if_upgt.c revision 1.2 1 /* $NetBSD: if_upgt.c,v 1.2 2010/07/05 14:27:26 tsutsui Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.2 2010/07/05 14:27:26 tsutsui Exp $");
22
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/intr.h>
38
39 #include <net/bpf.h>
40 #include <net/if.h>
41 #include <net/if_arp.h>
42 #include <net/if_dl.h>
43 #include <net/if_ether.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_radiotap.h>
49
50 #include <dev/firmload.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56
57 #include <dev/usb/if_upgtvar.h>
58
59 /*
60 * Driver for the USB PrismGT devices.
61 *
62 * For now just USB 2.0 devices with the GW3887 chipset are supported.
63 * The driver has been written based on the firmware version 2.13.1.0_LM87.
64 *
65 * TODO's:
66 * - Fix MONITOR mode (MAC filter).
67 * - Add HOSTAP mode.
68 * - Add IBSS mode.
69 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70 *
71 * Parts of this driver has been influenced by reading the p54u driver
72 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
73 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
74 */
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82
83 /*
84 * Prototypes.
85 */
86 static int upgt_match(device_t, cfdata_t, void *);
87 static void upgt_attach(device_t, device_t, void *);
88 static int upgt_detach(device_t, int);
89 static int upgt_activate(device_t, devact_t);
90
91 static void upgt_attach_hook(device_t);
92 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int upgt_device_init(struct upgt_softc *);
94 static int upgt_mem_init(struct upgt_softc *);
95 static uint32_t upgt_mem_alloc(struct upgt_softc *);
96 static void upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int upgt_fw_alloc(struct upgt_softc *);
98 static void upgt_fw_free(struct upgt_softc *);
99 static int upgt_fw_verify(struct upgt_softc *);
100 static int upgt_fw_load(struct upgt_softc *);
101 static int upgt_fw_copy(char *, char *, int);
102 static int upgt_eeprom_read(struct upgt_softc *);
103 static int upgt_eeprom_parse(struct upgt_softc *);
104 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108
109 static int upgt_ioctl(struct ifnet *, u_long, void *);
110 static int upgt_init(struct ifnet *);
111 static void upgt_stop(struct upgt_softc *);
112 static int upgt_media_change(struct ifnet *);
113 static void upgt_newassoc(struct ieee80211_node *, int);
114 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 int);
116 static void upgt_newstate_task(void *);
117 static void upgt_next_scan(void *);
118 static void upgt_start(struct ifnet *);
119 static void upgt_watchdog(struct ifnet *);
120 static void upgt_tx_task(void *);
121 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void upgt_setup_rates(struct upgt_softc *);
125 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
126 static int upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int upgt_set_channel(struct upgt_softc *, unsigned);
128 static void upgt_set_led(struct upgt_softc *, int);
129 static void upgt_set_led_blink(void *);
130 static int upgt_get_stats(struct upgt_softc *);
131
132 static int upgt_alloc_tx(struct upgt_softc *);
133 static int upgt_alloc_rx(struct upgt_softc *);
134 static int upgt_alloc_cmd(struct upgt_softc *);
135 static void upgt_free_tx(struct upgt_softc *);
136 static void upgt_free_rx(struct upgt_softc *);
137 static void upgt_free_cmd(struct upgt_softc *);
138 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 usbd_pipe_handle, uint32_t *, int);
140
141 #if 0
142 static void upgt_hexdump(void *, int);
143 #endif
144 static uint32_t upgt_crc32_le(const void *, size_t);
145 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
146
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 upgt_match, upgt_attach, upgt_detach, upgt_activate);
149
150 static const struct usb_devno upgt_devs_1[] = {
151 /* version 1 devices */
152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G }
153 };
154
155 static const struct usb_devno upgt_devs_2[] = {
156 /* version 2 devices */
157 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
158 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
159 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
160 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
161 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
162 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
163 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
164 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
165 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
166 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
167 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
168 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
169 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
170 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
171 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
172 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
173 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
174 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
175 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
176 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
177 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 },
178 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 },
179 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
180 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
181 };
182
183 static int
184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
185 size_t *sizep)
186 {
187 firmware_handle_t fh;
188 int error;
189
190 if ((error = firmware_open(dname, iname, &fh)) != 0)
191 return error;
192 *sizep = firmware_get_size(fh);
193 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
194 firmware_close(fh);
195 return ENOMEM;
196 }
197 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
198 firmware_free(*ucodep, *sizep);
199 firmware_close(fh);
200
201 return error;
202 }
203
204 static int
205 upgt_match(device_t parent, cfdata_t match, void *aux)
206 {
207 struct usb_attach_arg *uaa = aux;
208
209 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
210 return UMATCH_VENDOR_PRODUCT;
211
212 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
213 return UMATCH_VENDOR_PRODUCT;
214
215 return UMATCH_NONE;
216 }
217
218 static void
219 upgt_attach(device_t parent, device_t self, void *aux)
220 {
221 struct upgt_softc *sc = device_private(self);
222 struct usb_attach_arg *uaa = aux;
223 usb_interface_descriptor_t *id;
224 usb_endpoint_descriptor_t *ed;
225 usbd_status error;
226 char *devinfop;
227 int i;
228
229 aprint_naive("\n");
230 aprint_normal("\n");
231
232 /*
233 * Attach USB device.
234 */
235 sc->sc_dev = self;
236 sc->sc_udev = uaa->device;
237
238 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
239 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
240 usbd_devinfo_free(devinfop);
241
242 /* check device type */
243 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
244 return;
245
246 /* set configuration number */
247 if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) {
248 aprint_error_dev(sc->sc_dev,
249 "could not set configuration no\n");
250 return;
251 }
252
253 /* get the first interface handle */
254 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
255 &sc->sc_iface);
256 if (error != 0) {
257 aprint_error_dev(sc->sc_dev,
258 "could not get interface handle\n");
259 return;
260 }
261
262 /* find endpoints */
263 id = usbd_get_interface_descriptor(sc->sc_iface);
264 sc->sc_rx_no = sc->sc_tx_no = -1;
265 for (i = 0; i < id->bNumEndpoints; i++) {
266 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
267 if (ed == NULL) {
268 aprint_error_dev(sc->sc_dev,
269 "no endpoint descriptor for iface %d\n", i);
270 return;
271 }
272
273 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
274 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
275 sc->sc_tx_no = ed->bEndpointAddress;
276 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
277 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
278 sc->sc_rx_no = ed->bEndpointAddress;
279
280 /*
281 * 0x01 TX pipe
282 * 0x81 RX pipe
283 *
284 * Deprecated scheme (not used with fw version >2.5.6.x):
285 * 0x02 TX MGMT pipe
286 * 0x82 TX MGMT pipe
287 */
288 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
289 break;
290 }
291 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
292 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
293 return;
294 }
295
296 /* setup tasks and timeouts */
297 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc);
298 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc);
299 callout_init(&sc->scan_to, 0);
300 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
301 callout_init(&sc->led_to, 0);
302 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
303
304 /*
305 * Open TX and RX USB bulk pipes.
306 */
307 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
308 &sc->sc_tx_pipeh);
309 if (error != 0) {
310 aprint_error_dev(sc->sc_dev,
311 "could not open TX pipe: %s\n", usbd_errstr(error));
312 goto fail;
313 }
314 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
315 &sc->sc_rx_pipeh);
316 if (error != 0) {
317 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
318 usbd_errstr(error));
319 goto fail;
320 }
321
322 /*
323 * Allocate TX, RX, and CMD xfers.
324 */
325 if (upgt_alloc_tx(sc) != 0)
326 goto fail;
327 if (upgt_alloc_rx(sc) != 0)
328 goto fail;
329 if (upgt_alloc_cmd(sc) != 0)
330 goto fail;
331
332 /*
333 * We need the firmware loaded from file system to complete the attach.
