if_upgt.c revision 1.20.2.1 1 /* $NetBSD: if_upgt.c,v 1.20.2.1 2019/06/10 22:07:33 christos Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.20.2.1 2019/06/10 22:07:33 christos Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 &sc->sc_drvbpf);
467
468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471
472 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475
476 aprint_normal_dev(sc->sc_dev, "address %s\n",
477 ether_sprintf(ic->ic_myaddr));
478
479 ieee80211_announce(ic);
480
481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482
483 /* device attached */
484 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485
486 return;
487 fail:
488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 struct upgt_softc *sc = device_private(self);
495 struct ifnet *ifp = &sc->sc_if;
496 struct ieee80211com *ic = &sc->sc_ic;
497 int s;
498
499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500
501 s = splnet();
502
503 if (ifp->if_flags & IFF_RUNNING)
504 upgt_stop(sc);
505
506 /* remove tasks and timeouts */
507 callout_halt(&sc->scan_to, NULL);
508 callout_halt(&sc->led_to, NULL);
509 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
510 NULL);
511 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
512 NULL);
513 callout_destroy(&sc->scan_to);
514 callout_destroy(&sc->led_to);
515
516 /* abort and close TX / RX pipes */
517 if (sc->sc_tx_pipeh != NULL) {
518 usbd_abort_pipe(sc->sc_tx_pipeh);
519 }
520 if (sc->sc_rx_pipeh != NULL) {
521 usbd_abort_pipe(sc->sc_rx_pipeh);
522 }
523
524 /* free xfers */
525 upgt_free_tx(sc);
526 upgt_free_rx(sc);
527 upgt_free_cmd(sc);
528
529 /* Close TX / RX pipes */
530 if (sc->sc_tx_pipeh != NULL) {
531 usbd_close_pipe(sc->sc_tx_pipeh);
532 }
533 if (sc->sc_rx_pipeh != NULL) {
534 usbd_close_pipe(sc->sc_rx_pipeh);
535 }
536
537 /* free firmware */
538 upgt_fw_free(sc);
539
540 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
541 /* detach interface */
542 bpf_detach(ifp);
543 ieee80211_ifdetach(ic);
544 if_detach(ifp);
545 }
546
547 splx(s);
548
549 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
550
551 return 0;
552 }
553
554 static int
555 upgt_activate(device_t self, devact_t act)
556 {
557 struct upgt_softc *sc = device_private(self);
558
559 switch (act) {
560 case DVACT_DEACTIVATE:
561 if_deactivate(&sc->sc_if);
562 return 0;
563 default:
564 return EOPNOTSUPP;
565 }
566 }
567
568 static int
569 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
570 {
571
572 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
573 sc->sc_device_type = 1;
574 /* XXX */
575 aprint_error_dev(sc->sc_dev,
576 "version 1 devices not supported yet\n");
577 return 1;
578 } else
579 sc->sc_device_type = 2;
580
581 return 0;
582 }
583
584 static int
585 upgt_device_init(struct upgt_softc *sc)
586 {
587 struct upgt_data *data_cmd = &sc->cmd_data;
588 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
589 int len;
590
591 len = sizeof(init_cmd);
592 memcpy(data_cmd->buf, init_cmd, len);
593 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
594 aprint_error_dev(sc->sc_dev,
595 "could not send device init string\n");
596 return EIO;
597 }
598 usbd_delay_ms(sc->sc_udev, 100);
599
600 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
601
602 return 0;
603 }
604
605 static int
606 upgt_mem_init(struct upgt_softc *sc)
607 {
608 int i;
609
610 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
611 sc->sc_memory.page[i].used = 0;
612
613 if (i == 0) {
614 /*
615 * The first memory page is always reserved for
616 * command data.
617 */
618 sc->sc_memory.page[i].addr =
619 sc->sc_memaddr_frame_start + MCLBYTES;
620 } else {
621 sc->sc_memory.page[i].addr =
622 sc->sc_memory.page[i - 1].addr + MCLBYTES;
623 }
624
625 if (sc->sc_memory.page[i].addr + MCLBYTES >=
626 sc->sc_memaddr_frame_end)
627 break;
628
629 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
630 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
631 }
632
633 sc->sc_memory.pages = i;
634
635 DPRINTF(2, "%s: memory pages=%d\n",
636 device_xname(sc->sc_dev), sc->sc_memory.pages);
637
638 return 0;
639 }
640
641 static uint32_t
642 upgt_mem_alloc(struct upgt_softc *sc)
643 {
644 int i;
645
646 for (i = 0; i < sc->sc_memory.pages; i++) {
647 if (sc->sc_memory.page[i].used == 0) {
648 sc->sc_memory.page[i].used = 1;
649 return sc->sc_memory.page[i].addr;
650 }
651 }
652
653 return 0;
654 }
655
656 static void
657 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
658 {
659 int i;
660
661 for (i = 0; i < sc->sc_memory.pages; i++) {
662 if (sc->sc_memory.page[i].addr == addr) {
663 sc->sc_memory.page[i].used = 0;
664 return;
665 }
666 }
667
668 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
669 addr);
670 }
671
672
673 static int
674 upgt_fw_alloc(struct upgt_softc *sc)
675 {
676 const char *name = "upgt-gw3887";
677 int error;
678
679 if (sc->sc_fw == NULL) {
680 error = firmware_load("upgt", name, &sc->sc_fw,
681 &sc->sc_fw_size);
682 if (error != 0) {
683 if (error == ENOENT) {
684 /*
685 * The firmware file for upgt(4) is not in
686 * the default distribution due to its lisence
687 * so explicitly notify it if the firmware file
688 * is not found.
689 */
690 aprint_error_dev(sc->sc_dev,
691 "firmware file %s is not installed\n",
692 name);
693 aprint_error_dev(sc->sc_dev,
694 "(it is not included in the default"
695 " distribution)\n");
696 aprint_error_dev(sc->sc_dev,
697 "see upgt(4) man page for details about "
698 "firmware installation\n");
699 } else {
700 aprint_error_dev(sc->sc_dev,
701 "could not read firmware %s\n", name);
702 }
703 return EIO;
704 }
705 }
706
707 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
708 name);
709
710 return 0;
711 }
712
713 static void
714 upgt_fw_free(struct upgt_softc *sc)
715 {
716
717 if (sc->sc_fw != NULL) {
718 firmware_free(sc->sc_fw, sc->sc_fw_size);
719 sc->sc_fw = NULL;
720 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
721 }
722 }
723
724 static int
725 upgt_fw_verify(struct upgt_softc *sc)
726 {
727 struct upgt_fw_bra_option *bra_option;
728 uint32_t bra_option_type, bra_option_len;
729 uint32_t *uc;
730 int offset, bra_end = 0;
731
732 /*
733 * Seek to beginning of Boot Record Area (BRA).
