if_upgt.c revision 1.20.2.2 1 /* $NetBSD: if_upgt.c,v 1.20.2.2 2020/04/08 14:08:13 martin Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.20.2.2 2020/04/08 14:08:13 martin Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462
463 /* XXX media locking needs revisiting */
464 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
465 ieee80211_media_init_with_lock(ic,
466 upgt_media_change, ieee80211_media_status, &sc->sc_media_mtx);
467
468 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470 &sc->sc_drvbpf);
471
472 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
473 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
475
476 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
477 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
479
480 aprint_normal_dev(sc->sc_dev, "address %s\n",
481 ether_sprintf(ic->ic_myaddr));
482
483 ieee80211_announce(ic);
484
485 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
486
487 /* device attached */
488 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
489
490 return;
491 fail:
492 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
493 }
494
495 static int
496 upgt_detach(device_t self, int flags)
497 {
498 struct upgt_softc *sc = device_private(self);
499 struct ifnet *ifp = &sc->sc_if;
500 struct ieee80211com *ic = &sc->sc_ic;
501 int s;
502
503 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
504
505 s = splnet();
506
507 if (ifp->if_flags & IFF_RUNNING)
508 upgt_stop(sc);
509
510 /* remove tasks and timeouts */
511 callout_halt(&sc->scan_to, NULL);
512 callout_halt(&sc->led_to, NULL);
513 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
514 NULL);
515 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
516 NULL);
517 callout_destroy(&sc->scan_to);
518 callout_destroy(&sc->led_to);
519
520 /* abort and close TX / RX pipes */
521 if (sc->sc_tx_pipeh != NULL) {
522 usbd_abort_pipe(sc->sc_tx_pipeh);
523 }
524 if (sc->sc_rx_pipeh != NULL) {
525 usbd_abort_pipe(sc->sc_rx_pipeh);
526 }
527
528 /* free xfers */
529 upgt_free_tx(sc);
530 upgt_free_rx(sc);
531 upgt_free_cmd(sc);
532
533 /* Close TX / RX pipes */
534 if (sc->sc_tx_pipeh != NULL) {
535 usbd_close_pipe(sc->sc_tx_pipeh);
536 }
537 if (sc->sc_rx_pipeh != NULL) {
538 usbd_close_pipe(sc->sc_rx_pipeh);
539 }
540
541 /* free firmware */
542 upgt_fw_free(sc);
543
544 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
545 /* detach interface */
546 bpf_detach(ifp);
547 ieee80211_ifdetach(ic);
548 if_detach(ifp);
549 }
550
551 splx(s);
552
553 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
554
555 return 0;
556 }
557
558 static int
559 upgt_activate(device_t self, devact_t act)
560 {
561 struct upgt_softc *sc = device_private(self);
562
563 switch (act) {
564 case DVACT_DEACTIVATE:
565 if_deactivate(&sc->sc_if);
566 return 0;
567 default:
568 return EOPNOTSUPP;
569 }
570 }
571
572 static int
573 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
574 {
575
576 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
577 sc->sc_device_type = 1;
578 /* XXX */
579 aprint_error_dev(sc->sc_dev,
580 "version 1 devices not supported yet\n");
581 return 1;
582 } else
583 sc->sc_device_type = 2;
584
585 return 0;
586 }
587
588 static int
589 upgt_device_init(struct upgt_softc *sc)
590 {
591 struct upgt_data *data_cmd = &sc->cmd_data;
592 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
593 int len;
594
595 len = sizeof(init_cmd);
596 memcpy(data_cmd->buf, init_cmd, len);
597 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
598 aprint_error_dev(sc->sc_dev,
599 "could not send device init string\n");
600 return EIO;
601 }
602 usbd_delay_ms(sc->sc_udev, 100);
603
604 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
605
606 return 0;
607 }
608
609 static int
610 upgt_mem_init(struct upgt_softc *sc)
611 {
612 int i;
613
614 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
615 sc->sc_memory.page[i].used = 0;
616
617 if (i == 0) {
618 /*
619 * The first memory page is always reserved for
620 * command data.
621 */
622 sc->sc_memory.page[i].addr =
623 sc->sc_memaddr_frame_start + MCLBYTES;
624 } else {
625 sc->sc_memory.page[i].addr =
626 sc->sc_memory.page[i - 1].addr + MCLBYTES;
627 }
628
629 if (sc->sc_memory.page[i].addr + MCLBYTES >=
630 sc->sc_memaddr_frame_end)
631 break;
632
633 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
634 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
635 }
636
637 sc->sc_memory.pages = i;
638
639 DPRINTF(2, "%s: memory pages=%d\n",
640 device_xname(sc->sc_dev), sc->sc_memory.pages);
641
642 return 0;
643 }
644
645 static uint32_t
646 upgt_mem_alloc(struct upgt_softc *sc)
647 {
648 int i;
649
650 for (i = 0; i < sc->sc_memory.pages; i++) {
651 if (sc->sc_memory.page[i].used == 0) {
652 sc->sc_memory.page[i].used = 1;
653 return sc->sc_memory.page[i].addr;
654 }
655 }
656
657 return 0;
658 }
659
660 static void
661 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
662 {
663 int i;
664
665 for (i = 0; i < sc->sc_memory.pages; i++) {
666 if (sc->sc_memory.page[i].addr == addr) {
667 sc->sc_memory.page[i].used = 0;
668 return;
669 }
670 }
671
672 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
673 addr);
674 }
675
676
677 static int
678 upgt_fw_alloc(struct upgt_softc *sc)
679 {
680 const char *name = "upgt-gw3887";
681 int error;
682
683 if (sc->sc_fw == NULL) {
684 error = firmware_load("upgt", name, &sc->sc_fw,
685 &sc->sc_fw_size);
686 if (error != 0) {
687 if (error == ENOENT) {
688 /*
689 * The firmware file for upgt(4) is not in
690 * the default distribution due to its lisence
691 * so explicitly notify it if the firmware file
692 * is not found.
693 */
694 aprint_error_dev(sc->sc_dev,
695 "firmware file %s is not installed\n",
696 name);
697 aprint_error_dev(sc->sc_dev,
698 "(it is not included in the default"
699 " distribution)\n");
700 aprint_error_dev(sc->sc_dev,
701 "see upgt(4) man page for details about "
702 "firmware installation\n");
703 } else {
704 aprint_error_dev(sc->sc_dev,
705 "could not read firmware %s\n", name);
706 }
707 return EIO;
708 }
709 }
710
711 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
712 name);
713
714 return 0;
715 }
716
717 static void
718 upgt_fw_free(struct upgt_softc *sc)
719 {
720
721 if (sc->sc_fw != NULL) {
722 firmware_free(sc->sc_fw, sc->sc_fw_size);
723 sc->sc_fw = NULL;
724 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
725 }
726 }
727
728 static int
729 upgt_fw_verify(struct upgt_softc *sc)
730 {
731 struct upgt_fw_bra_option *bra_option;
732 uint32_t bra_option_type, bra_option_len;
733 uint32_t *uc;
734 int offset, bra_end = 0;
735
736 /*
737 * Seek to beginning of Boot Record Area (BRA).
