   2204 	callout_stop(&sc->led_to);
   2205 }
   2206 
   2207 static int
   2208 upgt_get_stats(struct upgt_softc *sc)
   2209 {
   2210 	struct upgt_data *data_cmd = &sc->cmd_data;
   2211 	struct upgt_lmac_mem *mem;
   2212 	struct upgt_lmac_stats *stats;
   2213 	int len;
   2214 
   2215 	/*
   2216 	 * Transmit the URB containing the CMD data.
   2217 	 */
   2218 	len = sizeof(*mem) + sizeof(*stats);
   2219 
   2220 	memset(data_cmd->buf, 0, len);
   2221 
   2222 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2223 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2224 	    UPGT_MEMSIZE_FRAME_HEAD);
   2225 
   2226 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2227 
   2228 	stats->header1.flags = 0;
   2229 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2230 	stats->header1.len = htole16(
   2231 	    sizeof(struct upgt_lmac_stats) -
   2232 	    sizeof(struct upgt_lmac_header));
   2233 
   2234 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2235 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2236 	stats->header2.flags = 0;
   2237 
   2238 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2239 
   2240 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2241 		aprint_error_dev(sc->sc_dev,
   2242 		    "could not transmit statistics CMD data URB\n");
   2243 		return EIO;
   2244 	}
   2245 
   2246 	return 0;
   2247 
   2248 }
   2249 
   2250 static int
   2251 upgt_alloc_tx(struct upgt_softc *sc)
   2252 {
   2253 	int i;
   2254 
   2255 	sc->tx_queued = 0;
   2256 
   2257 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2258 		struct upgt_data *data_tx = &sc->tx_data[i];
   2259 
   2260 		data_tx->sc = sc;
   2261 
   2262 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2263 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
   2264 		if (err) {
   2265 			aprint_error_dev(sc->sc_dev,
   2266 			    "could not allocate TX xfer\n");
   2267 			return err;
   2268 		}
   2269 
   2270 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
   2271 	}
   2272 
   2273 	return 0;
   2274 }
   2275 
   2276 static int
   2277 upgt_alloc_rx(struct upgt_softc *sc)
   2278 {
   2279 	struct upgt_data *data_rx = &sc->rx_data;
   2280 
   2281 	data_rx->sc = sc;
   2282 
   2283 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
   2284 	    0, 0, &data_rx->xfer);
   2285 	if (err) {
   2286 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2287 		return err;
   2288 	}
   2289 
   2290 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
   2291 
   2292 	return 0;
   2293 }
   2294 
   2295 static int
   2296 upgt_alloc_cmd(struct upgt_softc *sc)
   2297 {
   2298 	struct upgt_data *data_cmd = &sc->cmd_data;
   2299 
   2300 	data_cmd->sc = sc;
   2301 
   2302 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2303 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
   2304 	if (err) {
   2305 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2306 		return err;
   2307 	}
   2308 
   2309 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
   2310 
   2311 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
   2312 
   2313 	return 0;
   2314 }
   2315 
   2316 static void
   2317 upgt_free_tx(struct upgt_softc *sc)
   2318 {
   2319 	int i;
   2320 
   2321 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2322 		struct upgt_data *data_tx = &sc->tx_data[i];
   2323 
   2324 		if (data_tx->xfer != NULL) {
   2325 			usbd_destroy_xfer(data_tx->xfer);
   2326 			data_tx->xfer = NULL;
   2327 		}
   2328 
   2329 		data_tx->ni = NULL;
   2330 	}
   2331 }
   2332 
   2333 static void
   2334 upgt_free_rx(struct upgt_softc *sc)
   2335 {
   2336 	struct upgt_data *data_rx = &sc->rx_data;
   2337 
   2338 	if (data_rx->xfer != NULL) {
   2339 		usbd_destroy_xfer(data_rx->xfer);
   2340 		data_rx->xfer = NULL;
   2341 	}
   2342 
   2343 	data_rx->ni = NULL;
   2344 }
   2345 
   2346 static void
   2347 upgt_free_cmd(struct upgt_softc *sc)
   2348 {
   2349 	struct upgt_data *data_cmd = &sc->cmd_data;
   2350 
   2351 	if (data_cmd->xfer != NULL) {
   2352 		usbd_destroy_xfer(data_cmd->xfer);
   2353 		data_cmd->xfer = NULL;
   2354 	}
   2355 
   2356 	mutex_destroy(&sc->sc_mtx);
   2357 }
   2358 
   2359 static int
   2360 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2361     struct usbd_pipe *pipeh, uint32_t *size, int flags)
   2362 {
   2363         usbd_status status;
   2364 
   2365 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
   2366 	    data->buf, size);
   2367 	if (status != USBD_NORMAL_COMPLETION) {
   2368 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2369 		    usbd_errstr(status));
   2370 		return EIO;
   2371 	}
   2372 
   2373 	return 0;
   2374 }
   2375 
   2376 #if 0
   2377 static void
   2378 upgt_hexdump(void *buf, int len)
   2379 {
   2380 	int i;
   2381 
   2382 	for (i = 0; i < len; i++) {
   2383 		if (i % 16 == 0)
   2384 			printf("%s%5i:", i ? "\n" : "", i);
   2385 		if (i % 4 == 0)
   2386 			printf(" ");
   2387 		printf("%02x", (int)*((uint8_t *)buf + i));
   2388 	}
   2389 	printf("\n");
   2390 }
   2391 #endif
   2392 
   2393 static uint32_t
   2394 upgt_crc32_le(const void *buf, size_t size)
   2395 {
   2396 	uint32_t crc;
   2397 
   2398 	crc = ether_crc32_le(buf, size);
   2399 
   2400 	/* apply final XOR value as common for CRC-32 */
   2401 	crc = htole32(crc ^ 0xffffffffU);
   2402 
   2403 	return crc;
   2404 }
   2405 
   2406 /*
   2407  * The firmware awaits a checksum for each frame we send to it.
   2408  * The algorithm used is uncommon but somehow similar to CRC32.
   2409  */
   2410 static uint32_t
   2411 upgt_chksum_le(const uint32_t *buf, size_t size)
   2412 {
   2413 	int i;
   2414 	uint32_t crc = 0;
   2415 
   2416 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2417 		crc = htole32(crc ^ *buf++);
   2418 		crc = htole32((crc >> 5) ^ (crc << 3));
   2419 	}
   2420 
   2421 	return crc;
   2422 }
   2423