if_upgt.c revision 1.19 1 /* $NetBSD: if_upgt.c,v 1.19 2018/02/08 09:05:20 dholland Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.19 2018/02/08 09:05:20 dholland Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 &sc->sc_drvbpf);
467
468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471
472 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475
476 aprint_normal_dev(sc->sc_dev, "address %s\n",
477 ether_sprintf(ic->ic_myaddr));
478
479 ieee80211_announce(ic);
480
481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482
483 /* device attached */
484 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485
486 return;
487 fail:
488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 struct upgt_softc *sc = device_private(self);
495 struct ifnet *ifp = &sc->sc_if;
496 struct ieee80211com *ic = &sc->sc_ic;
497 int s;
498
499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500
501 s = splnet();
502
503 if (ifp->if_flags & IFF_RUNNING)
504 upgt_stop(sc);
505
506 /* remove tasks and timeouts */
507 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
508 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
509 callout_destroy(&sc->scan_to);
510 callout_destroy(&sc->led_to);
511
512 /* abort and close TX / RX pipes */
513 if (sc->sc_tx_pipeh != NULL) {
514 usbd_abort_pipe(sc->sc_tx_pipeh);
515 }
516 if (sc->sc_rx_pipeh != NULL) {
517 usbd_abort_pipe(sc->sc_rx_pipeh);
518 }
519
520 /* free xfers */
521 upgt_free_tx(sc);
522 upgt_free_rx(sc);
523 upgt_free_cmd(sc);
524
525 /* Close TX / RX pipes */
526 if (sc->sc_tx_pipeh != NULL) {
527 usbd_close_pipe(sc->sc_tx_pipeh);
528 }
529 if (sc->sc_rx_pipeh != NULL) {
530 usbd_close_pipe(sc->sc_rx_pipeh);
531 }
532
533 /* free firmware */
534 upgt_fw_free(sc);
535
536 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
537 /* detach interface */
538 bpf_detach(ifp);
539 ieee80211_ifdetach(ic);
540 if_detach(ifp);
541 }
542
543 splx(s);
544
545 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
546
547 return 0;
548 }
549
550 static int
551 upgt_activate(device_t self, devact_t act)
552 {
553 struct upgt_softc *sc = device_private(self);
554
555 switch (act) {
556 case DVACT_DEACTIVATE:
557 if_deactivate(&sc->sc_if);
558 return 0;
559 default:
560 return EOPNOTSUPP;
561 }
562 }
563
564 static int
565 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
566 {
567
568 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
569 sc->sc_device_type = 1;
570 /* XXX */
571 aprint_error_dev(sc->sc_dev,
572 "version 1 devices not supported yet\n");
573 return 1;
574 } else
575 sc->sc_device_type = 2;
576
577 return 0;
578 }
579
580 static int
581 upgt_device_init(struct upgt_softc *sc)
582 {
583 struct upgt_data *data_cmd = &sc->cmd_data;
584 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
585 int len;
586
587 len = sizeof(init_cmd);
588 memcpy(data_cmd->buf, init_cmd, len);
589 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
590 aprint_error_dev(sc->sc_dev,
591 "could not send device init string\n");
592 return EIO;
593 }
594 usbd_delay_ms(sc->sc_udev, 100);
595
596 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
597
598 return 0;
599 }
600
601 static int
602 upgt_mem_init(struct upgt_softc *sc)
603 {
604 int i;
605
606 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
607 sc->sc_memory.page[i].used = 0;
608
609 if (i == 0) {
610 /*
611 * The first memory page is always reserved for
612 * command data.
613 */
614 sc->sc_memory.page[i].addr =
615 sc->sc_memaddr_frame_start + MCLBYTES;
616 } else {
617 sc->sc_memory.page[i].addr =
618 sc->sc_memory.page[i - 1].addr + MCLBYTES;
619 }
620
621 if (sc->sc_memory.page[i].addr + MCLBYTES >=
622 sc->sc_memaddr_frame_end)
623 break;
624
625 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
626 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
627 }
628
629 sc->sc_memory.pages = i;
630
631 DPRINTF(2, "%s: memory pages=%d\n",
632 device_xname(sc->sc_dev), sc->sc_memory.pages);
633
634 return 0;
635 }
636
637 static uint32_t
638 upgt_mem_alloc(struct upgt_softc *sc)
639 {
640 int i;
641
642 for (i = 0; i < sc->sc_memory.pages; i++) {
643 if (sc->sc_memory.page[i].used == 0) {
644 sc->sc_memory.page[i].used = 1;
645 return sc->sc_memory.page[i].addr;
646 }
647 }
648
649 return 0;
650 }
651
652 static void
653 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
654 {
655 int i;
656
657 for (i = 0; i < sc->sc_memory.pages; i++) {
658 if (sc->sc_memory.page[i].addr == addr) {
659 sc->sc_memory.page[i].used = 0;
660 return;
661 }
662 }
663
664 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
665 addr);
666 }
667
668
669 static int
670 upgt_fw_alloc(struct upgt_softc *sc)
671 {
672 const char *name = "upgt-gw3887";
673 int error;
674
675 if (sc->sc_fw == NULL) {
676 error = firmware_load("upgt", name, &sc->sc_fw,
677 &sc->sc_fw_size);
678 if (error != 0) {
679 if (error == ENOENT) {
680 /*
681 * The firmware file for upgt(4) is not in
682 * the default distribution due to its lisence
683 * so explicitly notify it if the firmware file
684 * is not found.
685 */
686 aprint_error_dev(sc->sc_dev,
687 "firmware file %s is not installed\n",
688 name);
689 aprint_error_dev(sc->sc_dev,
690 "(it is not included in the default"
691 " distribution)\n");
692 aprint_error_dev(sc->sc_dev,
693 "see upgt(4) man page for details about "
694 "firmware installation\n");
695 } else {
696 aprint_error_dev(sc->sc_dev,
697 "could not read firmware %s\n", name);
698 }
699 return EIO;
700 }
701 }
702
703 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
704 name);
705
706 return 0;
707 }
708
709 static void
710 upgt_fw_free(struct upgt_softc *sc)
711 {
712
713 if (sc->sc_fw != NULL) {
714 firmware_free(sc->sc_fw, sc->sc_fw_size);
715 sc->sc_fw = NULL;
716 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
717 }
718 }
719
720 static int
721 upgt_fw_verify(struct upgt_softc *sc)
722 {
723 struct upgt_fw_bra_option *bra_option;
724 uint32_t bra_option_type, bra_option_len;
725 uint32_t *uc;
726 int offset, bra_end = 0;
727
728 /*
729 * Seek to beginning of Boot Record Area (BRA).