334 */
335 config_mountroot(self, upgt_attach_hook);
336
337 return;
338 fail:
339 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
340 }
341
342 static void
343 upgt_attach_hook(device_t arg)
344 {
345 struct upgt_softc *sc = device_private(arg);
346 struct ieee80211com *ic = &sc->sc_ic;
347 struct ifnet *ifp = &sc->sc_if;
348 usbd_status error;
349 int i;
350
351 /*
352 * Load firmware file into memory.
353 */
354 if (upgt_fw_alloc(sc) != 0)
355 goto fail;
356
357 /*
358 * Initialize the device.
359 */
360 if (upgt_device_init(sc) != 0)
361 goto fail;
362
363 /*
364 * Verify the firmware.
365 */
366 if (upgt_fw_verify(sc) != 0)
367 goto fail;
368
369 /*
370 * Calculate device memory space.
371 */
372 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
373 aprint_error_dev(sc->sc_dev,
374 "could not find memory space addresses on FW\n");
375 goto fail;
376 }
377 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
378 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
379
380 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
381 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
382 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
383 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
384 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
385 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
386
387 upgt_mem_init(sc);
388
389 /*
390 * Load the firmware.
391 */
392 if (upgt_fw_load(sc) != 0)
393 goto fail;
394
395 /*
396 * Startup the RX pipe.
397 */
398 struct upgt_data *data_rx = &sc->rx_data;
399
400 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
401 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
402 error = usbd_transfer(data_rx->xfer);
403 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
404 aprint_error_dev(sc->sc_dev,
405 "could not queue RX transfer\n");
406 goto fail;
407 }
408 usbd_delay_ms(sc->sc_udev, 100);
409
410 /*
411 * Read the whole EEPROM content and parse it.
412 */
413 if (upgt_eeprom_read(sc) != 0)
414 goto fail;
415 if (upgt_eeprom_parse(sc) != 0)
416 goto fail;
417
418 /*
419 * Setup the 802.11 device.
420 */
421 ic->ic_ifp = ifp;
422 ic->ic_phytype = IEEE80211_T_OFDM;
423 ic->ic_opmode = IEEE80211_M_STA;
424 ic->ic_state = IEEE80211_S_INIT;
425 ic->ic_caps =
426 IEEE80211_C_MONITOR |
427 IEEE80211_C_SHPREAMBLE |
428 IEEE80211_C_SHSLOT;
429
430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432
433 for (i = 1; i <= 14; i++) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
436 ic->ic_channels[i].ic_flags =
437 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
438 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
439 }
440
441 ifp->if_softc = sc;
442 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 ifp->if_init = upgt_init;
444 ifp->if_ioctl = upgt_ioctl;
445 ifp->if_start = upgt_start;
446 ifp->if_watchdog = upgt_watchdog;
447 IFQ_SET_READY(&ifp->if_snd);
448 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
449
450 if_attach(ifp);
451 ieee80211_ifattach(ic);
452 ic->ic_newassoc = upgt_newassoc;
453
454 sc->sc_newstate = ic->ic_newstate;
455 ic->ic_newstate = upgt_newstate;
456 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
457
458 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
459 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
460 &sc->sc_drvbpf);
461
462 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
463 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
465
466 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
467 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
469
470 aprint_normal_dev(sc->sc_dev, "address %s\n",
471 ether_sprintf(ic->ic_myaddr));
472
473 ieee80211_announce(ic);
474
475 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476
477 /* device attached */
478 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
479
480 return;
481 fail:
482 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
483 }
484
485 static int
486 upgt_detach(device_t self, int flags)
487 {
488 struct upgt_softc *sc = device_private(self);
489 struct ifnet *ifp = &sc->sc_if;
490 struct ieee80211com *ic = &sc->sc_ic;
491 int s;
492
493 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
494
495 s = splnet();
496
497 if (ifp->if_flags & IFF_RUNNING)
498 upgt_stop(sc);
499
500 /* remove tasks and timeouts */
501 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
502 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
503 callout_destroy(&sc->scan_to);
504 callout_destroy(&sc->led_to);
505
506 /* abort and close TX / RX pipes */
507 if (sc->sc_tx_pipeh != NULL) {
508 usbd_abort_pipe(sc->sc_tx_pipeh);
509 usbd_close_pipe(sc->sc_tx_pipeh);
510 }
511 if (sc->sc_rx_pipeh != NULL) {
512 usbd_abort_pipe(sc->sc_rx_pipeh);
513 usbd_close_pipe(sc->sc_rx_pipeh);
514 }
515
516 /* free xfers */
517 upgt_free_tx(sc);
518 upgt_free_rx(sc);
519 upgt_free_cmd(sc);
520
521 /* free firmware */
522 upgt_fw_free(sc);
523
524 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
525 /* detach interface */
526 bpf_detach(ifp);
527 ieee80211_ifdetach(ic);
528 if_detach(ifp);
529 }
530
531 splx(s);
532
533 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
534
535 return 0;
536 }
537
538 static int
539 upgt_activate(device_t self, devact_t act)
540 {
541 struct upgt_softc *sc = device_private(self);
542
543 switch (act) {
544 case DVACT_DEACTIVATE:
545 if_deactivate(&sc->sc_if);
546 return 0;
547 default:
548 return EOPNOTSUPP;
549 }
550 }
551
552 static int
553 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
554 {
555
556 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
557 sc->sc_device_type = 1;
558 /* XXX */
559 aprint_error_dev(sc->sc_dev,
560 "version 1 devices not supported yet\n");
561 return 1;
562 } else
563 sc->sc_device_type = 2;
564
565 return 0;
566 }
567
568 static int
569 upgt_device_init(struct upgt_softc *sc)
570 {
571 struct upgt_data *data_cmd = &sc->cmd_data;
572 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
573 int len;
574
575 len = sizeof(init_cmd);
576 memcpy(data_cmd->buf, init_cmd, len);
577 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
578 aprint_error_dev(sc->sc_dev,
579 "could not send device init string\n");
580 return EIO;
581 }
582 usbd_delay_ms(sc->sc_udev, 100);
583
584 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
585
586 return 0;
587 }
588
589 static int
590 upgt_mem_init(struct upgt_softc *sc)
591 {
592 int i;
593
594 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
595 sc->sc_memory.page[i].used = 0;
596
597 if (i == 0) {
598 /*
599 * The first memory page is always reserved for
600 * command data.
601 */
602 sc->sc_memory.page[i].addr =
603 sc->sc_memaddr_frame_start + MCLBYTES;
604 } else {
605 sc->sc_memory.page[i].addr =
606 sc->sc_memory.page[i - 1].addr + MCLBYTES;
607 }
608
609 if (sc->sc_memory.page[i].addr + MCLBYTES >=
610 sc->sc_memaddr_frame_end)
611 break;
612
613 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
614 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
615 }
616
617 sc->sc_memory.pages = i;
618
619 DPRINTF(2, "%s: memory pages=%d\n",
620 device_xname(sc->sc_dev), sc->sc_memory.pages);
621
622 return 0;
623 }
624
625 static uint32_t
626 upgt_mem_alloc(struct upgt_softc *sc)
627 {
628 int i;
629
630 for (i = 0; i < sc->sc_memory.pages; i++) {
631 if (sc->sc_memory.page[i].used == 0) {
632 sc->sc_memory.page[i].used = 1;
633 return sc->sc_memory.page[i].addr;
634 }
635 }
636
637 return 0;
638 }
639
640 static void
641 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
642 {
643 int i;
644
645 for (i = 0; i < sc->sc_memory.pages; i++) {
646 if (sc->sc_memory.page[i].addr == addr) {
647 sc->sc_memory.page[i].used = 0;
648 return;
649 }
650 }
651
652 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
653 addr);
654 }
655
656
657 static int
658 upgt_fw_alloc(struct upgt_softc *sc)
659 {
660 const char *name = "upgt-gw3887";
661 int error;
662
663 if (sc->sc_fw == NULL) {
664 error = firmware_load("upgt", name, &sc->sc_fw,
665 &sc->sc_fw_size);
666 if (error != 0) {
667 aprint_error_dev(sc->sc_dev,
668 "could not read firmware %s\n", name);
669 aprint_error_dev(sc->sc_dev,
670 "see upgt(4) man page for details\n");
671 return EIO;
672 }
673 }
674
675 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
676 name);
677
678 return 0;
679 }
680
681 static void
682 upgt_fw_free(struct upgt_softc *sc)
683 {
684
685 if (sc->sc_fw != NULL) {
686 firmware_free(sc->sc_fw, sc->sc_fw_size);
687 sc->sc_fw = NULL;
688 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
689 }
690 }
691
692 static int
693 upgt_fw_verify(struct upgt_softc *sc)
694 {
695 struct upgt_fw_bra_option *bra_option;
696 uint32_t bra_option_type, bra_option_len;
697 uint32_t *uc;
698 int offset, bra_end = 0;
699
700 /*
701 * Seek to beginning of Boot Record Area (BRA).