738 */
739 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
740 uc = (uint32_t *)(sc->sc_fw + offset);
741 if (*uc == 0)
742 break;
743 }
744 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
745 uc = (uint32_t *)(sc->sc_fw + offset);
746 if (*uc != 0)
747 break;
748 }
749 if (offset == sc->sc_fw_size) {
750 aprint_error_dev(sc->sc_dev,
751 "firmware Boot Record Area not found\n");
752 return EIO;
753 }
754 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
755 device_xname(sc->sc_dev), offset);
756
757 /*
758 * Parse Boot Record Area (BRA) options.
759 */
760 while (offset < sc->sc_fw_size && bra_end == 0) {
761 /* get current BRA option */
762 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
763 bra_option_type = le32toh(bra_option->type);
764 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
765
766 switch (bra_option_type) {
767 case UPGT_BRA_TYPE_FW:
768 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
769 device_xname(sc->sc_dev), bra_option_len);
770
771 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
772 aprint_error_dev(sc->sc_dev,
773 "wrong UPGT_BRA_TYPE_FW len\n");
774 return EIO;
775 }
776 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
777 bra_option_len) == 0) {
778 sc->sc_fw_type = UPGT_FWTYPE_LM86;
779 break;
780 }
781 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
782 bra_option_len) == 0) {
783 sc->sc_fw_type = UPGT_FWTYPE_LM87;
784 break;
785 }
786 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
787 bra_option_len) == 0) {
788 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
789 break;
790 }
791 aprint_error_dev(sc->sc_dev,
792 "unsupported firmware type\n");
793 return EIO;
794 case UPGT_BRA_TYPE_VERSION:
795 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
796 device_xname(sc->sc_dev), bra_option_len);
797 break;
798 case UPGT_BRA_TYPE_DEPIF:
799 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
800 device_xname(sc->sc_dev), bra_option_len);
801 break;
802 case UPGT_BRA_TYPE_EXPIF:
803 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
804 device_xname(sc->sc_dev), bra_option_len);
805 break;
806 case UPGT_BRA_TYPE_DESCR:
807 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
808 device_xname(sc->sc_dev), bra_option_len);
809
810 struct upgt_fw_bra_descr *descr =
811 (struct upgt_fw_bra_descr *)bra_option->data;
812
813 sc->sc_memaddr_frame_start =
814 le32toh(descr->memaddr_space_start);
815 sc->sc_memaddr_frame_end =
816 le32toh(descr->memaddr_space_end);
817
818 DPRINTF(2, "%s: memory address space start=0x%08x\n",
819 device_xname(sc->sc_dev),
820 sc->sc_memaddr_frame_start);
821 DPRINTF(2, "%s: memory address space end=0x%08x\n",
822 device_xname(sc->sc_dev),
823 sc->sc_memaddr_frame_end);
824 break;
825 case UPGT_BRA_TYPE_END:
826 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
827 device_xname(sc->sc_dev), bra_option_len);
828 bra_end = 1;
829 break;
830 default:
831 DPRINTF(1, "%s: unknown BRA option len=%d\n",
832 device_xname(sc->sc_dev), bra_option_len);
833 return EIO;
834 }
835
836 /* jump to next BRA option */
837 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
838 }
839
840 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
841
842 return 0;
843 }
844
845 static int
846 upgt_fw_load(struct upgt_softc *sc)
847 {
848 struct upgt_data *data_cmd = &sc->cmd_data;
849 struct upgt_data *data_rx = &sc->rx_data;
850 struct upgt_fw_x2_header *x2;
851 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
852 int offset, bsize, n, i, len;
853 uint32_t crc;
854
855 /* send firmware start load command */
856 len = sizeof(start_fwload_cmd);
857 memcpy(data_cmd->buf, start_fwload_cmd, len);
858 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
859 aprint_error_dev(sc->sc_dev,
860 "could not send start_firmware_load command\n");
861 return EIO;
862 }
863
864 /* send X2 header */
865 len = sizeof(struct upgt_fw_x2_header);
866 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
867 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
868 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
869 x2->len = htole32(sc->sc_fw_size);
870 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
871 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
872 sizeof(uint32_t));
873 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
874 aprint_error_dev(sc->sc_dev,
875 "could not send firmware X2 header\n");
876 return EIO;
877 }
878
879 /* download firmware */
880 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
881 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
882 bsize = UPGT_FW_BLOCK_SIZE;
883 else
884 bsize = sc->sc_fw_size - offset;
885
886 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
887
888 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
889 device_xname(sc->sc_dev), offset, n, bsize);
890
891 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
892 != 0) {
893 aprint_error_dev(sc->sc_dev,
894 "error while downloading firmware block\n");
895 return EIO;
896 }
897
898 bsize = n;
899 }
900 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
901
902 /* load firmware */
903 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
904 *((uint32_t *)(data_cmd->buf) ) = crc;
905 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
906 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
907 len = 6;
908 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
909 aprint_error_dev(sc->sc_dev,
910 "could not send load_firmware command\n");
911 return EIO;
912 }
913
914 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
915 len = UPGT_FW_BLOCK_SIZE;
916 memset(data_rx->buf, 0, 2);
917 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
918 USBD_SHORT_XFER_OK) != 0) {
919 aprint_error_dev(sc->sc_dev,
920 "could not read firmware response\n");
921 return EIO;
922 }
923
924 if (memcmp(data_rx->buf, "OK", 2) == 0)
925 break; /* firmware load was successful */
926 }
927 if (i == UPGT_FIRMWARE_TIMEOUT) {
928 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
929 return EIO;
930 }
931 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
932
933 return 0;
934 }
935
936 /*
937 * While copying the version 2 firmware, we need to replace two characters:
938 *
939 * 0x7e -> 0x7d 0x5e
940 * 0x7d -> 0x7d 0x5d
941 */
942 static int
943 upgt_fw_copy(char *src, char *dst, int size)
944 {
945 int i, j;
946
947 for (i = 0, j = 0; i < size && j < size; i++) {
948 switch (src[i]) {
949 case 0x7e:
950 dst[j] = 0x7d;
951 j++;
952 dst[j] = 0x5e;
953 j++;
954 break;
955 case 0x7d:
956 dst[j] = 0x7d;
957 j++;
958 dst[j] = 0x5d;
959 j++;
960 break;
961 default:
962 dst[j] = src[i];
963 j++;
964 break;
965 }
966 }
967
968 return i;
969 }
970
971 static int
972 upgt_eeprom_read(struct upgt_softc *sc)
973 {
974 struct upgt_data *data_cmd = &sc->cmd_data;
975 struct upgt_lmac_mem *mem;
976 struct upgt_lmac_eeprom *eeprom;
977 int offset, block, len;
978
979 offset = 0;
980 block = UPGT_EEPROM_BLOCK_SIZE;
981 while (offset < UPGT_EEPROM_SIZE) {
982 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
983 device_xname(sc->sc_dev), offset, block);
984
985 /*
986 * Transmit the URB containing the CMD data.