730 */
731 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
732 uc = (uint32_t *)(sc->sc_fw + offset);
733 if (*uc == 0)
734 break;
735 }
736 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
737 uc = (uint32_t *)(sc->sc_fw + offset);
738 if (*uc != 0)
739 break;
740 }
741 if (offset == sc->sc_fw_size) {
742 aprint_error_dev(sc->sc_dev,
743 "firmware Boot Record Area not found\n");
744 return EIO;
745 }
746 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
747 device_xname(sc->sc_dev), offset);
748
749 /*
750 * Parse Boot Record Area (BRA) options.
751 */
752 while (offset < sc->sc_fw_size && bra_end == 0) {
753 /* get current BRA option */
754 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
755 bra_option_type = le32toh(bra_option->type);
756 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
757
758 switch (bra_option_type) {
759 case UPGT_BRA_TYPE_FW:
760 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
761 device_xname(sc->sc_dev), bra_option_len);
762
763 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
764 aprint_error_dev(sc->sc_dev,
765 "wrong UPGT_BRA_TYPE_FW len\n");
766 return EIO;
767 }
768 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
769 bra_option_len) == 0) {
770 sc->sc_fw_type = UPGT_FWTYPE_LM86;
771 break;
772 }
773 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
774 bra_option_len) == 0) {
775 sc->sc_fw_type = UPGT_FWTYPE_LM87;
776 break;
777 }
778 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
779 bra_option_len) == 0) {
780 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
781 break;
782 }
783 aprint_error_dev(sc->sc_dev,
784 "unsupported firmware type\n");
785 return EIO;
786 case UPGT_BRA_TYPE_VERSION:
787 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
788 device_xname(sc->sc_dev), bra_option_len);
789 break;
790 case UPGT_BRA_TYPE_DEPIF:
791 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
792 device_xname(sc->sc_dev), bra_option_len);
793 break;
794 case UPGT_BRA_TYPE_EXPIF:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 break;
798 case UPGT_BRA_TYPE_DESCR:
799 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
800 device_xname(sc->sc_dev), bra_option_len);
801
802 struct upgt_fw_bra_descr *descr =
803 (struct upgt_fw_bra_descr *)bra_option->data;
804
805 sc->sc_memaddr_frame_start =
806 le32toh(descr->memaddr_space_start);
807 sc->sc_memaddr_frame_end =
808 le32toh(descr->memaddr_space_end);
809
810 DPRINTF(2, "%s: memory address space start=0x%08x\n",
811 device_xname(sc->sc_dev),
812 sc->sc_memaddr_frame_start);
813 DPRINTF(2, "%s: memory address space end=0x%08x\n",
814 device_xname(sc->sc_dev),
815 sc->sc_memaddr_frame_end);
816 break;
817 case UPGT_BRA_TYPE_END:
818 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
819 device_xname(sc->sc_dev), bra_option_len);
820 bra_end = 1;
821 break;
822 default:
823 DPRINTF(1, "%s: unknown BRA option len=%d\n",
824 device_xname(sc->sc_dev), bra_option_len);
825 return EIO;
826 }
827
828 /* jump to next BRA option */
829 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
830 }
831
832 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
833
834 return 0;
835 }
836
837 static int
838 upgt_fw_load(struct upgt_softc *sc)
839 {
840 struct upgt_data *data_cmd = &sc->cmd_data;
841 struct upgt_data *data_rx = &sc->rx_data;
842 struct upgt_fw_x2_header *x2;
843 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
844 int offset, bsize, n, i, len;
845 uint32_t crc;
846
847 /* send firmware start load command */
848 len = sizeof(start_fwload_cmd);
849 memcpy(data_cmd->buf, start_fwload_cmd, len);
850 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
851 aprint_error_dev(sc->sc_dev,
852 "could not send start_firmware_load command\n");
853 return EIO;
854 }
855
856 /* send X2 header */
857 len = sizeof(struct upgt_fw_x2_header);
858 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
859 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
860 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
861 x2->len = htole32(sc->sc_fw_size);
862 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
863 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
864 sizeof(uint32_t));
865 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
866 aprint_error_dev(sc->sc_dev,
867 "could not send firmware X2 header\n");
868 return EIO;
869 }
870
871 /* download firmware */
872 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
873 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
874 bsize = UPGT_FW_BLOCK_SIZE;
875 else
876 bsize = sc->sc_fw_size - offset;
877
878 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
879
880 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
881 device_xname(sc->sc_dev), offset, n, bsize);
882
883 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
884 != 0) {
885 aprint_error_dev(sc->sc_dev,
886 "error while downloading firmware block\n");
887 return EIO;
888 }
889
890 bsize = n;
891 }
892 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
893
894 /* load firmware */
895 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
896 *((uint32_t *)(data_cmd->buf) ) = crc;
897 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
898 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
899 len = 6;
900 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
901 aprint_error_dev(sc->sc_dev,
902 "could not send load_firmware command\n");
903 return EIO;
904 }
905
906 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
907 len = UPGT_FW_BLOCK_SIZE;
908 memset(data_rx->buf, 0, 2);
909 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
910 USBD_SHORT_XFER_OK) != 0) {
911 aprint_error_dev(sc->sc_dev,
912 "could not read firmware response\n");
913 return EIO;
914 }
915
916 if (memcmp(data_rx->buf, "OK", 2) == 0)
917 break; /* firmware load was successful */
918 }
919 if (i == UPGT_FIRMWARE_TIMEOUT) {
920 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
921 return EIO;
922 }
923 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
924
925 return 0;
926 }
927
928 /*
929 * While copying the version 2 firmware, we need to replace two characters:
930 *
931 * 0x7e -> 0x7d 0x5e
932 * 0x7d -> 0x7d 0x5d
933 */
934 static int
935 upgt_fw_copy(char *src, char *dst, int size)
936 {
937 int i, j;
938
939 for (i = 0, j = 0; i < size && j < size; i++) {
940 switch (src[i]) {
941 case 0x7e:
942 dst[j] = 0x7d;
943 j++;
944 dst[j] = 0x5e;
945 j++;
946 break;
947 case 0x7d:
948 dst[j] = 0x7d;
949 j++;
950 dst[j] = 0x5d;
951 j++;
952 break;
953 default:
954 dst[j] = src[i];
955 j++;
956 break;
957 }
958 }
959
960 return i;
961 }
962
963 static int
964 upgt_eeprom_read(struct upgt_softc *sc)
965 {
966 struct upgt_data *data_cmd = &sc->cmd_data;
967 struct upgt_lmac_mem *mem;
968 struct upgt_lmac_eeprom *eeprom;
969 int offset, block, len;
970
971 offset = 0;
972 block = UPGT_EEPROM_BLOCK_SIZE;
973 while (offset < UPGT_EEPROM_SIZE) {
974 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
975 device_xname(sc->sc_dev), offset, block);
976
977 /*
978 * Transmit the URB containing the CMD data.