702 */
703 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
704 uc = (uint32_t *)(sc->sc_fw + offset);
705 if (*uc == 0)
706 break;
707 }
708 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
709 uc = (uint32_t *)(sc->sc_fw + offset);
710 if (*uc != 0)
711 break;
712 }
713 if (offset == sc->sc_fw_size) {
714 aprint_error_dev(sc->sc_dev,
715 "firmware Boot Record Area not found\n");
716 return EIO;
717 }
718 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
719 device_xname(sc->sc_dev), offset);
720
721 /*
722 * Parse Boot Record Area (BRA) options.
723 */
724 while (offset < sc->sc_fw_size && bra_end == 0) {
725 /* get current BRA option */
726 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
727 bra_option_type = le32toh(bra_option->type);
728 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
729
730 switch (bra_option_type) {
731 case UPGT_BRA_TYPE_FW:
732 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
733 device_xname(sc->sc_dev), bra_option_len);
734
735 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
736 aprint_error_dev(sc->sc_dev,
737 "wrong UPGT_BRA_TYPE_FW len\n");
738 return EIO;
739 }
740 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
741 bra_option_len) == 0) {
742 sc->sc_fw_type = UPGT_FWTYPE_LM86;
743 break;
744 }
745 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
746 bra_option_len) == 0) {
747 sc->sc_fw_type = UPGT_FWTYPE_LM87;
748 break;
749 }
750 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
751 bra_option_len) == 0) {
752 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
753 break;
754 }
755 aprint_error_dev(sc->sc_dev,
756 "unsupported firmware type\n");
757 return EIO;
758 case UPGT_BRA_TYPE_VERSION:
759 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
760 device_xname(sc->sc_dev), bra_option_len);
761 break;
762 case UPGT_BRA_TYPE_DEPIF:
763 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
764 device_xname(sc->sc_dev), bra_option_len);
765 break;
766 case UPGT_BRA_TYPE_EXPIF:
767 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
768 device_xname(sc->sc_dev), bra_option_len);
769 break;
770 case UPGT_BRA_TYPE_DESCR:
771 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
772 device_xname(sc->sc_dev), bra_option_len);
773
774 struct upgt_fw_bra_descr *descr =
775 (struct upgt_fw_bra_descr *)bra_option->data;
776
777 sc->sc_memaddr_frame_start =
778 le32toh(descr->memaddr_space_start);
779 sc->sc_memaddr_frame_end =
780 le32toh(descr->memaddr_space_end);
781
782 DPRINTF(2, "%s: memory address space start=0x%08x\n",
783 device_xname(sc->sc_dev),
784 sc->sc_memaddr_frame_start);
785 DPRINTF(2, "%s: memory address space end=0x%08x\n",
786 device_xname(sc->sc_dev),
787 sc->sc_memaddr_frame_end);
788 break;
789 case UPGT_BRA_TYPE_END:
790 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
791 device_xname(sc->sc_dev), bra_option_len);
792 bra_end = 1;
793 break;
794 default:
795 DPRINTF(1, "%s: unknown BRA option len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 return EIO;
798 }
799
800 /* jump to next BRA option */
801 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
802 }
803
804 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
805
806 return 0;
807 }
808
809 static int
810 upgt_fw_load(struct upgt_softc *sc)
811 {
812 struct upgt_data *data_cmd = &sc->cmd_data;
813 struct upgt_data *data_rx = &sc->rx_data;
814 struct upgt_fw_x2_header *x2;
815 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
816 int offset, bsize, n, i, len;
817 uint32_t crc;
818
819 /* send firmware start load command */
820 len = sizeof(start_fwload_cmd);
821 memcpy(data_cmd->buf, start_fwload_cmd, len);
822 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
823 aprint_error_dev(sc->sc_dev,
824 "could not send start_firmware_load command\n");
825 return EIO;
826 }
827
828 /* send X2 header */
829 len = sizeof(struct upgt_fw_x2_header);
830 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
831 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
832 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
833 x2->len = htole32(sc->sc_fw_size);
834 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
835 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
836 sizeof(uint32_t));
837 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
838 aprint_error_dev(sc->sc_dev,
839 "could not send firmware X2 header\n");
840 return EIO;
841 }
842
843 /* download firmware */
844 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
845 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
846 bsize = UPGT_FW_BLOCK_SIZE;
847 else
848 bsize = sc->sc_fw_size - offset;
849
850 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
851
852 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
853 device_xname(sc->sc_dev), offset, n, bsize);
854
855 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
856 != 0) {
857 aprint_error_dev(sc->sc_dev,
858 "error while downloading firmware block\n");
859 return EIO;
860 }
861
862 bsize = n;
863 }
864 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
865
866 /* load firmware */
867 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
868 *((uint32_t *)(data_cmd->buf) ) = crc;
869 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
870 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
871 len = 6;
872 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
873 aprint_error_dev(sc->sc_dev,
874 "could not send load_firmware command\n");
875 return EIO;
876 }
877
878 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
879 len = UPGT_FW_BLOCK_SIZE;
880 memset(data_rx->buf, 0, 2);
881 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
882 USBD_SHORT_XFER_OK) != 0) {
883 aprint_error_dev(sc->sc_dev,
884 "could not read firmware response\n");
885 return EIO;
886 }
887
888 if (memcmp(data_rx->buf, "OK", 2) == 0)
889 break; /* firmware load was successful */
890 }
891 if (i == UPGT_FIRMWARE_TIMEOUT) {
892 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
893 return EIO;
894 }
895 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
896
897 return 0;
898 }
899
900 /*
901 * While copying the version 2 firmware, we need to replace two characters:
902 *
903 * 0x7e -> 0x7d 0x5e
904 * 0x7d -> 0x7d 0x5d
905 */
906 static int
907 upgt_fw_copy(char *src, char *dst, int size)
908 {
909 int i, j;
910
911 for (i = 0, j = 0; i < size && j < size; i++) {
912 switch (src[i]) {
913 case 0x7e:
914 dst[j] = 0x7d;
915 j++;
916 dst[j] = 0x5e;
917 j++;
918 break;
919 case 0x7d:
920 dst[j] = 0x7d;
921 j++;
922 dst[j] = 0x5d;
923 j++;
924 break;
925 default:
926 dst[j] = src[i];
927 j++;
928 break;
929 }
930 }
931
932 return i;
933 }
934
935 static int
936 upgt_eeprom_read(struct upgt_softc *sc)
937 {
938 struct upgt_data *data_cmd = &sc->cmd_data;
939 struct upgt_lmac_mem *mem;
940 struct upgt_lmac_eeprom *eeprom;
941 int offset, block, len;
942
943 offset = 0;
944 block = UPGT_EEPROM_BLOCK_SIZE;
945 while (offset < UPGT_EEPROM_SIZE) {
946 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
947 device_xname(sc->sc_dev), offset, block);
948
949 /*
950 * Transmit the URB containing the CMD data.