987 */
988 len = sizeof(*mem) + sizeof(*eeprom) + block;
989
990 memset(data_cmd->buf, 0, len);
991
992 mem = (struct upgt_lmac_mem *)data_cmd->buf;
993 mem->addr = htole32(sc->sc_memaddr_frame_start +
994 UPGT_MEMSIZE_FRAME_HEAD);
995
996 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
997 eeprom->header1.flags = 0;
998 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
999 eeprom->header1.len = htole16((
1000 sizeof(struct upgt_lmac_eeprom) -
1001 sizeof(struct upgt_lmac_header)) + block);
1002
1003 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1004 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1005 eeprom->header2.flags = 0;
1006
1007 eeprom->offset = htole16(offset);
1008 eeprom->len = htole16(block);
1009
1010 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1011 len - sizeof(*mem));
1012
1013 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1014 USBD_FORCE_SHORT_XFER) != 0) {
1015 aprint_error_dev(sc->sc_dev,
1016 "could not transmit EEPROM data URB\n");
1017 return EIO;
1018 }
1019
1020 mutex_enter(&sc->sc_mtx);
1021 int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1022 mutex_exit(&sc->sc_mtx);
1023 if (res) {
1024 aprint_error_dev(sc->sc_dev,
1025 "timeout while waiting for EEPROM data\n");
1026 return EIO;
1027 }
1028
1029 offset += block;
1030 if (UPGT_EEPROM_SIZE - offset < block)
1031 block = UPGT_EEPROM_SIZE - offset;
1032 }
1033
1034 return 0;
1035 }
1036
1037 static int
1038 upgt_eeprom_parse(struct upgt_softc *sc)
1039 {
1040 struct ieee80211com *ic = &sc->sc_ic;
1041 struct upgt_eeprom_header *eeprom_header;
1042 struct upgt_eeprom_option *eeprom_option;
1043 uint16_t option_len;
1044 uint16_t option_type;
1045 uint16_t preamble_len;
1046 int option_end = 0;
1047
1048 /* calculate eeprom options start offset */
1049 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1050 preamble_len = le16toh(eeprom_header->preamble_len);
1051 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1052 (sizeof(struct upgt_eeprom_header) + preamble_len));
1053
1054 while (!option_end) {
1055 /* the eeprom option length is stored in words */
1056 option_len =
1057 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1058 option_type =
1059 le16toh(eeprom_option->type);
1060
1061 switch (option_type) {
1062 case UPGT_EEPROM_TYPE_NAME:
1063 DPRINTF(1, "%s: EEPROM name len=%d\n",
1064 device_xname(sc->sc_dev), option_len);
1065 break;
1066 case UPGT_EEPROM_TYPE_SERIAL:
1067 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1068 device_xname(sc->sc_dev), option_len);
1069 break;
1070 case UPGT_EEPROM_TYPE_MAC:
1071 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1072 device_xname(sc->sc_dev), option_len);
1073
1074 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1075 break;
1076 case UPGT_EEPROM_TYPE_HWRX:
1077 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1078 device_xname(sc->sc_dev), option_len);
1079
1080 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1081 break;
1082 case UPGT_EEPROM_TYPE_CHIP:
1083 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1084 device_xname(sc->sc_dev), option_len);
1085 break;
1086 case UPGT_EEPROM_TYPE_FREQ3:
1087 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1088 device_xname(sc->sc_dev), option_len);
1089
1090 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1091 option_len);
1092 break;
1093 case UPGT_EEPROM_TYPE_FREQ4:
1094 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1095 device_xname(sc->sc_dev), option_len);
1096
1097 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1098 option_len);
1099 break;
1100 case UPGT_EEPROM_TYPE_FREQ5:
1101 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1102 device_xname(sc->sc_dev), option_len);
1103 break;
1104 case UPGT_EEPROM_TYPE_FREQ6:
1105 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1106 device_xname(sc->sc_dev), option_len);
1107
1108 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1109 option_len);
1110 break;
1111 case UPGT_EEPROM_TYPE_END:
1112 DPRINTF(1, "%s: EEPROM end len=%d\n",
1113 device_xname(sc->sc_dev), option_len);
1114 option_end = 1;
1115 break;
1116 case UPGT_EEPROM_TYPE_OFF:
1117 DPRINTF(1, "%s: EEPROM off without end option\n",
1118 device_xname(sc->sc_dev));
1119 return EIO;
1120 default:
1121 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1122 device_xname(sc->sc_dev), option_type, option_len);
1123 break;
1124 }
1125
1126 /* jump to next EEPROM option */
1127 eeprom_option = (struct upgt_eeprom_option *)
1128 (eeprom_option->data + option_len);
1129 }
1130
1131 return 0;
1132 }
1133
1134 static void
1135 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1136 {
1137 struct upgt_eeprom_option_hwrx *option_hwrx;
1138
1139 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1140
1141 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1142
1143 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1144 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1145 }
1146
1147 static void
1148 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1149 {
1150 struct upgt_eeprom_freq3_header *freq3_header;
1151 struct upgt_lmac_freq3 *freq3;
1152 int i, elements, flags;
1153 unsigned channel;
1154
1155 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1156 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1157
1158 flags = freq3_header->flags;
1159 elements = freq3_header->elements;
1160
1161 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1162 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1163 __USE(flags);
1164
1165 for (i = 0; i < elements; i++) {
1166 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1167
1168 sc->sc_eeprom_freq3[channel] = freq3[i];
1169
1170 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1171 device_xname(sc->sc_dev),
1172 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1173 }
1174 }
1175
1176 static void
1177 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1178 {
1179 struct upgt_eeprom_freq4_header *freq4_header;
1180 struct upgt_eeprom_freq4_1 *freq4_1;
1181 struct upgt_eeprom_freq4_2 *freq4_2;
1182 int i, j, elements, settings, flags;
1183 unsigned channel;
1184
1185 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1186 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1187
1188 flags = freq4_header->flags;
1189 elements = freq4_header->elements;
1190 settings = freq4_header->settings;
1191
1192 /* we need this value later */
1193 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1194