734 */
735 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
736 uc = (uint32_t *)(sc->sc_fw + offset);
737 if (*uc == 0)
738 break;
739 }
740 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
741 uc = (uint32_t *)(sc->sc_fw + offset);
742 if (*uc != 0)
743 break;
744 }
745 if (offset == sc->sc_fw_size) {
746 aprint_error_dev(sc->sc_dev,
747 "firmware Boot Record Area not found\n");
748 return EIO;
749 }
750 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
751 device_xname(sc->sc_dev), offset);
752
753 /*
754 * Parse Boot Record Area (BRA) options.
755 */
756 while (offset < sc->sc_fw_size && bra_end == 0) {
757 /* get current BRA option */
758 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
759 bra_option_type = le32toh(bra_option->type);
760 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
761
762 switch (bra_option_type) {
763 case UPGT_BRA_TYPE_FW:
764 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
765 device_xname(sc->sc_dev), bra_option_len);
766
767 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
768 aprint_error_dev(sc->sc_dev,
769 "wrong UPGT_BRA_TYPE_FW len\n");
770 return EIO;
771 }
772 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
773 bra_option_len) == 0) {
774 sc->sc_fw_type = UPGT_FWTYPE_LM86;
775 break;
776 }
777 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
778 bra_option_len) == 0) {
779 sc->sc_fw_type = UPGT_FWTYPE_LM87;
780 break;
781 }
782 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
783 bra_option_len) == 0) {
784 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
785 break;
786 }
787 aprint_error_dev(sc->sc_dev,
788 "unsupported firmware type\n");
789 return EIO;
790 case UPGT_BRA_TYPE_VERSION:
791 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
792 device_xname(sc->sc_dev), bra_option_len);
793 break;
794 case UPGT_BRA_TYPE_DEPIF:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 break;
798 case UPGT_BRA_TYPE_EXPIF:
799 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
800 device_xname(sc->sc_dev), bra_option_len);
801 break;
802 case UPGT_BRA_TYPE_DESCR:
803 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
804 device_xname(sc->sc_dev), bra_option_len);
805
806 struct upgt_fw_bra_descr *descr =
807 (struct upgt_fw_bra_descr *)bra_option->data;
808
809 sc->sc_memaddr_frame_start =
810 le32toh(descr->memaddr_space_start);
811 sc->sc_memaddr_frame_end =
812 le32toh(descr->memaddr_space_end);
813
814 DPRINTF(2, "%s: memory address space start=0x%08x\n",
815 device_xname(sc->sc_dev),
816 sc->sc_memaddr_frame_start);
817 DPRINTF(2, "%s: memory address space end=0x%08x\n",
818 device_xname(sc->sc_dev),
819 sc->sc_memaddr_frame_end);
820 break;
821 case UPGT_BRA_TYPE_END:
822 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
823 device_xname(sc->sc_dev), bra_option_len);
824 bra_end = 1;
825 break;
826 default:
827 DPRINTF(1, "%s: unknown BRA option len=%d\n",
828 device_xname(sc->sc_dev), bra_option_len);
829 return EIO;
830 }
831
832 /* jump to next BRA option */
833 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
834 }
835
836 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
837
838 return 0;
839 }
840
841 static int
842 upgt_fw_load(struct upgt_softc *sc)
843 {
844 struct upgt_data *data_cmd = &sc->cmd_data;
845 struct upgt_data *data_rx = &sc->rx_data;
846 struct upgt_fw_x2_header *x2;
847 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
848 int offset, bsize, n, i, len;
849 uint32_t crc;
850
851 /* send firmware start load command */
852 len = sizeof(start_fwload_cmd);
853 memcpy(data_cmd->buf, start_fwload_cmd, len);
854 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
855 aprint_error_dev(sc->sc_dev,
856 "could not send start_firmware_load command\n");
857 return EIO;
858 }
859
860 /* send X2 header */
861 len = sizeof(struct upgt_fw_x2_header);
862 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
863 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
864 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
865 x2->len = htole32(sc->sc_fw_size);
866 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
867 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
868 sizeof(uint32_t));
869 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
870 aprint_error_dev(sc->sc_dev,
871 "could not send firmware X2 header\n");
872 return EIO;
873 }
874
875 /* download firmware */
876 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
877 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
878 bsize = UPGT_FW_BLOCK_SIZE;
879 else
880 bsize = sc->sc_fw_size - offset;
881
882 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
883
884 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
885 device_xname(sc->sc_dev), offset, n, bsize);
886
887 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
888 != 0) {
889 aprint_error_dev(sc->sc_dev,
890 "error while downloading firmware block\n");
891 return EIO;
892 }
893
894 bsize = n;
895 }
896 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
897
898 /* load firmware */
899 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
900 *((uint32_t *)(data_cmd->buf) ) = crc;
901 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
902 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
903 len = 6;
904 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
905 aprint_error_dev(sc->sc_dev,
906 "could not send load_firmware command\n");
907 return EIO;
908 }
909
910 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
911 len = UPGT_FW_BLOCK_SIZE;
912 memset(data_rx->buf, 0, 2);
913 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
914 USBD_SHORT_XFER_OK) != 0) {
915 aprint_error_dev(sc->sc_dev,
916 "could not read firmware response\n");
917 return EIO;
918 }
919
920 if (memcmp(data_rx->buf, "OK", 2) == 0)
921 break; /* firmware load was successful */
922 }
923 if (i == UPGT_FIRMWARE_TIMEOUT) {
924 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
925 return EIO;
926 }
927 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
928
929 return 0;
930 }
931
932 /*
933 * While copying the version 2 firmware, we need to replace two characters:
934 *
935 * 0x7e -> 0x7d 0x5e
936 * 0x7d -> 0x7d 0x5d
937 */
938 static int
939 upgt_fw_copy(char *src, char *dst, int size)
940 {
941 int i, j;
942
943 for (i = 0, j = 0; i < size && j < size; i++) {
944 switch (src[i]) {
945 case 0x7e:
946 dst[j] = 0x7d;
947 j++;
948 dst[j] = 0x5e;
949 j++;
950 break;
951 case 0x7d:
952 dst[j] = 0x7d;
953 j++;
954 dst[j] = 0x5d;
955 j++;
956 break;
957 default:
958 dst[j] = src[i];
959 j++;
960 break;
961 }
962 }
963
964 return i;
965 }
966
967 static int
968 upgt_eeprom_read(struct upgt_softc *sc)
969 {
970 struct upgt_data *data_cmd = &sc->cmd_data;
971 struct upgt_lmac_mem *mem;
972 struct upgt_lmac_eeprom *eeprom;
973 int offset, block, len;
974
975 offset = 0;
976 block = UPGT_EEPROM_BLOCK_SIZE;
977 while (offset < UPGT_EEPROM_SIZE) {
978 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
979 device_xname(sc->sc_dev), offset, block);
980
981 /*
982 * Transmit the URB containing the CMD data.