951 */
952 len = sizeof(*mem) + sizeof(*eeprom) + block;
953
954 memset(data_cmd->buf, 0, len);
955
956 mem = (struct upgt_lmac_mem *)data_cmd->buf;
957 mem->addr = htole32(sc->sc_memaddr_frame_start +
958 UPGT_MEMSIZE_FRAME_HEAD);
959
960 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
961 eeprom->header1.flags = 0;
962 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
963 eeprom->header1.len = htole16((
964 sizeof(struct upgt_lmac_eeprom) -
965 sizeof(struct upgt_lmac_header)) + block);
966
967 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
968 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
969 eeprom->header2.flags = 0;
970
971 eeprom->offset = htole16(offset);
972 eeprom->len = htole16(block);
973
974 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
975 len - sizeof(*mem));
976
977 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
978 USBD_FORCE_SHORT_XFER) != 0) {
979 aprint_error_dev(sc->sc_dev,
980 "could not transmit EEPROM data URB\n");
981 return EIO;
982 }
983 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
984 aprint_error_dev(sc->sc_dev,
985 "timeout while waiting for EEPROM data\n");
986 return EIO;
987 }
988
989 offset += block;
990 if (UPGT_EEPROM_SIZE - offset < block)
991 block = UPGT_EEPROM_SIZE - offset;
992 }
993
994 return 0;
995 }
996
997 static int
998 upgt_eeprom_parse(struct upgt_softc *sc)
999 {
1000 struct ieee80211com *ic = &sc->sc_ic;
1001 struct upgt_eeprom_header *eeprom_header;
1002 struct upgt_eeprom_option *eeprom_option;
1003 uint16_t option_len;
1004 uint16_t option_type;
1005 uint16_t preamble_len;
1006 int option_end = 0;
1007
1008 /* calculate eeprom options start offset */
1009 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1010 preamble_len = le16toh(eeprom_header->preamble_len);
1011 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1012 (sizeof(struct upgt_eeprom_header) + preamble_len));
1013
1014 while (!option_end) {
1015 /* the eeprom option length is stored in words */
1016 option_len =
1017 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1018 option_type =
1019 le16toh(eeprom_option->type);
1020
1021 switch (option_type) {
1022 case UPGT_EEPROM_TYPE_NAME:
1023 DPRINTF(1, "%s: EEPROM name len=%d\n",
1024 device_xname(sc->sc_dev), option_len);
1025 break;
1026 case UPGT_EEPROM_TYPE_SERIAL:
1027 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1028 device_xname(sc->sc_dev), option_len);
1029 break;
1030 case UPGT_EEPROM_TYPE_MAC:
1031 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1032 device_xname(sc->sc_dev), option_len);
1033
1034 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1035 break;
1036 case UPGT_EEPROM_TYPE_HWRX:
1037 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1038 device_xname(sc->sc_dev), option_len);
1039
1040 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1041 break;
1042 case UPGT_EEPROM_TYPE_CHIP:
1043 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1044 device_xname(sc->sc_dev), option_len);
1045 break;
1046 case UPGT_EEPROM_TYPE_FREQ3:
1047 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1048 device_xname(sc->sc_dev), option_len);
1049
1050 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1051 option_len);
1052 break;
1053 case UPGT_EEPROM_TYPE_FREQ4:
1054 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1055 device_xname(sc->sc_dev), option_len);
1056
1057 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1058 option_len);
1059 break;
1060 case UPGT_EEPROM_TYPE_FREQ5:
1061 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1062 device_xname(sc->sc_dev), option_len);
1063 break;
1064 case UPGT_EEPROM_TYPE_FREQ6:
1065 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1066 device_xname(sc->sc_dev), option_len);
1067
1068 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1069 option_len);
1070 break;
1071 case UPGT_EEPROM_TYPE_END:
1072 DPRINTF(1, "%s: EEPROM end len=%d\n",
1073 device_xname(sc->sc_dev), option_len);
1074 option_end = 1;
1075 break;
1076 case UPGT_EEPROM_TYPE_OFF:
1077 DPRINTF(1, "%s: EEPROM off without end option\n",
1078 device_xname(sc->sc_dev));
1079 return EIO;
1080 default:
1081 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1082 device_xname(sc->sc_dev), option_type, option_len);
1083 break;
1084 }
1085
1086 /* jump to next EEPROM option */
1087 eeprom_option = (struct upgt_eeprom_option *)
1088 (eeprom_option->data + option_len);
1089 }
1090
1091 return 0;
1092 }
1093
1094 static void
1095 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1096 {
1097 struct upgt_eeprom_option_hwrx *option_hwrx;
1098
1099 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1100
1101 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1102
1103 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1104 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1105 }
1106
1107 static void
1108 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1109 {
1110 struct upgt_eeprom_freq3_header *freq3_header;
1111 struct upgt_lmac_freq3 *freq3;
1112 int i, elements, flags;
1113 unsigned channel;
1114
1115 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1116 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1117
1118 flags = freq3_header->flags;
1119 elements = freq3_header->elements;
1120
1121 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1122 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1123
1124 for (i = 0; i < elements; i++) {
1125 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1126
1127 sc->sc_eeprom_freq3[channel] = freq3[i];
1128
1129 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1130 device_xname(sc->sc_dev),
1131 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1132 }
1133 }
1134
1135 static void
1136 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1137 {
1138 struct upgt_eeprom_freq4_header *freq4_header;
1139 struct upgt_eeprom_freq4_1 *freq4_1;
1140 struct upgt_eeprom_freq4_2 *freq4_2;
1141 int i, j, elements, settings, flags;
1142 unsigned channel;
1143
1144 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1145 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1146
1147 flags = freq4_header->flags;
1148 elements = freq4_header->elements;
1149 settings = freq4_header->settings;
1150
1151 /* we need this value later */
1152 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1153
1154 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1155 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1156 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1157
1158 for (i = 0; i < elements; i++) {
1159 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1160
1161 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1162
1163 for (j = 0; j < settings; j++) {
1164 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1165 sc->sc_eeprom_freq4[channel][j].pad = 0;
1166 }
1167
1168 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1169 device_xname(sc->sc_dev),
1170 le16toh(freq4_1[i].freq), channel);
1171 }
1172 }
1173
1174 static void
1175 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1176 {
1177 struct upgt_lmac_freq6 *freq6;
1178 int i, elements;
1179 unsigned channel;
1180
1181 freq6 = (struct upgt_lmac_freq6 *)data;
1182
1183 elements = len / sizeof(struct upgt_lmac_freq6);
1184
1185 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1186
1187 for (i = 0; i < elements; i++) {
1188 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1189
1190 sc->sc_eeprom_freq6[channel] = freq6[i];
1191
1192 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1193 device_xname(sc->sc_dev),
1194 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1195 }
1196 }
1197
1198 static int
1199 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1200 {
1201 struct upgt_softc *sc = ifp->if_softc;
1202 struct ieee80211com *ic = &sc->sc_ic;
1203 int s, error = 0;
1204
1205 s = splnet();
1206
1207 switch (cmd) {
1208 case SIOCSIFFLAGS:
1209 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1210 break;
1211 if (ifp->if_flags & IFF_UP) {
1212 if ((ifp->if_flags & IFF_RUNNING) == 0)
1213 upgt_init(ifp);
1214 } else {
1215 if (ifp->if_flags & IFF_RUNNING)
1216 upgt_stop(sc);
1217 }
1218 break;
1219 case SIOCADDMULTI:
1220 case SIOCDELMULTI:
1221 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1222 /* setup multicast filter, etc */
1223 error = 0;
1224 }
1225 break;
1226 default:
1227 error = ieee80211_ioctl(ic, cmd, data);