979 */
980 len = sizeof(*mem) + sizeof(*eeprom) + block;
981
982 memset(data_cmd->buf, 0, len);
983
984 mem = (struct upgt_lmac_mem *)data_cmd->buf;
985 mem->addr = htole32(sc->sc_memaddr_frame_start +
986 UPGT_MEMSIZE_FRAME_HEAD);
987
988 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
989 eeprom->header1.flags = 0;
990 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
991 eeprom->header1.len = htole16((
992 sizeof(struct upgt_lmac_eeprom) -
993 sizeof(struct upgt_lmac_header)) + block);
994
995 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
996 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
997 eeprom->header2.flags = 0;
998
999 eeprom->offset = htole16(offset);
1000 eeprom->len = htole16(block);
1001
1002 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1003 len - sizeof(*mem));
1004
1005 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1006 USBD_FORCE_SHORT_XFER) != 0) {
1007 aprint_error_dev(sc->sc_dev,
1008 "could not transmit EEPROM data URB\n");
1009 return EIO;
1010 }
1011 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1012 aprint_error_dev(sc->sc_dev,
1013 "timeout while waiting for EEPROM data\n");
1014 return EIO;
1015 }
1016
1017 offset += block;
1018 if (UPGT_EEPROM_SIZE - offset < block)
1019 block = UPGT_EEPROM_SIZE - offset;
1020 }
1021
1022 return 0;
1023 }
1024
1025 static int
1026 upgt_eeprom_parse(struct upgt_softc *sc)
1027 {
1028 struct ieee80211com *ic = &sc->sc_ic;
1029 struct upgt_eeprom_header *eeprom_header;
1030 struct upgt_eeprom_option *eeprom_option;
1031 uint16_t option_len;
1032 uint16_t option_type;
1033 uint16_t preamble_len;
1034 int option_end = 0;
1035
1036 /* calculate eeprom options start offset */
1037 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1038 preamble_len = le16toh(eeprom_header->preamble_len);
1039 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1040 (sizeof(struct upgt_eeprom_header) + preamble_len));
1041
1042 while (!option_end) {
1043 /* the eeprom option length is stored in words */
1044 option_len =
1045 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1046 option_type =
1047 le16toh(eeprom_option->type);
1048
1049 switch (option_type) {
1050 case UPGT_EEPROM_TYPE_NAME:
1051 DPRINTF(1, "%s: EEPROM name len=%d\n",
1052 device_xname(sc->sc_dev), option_len);
1053 break;
1054 case UPGT_EEPROM_TYPE_SERIAL:
1055 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1056 device_xname(sc->sc_dev), option_len);
1057 break;
1058 case UPGT_EEPROM_TYPE_MAC:
1059 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061
1062 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1063 break;
1064 case UPGT_EEPROM_TYPE_HWRX:
1065 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1066 device_xname(sc->sc_dev), option_len);
1067
1068 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1069 break;
1070 case UPGT_EEPROM_TYPE_CHIP:
1071 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1072 device_xname(sc->sc_dev), option_len);
1073 break;
1074 case UPGT_EEPROM_TYPE_FREQ3:
1075 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1076 device_xname(sc->sc_dev), option_len);
1077
1078 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1079 option_len);
1080 break;
1081 case UPGT_EEPROM_TYPE_FREQ4:
1082 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1083 device_xname(sc->sc_dev), option_len);
1084
1085 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1086 option_len);
1087 break;
1088 case UPGT_EEPROM_TYPE_FREQ5:
1089 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1090 device_xname(sc->sc_dev), option_len);
1091 break;
1092 case UPGT_EEPROM_TYPE_FREQ6:
1093 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1094 device_xname(sc->sc_dev), option_len);
1095
1096 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1097 option_len);
1098 break;
1099 case UPGT_EEPROM_TYPE_END:
1100 DPRINTF(1, "%s: EEPROM end len=%d\n",
1101 device_xname(sc->sc_dev), option_len);
1102 option_end = 1;
1103 break;
1104 case UPGT_EEPROM_TYPE_OFF:
1105 DPRINTF(1, "%s: EEPROM off without end option\n",
1106 device_xname(sc->sc_dev));
1107 return EIO;
1108 default:
1109 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1110 device_xname(sc->sc_dev), option_type, option_len);
1111 break;
1112 }
1113
1114 /* jump to next EEPROM option */
1115 eeprom_option = (struct upgt_eeprom_option *)
1116 (eeprom_option->data + option_len);
1117 }
1118
1119 return 0;
1120 }
1121
1122 static void
1123 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1124 {
1125 struct upgt_eeprom_option_hwrx *option_hwrx;
1126
1127 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1128
1129 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1130
1131 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1132 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1133 }
1134
1135 static void
1136 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1137 {
1138 struct upgt_eeprom_freq3_header *freq3_header;
1139 struct upgt_lmac_freq3 *freq3;
1140 int i, elements, flags;
1141 unsigned channel;
1142
1143 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1144 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1145
1146 flags = freq3_header->flags;
1147 elements = freq3_header->elements;
1148
1149 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1150 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1151 __USE(flags);
1152
1153 for (i = 0; i < elements; i++) {
1154 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1155
1156 sc->sc_eeprom_freq3[channel] = freq3[i];
1157
1158 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1159 device_xname(sc->sc_dev),
1160 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1161 }
1162 }
1163
1164 static void
1165 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1166 {
1167 struct upgt_eeprom_freq4_header *freq4_header;
1168 struct upgt_eeprom_freq4_1 *freq4_1;
1169 struct upgt_eeprom_freq4_2 *freq4_2;
1170 int i, j, elements, settings, flags;
1171 unsigned channel;
1172
1173 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1174 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1175
1176 flags = freq4_header->flags;
1177 elements = freq4_header->elements;
1178 settings = freq4_header->settings;
1179
1180 /* we need this value later */