983 */
984 len = sizeof(*mem) + sizeof(*eeprom) + block;
985
986 memset(data_cmd->buf, 0, len);
987
988 mem = (struct upgt_lmac_mem *)data_cmd->buf;
989 mem->addr = htole32(sc->sc_memaddr_frame_start +
990 UPGT_MEMSIZE_FRAME_HEAD);
991
992 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
993 eeprom->header1.flags = 0;
994 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
995 eeprom->header1.len = htole16((
996 sizeof(struct upgt_lmac_eeprom) -
997 sizeof(struct upgt_lmac_header)) + block);
998
999 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1000 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1001 eeprom->header2.flags = 0;
1002
1003 eeprom->offset = htole16(offset);
1004 eeprom->len = htole16(block);
1005
1006 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1007 len - sizeof(*mem));
1008
1009 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1010 USBD_FORCE_SHORT_XFER) != 0) {
1011 aprint_error_dev(sc->sc_dev,
1012 "could not transmit EEPROM data URB\n");
1013 return EIO;
1014 }
1015 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1016 aprint_error_dev(sc->sc_dev,
1017 "timeout while waiting for EEPROM data\n");
1018 return EIO;
1019 }
1020
1021 offset += block;
1022 if (UPGT_EEPROM_SIZE - offset < block)
1023 block = UPGT_EEPROM_SIZE - offset;
1024 }
1025
1026 return 0;
1027 }
1028
1029 static int
1030 upgt_eeprom_parse(struct upgt_softc *sc)
1031 {
1032 struct ieee80211com *ic = &sc->sc_ic;
1033 struct upgt_eeprom_header *eeprom_header;
1034 struct upgt_eeprom_option *eeprom_option;
1035 uint16_t option_len;
1036 uint16_t option_type;
1037 uint16_t preamble_len;
1038 int option_end = 0;
1039
1040 /* calculate eeprom options start offset */
1041 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1042 preamble_len = le16toh(eeprom_header->preamble_len);
1043 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1044 (sizeof(struct upgt_eeprom_header) + preamble_len));
1045
1046 while (!option_end) {
1047 /* the eeprom option length is stored in words */
1048 option_len =
1049 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1050 option_type =
1051 le16toh(eeprom_option->type);
1052
1053 switch (option_type) {
1054 case UPGT_EEPROM_TYPE_NAME:
1055 DPRINTF(1, "%s: EEPROM name len=%d\n",
1056 device_xname(sc->sc_dev), option_len);
1057 break;
1058 case UPGT_EEPROM_TYPE_SERIAL:
1059 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061 break;
1062 case UPGT_EEPROM_TYPE_MAC:
1063 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1064 device_xname(sc->sc_dev), option_len);
1065
1066 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1067 break;
1068 case UPGT_EEPROM_TYPE_HWRX:
1069 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1070 device_xname(sc->sc_dev), option_len);
1071
1072 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1073 break;
1074 case UPGT_EEPROM_TYPE_CHIP:
1075 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1076 device_xname(sc->sc_dev), option_len);
1077 break;
1078 case UPGT_EEPROM_TYPE_FREQ3:
1079 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1080 device_xname(sc->sc_dev), option_len);
1081
1082 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1083 option_len);
1084 break;
1085 case UPGT_EEPROM_TYPE_FREQ4:
1086 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1087 device_xname(sc->sc_dev), option_len);
1088
1089 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1090 option_len);
1091 break;
1092 case UPGT_EEPROM_TYPE_FREQ5:
1093 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1094 device_xname(sc->sc_dev), option_len);
1095 break;
1096 case UPGT_EEPROM_TYPE_FREQ6:
1097 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1098 device_xname(sc->sc_dev), option_len);
1099
1100 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1101 option_len);
1102 break;
1103 case UPGT_EEPROM_TYPE_END:
1104 DPRINTF(1, "%s: EEPROM end len=%d\n",
1105 device_xname(sc->sc_dev), option_len);
1106 option_end = 1;
1107 break;
1108 case UPGT_EEPROM_TYPE_OFF:
1109 DPRINTF(1, "%s: EEPROM off without end option\n",
1110 device_xname(sc->sc_dev));
1111 return EIO;
1112 default:
1113 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1114 device_xname(sc->sc_dev), option_type, option_len);
1115 break;
1116 }
1117
1118 /* jump to next EEPROM option */
1119 eeprom_option = (struct upgt_eeprom_option *)
1120 (eeprom_option->data + option_len);
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void
1127 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1128 {
1129 struct upgt_eeprom_option_hwrx *option_hwrx;
1130
1131 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1132
1133 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1134
1135 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1136 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1137 }
1138
1139 static void
1140 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1141 {
1142 struct upgt_eeprom_freq3_header *freq3_header;
1143 struct upgt_lmac_freq3 *freq3;
1144 int i, elements, flags;
1145 unsigned channel;
1146
1147 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1148 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1149
1150 flags = freq3_header->flags;
1151 elements = freq3_header->elements;
1152
1153 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1154 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1155 __USE(flags);
1156
1157 for (i = 0; i < elements; i++) {
1158 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1159
1160 sc->sc_eeprom_freq3[channel] = freq3[i];
1161
1162 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1163 device_xname(sc->sc_dev),
1164 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1165 }
1166 }
1167
1168 static void
1169 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1170 {
1171 struct upgt_eeprom_freq4_header *freq4_header;
1172 struct upgt_eeprom_freq4_1 *freq4_1;
1173 struct upgt_eeprom_freq4_2 *freq4_2;
1174 int i, j, elements, settings, flags;
1175 unsigned channel;
1176
1177 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1178 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1179
1180 flags = freq4_header->flags;
1181 elements = freq4_header->elements;
1182 settings = freq4_header->settings;
1183
1184 /* we need this value later */
1185 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1186