1195 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1196 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1197 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1198 __USE(flags);
1199
1200 for (i = 0; i < elements; i++) {
1201 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1202
1203 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1204
1205 for (j = 0; j < settings; j++) {
1206 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1207 sc->sc_eeprom_freq4[channel][j].pad = 0;
1208 }
1209
1210 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1211 device_xname(sc->sc_dev),
1212 le16toh(freq4_1[i].freq), channel);
1213 }
1214 }
1215
1216 static void
1217 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1218 {
1219 struct upgt_lmac_freq6 *freq6;
1220 int i, elements;
1221 unsigned channel;
1222
1223 freq6 = (struct upgt_lmac_freq6 *)data;
1224
1225 elements = len / sizeof(struct upgt_lmac_freq6);
1226
1227 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1228
1229 for (i = 0; i < elements; i++) {
1230 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1231
1232 sc->sc_eeprom_freq6[channel] = freq6[i];
1233
1234 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1235 device_xname(sc->sc_dev),
1236 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1237 }
1238 }
1239
1240 static int
1241 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1242 {
1243 struct upgt_softc *sc = ifp->if_softc;
1244 struct ieee80211com *ic = &sc->sc_ic;
1245 int s, error = 0;
1246
1247 s = splnet();
1248
1249 switch (cmd) {
1250 case SIOCSIFFLAGS:
1251 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1252 break;
1253 if (ifp->if_flags & IFF_UP) {
1254 if ((ifp->if_flags & IFF_RUNNING) == 0)
1255 upgt_init(ifp);
1256 } else {
1257 if (ifp->if_flags & IFF_RUNNING)
1258 upgt_stop(sc);
1259 }
1260 break;
1261 case SIOCADDMULTI:
1262 case SIOCDELMULTI:
1263 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1264 /* setup multicast filter, etc */
1265 error = 0;
1266 }
1267 break;
1268 default:
1269 error = ieee80211_ioctl(ic, cmd, data);
1270 break;
1271 }
1272
1273 if (error == ENETRESET) {
1274 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1275 (IFF_UP | IFF_RUNNING))
1276 upgt_init(ifp);
1277 error = 0;
1278 }
1279
1280 splx(s);
1281
1282 return error;
1283 }
1284
1285 static int
1286 upgt_init(struct ifnet *ifp)
1287 {
1288 struct upgt_softc *sc = ifp->if_softc;
1289 struct ieee80211com *ic = &sc->sc_ic;
1290
1291 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1292
1293 if (ifp->if_flags & IFF_RUNNING)
1294 upgt_stop(sc);
1295
1296 ifp->if_flags |= IFF_RUNNING;
1297 ifp->if_flags &= ~IFF_OACTIVE;
1298
1299 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1300
1301 /* setup device rates */
1302 upgt_setup_rates(sc);
1303
1304 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1305 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1306 else
1307 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1308
1309 return 0;
1310 }
1311
1312 static void
1313 upgt_stop(struct upgt_softc *sc)
1314 {
1315 struct ieee80211com *ic = &sc->sc_ic;
1316 struct ifnet *ifp = &sc->sc_if;
1317
1318 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1319
1320 /* device down */
1321 ifp->if_timer = 0;
1322 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1323
1324 /* change device back to initial state */
1325 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1326 }
1327
1328 static int
1329 upgt_media_change(struct ifnet *ifp)
1330 {
1331 struct upgt_softc *sc = ifp->if_softc;
1332 int error;
1333
1334 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1335
1336 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1337 return error;
1338
1339 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1340 (IFF_UP | IFF_RUNNING)) {
1341 /* give pending USB transfers a chance to finish */
1342 usbd_delay_ms(sc->sc_udev, 100);
1343 upgt_init(ifp);
1344 }
1345
1346 return 0;
1347 }
1348
1349 static void
1350 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1351 {
1352
1353 ni->ni_txrate = 0;
1354 }
1355
1356 static int
1357 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1358 {
1359 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1360
1361 /*
1362 * XXXSMP: This does not wait for the task, if it is in flight,
1363 * to complete. If this code works at all, it must rely on the
1364 * kernel lock to serialize with the USB task thread.
1365 */
1366 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1367 callout_stop(&sc->scan_to);
1368
1369 /* do it in a process context */
1370 sc->sc_state = nstate;
1371 sc->sc_arg = arg;
1372 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1373
1374 return 0;
1375 }
1376
1377 static void
1378 upgt_newstate_task(void *arg)
1379 {
1380 struct upgt_softc *sc = arg;
1381 struct ieee80211com *ic = &sc->sc_ic;
1382 struct ieee80211_node *ni;
1383 unsigned channel;
1384
1385 mutex_enter(&sc->sc_mtx);
1386
1387 switch (sc->sc_state) {
1388 case IEEE80211_S_INIT:
1389 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1390 device_xname(sc->sc_dev));
1391
1392 /* do not accept any frames if the device is down */
1393 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1394 upgt_set_led(sc, UPGT_LED_OFF);
1395 break;
1396 case IEEE80211_S_SCAN:
1397 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1398 device_xname(sc->sc_dev));
1399
1400 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1401 upgt_set_channel(sc, channel);
1402 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1403 callout_schedule(&sc->scan_to, hz / 5);
1404 break;
1405 case IEEE80211_S_AUTH:
1406 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1407 device_xname(sc->sc_dev));
1408
1409 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1410 upgt_set_channel(sc, channel);
1411 break;
1412 case IEEE80211_S_ASSOC:
1413 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1414 device_xname(sc->sc_dev));
1415
1416 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1417 upgt_set_channel(sc, channel);
1418 break;
1419 case IEEE80211_S_RUN:
1420 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1421 device_xname(sc->sc_dev));
1422
1423 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1424 upgt_set_channel(sc, channel);
1425
1426 ni = ic->ic_bss;
1427
1428 /*
1429 * TX rate control is done by the firmware.
1430 * Report the maximum rate which is available therefore.