1228 break;
1229 }
1230
1231 if (error == ENETRESET) {
1232 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1233 (IFF_UP | IFF_RUNNING))
1234 upgt_init(ifp);
1235 error = 0;
1236 }
1237
1238 splx(s);
1239
1240 return error;
1241 }
1242
1243 static int
1244 upgt_init(struct ifnet *ifp)
1245 {
1246 struct upgt_softc *sc = ifp->if_softc;
1247 struct ieee80211com *ic = &sc->sc_ic;
1248
1249 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1250
1251 if (ifp->if_flags & IFF_RUNNING)
1252 upgt_stop(sc);
1253
1254 ifp->if_flags |= IFF_RUNNING;
1255 ifp->if_flags &= ~IFF_OACTIVE;
1256
1257 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1258
1259 /* setup device rates */
1260 upgt_setup_rates(sc);
1261
1262 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1263 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1264 else
1265 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1266
1267 return 0;
1268 }
1269
1270 static void
1271 upgt_stop(struct upgt_softc *sc)
1272 {
1273 struct ieee80211com *ic = &sc->sc_ic;
1274 struct ifnet *ifp = &sc->sc_if;
1275
1276 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1277
1278 /* device down */
1279 ifp->if_timer = 0;
1280 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1281
1282 /* change device back to initial state */
1283 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1284 }
1285
1286 static int
1287 upgt_media_change(struct ifnet *ifp)
1288 {
1289 struct upgt_softc *sc = ifp->if_softc;
1290 int error;
1291
1292 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1293
1294 if ((error = ieee80211_media_change(ifp) != ENETRESET))
1295 return error;
1296
1297 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1298 (IFF_UP | IFF_RUNNING)) {
1299 /* give pending USB transfers a chance to finish */
1300 usbd_delay_ms(sc->sc_udev, 100);
1301 upgt_init(ifp);
1302 }
1303
1304 return 0;
1305 }
1306
1307 static void
1308 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1309 {
1310
1311 ni->ni_txrate = 0;
1312 }
1313
1314 static int
1315 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1316 {
1317 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1318
1319 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1320 callout_stop(&sc->scan_to);
1321
1322 /* do it in a process context */
1323 sc->sc_state = nstate;
1324 sc->sc_arg = arg;
1325 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1326
1327 return 0;
1328 }
1329
1330 static void
1331 upgt_newstate_task(void *arg)
1332 {
1333 struct upgt_softc *sc = arg;
1334 struct ieee80211com *ic = &sc->sc_ic;
1335 struct ieee80211_node *ni;
1336 unsigned channel;
1337
1338 mutex_enter(&sc->sc_mtx);
1339
1340 switch (sc->sc_state) {
1341 case IEEE80211_S_INIT:
1342 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1343 device_xname(sc->sc_dev));
1344
1345 /* do not accept any frames if the device is down */
1346 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1347 upgt_set_led(sc, UPGT_LED_OFF);
1348 break;
1349 case IEEE80211_S_SCAN:
1350 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1351 device_xname(sc->sc_dev));
1352
1353 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1354 upgt_set_channel(sc, channel);
1355 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1356 callout_schedule(&sc->scan_to, hz / 5);
1357 break;
1358 case IEEE80211_S_AUTH:
1359 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1360 device_xname(sc->sc_dev));
1361
1362 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1363 upgt_set_channel(sc, channel);
1364 break;
1365 case IEEE80211_S_ASSOC:
1366 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1367 device_xname(sc->sc_dev));
1368
1369 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1370 upgt_set_channel(sc, channel);
1371 break;
1372 case IEEE80211_S_RUN:
1373 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1374 device_xname(sc->sc_dev));
1375
1376 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1377 upgt_set_channel(sc, channel);
1378
1379 ni = ic->ic_bss;
1380
1381 /*
1382 * TX rate control is done by the firmware.
1383 * Report the maximum rate which is available therefore.
1384 */
1385 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1386
1387 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1388 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1389 upgt_set_led(sc, UPGT_LED_ON);
1390 break;
1391 }
1392
1393 mutex_exit(&sc->sc_mtx);
1394
1395 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1396 }
1397
1398 static void
1399 upgt_next_scan(void *arg)
1400 {
1401 struct upgt_softc *sc = arg;
1402 struct ieee80211com *ic = &sc->sc_ic;
1403
1404 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1405
1406 if (ic->ic_state == IEEE80211_S_SCAN)
1407 ieee80211_next_scan(ic);
1408 }
1409
1410 static void
1411 upgt_start(struct ifnet *ifp)
1412 {
1413 struct upgt_softc *sc = ifp->if_softc;
1414 struct ieee80211com *ic = &sc->sc_ic;
1415 struct ether_header *eh;
1416 struct ieee80211_node *ni;
1417 struct mbuf *m;
1418 int i;
1419
1420 /* don't transmit packets if interface is busy or down */
1421 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1422 return;
1423
1424 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1425
1426 for (i = 0; i < UPGT_TX_COUNT; i++) {
1427 struct upgt_data *data_tx = &sc->tx_data[i];
1428
1429 if (data_tx->m != NULL)
1430 continue;
1431
1432 IF_POLL(&ic->ic_mgtq, m);
1433 if (m != NULL) {
1434 /* management frame */
1435 IF_DEQUEUE(&ic->ic_mgtq, m);
1436
1437 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1438 m->m_pkthdr.rcvif = NULL;
1439
1440 bpf_mtap3(ic->ic_rawbpf, m);
1441
1442 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1443 aprint_error_dev(sc->sc_dev,
1444 "no free prism memory\n");
1445 m_freem(m);
1446 ifp->if_oerrors++;
1447 break;
1448 }
1449 data_tx->ni = ni;
1450 data_tx->m = m;
1451 sc->tx_queued++;
1452 } else {
1453 /* data frame */
1454 if (ic->ic_state != IEEE80211_S_RUN)
1455 break;
1456
1457 IFQ_POLL(&ifp->if_snd, m);
1458 if (m == NULL)
1459 break;
1460
1461 IFQ_DEQUEUE(&ifp->if_snd, m);
1462 if (m->m_len < sizeof(struct ether_header) &&
1463 !(m = m_pullup(m, sizeof(struct ether_header))))
1464 continue;
1465
1466 eh = mtod(m, struct ether_header *);
1467 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1468 if (ni == NULL) {
1469 m_freem(m);
1470 continue;
1471 }
1472
1473 bpf_mtap(ifp, m);
1474
1475 m = ieee80211_encap(ic, m, ni);
1476 if (m == NULL) {
1477 ieee80211_free_node(ni);
1478 continue;
1479 }
1480
1481 bpf_mtap3(ic->ic_rawbpf, m);
1482
1483 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1484 aprint_error_dev(sc->sc_dev,
1485 "no free prism memory\n");
1486 m_freem(m);
1487 ieee80211_free_node(ni);
1488 ifp->if_oerrors++;
1489 break;
1490 }
1491 data_tx->ni = ni;
1492 data_tx->m = m;
1493 sc->tx_queued++;
1494 }
1495 }
1496
1497 if (sc->tx_queued > 0) {
1498 DPRINTF(2, "%s: tx_queued=%d\n",
1499 device_xname(sc->sc_dev), sc->tx_queued);
1500 /* process the TX queue in process context */
1501 ifp->if_timer = 5;
1502 ifp->if_flags |= IFF_OACTIVE;
1503 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1504 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1505 }
1506 }
1507
1508 static void
1509 upgt_watchdog(struct ifnet *ifp)
1510 {
1511 struct upgt_softc *sc = ifp->if_softc;
1512 struct ieee80211com *ic = &sc->sc_ic;
1513
1514 if (ic->ic_state == IEEE80211_S_INIT)
1515 return;
1516
1517 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1518
1519 /* TODO: what shall we do on TX timeout? */
1520
1521 ieee80211_watchdog(ic);
1522 }
1523
1524 static void
1525 upgt_tx_task(void *arg)
1526 {
1527 struct upgt_softc *sc = arg;
1528 struct ieee80211com *ic = &sc->sc_ic;
1529 struct ieee80211_frame *wh;
1530 struct ieee80211_key *k;
1531 struct ifnet *ifp = &sc->sc_if;
1532 struct upgt_lmac_mem *mem;
1533 struct upgt_lmac_tx_desc *txdesc;
1534 struct mbuf *m;
1535 uint32_t addr;
1536 int i, len, pad, s;
1537 usbd_status error;
1538
1539 mutex_enter(&sc->sc_mtx);
1540 upgt_set_led(sc, UPGT_LED_BLINK);
1541 mutex_exit(&sc->sc_mtx);
1542
1543 s = splnet();
1544
1545 for (i = 0; i < UPGT_TX_COUNT; i++) {
1546 struct upgt_data *data_tx = &sc->tx_data[i];
1547
1548 if (data_tx->m == NULL)
1549 continue;
1550
1551 m = data_tx->m;
1552 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1553
1554 /*
1555 * Software crypto.