1187 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1188 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1189 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1190 __USE(flags);
1191
1192 for (i = 0; i < elements; i++) {
1193 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1194
1195 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1196
1197 for (j = 0; j < settings; j++) {
1198 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1199 sc->sc_eeprom_freq4[channel][j].pad = 0;
1200 }
1201
1202 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1203 device_xname(sc->sc_dev),
1204 le16toh(freq4_1[i].freq), channel);
1205 }
1206 }
1207
1208 static void
1209 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1210 {
1211 struct upgt_lmac_freq6 *freq6;
1212 int i, elements;
1213 unsigned channel;
1214
1215 freq6 = (struct upgt_lmac_freq6 *)data;
1216
1217 elements = len / sizeof(struct upgt_lmac_freq6);
1218
1219 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1220
1221 for (i = 0; i < elements; i++) {
1222 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1223
1224 sc->sc_eeprom_freq6[channel] = freq6[i];
1225
1226 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1227 device_xname(sc->sc_dev),
1228 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1229 }
1230 }
1231
1232 static int
1233 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1234 {
1235 struct upgt_softc *sc = ifp->if_softc;
1236 struct ieee80211com *ic = &sc->sc_ic;
1237 int s, error = 0;
1238
1239 s = splnet();
1240
1241 switch (cmd) {
1242 case SIOCSIFFLAGS:
1243 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1244 break;
1245 if (ifp->if_flags & IFF_UP) {
1246 if ((ifp->if_flags & IFF_RUNNING) == 0)
1247 upgt_init(ifp);
1248 } else {
1249 if (ifp->if_flags & IFF_RUNNING)
1250 upgt_stop(sc);
1251 }
1252 break;
1253 case SIOCADDMULTI:
1254 case SIOCDELMULTI:
1255 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1256 /* setup multicast filter, etc */
1257 error = 0;
1258 }
1259 break;
1260 default:
1261 error = ieee80211_ioctl(ic, cmd, data);
1262 break;
1263 }
1264
1265 if (error == ENETRESET) {
1266 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1267 (IFF_UP | IFF_RUNNING))
1268 upgt_init(ifp);
1269 error = 0;
1270 }
1271
1272 splx(s);
1273
1274 return error;
1275 }
1276
1277 static int
1278 upgt_init(struct ifnet *ifp)
1279 {
1280 struct upgt_softc *sc = ifp->if_softc;
1281 struct ieee80211com *ic = &sc->sc_ic;
1282
1283 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1284
1285 if (ifp->if_flags & IFF_RUNNING)
1286 upgt_stop(sc);
1287
1288 ifp->if_flags |= IFF_RUNNING;
1289 ifp->if_flags &= ~IFF_OACTIVE;
1290
1291 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1292
1293 /* setup device rates */
1294 upgt_setup_rates(sc);
1295
1296 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1297 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1298 else
1299 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1300
1301 return 0;
1302 }
1303
1304 static void
1305 upgt_stop(struct upgt_softc *sc)
1306 {
1307 struct ieee80211com *ic = &sc->sc_ic;
1308 struct ifnet *ifp = &sc->sc_if;
1309
1310 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1311
1312 /* device down */
1313 ifp->if_timer = 0;
1314 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1315
1316 /* change device back to initial state */
1317 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1318 }
1319
1320 static int
1321 upgt_media_change(struct ifnet *ifp)
1322 {
1323 struct upgt_softc *sc = ifp->if_softc;
1324 int error;
1325
1326 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1327
1328 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1329 return error;
1330
1331 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1332 (IFF_UP | IFF_RUNNING)) {
1333 /* give pending USB transfers a chance to finish */
1334 usbd_delay_ms(sc->sc_udev, 100);
1335 upgt_init(ifp);
1336 }
1337
1338 return 0;
1339 }
1340
1341 static void
1342 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1343 {
1344
1345 ni->ni_txrate = 0;
1346 }
1347
1348 static int
1349 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1350 {
1351 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1352
1353 /*
1354 * XXXSMP: This does not wait for the task, if it is in flight,
1355 * to complete. If this code works at all, it must rely on the
1356 * kernel lock to serialize with the USB task thread.
1357 */
1358 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1359 callout_stop(&sc->scan_to);
1360
1361 /* do it in a process context */
1362 sc->sc_state = nstate;
1363 sc->sc_arg = arg;
1364 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1365
1366 return 0;
1367 }
1368
1369 static void
1370 upgt_newstate_task(void *arg)
1371 {
1372 struct upgt_softc *sc = arg;
1373 struct ieee80211com *ic = &sc->sc_ic;
1374 struct ieee80211_node *ni;
1375 unsigned channel;
1376
1377 mutex_enter(&sc->sc_mtx);
1378
1379 switch (sc->sc_state) {
1380 case IEEE80211_S_INIT:
1381 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1382 device_xname(sc->sc_dev));
1383
1384 /* do not accept any frames if the device is down */
1385 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1386 upgt_set_led(sc, UPGT_LED_OFF);
1387 break;
1388 case IEEE80211_S_SCAN:
1389 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1390 device_xname(sc->sc_dev));
1391
1392 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 upgt_set_channel(sc, channel);
1394 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1395 callout_schedule(&sc->scan_to, hz / 5);
1396 break;
1397 case IEEE80211_S_AUTH:
1398 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1399 device_xname(sc->sc_dev));
1400
1401 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1402 upgt_set_channel(sc, channel);
1403 break;
1404 case IEEE80211_S_ASSOC:
1405 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1406 device_xname(sc->sc_dev));
1407
1408 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1409 upgt_set_channel(sc, channel);
1410 break;
1411 case IEEE80211_S_RUN:
1412 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1413 device_xname(sc->sc_dev));
1414
1415 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1416 upgt_set_channel(sc, channel);
1417
1418 ni = ic->ic_bss;
1419
1420 /*
1421 * TX rate control is done by the firmware.
1422 * Report the maximum rate which is available therefore.