1431 */
1432 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1433
1434 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1435 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1436 upgt_set_led(sc, UPGT_LED_ON);
1437 break;
1438 }
1439
1440 mutex_exit(&sc->sc_mtx);
1441
1442 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1443 }
1444
1445 static void
1446 upgt_next_scan(void *arg)
1447 {
1448 struct upgt_softc *sc = arg;
1449 struct ieee80211com *ic = &sc->sc_ic;
1450
1451 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1452
1453 if (ic->ic_state == IEEE80211_S_SCAN)
1454 ieee80211_next_scan(ic);
1455 }
1456
1457 static void
1458 upgt_start(struct ifnet *ifp)
1459 {
1460 struct upgt_softc *sc = ifp->if_softc;
1461 struct ieee80211com *ic = &sc->sc_ic;
1462 struct ether_header *eh;
1463 struct ieee80211_node *ni;
1464 struct mbuf *m;
1465 int i;
1466
1467 /* don't transmit packets if interface is busy or down */
1468 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1469 return;
1470
1471 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1472
1473 for (i = 0; i < UPGT_TX_COUNT; i++) {
1474 struct upgt_data *data_tx = &sc->tx_data[i];
1475
1476 if (data_tx->m != NULL)
1477 continue;
1478
1479 IF_POLL(&ic->ic_mgtq, m);
1480 if (m != NULL) {
1481 /* management frame */
1482 IF_DEQUEUE(&ic->ic_mgtq, m);
1483
1484 ni = M_GETCTX(m, struct ieee80211_node *);
1485 M_CLEARCTX(m);
1486
1487 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1488
1489 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1490 aprint_error_dev(sc->sc_dev,
1491 "no free prism memory\n");
1492 m_freem(m);
1493 if_statinc(ifp, if_oerrors);
1494 break;
1495 }
1496 data_tx->ni = ni;
1497 data_tx->m = m;
1498 sc->tx_queued++;
1499 } else {
1500 /* data frame */
1501 if (ic->ic_state != IEEE80211_S_RUN)
1502 break;
1503
1504 IFQ_POLL(&ifp->if_snd, m);
1505 if (m == NULL)
1506 break;
1507
1508 IFQ_DEQUEUE(&ifp->if_snd, m);
1509 if (m->m_len < sizeof(struct ether_header) &&
1510 !(m = m_pullup(m, sizeof(struct ether_header))))
1511 continue;
1512
1513 eh = mtod(m, struct ether_header *);
1514 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1515 if (ni == NULL) {
1516 m_freem(m);
1517 continue;
1518 }
1519
1520 bpf_mtap(ifp, m, BPF_D_OUT);
1521
1522 m = ieee80211_encap(ic, m, ni);
1523 if (m == NULL) {
1524 ieee80211_free_node(ni);
1525 continue;
1526 }
1527
1528 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1529
1530 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1531 aprint_error_dev(sc->sc_dev,
1532 "no free prism memory\n");
1533 m_freem(m);
1534 ieee80211_free_node(ni);
1535 if_statinc(ifp, if_oerrors);
1536 break;
1537 }
1538 data_tx->ni = ni;
1539 data_tx->m = m;
1540 sc->tx_queued++;
1541 }
1542 }
1543
1544 if (sc->tx_queued > 0) {
1545 DPRINTF(2, "%s: tx_queued=%d\n",
1546 device_xname(sc->sc_dev), sc->tx_queued);
1547 /* process the TX queue in process context */
1548 ifp->if_timer = 5;
1549 ifp->if_flags |= IFF_OACTIVE;
1550 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1551 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1552 }
1553 }
1554
1555 static void
1556 upgt_watchdog(struct ifnet *ifp)
1557 {
1558 struct upgt_softc *sc = ifp->if_softc;
1559 struct ieee80211com *ic = &sc->sc_ic;
1560
1561 if (ic->ic_state == IEEE80211_S_INIT)
1562 return;
1563
1564 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1565
1566 /* TODO: what shall we do on TX timeout? */
1567
1568 ieee80211_watchdog(ic);
1569 }
1570
1571 static void
1572 upgt_tx_task(void *arg)
1573 {
1574 struct upgt_softc *sc = arg;
1575 struct ieee80211com *ic = &sc->sc_ic;
1576 struct ieee80211_frame *wh;
1577 struct ieee80211_key *k;
1578 struct ifnet *ifp = &sc->sc_if;
1579 struct upgt_lmac_mem *mem;
1580 struct upgt_lmac_tx_desc *txdesc;
1581 struct mbuf *m;
1582 uint32_t addr;
1583 int i, len, pad, s;
1584 usbd_status error;
1585
1586 mutex_enter(&sc->sc_mtx);
1587 upgt_set_led(sc, UPGT_LED_BLINK);
1588 mutex_exit(&sc->sc_mtx);
1589
1590 s = splnet();
1591
1592 for (i = 0; i < UPGT_TX_COUNT; i++) {
1593 struct upgt_data *data_tx = &sc->tx_data[i];
1594
1595 if (data_tx->m == NULL)
1596 continue;
1597
1598 m = data_tx->m;
1599 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1600
1601 /*
1602 * Software crypto.
1603 */
1604 wh = mtod(m, struct ieee80211_frame *);
1605
1606 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1607 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1608 if (k == NULL) {
1609 m_freem(m);
1610 data_tx->m = NULL;
1611 ieee80211_free_node(data_tx->ni);
1612 data_tx->ni = NULL;
1613 if_statinc(ifp, if_oerrors);
1614 break;
1615 }
1616
1617 /* in case packet header moved, reset pointer */
1618 wh = mtod(m, struct ieee80211_frame *);
1619 }
1620
1621 /*
1622 * Transmit the URB containing the TX data.
1623 */
1624 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1625
1626 mem = (struct upgt_lmac_mem *)data_tx->buf;
1627 mem->addr = htole32(addr);
1628
1629 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1630
1631 /* XXX differ between data and mgmt frames? */
1632 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1633 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1634 txdesc->header1.len = htole16(m->m_pkthdr.len);
1635
1636 txdesc->header2.reqid = htole32(data_tx->addr);
1637 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1638 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1639
1640 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1641 IEEE80211_FC0_TYPE_MGT) {
1642 /* always send mgmt frames at lowest rate (DS1) */
1643 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1644 } else {
1645 memcpy(txdesc->rates, sc->sc_cur_rateset,
1646 sizeof(txdesc->rates));
1647 }
1648 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1649 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1650
1651 if (sc->sc_drvbpf != NULL) {
1652 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1653
1654 tap->wt_flags = 0;
1655 tap->wt_rate = 0; /* TODO: where to get from? */
1656 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1657 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1658
1659 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1660 BPF_D_OUT);
1661 }
1662
1663 /* copy frame below our TX descriptor header */
1664 m_copydata(m, 0, m->m_pkthdr.len,
1665 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1666
1667 /* calculate frame size */
1668 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1669
1670 if (len & 3) {
1671 /* we need to align the frame to a 4 byte boundary */
1672 pad = 4 - (len & 3);
1673 memset(data_tx->buf + len, 0, pad);
1674 len += pad;
1675 }
1676
1677 /* calculate frame checksum */
1678 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1679 len - sizeof(*mem));
1680
1681 /* we do not need the mbuf anymore */
1682 m_freem(m);
1683 data_tx->m = NULL;
1684
1685 ieee80211_free_node(data_tx->ni);
1686 data_tx->ni = NULL;
1687
1688 DPRINTF(2, "%s: TX start data sending\n",