1556 */
1557 wh = mtod(m, struct ieee80211_frame *);
1558
1559 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1560 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1561 if (k == NULL) {
1562 m_freem(m);
1563 data_tx->m = NULL;
1564 ieee80211_free_node(data_tx->ni);
1565 data_tx->ni = NULL;
1566 ifp->if_oerrors++;
1567 break;
1568 }
1569
1570 /* in case packet header moved, reset pointer */
1571 wh = mtod(m, struct ieee80211_frame *);
1572 }
1573
1574 /*
1575 * Transmit the URB containing the TX data.
1576 */
1577 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1578
1579 mem = (struct upgt_lmac_mem *)data_tx->buf;
1580 mem->addr = htole32(addr);
1581
1582 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1583
1584 /* XXX differ between data and mgmt frames? */
1585 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1586 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1587 txdesc->header1.len = htole16(m->m_pkthdr.len);
1588
1589 txdesc->header2.reqid = htole32(data_tx->addr);
1590 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1591 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1592
1593 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1594 IEEE80211_FC0_TYPE_MGT) {
1595 /* always send mgmt frames at lowest rate (DS1) */
1596 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1597 } else {
1598 memcpy(txdesc->rates, sc->sc_cur_rateset,
1599 sizeof(txdesc->rates));
1600 }
1601 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1602 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1603
1604 if (sc->sc_drvbpf != NULL) {
1605 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1606
1607 tap->wt_flags = 0;
1608 tap->wt_rate = 0; /* TODO: where to get from? */
1609 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1610 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1611
1612 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1613 }
1614
1615 /* copy frame below our TX descriptor header */
1616 m_copydata(m, 0, m->m_pkthdr.len,
1617 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1618
1619 /* calculate frame size */
1620 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1621
1622 if (len & 3) {
1623 /* we need to align the frame to a 4 byte boundary */
1624 pad = 4 - (len & 3);
1625 memset(data_tx->buf + len, 0, pad);
1626 len += pad;
1627 }
1628
1629 /* calculate frame checksum */
1630 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1631 len - sizeof(*mem));
1632
1633 /* we do not need the mbuf anymore */
1634 m_freem(m);
1635 data_tx->m = NULL;
1636
1637 ieee80211_free_node(data_tx->ni);
1638 data_tx->ni = NULL;
1639
1640 DPRINTF(2, "%s: TX start data sending\n",
1641 device_xname(sc->sc_dev));
1642
1643 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1644 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1645 UPGT_USB_TIMEOUT, NULL);
1646 error = usbd_transfer(data_tx->xfer);
1647 if (error != USBD_NORMAL_COMPLETION &&
1648 error != USBD_IN_PROGRESS) {
1649 aprint_error_dev(sc->sc_dev,
1650 "could not transmit TX data URB\n");
1651 ifp->if_oerrors++;
1652 break;
1653 }
1654
1655 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1656 device_xname(sc->sc_dev), len);
1657 }
1658
1659 splx(s);
1660
1661 /*
1662 * If we don't regulary read the device statistics, the RX queue
1663 * will stall. It's strange, but it works, so we keep reading
1664 * the statistics here. *shrug*
1665 */
1666 mutex_enter(&sc->sc_mtx);
1667 upgt_get_stats(sc);
1668 mutex_exit(&sc->sc_mtx);
1669 }
1670
1671 static void
1672 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1673 {
1674 struct ifnet *ifp = &sc->sc_if;
1675 struct upgt_lmac_tx_done_desc *desc;
1676 int i, s;
1677
1678 s = splnet();
1679
1680 desc = (struct upgt_lmac_tx_done_desc *)data;
1681
1682 for (i = 0; i < UPGT_TX_COUNT; i++) {
1683 struct upgt_data *data_tx = &sc->tx_data[i];
1684
1685 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1686 upgt_mem_free(sc, data_tx->addr);
1687 data_tx->addr = 0;
1688
1689 sc->tx_queued--;
1690 ifp->if_opackets++;
1691
1692 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1693 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1694 le32toh(desc->header2.reqid),
1695 le16toh(desc->status),
1696 le16toh(desc->rssi));
1697 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1698 break;
1699 }
1700 }
1701
1702 if (sc->tx_queued == 0) {
1703 /* TX queued was processed, continue */
1704 ifp->if_timer = 0;
1705 ifp->if_flags &= ~IFF_OACTIVE;
1706 upgt_start(ifp);
1707 }
1708
1709 splx(s);
1710 }
1711
1712 static void
1713 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1714 {
1715 struct upgt_data *data_rx = priv;
1716 struct upgt_softc *sc = data_rx->sc;
1717 int len;
1718 struct upgt_lmac_header *header;
1719 struct upgt_lmac_eeprom *eeprom;
1720 uint8_t h1_type;
1721 uint16_t h2_type;
1722
1723 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1724
1725 if (status != USBD_NORMAL_COMPLETION) {
1726 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1727 return;
1728 if (status == USBD_STALLED)
1729 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1730 goto skip;
1731 }
1732 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1733
1734 /*
1735 * Check what type of frame came in.
1736 */
1737 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1738
1739 h1_type = header->header1.type;
1740 h2_type = le16toh(header->header2.type);
1741
1742 if (h1_type == UPGT_H1_TYPE_CTRL &&
1743 h2_type == UPGT_H2_TYPE_EEPROM) {
1744 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1745 uint16_t eeprom_offset = le16toh(eeprom->offset);
1746 uint16_t eeprom_len = le16toh(eeprom->len);
1747
1748 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1749 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1750
1751 memcpy(sc->sc_eeprom + eeprom_offset,
1752 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1753 eeprom_len);
1754
1755 /* EEPROM data has arrived in time, wakeup tsleep() */
1756 wakeup(sc);
1757 } else
1758 if (h1_type == UPGT_H1_TYPE_CTRL &&
1759 h2_type == UPGT_H2_TYPE_TX_DONE) {
1760 DPRINTF(2, "%s: received 802.11 TX done\n",
1761 device_xname(sc->sc_dev));
1762
1763 upgt_tx_done(sc, data_rx->buf + 4);
1764 } else
1765 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1766 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1767 DPRINTF(3, "%s: received 802.11 RX data\n",
1768 device_xname(sc->sc_dev));
1769
1770 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1771 } else
1772 if (h1_type == UPGT_H1_TYPE_CTRL &&
1773 h2_type == UPGT_H2_TYPE_STATS) {
1774 DPRINTF(2, "%s: received statistic data\n",
1775 device_xname(sc->sc_dev));
1776
1777 /* TODO: what could we do with the statistic data? */
1778 } else {
1779 /* ignore unknown frame types */
1780 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1781 device_xname(sc->sc_dev), header->header1.type);
1782 }
1783
1784 skip: /* setup new transfer */
1785 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1786 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1787 (void)usbd_transfer(xfer);
1788 }
1789
1790 static void
1791 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1792 {
1793 struct ieee80211com *ic = &sc->sc_ic;
1794 struct ifnet *ifp = &sc->sc_if;
1795 struct upgt_lmac_rx_desc *rxdesc;
1796 struct ieee80211_frame *wh;
1797 struct ieee80211_node *ni;
1798 struct mbuf *m;
1799 int s;
1800
1801 /* access RX packet descriptor */
1802 rxdesc = (struct upgt_lmac_rx_desc *)data;
1803
1804 /* create mbuf which is suitable for strict alignment archs */
1805 #define ETHER_ALIGN 0
1806 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1807 if (m == NULL) {
1808 DPRINTF(1, "%s: could not create RX mbuf\n",
1809 device_xname(sc->sc_dev));
1810 ifp->if_ierrors++;
1811 return;
1812 }
1813
1814 s = splnet();
1815
1816 if (sc->sc_drvbpf != NULL) {
1817 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1818
1819 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1820 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1821 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1822 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1823 tap->wr_antsignal = rxdesc->rssi;
1824
1825 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1826 }
1827
1828 /* trim FCS */
1829 m_adj(m, -IEEE80211_CRC_LEN);
1830
1831 wh = mtod(m, struct ieee80211_frame *);
1832 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1833
1834 /* push the frame up to the 802.11 stack */
1835 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1836
1837 /* node is no longer needed */
1838 ieee80211_free_node(ni);
1839
1840 splx(s);
1841
1842 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1843 }
1844
1845 static void
1846 upgt_setup_rates(struct upgt_softc *sc)
1847 {
1848 struct ieee80211com *ic = &sc->sc_ic;
1849
1850 /*
1851 * 0x01 = OFMD6 0x10 = DS1
1852 * 0x04 = OFDM9 0x11 = DS2
1853 * 0x06 = OFDM12 0x12 = DS5
1854 * 0x07 = OFDM18 0x13 = DS11
1855 * 0x08 = OFDM24
1856 * 0x09 = OFDM36
1857 * 0x0a = OFDM48
1858 * 0x0b = OFDM54
1859 */
1860 const uint8_t rateset_auto_11b[] =
1861 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1862 const uint8_t rateset_auto_11g[] =
1863 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1864 const uint8_t rateset_fix_11bg[] =
1865 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1866 0x08, 0x09, 0x0a, 0x0b };
1867
1868 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1869 /*
1870 * Automatic rate control is done by the device.