1423 */
1424 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1425
1426 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1427 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1428 upgt_set_led(sc, UPGT_LED_ON);
1429 break;
1430 }
1431
1432 mutex_exit(&sc->sc_mtx);
1433
1434 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1435 }
1436
1437 static void
1438 upgt_next_scan(void *arg)
1439 {
1440 struct upgt_softc *sc = arg;
1441 struct ieee80211com *ic = &sc->sc_ic;
1442
1443 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1444
1445 if (ic->ic_state == IEEE80211_S_SCAN)
1446 ieee80211_next_scan(ic);
1447 }
1448
1449 static void
1450 upgt_start(struct ifnet *ifp)
1451 {
1452 struct upgt_softc *sc = ifp->if_softc;
1453 struct ieee80211com *ic = &sc->sc_ic;
1454 struct ether_header *eh;
1455 struct ieee80211_node *ni;
1456 struct mbuf *m;
1457 int i;
1458
1459 /* don't transmit packets if interface is busy or down */
1460 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1461 return;
1462
1463 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1464
1465 for (i = 0; i < UPGT_TX_COUNT; i++) {
1466 struct upgt_data *data_tx = &sc->tx_data[i];
1467
1468 if (data_tx->m != NULL)
1469 continue;
1470
1471 IF_POLL(&ic->ic_mgtq, m);
1472 if (m != NULL) {
1473 /* management frame */
1474 IF_DEQUEUE(&ic->ic_mgtq, m);
1475
1476 ni = M_GETCTX(m, struct ieee80211_node *);
1477 M_CLEARCTX(m);
1478
1479 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1480
1481 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1482 aprint_error_dev(sc->sc_dev,
1483 "no free prism memory\n");
1484 m_freem(m);
1485 ifp->if_oerrors++;
1486 break;
1487 }
1488 data_tx->ni = ni;
1489 data_tx->m = m;
1490 sc->tx_queued++;
1491 } else {
1492 /* data frame */
1493 if (ic->ic_state != IEEE80211_S_RUN)
1494 break;
1495
1496 IFQ_POLL(&ifp->if_snd, m);
1497 if (m == NULL)
1498 break;
1499
1500 IFQ_DEQUEUE(&ifp->if_snd, m);
1501 if (m->m_len < sizeof(struct ether_header) &&
1502 !(m = m_pullup(m, sizeof(struct ether_header))))
1503 continue;
1504
1505 eh = mtod(m, struct ether_header *);
1506 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1507 if (ni == NULL) {
1508 m_freem(m);
1509 continue;
1510 }
1511
1512 bpf_mtap(ifp, m, BPF_D_OUT);
1513
1514 m = ieee80211_encap(ic, m, ni);
1515 if (m == NULL) {
1516 ieee80211_free_node(ni);
1517 continue;
1518 }
1519
1520 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1521
1522 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1523 aprint_error_dev(sc->sc_dev,
1524 "no free prism memory\n");
1525 m_freem(m);
1526 ieee80211_free_node(ni);
1527 ifp->if_oerrors++;
1528 break;
1529 }
1530 data_tx->ni = ni;
1531 data_tx->m = m;
1532 sc->tx_queued++;
1533 }
1534 }
1535
1536 if (sc->tx_queued > 0) {
1537 DPRINTF(2, "%s: tx_queued=%d\n",
1538 device_xname(sc->sc_dev), sc->tx_queued);
1539 /* process the TX queue in process context */
1540 ifp->if_timer = 5;
1541 ifp->if_flags |= IFF_OACTIVE;
1542 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1543 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1544 }
1545 }
1546
1547 static void
1548 upgt_watchdog(struct ifnet *ifp)
1549 {
1550 struct upgt_softc *sc = ifp->if_softc;
1551 struct ieee80211com *ic = &sc->sc_ic;
1552
1553 if (ic->ic_state == IEEE80211_S_INIT)
1554 return;
1555
1556 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1557
1558 /* TODO: what shall we do on TX timeout? */
1559
1560 ieee80211_watchdog(ic);
1561 }
1562
1563 static void
1564 upgt_tx_task(void *arg)
1565 {
1566 struct upgt_softc *sc = arg;
1567 struct ieee80211com *ic = &sc->sc_ic;
1568 struct ieee80211_frame *wh;
1569 struct ieee80211_key *k;
1570 struct ifnet *ifp = &sc->sc_if;
1571 struct upgt_lmac_mem *mem;
1572 struct upgt_lmac_tx_desc *txdesc;
1573 struct mbuf *m;
1574 uint32_t addr;
1575 int i, len, pad, s;
1576 usbd_status error;
1577
1578 mutex_enter(&sc->sc_mtx);
1579 upgt_set_led(sc, UPGT_LED_BLINK);
1580 mutex_exit(&sc->sc_mtx);
1581
1582 s = splnet();
1583
1584 for (i = 0; i < UPGT_TX_COUNT; i++) {
1585 struct upgt_data *data_tx = &sc->tx_data[i];
1586
1587 if (data_tx->m == NULL)
1588 continue;
1589
1590 m = data_tx->m;
1591 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1592
1593 /*
1594 * Software crypto.
1595 */
1596 wh = mtod(m, struct ieee80211_frame *);
1597
1598 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1599 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1600 if (k == NULL) {
1601 m_freem(m);
1602 data_tx->m = NULL;
1603 ieee80211_free_node(data_tx->ni);
1604 data_tx->ni = NULL;
1605 ifp->if_oerrors++;
1606 break;
1607 }
1608
1609 /* in case packet header moved, reset pointer */
1610 wh = mtod(m, struct ieee80211_frame *);
1611 }
1612
1613 /*
1614 * Transmit the URB containing the TX data.
1615 */
1616 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1617
1618 mem = (struct upgt_lmac_mem *)data_tx->buf;
1619 mem->addr = htole32(addr);
1620
1621 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1622
1623 /* XXX differ between data and mgmt frames? */
1624 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1625 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1626 txdesc->header1.len = htole16(m->m_pkthdr.len);
1627
1628 txdesc->header2.reqid = htole32(data_tx->addr);
1629 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1630 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1631
1632 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1633 IEEE80211_FC0_TYPE_MGT) {
1634 /* always send mgmt frames at lowest rate (DS1) */
1635 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1636 } else {
1637 memcpy(txdesc->rates, sc->sc_cur_rateset,
1638 sizeof(txdesc->rates));
1639 }
1640 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1641 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1642
1643 if (sc->sc_drvbpf != NULL) {
1644 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1645
1646 tap->wt_flags = 0;
1647 tap->wt_rate = 0; /* TODO: where to get from? */
1648 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1649 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1650
1651 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1652 BPF_D_OUT);
1653 }
1654
1655 /* copy frame below our TX descriptor header */
1656 m_copydata(m, 0, m->m_pkthdr.len,
1657 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1658
1659 /* calculate frame size */
1660 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1661
1662 if (len & 3) {
1663 /* we need to align the frame to a 4 byte boundary */
1664 pad = 4 - (len & 3);
1665 memset(data_tx->buf + len, 0, pad);
1666 len += pad;
1667 }
1668
1669 /* calculate frame checksum */
1670 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1671 len - sizeof(*mem));
1672
1673 /* we do not need the mbuf anymore */
1674 m_freem(m);
1675 data_tx->m = NULL;
1676
1677 ieee80211_free_node(data_tx->ni);
1678 data_tx->ni = NULL;
1679
1680 DPRINTF(2, "%s: TX start data sending\n",
1681 device_xname(sc->sc_dev));
1682
1683 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1684 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1685 error = usbd_transfer(data_tx->xfer);
1686 if (error != USBD_NORMAL_COMPLETION &&
1687 error != USBD_IN_PROGRESS) {
1688 aprint_error_dev(sc->sc_dev,
1689 "could not transmit TX data URB\n");
1690 ifp->if_oerrors++;
1691 break;
1692 }
1693
1694 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1695 device_xname(sc->sc_dev), len);
1696 }
1697
1698 splx(s);
1699
1700 /*
1701 * If we don't regulary read the device statistics, the RX queue
1702 * will stall. It's strange, but it works, so we keep reading
1703 * the statistics here. *shrug*
1704 */
1705 mutex_enter(&sc->sc_mtx);
1706 upgt_get_stats(sc);
1707 mutex_exit(&sc->sc_mtx);
1708 }
1709
1710 static void
1711 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1712 {
1713 struct ifnet *ifp = &sc->sc_if;
1714 struct upgt_lmac_tx_done_desc *desc;
1715 int i, s;
1716
1717 s = splnet();
1718
1719 desc = (struct upgt_lmac_tx_done_desc *)data;
1720
1721 for (i = 0; i < UPGT_TX_COUNT; i++) {
1722 struct upgt_data *data_tx = &sc->tx_data[i];
1723
1724 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1725 upgt_mem_free(sc, data_tx->addr);
1726 data_tx->addr = 0;
1727
1728 sc->tx_queued--;
1729 ifp->if_opackets++;
1730
1731 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1732 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1733 le32toh(desc->header2.reqid),
1734 le16toh(desc->status),
1735 le16toh(desc->rssi));
1736 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1737 break;
1738 }
1739 }
1740
1741 if (sc->tx_queued == 0) {
1742 /* TX queued was processed, continue */
1743 ifp->if_timer = 0;
1744 ifp->if_flags &= ~IFF_OACTIVE;
1745 upgt_start(ifp);
1746 }
1747
1748 splx(s);
1749 }
1750
1751 static void
1752 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1753 {
1754 struct upgt_data *data_rx = priv;
1755 struct upgt_softc *sc = data_rx->sc;
1756 int len;
1757 struct upgt_lmac_header *header;
1758 struct upgt_lmac_eeprom *eeprom;
1759 uint8_t h1_type;
1760 uint16_t h2_type;
1761
1762 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1763
1764 if (status != USBD_NORMAL_COMPLETION) {
1765 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1766 return;
1767 if (status == USBD_STALLED)
1768 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1769 goto skip;
1770 }
1771 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1772
1773 /*
1774 * Check what type of frame came in.