1689 device_xname(sc->sc_dev));
1690
1691 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1692 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1693 error = usbd_transfer(data_tx->xfer);
1694 if (error != USBD_NORMAL_COMPLETION &&
1695 error != USBD_IN_PROGRESS) {
1696 aprint_error_dev(sc->sc_dev,
1697 "could not transmit TX data URB\n");
1698 if_statinc(ifp, if_oerrors);
1699 break;
1700 }
1701
1702 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1703 device_xname(sc->sc_dev), len);
1704 }
1705
1706 splx(s);
1707
1708 /*
1709 * If we don't regulary read the device statistics, the RX queue
1710 * will stall. It's strange, but it works, so we keep reading
1711 * the statistics here. *shrug*
1712 */
1713 mutex_enter(&sc->sc_mtx);
1714 upgt_get_stats(sc);
1715 mutex_exit(&sc->sc_mtx);
1716 }
1717
1718 static void
1719 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1720 {
1721 struct ifnet *ifp = &sc->sc_if;
1722 struct upgt_lmac_tx_done_desc *desc;
1723 int i, s;
1724
1725 s = splnet();
1726
1727 desc = (struct upgt_lmac_tx_done_desc *)data;
1728
1729 for (i = 0; i < UPGT_TX_COUNT; i++) {
1730 struct upgt_data *data_tx = &sc->tx_data[i];
1731
1732 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1733 upgt_mem_free(sc, data_tx->addr);
1734 data_tx->addr = 0;
1735
1736 sc->tx_queued--;
1737 if_statinc(ifp, if_opackets);
1738
1739 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1740 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1741 le32toh(desc->header2.reqid),
1742 le16toh(desc->status),
1743 le16toh(desc->rssi));
1744 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1745 break;
1746 }
1747 }
1748
1749 if (sc->tx_queued == 0) {
1750 /* TX queued was processed, continue */
1751 ifp->if_timer = 0;
1752 ifp->if_flags &= ~IFF_OACTIVE;
1753 upgt_start(ifp);
1754 }
1755
1756 splx(s);
1757 }
1758
1759 static void
1760 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1761 {
1762 struct upgt_data *data_rx = priv;
1763 struct upgt_softc *sc = data_rx->sc;
1764 int len;
1765 struct upgt_lmac_header *header;
1766 struct upgt_lmac_eeprom *eeprom;
1767 uint8_t h1_type;
1768 uint16_t h2_type;
1769
1770 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1771
1772 if (status != USBD_NORMAL_COMPLETION) {
1773 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1774 return;
1775 if (status == USBD_STALLED)
1776 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1777 goto skip;
1778 }
1779 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1780
1781 /*
1782 * Check what type of frame came in.
1783 */
1784 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1785
1786 h1_type = header->header1.type;
1787 h2_type = le16toh(header->header2.type);
1788
1789 if (h1_type == UPGT_H1_TYPE_CTRL &&
1790 h2_type == UPGT_H2_TYPE_EEPROM) {
1791 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1792 uint16_t eeprom_offset = le16toh(eeprom->offset);
1793 uint16_t eeprom_len = le16toh(eeprom->len);
1794
1795 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1796 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1797
1798 mutex_enter(&sc->sc_mtx);
1799 memcpy(sc->sc_eeprom + eeprom_offset,
1800 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1801 eeprom_len);
1802
1803 /* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1804 /* Note eeprom data arrived */
1805 cv_broadcast(&sc->sc_cv);
1806 mutex_exit(&sc->sc_mtx);
1807 } else
1808 if (h1_type == UPGT_H1_TYPE_CTRL &&
1809 h2_type == UPGT_H2_TYPE_TX_DONE) {
1810 DPRINTF(2, "%s: received 802.11 TX done\n",
1811 device_xname(sc->sc_dev));
1812
1813 upgt_tx_done(sc, data_rx->buf + 4);
1814 } else
1815 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1816 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1817 DPRINTF(3, "%s: received 802.11 RX data\n",
1818 device_xname(sc->sc_dev));
1819
1820 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1821 } else
1822 if (h1_type == UPGT_H1_TYPE_CTRL &&
1823 h2_type == UPGT_H2_TYPE_STATS) {
1824 DPRINTF(2, "%s: received statistic data\n",
1825 device_xname(sc->sc_dev));
1826
1827 /* TODO: what could we do with the statistic data? */
1828 } else {
1829 /* ignore unknown frame types */
1830 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1831 device_xname(sc->sc_dev), header->header1.type);
1832 }
1833
1834 skip: /* setup new transfer */
1835 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1836 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1837 (void)usbd_transfer(xfer);
1838 }
1839
1840 static void
1841 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1842 {
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 struct ifnet *ifp = &sc->sc_if;
1845 struct upgt_lmac_rx_desc *rxdesc;
1846 struct ieee80211_frame *wh;
1847 struct ieee80211_node *ni;
1848 struct mbuf *m;
1849 int s;
1850
1851 /* access RX packet descriptor */
1852 rxdesc = (struct upgt_lmac_rx_desc *)data;
1853
1854 /* create mbuf which is suitable for strict alignment archs */
1855 m = m_devget(rxdesc->data, pkglen, 0, ifp);
1856 if (m == NULL) {
1857 DPRINTF(1, "%s: could not create RX mbuf\n",
1858 device_xname(sc->sc_dev));
1859 if_statinc(ifp, if_ierrors);
1860 return;
1861 }
1862
1863 s = splnet();
1864
1865 if (sc->sc_drvbpf != NULL) {
1866 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1867
1868 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1869 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1870 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1871 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1872 tap->wr_antsignal = rxdesc->rssi;
1873
1874 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1875 }
1876
1877 /* trim FCS */
1878 m_adj(m, -IEEE80211_CRC_LEN);
1879
1880 wh = mtod(m, struct ieee80211_frame *);
1881 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1882
1883 /* push the frame up to the 802.11 stack */
1884 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1885
1886 /* node is no longer needed */
1887 ieee80211_free_node(ni);
1888
1889 splx(s);
1890
1891 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1892 }
1893
1894 static void
1895 upgt_setup_rates(struct upgt_softc *sc)
1896 {
1897 struct ieee80211com *ic = &sc->sc_ic;
1898
1899 /*
1900 * 0x01 = OFMD6 0x10 = DS1
1901 * 0x04 = OFDM9 0x11 = DS2
1902 * 0x06 = OFDM12 0x12 = DS5
1903 * 0x07 = OFDM18 0x13 = DS11
1904 * 0x08 = OFDM24
1905 * 0x09 = OFDM36
1906 * 0x0a = OFDM48
1907 * 0x0b = OFDM54
1908 */
1909 const uint8_t rateset_auto_11b[] =
1910 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1911 const uint8_t rateset_auto_11g[] =
1912 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1913 const uint8_t rateset_fix_11bg[] =
1914 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1915 0x08, 0x09, 0x0a, 0x0b };
1916
1917 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1918 /*
1919 * Automatic rate control is done by the device.
1920 * We just pass the rateset from which the device
1921 * will pickup a rate.