1181 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1182
1183 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1184 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1185 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1186 __USE(flags);
1187
1188 for (i = 0; i < elements; i++) {
1189 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1190
1191 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1192
1193 for (j = 0; j < settings; j++) {
1194 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1195 sc->sc_eeprom_freq4[channel][j].pad = 0;
1196 }
1197
1198 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1199 device_xname(sc->sc_dev),
1200 le16toh(freq4_1[i].freq), channel);
1201 }
1202 }
1203
1204 static void
1205 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1206 {
1207 struct upgt_lmac_freq6 *freq6;
1208 int i, elements;
1209 unsigned channel;
1210
1211 freq6 = (struct upgt_lmac_freq6 *)data;
1212
1213 elements = len / sizeof(struct upgt_lmac_freq6);
1214
1215 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1216
1217 for (i = 0; i < elements; i++) {
1218 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1219
1220 sc->sc_eeprom_freq6[channel] = freq6[i];
1221
1222 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1223 device_xname(sc->sc_dev),
1224 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1225 }
1226 }
1227
1228 static int
1229 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1230 {
1231 struct upgt_softc *sc = ifp->if_softc;
1232 struct ieee80211com *ic = &sc->sc_ic;
1233 int s, error = 0;
1234
1235 s = splnet();
1236
1237 switch (cmd) {
1238 case SIOCSIFFLAGS:
1239 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1240 break;
1241 if (ifp->if_flags & IFF_UP) {
1242 if ((ifp->if_flags & IFF_RUNNING) == 0)
1243 upgt_init(ifp);
1244 } else {
1245 if (ifp->if_flags & IFF_RUNNING)
1246 upgt_stop(sc);
1247 }
1248 break;
1249 case SIOCADDMULTI:
1250 case SIOCDELMULTI:
1251 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1252 /* setup multicast filter, etc */
1253 error = 0;
1254 }
1255 break;
1256 default:
1257 error = ieee80211_ioctl(ic, cmd, data);
1258 break;
1259 }
1260
1261 if (error == ENETRESET) {
1262 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1263 (IFF_UP | IFF_RUNNING))
1264 upgt_init(ifp);
1265 error = 0;
1266 }
1267
1268 splx(s);
1269
1270 return error;
1271 }
1272
1273 static int
1274 upgt_init(struct ifnet *ifp)
1275 {
1276 struct upgt_softc *sc = ifp->if_softc;
1277 struct ieee80211com *ic = &sc->sc_ic;
1278
1279 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1280
1281 if (ifp->if_flags & IFF_RUNNING)
1282 upgt_stop(sc);
1283
1284 ifp->if_flags |= IFF_RUNNING;
1285 ifp->if_flags &= ~IFF_OACTIVE;
1286
1287 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1288
1289 /* setup device rates */
1290 upgt_setup_rates(sc);
1291
1292 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1293 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1294 else
1295 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1296
1297 return 0;
1298 }
1299
1300 static void
1301 upgt_stop(struct upgt_softc *sc)
1302 {
1303 struct ieee80211com *ic = &sc->sc_ic;
1304 struct ifnet *ifp = &sc->sc_if;
1305
1306 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1307
1308 /* device down */
1309 ifp->if_timer = 0;
1310 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1311
1312 /* change device back to initial state */
1313 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1314 }
1315
1316 static int
1317 upgt_media_change(struct ifnet *ifp)
1318 {
1319 struct upgt_softc *sc = ifp->if_softc;
1320 int error;
1321
1322 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1323
1324 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1325 return error;
1326
1327 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1328 (IFF_UP | IFF_RUNNING)) {
1329 /* give pending USB transfers a chance to finish */
1330 usbd_delay_ms(sc->sc_udev, 100);
1331 upgt_init(ifp);
1332 }
1333
1334 return 0;
1335 }
1336
1337 static void
1338 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1339 {
1340
1341 ni->ni_txrate = 0;
1342 }
1343
1344 static int
1345 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1346 {
1347 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1348
1349 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1350 callout_stop(&sc->scan_to);
1351
1352 /* do it in a process context */
1353 sc->sc_state = nstate;
1354 sc->sc_arg = arg;
1355 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1356
1357 return 0;
1358 }
1359
1360 static void
1361 upgt_newstate_task(void *arg)
1362 {
1363 struct upgt_softc *sc = arg;
1364 struct ieee80211com *ic = &sc->sc_ic;
1365 struct ieee80211_node *ni;
1366 unsigned channel;
1367
1368 mutex_enter(&sc->sc_mtx);
1369
1370 switch (sc->sc_state) {
1371 case IEEE80211_S_INIT:
1372 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1373 device_xname(sc->sc_dev));
1374
1375 /* do not accept any frames if the device is down */
1376 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1377 upgt_set_led(sc, UPGT_LED_OFF);
1378 break;
1379 case IEEE80211_S_SCAN:
1380 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1381 device_xname(sc->sc_dev));
1382
1383 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1384 upgt_set_channel(sc, channel);
1385 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1386 callout_schedule(&sc->scan_to, hz / 5);
1387 break;
1388 case IEEE80211_S_AUTH:
1389 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1390 device_xname(sc->sc_dev));
1391
1392 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 upgt_set_channel(sc, channel);
1394 break;
1395 case IEEE80211_S_ASSOC:
1396 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1397 device_xname(sc->sc_dev));
1398
1399 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1400 upgt_set_channel(sc, channel);
1401 break;
1402 case IEEE80211_S_RUN:
1403 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1404 device_xname(sc->sc_dev));
1405
1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 upgt_set_channel(sc, channel);
1408
1409 ni = ic->ic_bss;
1410
1411 /*
1412 * TX rate control is done by the firmware.
1413 * Report the maximum rate which is available therefore.