1775 */
1776 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1777
1778 h1_type = header->header1.type;
1779 h2_type = le16toh(header->header2.type);
1780
1781 if (h1_type == UPGT_H1_TYPE_CTRL &&
1782 h2_type == UPGT_H2_TYPE_EEPROM) {
1783 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1784 uint16_t eeprom_offset = le16toh(eeprom->offset);
1785 uint16_t eeprom_len = le16toh(eeprom->len);
1786
1787 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1788 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1789
1790 memcpy(sc->sc_eeprom + eeprom_offset,
1791 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1792 eeprom_len);
1793
1794 /* EEPROM data has arrived in time, wakeup tsleep() */
1795 wakeup(sc);
1796 } else
1797 if (h1_type == UPGT_H1_TYPE_CTRL &&
1798 h2_type == UPGT_H2_TYPE_TX_DONE) {
1799 DPRINTF(2, "%s: received 802.11 TX done\n",
1800 device_xname(sc->sc_dev));
1801
1802 upgt_tx_done(sc, data_rx->buf + 4);
1803 } else
1804 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1805 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1806 DPRINTF(3, "%s: received 802.11 RX data\n",
1807 device_xname(sc->sc_dev));
1808
1809 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1810 } else
1811 if (h1_type == UPGT_H1_TYPE_CTRL &&
1812 h2_type == UPGT_H2_TYPE_STATS) {
1813 DPRINTF(2, "%s: received statistic data\n",
1814 device_xname(sc->sc_dev));
1815
1816 /* TODO: what could we do with the statistic data? */
1817 } else {
1818 /* ignore unknown frame types */
1819 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1820 device_xname(sc->sc_dev), header->header1.type);
1821 }
1822
1823 skip: /* setup new transfer */
1824 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1825 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1826 (void)usbd_transfer(xfer);
1827 }
1828
1829 static void
1830 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1831 {
1832 struct ieee80211com *ic = &sc->sc_ic;
1833 struct ifnet *ifp = &sc->sc_if;
1834 struct upgt_lmac_rx_desc *rxdesc;
1835 struct ieee80211_frame *wh;
1836 struct ieee80211_node *ni;
1837 struct mbuf *m;
1838 int s;
1839
1840 /* access RX packet descriptor */
1841 rxdesc = (struct upgt_lmac_rx_desc *)data;
1842
1843 /* create mbuf which is suitable for strict alignment archs */
1844 m = m_devget(rxdesc->data, pkglen, 0, ifp);
1845 if (m == NULL) {
1846 DPRINTF(1, "%s: could not create RX mbuf\n",
1847 device_xname(sc->sc_dev));
1848 ifp->if_ierrors++;
1849 return;
1850 }
1851
1852 s = splnet();
1853
1854 if (sc->sc_drvbpf != NULL) {
1855 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1856
1857 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1858 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1859 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1860 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1861 tap->wr_antsignal = rxdesc->rssi;
1862
1863 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1864 }
1865
1866 /* trim FCS */
1867 m_adj(m, -IEEE80211_CRC_LEN);
1868
1869 wh = mtod(m, struct ieee80211_frame *);
1870 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1871
1872 /* push the frame up to the 802.11 stack */
1873 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1874
1875 /* node is no longer needed */
1876 ieee80211_free_node(ni);
1877
1878 splx(s);
1879
1880 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1881 }
1882
1883 static void
1884 upgt_setup_rates(struct upgt_softc *sc)
1885 {
1886 struct ieee80211com *ic = &sc->sc_ic;
1887
1888 /*
1889 * 0x01 = OFMD6 0x10 = DS1
1890 * 0x04 = OFDM9 0x11 = DS2
1891 * 0x06 = OFDM12 0x12 = DS5
1892 * 0x07 = OFDM18 0x13 = DS11
1893 * 0x08 = OFDM24
1894 * 0x09 = OFDM36
1895 * 0x0a = OFDM48
1896 * 0x0b = OFDM54
1897 */
1898 const uint8_t rateset_auto_11b[] =
1899 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1900 const uint8_t rateset_auto_11g[] =
1901 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1902 const uint8_t rateset_fix_11bg[] =
1903 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1904 0x08, 0x09, 0x0a, 0x0b };
1905
1906 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1907 /*
1908 * Automatic rate control is done by the device.
1909 * We just pass the rateset from which the device
1910 * will pickup a rate.