1922 */
1923 if (ic->ic_curmode == IEEE80211_MODE_11B)
1924 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1925 sizeof(sc->sc_cur_rateset));
1926 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1927 ic->ic_curmode == IEEE80211_MODE_AUTO)
1928 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1929 sizeof(sc->sc_cur_rateset));
1930 } else {
1931 /* set a fixed rate */
1932 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1933 sizeof(sc->sc_cur_rateset));
1934 }
1935 }
1936
1937 static uint8_t
1938 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1939 {
1940 struct ieee80211com *ic = &sc->sc_ic;
1941
1942 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1943 if (rate < 0 || rate > 3)
1944 /* invalid rate */
1945 return 0;
1946
1947 switch (rate) {
1948 case 0:
1949 return 2;
1950 case 1:
1951 return 4;
1952 case 2:
1953 return 11;
1954 case 3:
1955 return 22;
1956 default:
1957 return 0;
1958 }
1959 }
1960
1961 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1962 if (rate < 0 || rate > 11)
1963 /* invalid rate */
1964 return 0;
1965
1966 switch (rate) {
1967 case 0:
1968 return 2;
1969 case 1:
1970 return 4;
1971 case 2:
1972 return 11;
1973 case 3:
1974 return 22;
1975 case 4:
1976 return 12;
1977 case 5:
1978 return 18;
1979 case 6:
1980 return 24;
1981 case 7:
1982 return 36;
1983 case 8:
1984 return 48;
1985 case 9:
1986 return 72;
1987 case 10:
1988 return 96;
1989 case 11:
1990 return 108;
1991 default:
1992 return 0;
1993 }
1994 }
1995
1996 return 0;
1997 }
1998
1999 static int
2000 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
2001 {
2002 struct ieee80211com *ic = &sc->sc_ic;
2003 struct ieee80211_node *ni = ic->ic_bss;
2004 struct upgt_data *data_cmd = &sc->cmd_data;
2005 struct upgt_lmac_mem *mem;
2006 struct upgt_lmac_filter *filter;
2007 int len;
2008 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2009
2010 /*
2011 * Transmit the URB containing the CMD data.
2012 */
2013 len = sizeof(*mem) + sizeof(*filter);
2014
2015 memset(data_cmd->buf, 0, len);
2016
2017 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2018 mem->addr = htole32(sc->sc_memaddr_frame_start +
2019 UPGT_MEMSIZE_FRAME_HEAD);
2020
2021 filter = (struct upgt_lmac_filter *)(mem + 1);
2022
2023 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2024 filter->header1.type = UPGT_H1_TYPE_CTRL;
2025 filter->header1.len = htole16(
2026 sizeof(struct upgt_lmac_filter) -
2027 sizeof(struct upgt_lmac_header));
2028
2029 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2030 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2031 filter->header2.flags = 0;
2032
2033 switch (state) {
2034 case IEEE80211_S_INIT:
2035 DPRINTF(1, "%s: set MAC filter to INIT\n",
2036 device_xname(sc->sc_dev));
2037
2038 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2039 break;
2040 case IEEE80211_S_SCAN:
2041 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2042 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2043
2044 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2045 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2046 IEEE80211_ADDR_COPY(filter->src, broadcast);
2047 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2048 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2049 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2050 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2051 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2052 break;
2053 case IEEE80211_S_RUN:
2054 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2055 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2056
2057 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2058 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2059 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2060 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2061 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2062 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2063 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2064 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2065 break;
2066 default:
2067 aprint_error_dev(sc->sc_dev,
2068 "MAC filter does not know that state\n");
2069 break;
2070 }
2071
2072 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2073
2074 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2075 aprint_error_dev(sc->sc_dev,
2076 "could not transmit macfilter CMD data URB\n");
2077 return EIO;
2078 }
2079
2080 return 0;
2081 }
2082
2083 static int
2084 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2085 {
2086 struct upgt_data *data_cmd = &sc->cmd_data;
2087 struct upgt_lmac_mem *mem;
2088 struct upgt_lmac_channel *chan;
2089 int len;
2090
2091 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2092 channel);
2093
2094 /*
2095 * Transmit the URB containing the CMD data.
2096 */
2097 len = sizeof(*mem) + sizeof(*chan);
2098
2099 memset(data_cmd->buf, 0, len);
2100
2101 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2102 mem->addr = htole32(sc->sc_memaddr_frame_start +
2103 UPGT_MEMSIZE_FRAME_HEAD);
2104
2105 chan = (struct upgt_lmac_channel *)(mem + 1);
2106
2107 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2108 chan->header1.type = UPGT_H1_TYPE_CTRL;
2109 chan->header1.len = htole16(
2110 sizeof(struct upgt_lmac_channel) -
2111 sizeof(struct upgt_lmac_header));
2112
2113 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2114 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2115 chan->header2.flags = 0;
2116
2117 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2118 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2119 chan->freq6 = sc->sc_eeprom_freq6[channel];
2120 chan->settings = sc->sc_eeprom_freq6_settings;
2121 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2122
2123 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2124 sizeof(chan->freq3_1));
2125
2126 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2127 sizeof(sc->sc_eeprom_freq4[channel]));
2128
2129 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2130 sizeof(chan->freq3_2));
2131
2132 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2133
2134 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2135 aprint_error_dev(sc->sc_dev,
2136 "could not transmit channel CMD data URB\n");
2137 return EIO;
2138 }
2139
2140 return 0;
2141 }
2142
2143 static void
2144 upgt_set_led(struct upgt_softc *sc, int action)
2145 {
2146 struct ieee80211com *ic = &sc->sc_ic;
2147 struct upgt_data *data_cmd = &sc->cmd_data;
2148 struct upgt_lmac_mem *mem;
2149 struct upgt_lmac_led *led;
2150 struct timeval t;
2151 int len;
2152
2153 /*
2154 * Transmit the URB containing the CMD data.