1414 */
1415 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1416
1417 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1418 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1419 upgt_set_led(sc, UPGT_LED_ON);
1420 break;
1421 }
1422
1423 mutex_exit(&sc->sc_mtx);
1424
1425 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1426 }
1427
1428 static void
1429 upgt_next_scan(void *arg)
1430 {
1431 struct upgt_softc *sc = arg;
1432 struct ieee80211com *ic = &sc->sc_ic;
1433
1434 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1435
1436 if (ic->ic_state == IEEE80211_S_SCAN)
1437 ieee80211_next_scan(ic);
1438 }
1439
1440 static void
1441 upgt_start(struct ifnet *ifp)
1442 {
1443 struct upgt_softc *sc = ifp->if_softc;
1444 struct ieee80211com *ic = &sc->sc_ic;
1445 struct ether_header *eh;
1446 struct ieee80211_node *ni;
1447 struct mbuf *m;
1448 int i;
1449
1450 /* don't transmit packets if interface is busy or down */
1451 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1452 return;
1453
1454 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1455
1456 for (i = 0; i < UPGT_TX_COUNT; i++) {
1457 struct upgt_data *data_tx = &sc->tx_data[i];
1458
1459 if (data_tx->m != NULL)
1460 continue;
1461
1462 IF_POLL(&ic->ic_mgtq, m);
1463 if (m != NULL) {
1464 /* management frame */
1465 IF_DEQUEUE(&ic->ic_mgtq, m);
1466
1467 ni = M_GETCTX(m, struct ieee80211_node *);
1468 M_CLEARCTX(m);
1469
1470 bpf_mtap3(ic->ic_rawbpf, m);
1471
1472 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1473 aprint_error_dev(sc->sc_dev,
1474 "no free prism memory\n");
1475 m_freem(m);
1476 ifp->if_oerrors++;
1477 break;
1478 }
1479 data_tx->ni = ni;
1480 data_tx->m = m;
1481 sc->tx_queued++;
1482 } else {
1483 /* data frame */
1484 if (ic->ic_state != IEEE80211_S_RUN)
1485 break;
1486
1487 IFQ_POLL(&ifp->if_snd, m);
1488 if (m == NULL)
1489 break;
1490
1491 IFQ_DEQUEUE(&ifp->if_snd, m);
1492 if (m->m_len < sizeof(struct ether_header) &&
1493 !(m = m_pullup(m, sizeof(struct ether_header))))
1494 continue;
1495
1496 eh = mtod(m, struct ether_header *);
1497 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1498 if (ni == NULL) {
1499 m_freem(m);
1500 continue;
1501 }
1502
1503 bpf_mtap(ifp, m);
1504
1505 m = ieee80211_encap(ic, m, ni);
1506 if (m == NULL) {
1507 ieee80211_free_node(ni);
1508 continue;
1509 }
1510
1511 bpf_mtap3(ic->ic_rawbpf, m);
1512
1513 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1514 aprint_error_dev(sc->sc_dev,
1515 "no free prism memory\n");
1516 m_freem(m);
1517 ieee80211_free_node(ni);
1518 ifp->if_oerrors++;
1519 break;
1520 }
1521 data_tx->ni = ni;
1522 data_tx->m = m;
1523 sc->tx_queued++;
1524 }
1525 }
1526
1527 if (sc->tx_queued > 0) {
1528 DPRINTF(2, "%s: tx_queued=%d\n",
1529 device_xname(sc->sc_dev), sc->tx_queued);
1530 /* process the TX queue in process context */
1531 ifp->if_timer = 5;
1532 ifp->if_flags |= IFF_OACTIVE;
1533 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1534 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1535 }
1536 }
1537
1538 static void
1539 upgt_watchdog(struct ifnet *ifp)
1540 {
1541 struct upgt_softc *sc = ifp->if_softc;
1542 struct ieee80211com *ic = &sc->sc_ic;
1543
1544 if (ic->ic_state == IEEE80211_S_INIT)
1545 return;
1546
1547 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1548
1549 /* TODO: what shall we do on TX timeout? */
1550
1551 ieee80211_watchdog(ic);
1552 }
1553
1554 static void
1555 upgt_tx_task(void *arg)
1556 {
1557 struct upgt_softc *sc = arg;
1558 struct ieee80211com *ic = &sc->sc_ic;
1559 struct ieee80211_frame *wh;
1560 struct ieee80211_key *k;
1561 struct ifnet *ifp = &sc->sc_if;
1562 struct upgt_lmac_mem *mem;
1563 struct upgt_lmac_tx_desc *txdesc;
1564 struct mbuf *m;
1565 uint32_t addr;
1566 int i, len, pad, s;
1567 usbd_status error;
1568
1569 mutex_enter(&sc->sc_mtx);
1570 upgt_set_led(sc, UPGT_LED_BLINK);
1571 mutex_exit(&sc->sc_mtx);
1572
1573 s = splnet();
1574
1575 for (i = 0; i < UPGT_TX_COUNT; i++) {
1576 struct upgt_data *data_tx = &sc->tx_data[i];
1577
1578 if (data_tx->m == NULL)
1579 continue;
1580
1581 m = data_tx->m;
1582 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1583
1584 /*
1585 * Software crypto.
1586 */
1587 wh = mtod(m, struct ieee80211_frame *);
1588
1589 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1590 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1591 if (k == NULL) {
1592 m_freem(m);
1593 data_tx->m = NULL;
1594 ieee80211_free_node(data_tx->ni);
1595 data_tx->ni = NULL;
1596 ifp->if_oerrors++;
1597 break;
1598 }
1599
1600 /* in case packet header moved, reset pointer */
1601 wh = mtod(m, struct ieee80211_frame *);
1602 }
1603
1604 /*
1605 * Transmit the URB containing the TX data.
1606 */
1607 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1608
1609 mem = (struct upgt_lmac_mem *)data_tx->buf;
1610 mem->addr = htole32(addr);
1611
1612 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1613
1614 /* XXX differ between data and mgmt frames? */
1615 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1616 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1617 txdesc->header1.len = htole16(m->m_pkthdr.len);
1618
1619 txdesc->header2.reqid = htole32(data_tx->addr);
1620 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1621 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1622
1623 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1624 IEEE80211_FC0_TYPE_MGT) {
1625 /* always send mgmt frames at lowest rate (DS1) */
1626 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1627 } else {
1628 memcpy(txdesc->rates, sc->sc_cur_rateset,
1629 sizeof(txdesc->rates));
1630 }
1631 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1632 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1633
1634 if (sc->sc_drvbpf != NULL) {
1635 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1636
1637 tap->wt_flags = 0;
1638 tap->wt_rate = 0; /* TODO: where to get from? */
1639 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1640 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1641
1642 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1643 }
1644
1645 /* copy frame below our TX descriptor header */
1646 m_copydata(m, 0, m->m_pkthdr.len,
1647 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1648
1649 /* calculate frame size */
1650 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1651
1652 if (len & 3) {
1653 /* we need to align the frame to a 4 byte boundary */
1654 pad = 4 - (len & 3);
1655 memset(data_tx->buf + len, 0, pad);
1656 len += pad;
1657 }
1658
1659 /* calculate frame checksum */
1660 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1661 len - sizeof(*mem));
1662
1663 /* we do not need the mbuf anymore */
1664 m_freem(m);
1665 data_tx->m = NULL;
1666
1667 ieee80211_free_node(data_tx->ni);
1668 data_tx->ni = NULL;
1669
1670 DPRINTF(2, "%s: TX start data sending\n",
1671 device_xname(sc->sc_dev));
1672
1673 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1674 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1675 error = usbd_transfer(data_tx->xfer);
1676 if (error != USBD_NORMAL_COMPLETION &&
1677 error != USBD_IN_PROGRESS) {
1678 aprint_error_dev(sc->sc_dev,
1679 "could not transmit TX data URB\n");
1680 ifp->if_oerrors++;
1681 break;
1682 }
1683
1684 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1685 device_xname(sc->sc_dev), len);
1686 }
1687
1688 splx(s);
1689
1690 /*
1691 * If we don't regulary read the device statistics, the RX queue
1692 * will stall. It's strange, but it works, so we keep reading
1693 * the statistics here. *shrug*
1694 */
1695 mutex_enter(&sc->sc_mtx);
1696 upgt_get_stats(sc);
1697 mutex_exit(&sc->sc_mtx);
1698 }
1699
1700 static void
1701 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1702 {
1703 struct ifnet *ifp = &sc->sc_if;
1704 struct upgt_lmac_tx_done_desc *desc;
1705 int i, s;
1706
1707 s = splnet();
1708
1709 desc = (struct upgt_lmac_tx_done_desc *)data;
1710
1711 for (i = 0; i < UPGT_TX_COUNT; i++) {
1712 struct upgt_data *data_tx = &sc->tx_data[i];
1713
1714 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1715 upgt_mem_free(sc, data_tx->addr);
1716 data_tx->addr = 0;
1717
1718 sc->tx_queued--;
1719 ifp->if_opackets++;
1720
1721 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1722 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1723 le32toh(desc->header2.reqid),
1724 le16toh(desc->status),
1725 le16toh(desc->rssi));
1726 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1727 break;
1728 }
1729 }
1730
1731 if (sc->tx_queued == 0) {
1732 /* TX queued was processed, continue */
1733 ifp->if_timer = 0;
1734 ifp->if_flags &= ~IFF_OACTIVE;
1735 upgt_start(ifp);
1736 }
1737
1738 splx(s);
1739 }
1740
1741 static void
1742 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1743 {
1744 struct upgt_data *data_rx = priv;
1745 struct upgt_softc *sc = data_rx->sc;
1746 int len;
1747 struct upgt_lmac_header *header;
1748 struct upgt_lmac_eeprom *eeprom;
1749 uint8_t h1_type;
1750 uint16_t h2_type;
1751
1752 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1753
1754 if (status != USBD_NORMAL_COMPLETION) {
1755 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1756 return;
1757 if (status == USBD_STALLED)
1758 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1759 goto skip;
1760 }
1761 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1762
1763 /*
1764 * Check what type of frame came in.