1911 */
1912 if (ic->ic_curmode == IEEE80211_MODE_11B)
1913 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1914 sizeof(sc->sc_cur_rateset));
1915 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1916 ic->ic_curmode == IEEE80211_MODE_AUTO)
1917 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1918 sizeof(sc->sc_cur_rateset));
1919 } else {
1920 /* set a fixed rate */
1921 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1922 sizeof(sc->sc_cur_rateset));
1923 }
1924 }
1925
1926 static uint8_t
1927 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1928 {
1929 struct ieee80211com *ic = &sc->sc_ic;
1930
1931 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1932 if (rate < 0 || rate > 3)
1933 /* invalid rate */
1934 return 0;
1935
1936 switch (rate) {
1937 case 0:
1938 return 2;
1939 case 1:
1940 return 4;
1941 case 2:
1942 return 11;
1943 case 3:
1944 return 22;
1945 default:
1946 return 0;
1947 }
1948 }
1949
1950 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1951 if (rate < 0 || rate > 11)
1952 /* invalid rate */
1953 return 0;
1954
1955 switch (rate) {
1956 case 0:
1957 return 2;
1958 case 1:
1959 return 4;
1960 case 2:
1961 return 11;
1962 case 3:
1963 return 22;
1964 case 4:
1965 return 12;
1966 case 5:
1967 return 18;
1968 case 6:
1969 return 24;
1970 case 7:
1971 return 36;
1972 case 8:
1973 return 48;
1974 case 9:
1975 return 72;
1976 case 10:
1977 return 96;
1978 case 11:
1979 return 108;
1980 default:
1981 return 0;
1982 }
1983 }
1984
1985 return 0;
1986 }
1987
1988 static int
1989 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1990 {
1991 struct ieee80211com *ic = &sc->sc_ic;
1992 struct ieee80211_node *ni = ic->ic_bss;
1993 struct upgt_data *data_cmd = &sc->cmd_data;
1994 struct upgt_lmac_mem *mem;
1995 struct upgt_lmac_filter *filter;
1996 int len;
1997 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1998
1999 /*
2000 * Transmit the URB containing the CMD data.
2001 */
2002 len = sizeof(*mem) + sizeof(*filter);
2003
2004 memset(data_cmd->buf, 0, len);
2005
2006 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2007 mem->addr = htole32(sc->sc_memaddr_frame_start +
2008 UPGT_MEMSIZE_FRAME_HEAD);
2009
2010 filter = (struct upgt_lmac_filter *)(mem + 1);
2011
2012 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2013 filter->header1.type = UPGT_H1_TYPE_CTRL;
2014 filter->header1.len = htole16(
2015 sizeof(struct upgt_lmac_filter) -
2016 sizeof(struct upgt_lmac_header));
2017
2018 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2019 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2020 filter->header2.flags = 0;
2021
2022 switch (state) {
2023 case IEEE80211_S_INIT:
2024 DPRINTF(1, "%s: set MAC filter to INIT\n",
2025 device_xname(sc->sc_dev));
2026
2027 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2028 break;
2029 case IEEE80211_S_SCAN:
2030 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2031 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2032
2033 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2034 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2035 IEEE80211_ADDR_COPY(filter->src, broadcast);
2036 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2037 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2038 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2039 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2040 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2041 break;
2042 case IEEE80211_S_RUN:
2043 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2044 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2045
2046 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2047 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2048 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2049 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2050 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2051 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2052 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2053 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2054 break;
2055 default:
2056 aprint_error_dev(sc->sc_dev,
2057 "MAC filter does not know that state\n");
2058 break;
2059 }
2060
2061 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2062
2063 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2064 aprint_error_dev(sc->sc_dev,
2065 "could not transmit macfilter CMD data URB\n");
2066 return EIO;
2067 }
2068
2069 return 0;
2070 }
2071
2072 static int
2073 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2074 {
2075 struct upgt_data *data_cmd = &sc->cmd_data;
2076 struct upgt_lmac_mem *mem;
2077 struct upgt_lmac_channel *chan;
2078 int len;
2079
2080 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2081 channel);
2082
2083 /*
2084 * Transmit the URB containing the CMD data.
2085 */
2086 len = sizeof(*mem) + sizeof(*chan);
2087
2088 memset(data_cmd->buf, 0, len);
2089
2090 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2091 mem->addr = htole32(sc->sc_memaddr_frame_start +
2092 UPGT_MEMSIZE_FRAME_HEAD);
2093
2094 chan = (struct upgt_lmac_channel *)(mem + 1);
2095
2096 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2097 chan->header1.type = UPGT_H1_TYPE_CTRL;
2098 chan->header1.len = htole16(
2099 sizeof(struct upgt_lmac_channel) -
2100 sizeof(struct upgt_lmac_header));
2101
2102 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2103 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2104 chan->header2.flags = 0;
2105
2106 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2107 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2108 chan->freq6 = sc->sc_eeprom_freq6[channel];
2109 chan->settings = sc->sc_eeprom_freq6_settings;
2110 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2111
2112 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2113 sizeof(chan->freq3_1));
2114
2115 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2116 sizeof(sc->sc_eeprom_freq4[channel]));
2117
2118 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2119 sizeof(chan->freq3_2));
2120
2121 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2122
2123 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2124 aprint_error_dev(sc->sc_dev,
2125 "could not transmit channel CMD data URB\n");
2126 return EIO;
2127 }
2128
2129 return 0;
2130 }
2131
2132 static void
2133 upgt_set_led(struct upgt_softc *sc, int action)
2134 {
2135 struct ieee80211com *ic = &sc->sc_ic;
2136 struct upgt_data *data_cmd = &sc->cmd_data;
2137 struct upgt_lmac_mem *mem;
2138 struct upgt_lmac_led *led;
2139 struct timeval t;
2140 int len;
2141
2142 /*
2143 * Transmit the URB containing the CMD data.