2155 */
2156 len = sizeof(*mem) + sizeof(*led);
2157
2158 memset(data_cmd->buf, 0, len);
2159
2160 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2161 mem->addr = htole32(sc->sc_memaddr_frame_start +
2162 UPGT_MEMSIZE_FRAME_HEAD);
2163
2164 led = (struct upgt_lmac_led *)(mem + 1);
2165
2166 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2167 led->header1.type = UPGT_H1_TYPE_CTRL;
2168 led->header1.len = htole16(
2169 sizeof(struct upgt_lmac_led) -
2170 sizeof(struct upgt_lmac_header));
2171
2172 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2173 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2174 led->header2.flags = 0;
2175
2176 switch (action) {
2177 case UPGT_LED_OFF:
2178 led->mode = htole16(UPGT_LED_MODE_SET);
2179 led->action_fix = 0;
2180 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2181 led->action_tmp_dur = 0;
2182 break;
2183 case UPGT_LED_ON:
2184 led->mode = htole16(UPGT_LED_MODE_SET);
2185 led->action_fix = 0;
2186 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2187 led->action_tmp_dur = 0;
2188 break;
2189 case UPGT_LED_BLINK:
2190 if (ic->ic_state != IEEE80211_S_RUN)
2191 return;
2192 if (sc->sc_led_blink)
2193 /* previous blink was not finished */
2194 return;
2195 led->mode = htole16(UPGT_LED_MODE_SET);
2196 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2197 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2198 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2199 /* lock blink */
2200 sc->sc_led_blink = 1;
2201 t.tv_sec = 0;
2202 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2203 callout_schedule(&sc->led_to, tvtohz(&t));
2204 break;
2205 default:
2206 return;
2207 }
2208
2209 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2210
2211 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2212 aprint_error_dev(sc->sc_dev,
2213 "could not transmit led CMD URB\n");
2214 }
2215 }
2216
2217 static void
2218 upgt_set_led_blink(void *arg)
2219 {
2220 struct upgt_softc *sc = arg;
2221
2222 /* blink finished, we are ready for a next one */
2223 sc->sc_led_blink = 0;
2224 callout_stop(&sc->led_to);
2225 }
2226
2227 static int
2228 upgt_get_stats(struct upgt_softc *sc)
2229 {
2230 struct upgt_data *data_cmd = &sc->cmd_data;
2231 struct upgt_lmac_mem *mem;
2232 struct upgt_lmac_stats *stats;
2233 int len;
2234
2235 /*
2236 * Transmit the URB containing the CMD data.
2237 */
2238 len = sizeof(*mem) + sizeof(*stats);
2239
2240 memset(data_cmd->buf, 0, len);
2241
2242 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2243 mem->addr = htole32(sc->sc_memaddr_frame_start +
2244 UPGT_MEMSIZE_FRAME_HEAD);
2245
2246 stats = (struct upgt_lmac_stats *)(mem + 1);
2247
2248 stats->header1.flags = 0;
2249 stats->header1.type = UPGT_H1_TYPE_CTRL;
2250 stats->header1.len = htole16(
2251 sizeof(struct upgt_lmac_stats) -
2252 sizeof(struct upgt_lmac_header));
2253
2254 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2255 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2256 stats->header2.flags = 0;
2257
2258 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2259
2260 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2261 aprint_error_dev(sc->sc_dev,
2262 "could not transmit statistics CMD data URB\n");
2263 return EIO;
2264 }
2265
2266 return 0;
2267
2268 }
2269
2270 static int
2271 upgt_alloc_tx(struct upgt_softc *sc)
2272 {
2273 int i;
2274
2275 sc->tx_queued = 0;
2276
2277 for (i = 0; i < UPGT_TX_COUNT; i++) {
2278 struct upgt_data *data_tx = &sc->tx_data[i];
2279
2280 data_tx->sc = sc;
2281
2282 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2283 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2284 if (err) {
2285 aprint_error_dev(sc->sc_dev,
2286 "could not allocate TX xfer\n");
2287 return err;
2288 }
2289
2290 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2291 }
2292
2293 return 0;
2294 }
2295
2296 static int
2297 upgt_alloc_rx(struct upgt_softc *sc)
2298 {
2299 struct upgt_data *data_rx = &sc->rx_data;
2300
2301 data_rx->sc = sc;
2302
2303 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2304 0, 0, &data_rx->xfer);
2305 if (err) {
2306 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2307 return err;
2308 }
2309
2310 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2311
2312 return 0;
2313 }
2314
2315 static int
2316 upgt_alloc_cmd(struct upgt_softc *sc)
2317 {
2318 struct upgt_data *data_cmd = &sc->cmd_data;
2319
2320 data_cmd->sc = sc;
2321
2322 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2323 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2324 if (err) {
2325 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2326 return err;
2327 }
2328
2329 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2330
2331 cv_init(&sc->sc_cv, "upgteeprom");
2332 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2333
2334 return 0;
2335 }
2336
2337 static void
2338 upgt_free_tx(struct upgt_softc *sc)
2339 {
2340 int i;
2341
2342 for (i = 0; i < UPGT_TX_COUNT; i++) {
2343 struct upgt_data *data_tx = &sc->tx_data[i];
2344
2345 if (data_tx->xfer != NULL) {
2346 usbd_destroy_xfer(data_tx->xfer);
2347 data_tx->xfer = NULL;
2348 }
2349
2350 data_tx->ni = NULL;
2351 }
2352 }
2353
2354 static void
2355 upgt_free_rx(struct upgt_softc *sc)
2356 {
2357 struct upgt_data *data_rx = &sc->rx_data;
2358
2359 if (data_rx->xfer != NULL) {
2360 usbd_destroy_xfer(data_rx->xfer);
2361 data_rx->xfer = NULL;
2362 }
2363
2364 data_rx->ni = NULL;
2365 }
2366
2367 static void
2368 upgt_free_cmd(struct upgt_softc *sc)
2369 {
2370 struct upgt_data *data_cmd = &sc->cmd_data;
2371
2372 if (data_cmd->xfer != NULL) {
2373 usbd_destroy_xfer(data_cmd->xfer);
2374 data_cmd->xfer = NULL;
2375 }
2376
2377 mutex_destroy(&sc->sc_mtx);
2378 cv_destroy(&sc->sc_cv);
2379 }
2380
2381 static int
2382 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2383 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2384 {
2385 usbd_status status;
2386
2387 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2388 data->buf, size);
2389 if (status != USBD_NORMAL_COMPLETION) {
2390 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2391 usbd_errstr(status));
2392 return EIO;
2393 }
2394
2395 return 0;
2396 }
2397
2398 #if 0
2399 static void
2400 upgt_hexdump(void *buf, int len)
2401 {
2402 int i;
2403
2404 for (i = 0; i < len; i++) {
2405 if (i % 16 == 0)
2406 printf("%s%5i:", i ? "\n" : "", i);
2407 if (i % 4 == 0)
2408 printf(" ");
2409 printf("%02x", (int)*((uint8_t *)buf + i));
2410 }
2411 printf("\n");
2412 }
2413 #endif
2414
2415 static uint32_t
2416 upgt_crc32_le(const void *buf, size_t size)
2417 {
2418 uint32_t crc;
2419
2420 crc = ether_crc32_le(buf, size);
2421
2422 /* apply final XOR value as common for CRC-32 */
2423 crc = htole32(crc ^ 0xffffffffU);
2424
2425 return crc;
2426 }
2427
2428 /*
2429 * The firmware awaits a checksum for each frame we send to it.
2430 * The algorithm used is uncommon but somehow similar to CRC32.
2431 */
2432 static uint32_t
2433 upgt_chksum_le(const uint32_t *buf, size_t size)
2434 {
2435 int i;
2436 uint32_t crc = 0;
2437
2438 for (i = 0; i < size; i += sizeof(uint32_t)) {
2439 crc = htole32(crc ^ *buf++);
2440 crc = htole32((crc >> 5) ^ (crc << 3));
2441 }
2442
2443 return crc;
2444 }
2445