1765 */
1766 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1767
1768 h1_type = header->header1.type;
1769 h2_type = le16toh(header->header2.type);
1770
1771 if (h1_type == UPGT_H1_TYPE_CTRL &&
1772 h2_type == UPGT_H2_TYPE_EEPROM) {
1773 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1774 uint16_t eeprom_offset = le16toh(eeprom->offset);
1775 uint16_t eeprom_len = le16toh(eeprom->len);
1776
1777 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1778 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1779
1780 memcpy(sc->sc_eeprom + eeprom_offset,
1781 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1782 eeprom_len);
1783
1784 /* EEPROM data has arrived in time, wakeup tsleep() */
1785 wakeup(sc);
1786 } else
1787 if (h1_type == UPGT_H1_TYPE_CTRL &&
1788 h2_type == UPGT_H2_TYPE_TX_DONE) {
1789 DPRINTF(2, "%s: received 802.11 TX done\n",
1790 device_xname(sc->sc_dev));
1791
1792 upgt_tx_done(sc, data_rx->buf + 4);
1793 } else
1794 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1795 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1796 DPRINTF(3, "%s: received 802.11 RX data\n",
1797 device_xname(sc->sc_dev));
1798
1799 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1800 } else
1801 if (h1_type == UPGT_H1_TYPE_CTRL &&
1802 h2_type == UPGT_H2_TYPE_STATS) {
1803 DPRINTF(2, "%s: received statistic data\n",
1804 device_xname(sc->sc_dev));
1805
1806 /* TODO: what could we do with the statistic data? */
1807 } else {
1808 /* ignore unknown frame types */
1809 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1810 device_xname(sc->sc_dev), header->header1.type);
1811 }
1812
1813 skip: /* setup new transfer */
1814 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1815 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1816 (void)usbd_transfer(xfer);
1817 }
1818
1819 static void
1820 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1821 {
1822 struct ieee80211com *ic = &sc->sc_ic;
1823 struct ifnet *ifp = &sc->sc_if;
1824 struct upgt_lmac_rx_desc *rxdesc;
1825 struct ieee80211_frame *wh;
1826 struct ieee80211_node *ni;
1827 struct mbuf *m;
1828 int s;
1829
1830 /* access RX packet descriptor */
1831 rxdesc = (struct upgt_lmac_rx_desc *)data;
1832
1833 /* create mbuf which is suitable for strict alignment archs */
1834 #define ETHER_ALIGN 0
1835 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1836 if (m == NULL) {
1837 DPRINTF(1, "%s: could not create RX mbuf\n",
1838 device_xname(sc->sc_dev));
1839 ifp->if_ierrors++;
1840 return;
1841 }
1842
1843 s = splnet();
1844
1845 if (sc->sc_drvbpf != NULL) {
1846 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1847
1848 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1849 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1850 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1851 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1852 tap->wr_antsignal = rxdesc->rssi;
1853
1854 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1855 }
1856
1857 /* trim FCS */
1858 m_adj(m, -IEEE80211_CRC_LEN);
1859
1860 wh = mtod(m, struct ieee80211_frame *);
1861 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1862
1863 /* push the frame up to the 802.11 stack */
1864 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1865
1866 /* node is no longer needed */
1867 ieee80211_free_node(ni);
1868
1869 splx(s);
1870
1871 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1872 }
1873
1874 static void
1875 upgt_setup_rates(struct upgt_softc *sc)
1876 {
1877 struct ieee80211com *ic = &sc->sc_ic;
1878
1879 /*
1880 * 0x01 = OFMD6 0x10 = DS1
1881 * 0x04 = OFDM9 0x11 = DS2
1882 * 0x06 = OFDM12 0x12 = DS5
1883 * 0x07 = OFDM18 0x13 = DS11
1884 * 0x08 = OFDM24
1885 * 0x09 = OFDM36
1886 * 0x0a = OFDM48
1887 * 0x0b = OFDM54
1888 */
1889 const uint8_t rateset_auto_11b[] =
1890 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1891 const uint8_t rateset_auto_11g[] =
1892 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1893 const uint8_t rateset_fix_11bg[] =
1894 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1895 0x08, 0x09, 0x0a, 0x0b };
1896
1897 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1898 /*
1899 * Automatic rate control is done by the device.
1900 * We just pass the rateset from which the device
1901 * will pickup a rate.