1871 * We just pass the rateset from which the device
1872 * will pickup a rate.
1873 */
1874 if (ic->ic_curmode == IEEE80211_MODE_11B)
1875 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1876 sizeof(sc->sc_cur_rateset));
1877 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1878 ic->ic_curmode == IEEE80211_MODE_AUTO)
1879 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1880 sizeof(sc->sc_cur_rateset));
1881 } else {
1882 /* set a fixed rate */
1883 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1884 sizeof(sc->sc_cur_rateset));
1885 }
1886 }
1887
1888 static uint8_t
1889 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1890 {
1891 struct ieee80211com *ic = &sc->sc_ic;
1892
1893 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1894 if (rate < 0 || rate > 3)
1895 /* invalid rate */
1896 return 0;
1897
1898 switch (rate) {
1899 case 0:
1900 return 2;
1901 case 1:
1902 return 4;
1903 case 2:
1904 return 11;
1905 case 3:
1906 return 22;
1907 default:
1908 return 0;
1909 }
1910 }
1911
1912 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1913 if (rate < 0 || rate > 11)
1914 /* invalid rate */
1915 return 0;
1916
1917 switch (rate) {
1918 case 0:
1919 return 2;
1920 case 1:
1921 return 4;
1922 case 2:
1923 return 11;
1924 case 3:
1925 return 22;
1926 case 4:
1927 return 12;
1928 case 5:
1929 return 18;
1930 case 6:
1931 return 24;
1932 case 7:
1933 return 36;
1934 case 8:
1935 return 48;
1936 case 9:
1937 return 72;
1938 case 10:
1939 return 96;
1940 case 11:
1941 return 108;
1942 default:
1943 return 0;
1944 }
1945 }
1946
1947 return 0;
1948 }
1949
1950 static int
1951 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1952 {
1953 struct ieee80211com *ic = &sc->sc_ic;
1954 struct ieee80211_node *ni = ic->ic_bss;
1955 struct upgt_data *data_cmd = &sc->cmd_data;
1956 struct upgt_lmac_mem *mem;
1957 struct upgt_lmac_filter *filter;
1958 int len;
1959 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1960
1961 /*
1962 * Transmit the URB containing the CMD data.
1963 */
1964 len = sizeof(*mem) + sizeof(*filter);
1965
1966 memset(data_cmd->buf, 0, len);
1967
1968 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1969 mem->addr = htole32(sc->sc_memaddr_frame_start +
1970 UPGT_MEMSIZE_FRAME_HEAD);
1971
1972 filter = (struct upgt_lmac_filter *)(mem + 1);
1973
1974 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1975 filter->header1.type = UPGT_H1_TYPE_CTRL;
1976 filter->header1.len = htole16(
1977 sizeof(struct upgt_lmac_filter) -
1978 sizeof(struct upgt_lmac_header));
1979
1980 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1981 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1982 filter->header2.flags = 0;
1983
1984 switch (state) {
1985 case IEEE80211_S_INIT:
1986 DPRINTF(1, "%s: set MAC filter to INIT\n",
1987 device_xname(sc->sc_dev));
1988
1989 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
1990 break;
1991 case IEEE80211_S_SCAN:
1992 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
1993 device_xname(sc->sc_dev), ether_sprintf(broadcast));
1994
1995 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
1996 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1997 IEEE80211_ADDR_COPY(filter->src, broadcast);
1998 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1999 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2000 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2001 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2002 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2003 break;
2004 case IEEE80211_S_RUN:
2005 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2006 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2007
2008 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2009 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2010 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2011 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2012 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2013 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2014 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2015 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2016 break;
2017 default:
2018 aprint_error_dev(sc->sc_dev,
2019 "MAC filter does not know that state\n");
2020 break;
2021 }
2022
2023 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2024
2025 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2026 aprint_error_dev(sc->sc_dev,
2027 "could not transmit macfilter CMD data URB\n");
2028 return EIO;
2029 }
2030
2031 return 0;
2032 }
2033
2034 static int
2035 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2036 {
2037 struct upgt_data *data_cmd = &sc->cmd_data;
2038 struct upgt_lmac_mem *mem;
2039 struct upgt_lmac_channel *chan;
2040 int len;
2041
2042 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2043 channel);
2044
2045 /*
2046 * Transmit the URB containing the CMD data.
2047 */
2048 len = sizeof(*mem) + sizeof(*chan);
2049
2050 memset(data_cmd->buf, 0, len);
2051
2052 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2053 mem->addr = htole32(sc->sc_memaddr_frame_start +
2054 UPGT_MEMSIZE_FRAME_HEAD);
2055
2056 chan = (struct upgt_lmac_channel *)(mem + 1);
2057
2058 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2059 chan->header1.type = UPGT_H1_TYPE_CTRL;
2060 chan->header1.len = htole16(
2061 sizeof(struct upgt_lmac_channel) -
2062 sizeof(struct upgt_lmac_header));
2063
2064 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2065 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2066 chan->header2.flags = 0;
2067
2068 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2069 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2070 chan->freq6 = sc->sc_eeprom_freq6[channel];
2071 chan->settings = sc->sc_eeprom_freq6_settings;
2072 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2073
2074 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2075 sizeof(chan->freq3_1));
2076
2077 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2078 sizeof(sc->sc_eeprom_freq4[channel]));
2079
2080 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2081 sizeof(chan->freq3_2));
2082
2083 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2084
2085 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2086 aprint_error_dev(sc->sc_dev,
2087 "could not transmit channel CMD data URB\n");
2088 return EIO;
2089 }
2090
2091 return 0;
2092 }
2093
2094 static void
2095 upgt_set_led(struct upgt_softc *sc, int action)
2096 {
2097 struct ieee80211com *ic = &sc->sc_ic;
2098 struct upgt_data *data_cmd = &sc->cmd_data;
2099 struct upgt_lmac_mem *mem;
2100 struct upgt_lmac_led *led;
2101 struct timeval t;
2102 int len;
2103
2104 /*
2105 * Transmit the URB containing the CMD data.