2144 */
2145 len = sizeof(*mem) + sizeof(*led);
2146
2147 memset(data_cmd->buf, 0, len);
2148
2149 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2150 mem->addr = htole32(sc->sc_memaddr_frame_start +
2151 UPGT_MEMSIZE_FRAME_HEAD);
2152
2153 led = (struct upgt_lmac_led *)(mem + 1);
2154
2155 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2156 led->header1.type = UPGT_H1_TYPE_CTRL;
2157 led->header1.len = htole16(
2158 sizeof(struct upgt_lmac_led) -
2159 sizeof(struct upgt_lmac_header));
2160
2161 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2162 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2163 led->header2.flags = 0;
2164
2165 switch (action) {
2166 case UPGT_LED_OFF:
2167 led->mode = htole16(UPGT_LED_MODE_SET);
2168 led->action_fix = 0;
2169 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2170 led->action_tmp_dur = 0;
2171 break;
2172 case UPGT_LED_ON:
2173 led->mode = htole16(UPGT_LED_MODE_SET);
2174 led->action_fix = 0;
2175 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2176 led->action_tmp_dur = 0;
2177 break;
2178 case UPGT_LED_BLINK:
2179 if (ic->ic_state != IEEE80211_S_RUN)
2180 return;
2181 if (sc->sc_led_blink)
2182 /* previous blink was not finished */
2183 return;
2184 led->mode = htole16(UPGT_LED_MODE_SET);
2185 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2186 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2187 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2188 /* lock blink */
2189 sc->sc_led_blink = 1;
2190 t.tv_sec = 0;
2191 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2192 callout_schedule(&sc->led_to, tvtohz(&t));
2193 break;
2194 default:
2195 return;
2196 }
2197
2198 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2199
2200 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2201 aprint_error_dev(sc->sc_dev,
2202 "could not transmit led CMD URB\n");
2203 }
2204 }
2205
2206 static void
2207 upgt_set_led_blink(void *arg)
2208 {
2209 struct upgt_softc *sc = arg;
2210
2211 /* blink finished, we are ready for a next one */
2212 sc->sc_led_blink = 0;
2213 callout_stop(&sc->led_to);
2214 }
2215
2216 static int
2217 upgt_get_stats(struct upgt_softc *sc)
2218 {
2219 struct upgt_data *data_cmd = &sc->cmd_data;
2220 struct upgt_lmac_mem *mem;
2221 struct upgt_lmac_stats *stats;
2222 int len;
2223
2224 /*
2225 * Transmit the URB containing the CMD data.
2226 */
2227 len = sizeof(*mem) + sizeof(*stats);
2228
2229 memset(data_cmd->buf, 0, len);
2230
2231 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2232 mem->addr = htole32(sc->sc_memaddr_frame_start +
2233 UPGT_MEMSIZE_FRAME_HEAD);
2234
2235 stats = (struct upgt_lmac_stats *)(mem + 1);
2236
2237 stats->header1.flags = 0;
2238 stats->header1.type = UPGT_H1_TYPE_CTRL;
2239 stats->header1.len = htole16(
2240 sizeof(struct upgt_lmac_stats) -
2241 sizeof(struct upgt_lmac_header));
2242
2243 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2244 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2245 stats->header2.flags = 0;
2246
2247 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2248
2249 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2250 aprint_error_dev(sc->sc_dev,
2251 "could not transmit statistics CMD data URB\n");
2252 return EIO;
2253 }
2254
2255 return 0;
2256
2257 }
2258
2259 static int
2260 upgt_alloc_tx(struct upgt_softc *sc)
2261 {
2262 int i;
2263
2264 sc->tx_queued = 0;
2265
2266 for (i = 0; i < UPGT_TX_COUNT; i++) {
2267 struct upgt_data *data_tx = &sc->tx_data[i];
2268
2269 data_tx->sc = sc;
2270
2271 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2272 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2273 if (err) {
2274 aprint_error_dev(sc->sc_dev,
2275 "could not allocate TX xfer\n");
2276 return err;
2277 }
2278
2279 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2280 }
2281
2282 return 0;
2283 }
2284
2285 static int
2286 upgt_alloc_rx(struct upgt_softc *sc)
2287 {
2288 struct upgt_data *data_rx = &sc->rx_data;
2289
2290 data_rx->sc = sc;
2291
2292 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2293 0, 0, &data_rx->xfer);
2294 if (err) {
2295 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2296 return err;
2297 }
2298
2299 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2300
2301 return 0;
2302 }
2303
2304 static int
2305 upgt_alloc_cmd(struct upgt_softc *sc)
2306 {
2307 struct upgt_data *data_cmd = &sc->cmd_data;
2308
2309 data_cmd->sc = sc;
2310
2311 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2312 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2313 if (err) {
2314 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2315 return err;
2316 }
2317
2318 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2319
2320 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2321
2322 return 0;
2323 }
2324
2325 static void
2326 upgt_free_tx(struct upgt_softc *sc)
2327 {
2328 int i;
2329
2330 for (i = 0; i < UPGT_TX_COUNT; i++) {
2331 struct upgt_data *data_tx = &sc->tx_data[i];
2332
2333 if (data_tx->xfer != NULL) {
2334 usbd_destroy_xfer(data_tx->xfer);
2335 data_tx->xfer = NULL;
2336 }
2337
2338 data_tx->ni = NULL;
2339 }
2340 }
2341
2342 static void
2343 upgt_free_rx(struct upgt_softc *sc)
2344 {
2345 struct upgt_data *data_rx = &sc->rx_data;
2346
2347 if (data_rx->xfer != NULL) {
2348 usbd_destroy_xfer(data_rx->xfer);
2349 data_rx->xfer = NULL;
2350 }
2351
2352 data_rx->ni = NULL;
2353 }
2354
2355 static void
2356 upgt_free_cmd(struct upgt_softc *sc)
2357 {
2358 struct upgt_data *data_cmd = &sc->cmd_data;
2359
2360 if (data_cmd->xfer != NULL) {
2361 usbd_destroy_xfer(data_cmd->xfer);
2362 data_cmd->xfer = NULL;
2363 }
2364
2365 mutex_destroy(&sc->sc_mtx);
2366 }
2367
2368 static int
2369 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2370 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2371 {
2372 usbd_status status;
2373
2374 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2375 data->buf, size);
2376 if (status != USBD_NORMAL_COMPLETION) {
2377 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2378 usbd_errstr(status));
2379 return EIO;
2380 }
2381
2382 return 0;
2383 }
2384
2385 #if 0
2386 static void
2387 upgt_hexdump(void *buf, int len)
2388 {
2389 int i;
2390
2391 for (i = 0; i < len; i++) {
2392 if (i % 16 == 0)
2393 printf("%s%5i:", i ? "\n" : "", i);
2394 if (i % 4 == 0)
2395 printf(" ");
2396 printf("%02x", (int)*((uint8_t *)buf + i));
2397 }
2398 printf("\n");
2399 }
2400 #endif
2401
2402 static uint32_t
2403 upgt_crc32_le(const void *buf, size_t size)
2404 {
2405 uint32_t crc;
2406
2407 crc = ether_crc32_le(buf, size);
2408
2409 /* apply final XOR value as common for CRC-32 */
2410 crc = htole32(crc ^ 0xffffffffU);
2411
2412 return crc;
2413 }
2414
2415 /*
2416 * The firmware awaits a checksum for each frame we send to it.
2417 * The algorithm used is uncommon but somehow similar to CRC32.
2418 */
2419 static uint32_t
2420 upgt_chksum_le(const uint32_t *buf, size_t size)
2421 {
2422 int i;
2423 uint32_t crc = 0;
2424
2425 for (i = 0; i < size; i += sizeof(uint32_t)) {
2426 crc = htole32(crc ^ *buf++);
2427 crc = htole32((crc >> 5) ^ (crc << 3));
2428 }
2429
2430 return crc;
2431 }
2432