1902 */
1903 if (ic->ic_curmode == IEEE80211_MODE_11B)
1904 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1905 sizeof(sc->sc_cur_rateset));
1906 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1907 ic->ic_curmode == IEEE80211_MODE_AUTO)
1908 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1909 sizeof(sc->sc_cur_rateset));
1910 } else {
1911 /* set a fixed rate */
1912 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1913 sizeof(sc->sc_cur_rateset));
1914 }
1915 }
1916
1917 static uint8_t
1918 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1919 {
1920 struct ieee80211com *ic = &sc->sc_ic;
1921
1922 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1923 if (rate < 0 || rate > 3)
1924 /* invalid rate */
1925 return 0;
1926
1927 switch (rate) {
1928 case 0:
1929 return 2;
1930 case 1:
1931 return 4;
1932 case 2:
1933 return 11;
1934 case 3:
1935 return 22;
1936 default:
1937 return 0;
1938 }
1939 }
1940
1941 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1942 if (rate < 0 || rate > 11)
1943 /* invalid rate */
1944 return 0;
1945
1946 switch (rate) {
1947 case 0:
1948 return 2;
1949 case 1:
1950 return 4;
1951 case 2:
1952 return 11;
1953 case 3:
1954 return 22;
1955 case 4:
1956 return 12;
1957 case 5:
1958 return 18;
1959 case 6:
1960 return 24;
1961 case 7:
1962 return 36;
1963 case 8:
1964 return 48;
1965 case 9:
1966 return 72;
1967 case 10:
1968 return 96;
1969 case 11:
1970 return 108;
1971 default:
1972 return 0;
1973 }
1974 }
1975
1976 return 0;
1977 }
1978
1979 static int
1980 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1981 {
1982 struct ieee80211com *ic = &sc->sc_ic;
1983 struct ieee80211_node *ni = ic->ic_bss;
1984 struct upgt_data *data_cmd = &sc->cmd_data;
1985 struct upgt_lmac_mem *mem;
1986 struct upgt_lmac_filter *filter;
1987 int len;
1988 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1989
1990 /*
1991 * Transmit the URB containing the CMD data.
1992 */
1993 len = sizeof(*mem) + sizeof(*filter);
1994
1995 memset(data_cmd->buf, 0, len);
1996
1997 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1998 mem->addr = htole32(sc->sc_memaddr_frame_start +
1999 UPGT_MEMSIZE_FRAME_HEAD);
2000
2001 filter = (struct upgt_lmac_filter *)(mem + 1);
2002
2003 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2004 filter->header1.type = UPGT_H1_TYPE_CTRL;
2005 filter->header1.len = htole16(
2006 sizeof(struct upgt_lmac_filter) -
2007 sizeof(struct upgt_lmac_header));
2008
2009 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2010 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2011 filter->header2.flags = 0;
2012
2013 switch (state) {
2014 case IEEE80211_S_INIT:
2015 DPRINTF(1, "%s: set MAC filter to INIT\n",
2016 device_xname(sc->sc_dev));
2017
2018 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2019 break;
2020 case IEEE80211_S_SCAN:
2021 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2022 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2023
2024 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2025 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2026 IEEE80211_ADDR_COPY(filter->src, broadcast);
2027 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2028 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2029 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2030 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2031 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2032 break;
2033 case IEEE80211_S_RUN:
2034 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2035 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2036
2037 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2038 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2039 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2040 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2041 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2042 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2043 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2044 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2045 break;
2046 default:
2047 aprint_error_dev(sc->sc_dev,
2048 "MAC filter does not know that state\n");
2049 break;
2050 }
2051
2052 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2053
2054 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2055 aprint_error_dev(sc->sc_dev,
2056 "could not transmit macfilter CMD data URB\n");
2057 return EIO;
2058 }
2059
2060 return 0;
2061 }
2062
2063 static int
2064 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2065 {
2066 struct upgt_data *data_cmd = &sc->cmd_data;
2067 struct upgt_lmac_mem *mem;
2068 struct upgt_lmac_channel *chan;
2069 int len;
2070
2071 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2072 channel);
2073
2074 /*
2075 * Transmit the URB containing the CMD data.
2076 */
2077 len = sizeof(*mem) + sizeof(*chan);
2078
2079 memset(data_cmd->buf, 0, len);
2080
2081 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2082 mem->addr = htole32(sc->sc_memaddr_frame_start +
2083 UPGT_MEMSIZE_FRAME_HEAD);
2084
2085 chan = (struct upgt_lmac_channel *)(mem + 1);
2086
2087 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2088 chan->header1.type = UPGT_H1_TYPE_CTRL;
2089 chan->header1.len = htole16(
2090 sizeof(struct upgt_lmac_channel) -
2091 sizeof(struct upgt_lmac_header));
2092
2093 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2094 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2095 chan->header2.flags = 0;
2096
2097 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2098 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2099 chan->freq6 = sc->sc_eeprom_freq6[channel];
2100 chan->settings = sc->sc_eeprom_freq6_settings;
2101 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2102
2103 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2104 sizeof(chan->freq3_1));
2105
2106 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2107 sizeof(sc->sc_eeprom_freq4[channel]));
2108
2109 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2110 sizeof(chan->freq3_2));
2111
2112 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2113
2114 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2115 aprint_error_dev(sc->sc_dev,
2116 "could not transmit channel CMD data URB\n");
2117 return EIO;
2118 }
2119
2120 return 0;
2121 }
2122
2123 static void
2124 upgt_set_led(struct upgt_softc *sc, int action)
2125 {
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 struct upgt_data *data_cmd = &sc->cmd_data;
2128 struct upgt_lmac_mem *mem;
2129 struct upgt_lmac_led *led;
2130 struct timeval t;
2131 int len;
2132
2133 /*
2134 * Transmit the URB containing the CMD data.
2135 */
2136 len = sizeof(*mem) + sizeof(*led);
2137
2138 memset(data_cmd->buf, 0, len);
2139
2140 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2141 mem->addr = htole32(sc->sc_memaddr_frame_start +
2142 UPGT_MEMSIZE_FRAME_HEAD);
2143
2144 led = (struct upgt_lmac_led *)(mem + 1);
2145
2146 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2147 led->header1.type = UPGT_H1_TYPE_CTRL;
2148 led->header1.len = htole16(
2149 sizeof(struct upgt_lmac_led) -
2150 sizeof(struct upgt_lmac_header));
2151
2152 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2153 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2154 led->header2.flags = 0;
2155
2156 switch (action) {
2157 case UPGT_LED_OFF:
2158 led->mode = htole16(UPGT_LED_MODE_SET);
2159 led->action_fix = 0;
2160 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2161 led->action_tmp_dur = 0;
2162 break;
2163 case UPGT_LED_ON:
2164 led->mode = htole16(UPGT_LED_MODE_SET);
2165 led->action_fix = 0;
2166 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2167 led->action_tmp_dur = 0;
2168 break;
2169 case UPGT_LED_BLINK:
2170 if (ic->ic_state != IEEE80211_S_RUN)
2171 return;
2172 if (sc->sc_led_blink)
2173 /* previous blink was not finished */
2174 return;
2175 led->mode = htole16(UPGT_LED_MODE_SET);
2176 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2177 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2178 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2179 /* lock blink */
2180 sc->sc_led_blink = 1;
2181 t.tv_sec = 0;
2182 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2183 callout_schedule(&sc->led_to, tvtohz(&t));
2184 break;
2185 default:
2186 return;
2187 }
2188
2189 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2190
2191 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2192 aprint_error_dev(sc->sc_dev,
2193 "could not transmit led CMD URB\n");
2194 }
2195 }
2196
2197 static void
2198 upgt_set_led_blink(void *arg)
2199 {
2200 struct upgt_softc *sc = arg;
2201
2202 /* blink finished, we are ready for a next one */
2203 sc->sc_led_blink = 0;
2204 callout_stop(&sc->led_to);
2205 }
2206
2207 static int
2208 upgt_get_stats(struct upgt_softc *sc)
2209 {
2210 struct upgt_data *data_cmd = &sc->cmd_data;
2211 struct upgt_lmac_mem *mem;
2212 struct upgt_lmac_stats *stats;
2213 int len;
2214
2215 /*
2216 * Transmit the URB containing the CMD data.