2106 */
2107 len = sizeof(*mem) + sizeof(*led);
2108
2109 memset(data_cmd->buf, 0, len);
2110
2111 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2112 mem->addr = htole32(sc->sc_memaddr_frame_start +
2113 UPGT_MEMSIZE_FRAME_HEAD);
2114
2115 led = (struct upgt_lmac_led *)(mem + 1);
2116
2117 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2118 led->header1.type = UPGT_H1_TYPE_CTRL;
2119 led->header1.len = htole16(
2120 sizeof(struct upgt_lmac_led) -
2121 sizeof(struct upgt_lmac_header));
2122
2123 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2124 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2125 led->header2.flags = 0;
2126
2127 switch (action) {
2128 case UPGT_LED_OFF:
2129 led->mode = htole16(UPGT_LED_MODE_SET);
2130 led->action_fix = 0;
2131 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2132 led->action_tmp_dur = 0;
2133 break;
2134 case UPGT_LED_ON:
2135 led->mode = htole16(UPGT_LED_MODE_SET);
2136 led->action_fix = 0;
2137 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2138 led->action_tmp_dur = 0;
2139 break;
2140 case UPGT_LED_BLINK:
2141 if (ic->ic_state != IEEE80211_S_RUN)
2142 return;
2143 if (sc->sc_led_blink)
2144 /* previous blink was not finished */
2145 return;
2146 led->mode = htole16(UPGT_LED_MODE_SET);
2147 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2148 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2149 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2150 /* lock blink */
2151 sc->sc_led_blink = 1;
2152 t.tv_sec = 0;
2153 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2154 callout_schedule(&sc->led_to, tvtohz(&t));
2155 break;
2156 default:
2157 return;
2158 }
2159
2160 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2161
2162 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2163 aprint_error_dev(sc->sc_dev,
2164 "could not transmit led CMD URB\n");
2165 }
2166 }
2167
2168 static void
2169 upgt_set_led_blink(void *arg)
2170 {
2171 struct upgt_softc *sc = arg;
2172
2173 /* blink finished, we are ready for a next one */
2174 sc->sc_led_blink = 0;
2175 callout_stop(&sc->led_to);
2176 }
2177
2178 static int
2179 upgt_get_stats(struct upgt_softc *sc)
2180 {
2181 struct upgt_data *data_cmd = &sc->cmd_data;
2182 struct upgt_lmac_mem *mem;
2183 struct upgt_lmac_stats *stats;
2184 int len;
2185
2186 /*
2187 * Transmit the URB containing the CMD data.
2188 */
2189 len = sizeof(*mem) + sizeof(*stats);
2190
2191 memset(data_cmd->buf, 0, len);
2192
2193 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2194 mem->addr = htole32(sc->sc_memaddr_frame_start +
2195 UPGT_MEMSIZE_FRAME_HEAD);
2196
2197 stats = (struct upgt_lmac_stats *)(mem + 1);
2198
2199 stats->header1.flags = 0;
2200 stats->header1.type = UPGT_H1_TYPE_CTRL;
2201 stats->header1.len = htole16(
2202 sizeof(struct upgt_lmac_stats) -
2203 sizeof(struct upgt_lmac_header));
2204
2205 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2206 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2207 stats->header2.flags = 0;
2208
2209 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2210
2211 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2212 aprint_error_dev(sc->sc_dev,
2213 "could not transmit statistics CMD data URB\n");
2214 return EIO;
2215 }
2216
2217 return 0;
2218
2219 }
2220
2221 static int
2222 upgt_alloc_tx(struct upgt_softc *sc)
2223 {
2224 int i;
2225
2226 sc->tx_queued = 0;
2227
2228 for (i = 0; i < UPGT_TX_COUNT; i++) {
2229 struct upgt_data *data_tx = &sc->tx_data[i];
2230
2231 data_tx->sc = sc;
2232
2233 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2234 if (data_tx->xfer == NULL) {
2235 aprint_error_dev(sc->sc_dev,
2236 "could not allocate TX xfer\n");
2237 return ENOMEM;
2238 }
2239
2240 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2241 if (data_tx->buf == NULL) {
2242 aprint_error_dev(sc->sc_dev,
2243 "could not allocate TX buffer\n");
2244 return ENOMEM;
2245 }
2246 }
2247
2248 return 0;
2249 }
2250
2251 static int
2252 upgt_alloc_rx(struct upgt_softc *sc)
2253 {
2254 struct upgt_data *data_rx = &sc->rx_data;
2255
2256 data_rx->sc = sc;
2257
2258 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2259 if (data_rx->xfer == NULL) {
2260 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2261 return ENOMEM;
2262 }
2263
2264 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2265 if (data_rx->buf == NULL) {
2266 aprint_error_dev(sc->sc_dev,
2267 "could not allocate RX buffer\n");
2268 return ENOMEM;
2269 }
2270
2271 return 0;
2272 }
2273
2274 static int
2275 upgt_alloc_cmd(struct upgt_softc *sc)
2276 {
2277 struct upgt_data *data_cmd = &sc->cmd_data;
2278
2279 data_cmd->sc = sc;
2280
2281 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2282 if (data_cmd->xfer == NULL) {
2283 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2284 return ENOMEM;
2285 }
2286
2287 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2288 if (data_cmd->buf == NULL) {
2289 aprint_error_dev(sc->sc_dev,
2290 "could not allocate RX buffer\n");
2291 return ENOMEM;
2292 }
2293
2294 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2295
2296 return 0;
2297 }
2298
2299 static void
2300 upgt_free_tx(struct upgt_softc *sc)
2301 {
2302 int i;
2303
2304 for (i = 0; i < UPGT_TX_COUNT; i++) {
2305 struct upgt_data *data_tx = &sc->tx_data[i];
2306
2307 if (data_tx->xfer != NULL) {
2308 usbd_free_xfer(data_tx->xfer);
2309 data_tx->xfer = NULL;
2310 }
2311
2312 data_tx->ni = NULL;
2313 }
2314 }
2315
2316 static void
2317 upgt_free_rx(struct upgt_softc *sc)
2318 {
2319 struct upgt_data *data_rx = &sc->rx_data;
2320
2321 if (data_rx->xfer != NULL) {
2322 usbd_free_xfer(data_rx->xfer);
2323 data_rx->xfer = NULL;
2324 }
2325
2326 data_rx->ni = NULL;
2327 }
2328
2329 static void
2330 upgt_free_cmd(struct upgt_softc *sc)
2331 {
2332 struct upgt_data *data_cmd = &sc->cmd_data;
2333
2334 if (data_cmd->xfer != NULL) {
2335 usbd_free_xfer(data_cmd->xfer);
2336 data_cmd->xfer = NULL;
2337 }
2338
2339 mutex_destroy(&sc->sc_mtx);
2340 }
2341
2342 static int
2343 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2344 usbd_pipe_handle pipeh, uint32_t *size, int flags)
2345 {
2346 usbd_status status;
2347
2348 status = usbd_bulk_transfer(data->xfer, pipeh,
2349 USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2350 "upgt_bulk_xmit");
2351 if (status != USBD_NORMAL_COMPLETION) {
2352 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2353 usbd_errstr(status));
2354 return EIO;
2355 }
2356
2357 return 0;
2358 }
2359
2360 #if 0
2361 static void
2362 upgt_hexdump(void *buf, int len)
2363 {
2364 int i;
2365
2366 for (i = 0; i < len; i++) {
2367 if (i % 16 == 0)
2368 printf("%s%5i:", i ? "\n" : "", i);
2369 if (i % 4 == 0)
2370 printf(" ");
2371 printf("%02x", (int)*((uint8_t *)buf + i));
2372 }
2373 printf("\n");
2374 }
2375 #endif
2376
2377 static uint32_t
2378 upgt_crc32_le(const void *buf, size_t size)
2379 {
2380 uint32_t crc;
2381
2382 crc = ether_crc32_le(buf, size);
2383
2384 /* apply final XOR value as common for CRC-32 */
2385 crc = htole32(crc ^ 0xffffffffU);
2386
2387 return crc;
2388 }
2389
2390 /*
2391 * The firmware awaits a checksum for each frame we send to it.
2392 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2393 */
2394 static uint32_t
2395 upgt_chksum_le(const uint32_t *buf, size_t size)
2396 {
2397 int i;
2398 uint32_t crc = 0;
2399
2400 for (i = 0; i < size; i += sizeof(uint32_t)) {
2401 crc = htole32(crc ^ *buf++);
2402 crc = htole32((crc >> 5) ^ (crc << 3));
2403 }
2404
2405 return crc;
2406 }
2407