2217 */
2218 len = sizeof(*mem) + sizeof(*stats);
2219
2220 memset(data_cmd->buf, 0, len);
2221
2222 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2223 mem->addr = htole32(sc->sc_memaddr_frame_start +
2224 UPGT_MEMSIZE_FRAME_HEAD);
2225
2226 stats = (struct upgt_lmac_stats *)(mem + 1);
2227
2228 stats->header1.flags = 0;
2229 stats->header1.type = UPGT_H1_TYPE_CTRL;
2230 stats->header1.len = htole16(
2231 sizeof(struct upgt_lmac_stats) -
2232 sizeof(struct upgt_lmac_header));
2233
2234 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2235 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2236 stats->header2.flags = 0;
2237
2238 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2239
2240 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2241 aprint_error_dev(sc->sc_dev,
2242 "could not transmit statistics CMD data URB\n");
2243 return EIO;
2244 }
2245
2246 return 0;
2247
2248 }
2249
2250 static int
2251 upgt_alloc_tx(struct upgt_softc *sc)
2252 {
2253 int i;
2254
2255 sc->tx_queued = 0;
2256
2257 for (i = 0; i < UPGT_TX_COUNT; i++) {
2258 struct upgt_data *data_tx = &sc->tx_data[i];
2259
2260 data_tx->sc = sc;
2261
2262 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2263 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2264 if (err) {
2265 aprint_error_dev(sc->sc_dev,
2266 "could not allocate TX xfer\n");
2267 return err;
2268 }
2269
2270 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2271 }
2272
2273 return 0;
2274 }
2275
2276 static int
2277 upgt_alloc_rx(struct upgt_softc *sc)
2278 {
2279 struct upgt_data *data_rx = &sc->rx_data;
2280
2281 data_rx->sc = sc;
2282
2283 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2284 0, 0, &data_rx->xfer);
2285 if (err) {
2286 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2287 return err;
2288 }
2289
2290 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2291
2292 return 0;
2293 }
2294
2295 static int
2296 upgt_alloc_cmd(struct upgt_softc *sc)
2297 {
2298 struct upgt_data *data_cmd = &sc->cmd_data;
2299
2300 data_cmd->sc = sc;
2301
2302 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2303 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2304 if (err) {
2305 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2306 return err;
2307 }
2308
2309 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2310
2311 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2312
2313 return 0;
2314 }
2315
2316 static void
2317 upgt_free_tx(struct upgt_softc *sc)
2318 {
2319 int i;
2320
2321 for (i = 0; i < UPGT_TX_COUNT; i++) {
2322 struct upgt_data *data_tx = &sc->tx_data[i];
2323
2324 if (data_tx->xfer != NULL) {
2325 usbd_destroy_xfer(data_tx->xfer);
2326 data_tx->xfer = NULL;
2327 }
2328
2329 data_tx->ni = NULL;
2330 }
2331 }
2332
2333 static void
2334 upgt_free_rx(struct upgt_softc *sc)
2335 {
2336 struct upgt_data *data_rx = &sc->rx_data;
2337
2338 if (data_rx->xfer != NULL) {
2339 usbd_destroy_xfer(data_rx->xfer);
2340 data_rx->xfer = NULL;
2341 }
2342
2343 data_rx->ni = NULL;
2344 }
2345
2346 static void
2347 upgt_free_cmd(struct upgt_softc *sc)
2348 {
2349 struct upgt_data *data_cmd = &sc->cmd_data;
2350
2351 if (data_cmd->xfer != NULL) {
2352 usbd_destroy_xfer(data_cmd->xfer);
2353 data_cmd->xfer = NULL;
2354 }
2355
2356 mutex_destroy(&sc->sc_mtx);
2357 }
2358
2359 static int
2360 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2361 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2362 {
2363 usbd_status status;
2364
2365 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2366 data->buf, size);
2367 if (status != USBD_NORMAL_COMPLETION) {
2368 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2369 usbd_errstr(status));
2370 return EIO;
2371 }
2372
2373 return 0;
2374 }
2375
2376 #if 0
2377 static void
2378 upgt_hexdump(void *buf, int len)
2379 {
2380 int i;
2381
2382 for (i = 0; i < len; i++) {
2383 if (i % 16 == 0)
2384 printf("%s%5i:", i ? "\n" : "", i);
2385 if (i % 4 == 0)
2386 printf(" ");
2387 printf("%02x", (int)*((uint8_t *)buf + i));
2388 }
2389 printf("\n");
2390 }
2391 #endif
2392
2393 static uint32_t
2394 upgt_crc32_le(const void *buf, size_t size)
2395 {
2396 uint32_t crc;
2397
2398 crc = ether_crc32_le(buf, size);
2399
2400 /* apply final XOR value as common for CRC-32 */
2401 crc = htole32(crc ^ 0xffffffffU);
2402
2403 return crc;
2404 }
2405
2406 /*
2407 * The firmware awaits a checksum for each frame we send to it.
2408 * The algorithm used is uncommon but somehow similar to CRC32.
2409 */
2410 static uint32_t
2411 upgt_chksum_le(const uint32_t *buf, size_t size)
2412 {
2413 int i;
2414 uint32_t crc = 0;
2415
2416 for (i = 0; i < size; i += sizeof(uint32_t)) {
2417 crc = htole32(crc ^ *buf++);
2418 crc = htole32((crc >> 5) ^ (crc << 3));
2419 }
2420
2421 return crc;
2422 }
2423