if_upgt.c revision 1.21 1 /* $NetBSD: if_upgt.c,v 1.21 2018/07/29 02:01:54 riastradh Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.21 2018/07/29 02:01:54 riastradh Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242
243 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
244 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
245 usbd_devinfo_free(devinfop);
246
247 /* check device type */
248 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
249 return;
250
251 /* set configuration number */
252 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
253 if (error != 0) {
254 aprint_error_dev(sc->sc_dev, "failed to set configuration"
255 ", err=%s\n", usbd_errstr(error));
256 return;
257 }
258
259 /* get the first interface handle */
260 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
261 &sc->sc_iface);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "could not get interface handle\n");
265 return;
266 }
267
268 /* find endpoints */
269 id = usbd_get_interface_descriptor(sc->sc_iface);
270 sc->sc_rx_no = sc->sc_tx_no = -1;
271 for (i = 0; i < id->bNumEndpoints; i++) {
272 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
273 if (ed == NULL) {
274 aprint_error_dev(sc->sc_dev,
275 "no endpoint descriptor for iface %d\n", i);
276 return;
277 }
278
279 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
280 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
281 sc->sc_tx_no = ed->bEndpointAddress;
282 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
283 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
284 sc->sc_rx_no = ed->bEndpointAddress;
285
286 /*
287 * 0x01 TX pipe
288 * 0x81 RX pipe
289 *
290 * Deprecated scheme (not used with fw version >2.5.6.x):
291 * 0x02 TX MGMT pipe
292 * 0x82 TX MGMT pipe
293 */
294 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
295 break;
296 }
297 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
298 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
299 return;
300 }
301
302 /* setup tasks and timeouts */
303 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
304 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
305 callout_init(&sc->scan_to, 0);
306 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
307 callout_init(&sc->led_to, 0);
308 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
309
310 /*
311 * Open TX and RX USB bulk pipes.
312 */
313 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
314 &sc->sc_tx_pipeh);
315 if (error != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "could not open TX pipe: %s\n", usbd_errstr(error));
318 goto fail;
319 }
320 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
321 &sc->sc_rx_pipeh);
322 if (error != 0) {
323 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
324 usbd_errstr(error));
325 goto fail;
326 }
327
328 /*
329 * Allocate TX, RX, and CMD xfers.
330 */
331 if (upgt_alloc_tx(sc) != 0)
332 goto fail;
333 if (upgt_alloc_rx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_cmd(sc) != 0)
336 goto fail;
337
338 /*
339 * We need the firmware loaded from file system to complete the attach.
340 */
341 config_mountroot(self, upgt_attach_hook);
342
343 return;
344 fail:
345 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
346 }
347
348 static void
349 upgt_attach_hook(device_t arg)
350 {
351 struct upgt_softc *sc = device_private(arg);
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
356
357 /*
358 * Load firmware file into memory.
359 */
360 if (upgt_fw_alloc(sc) != 0)
361 goto fail;
362
363 /*
364 * Initialize the device.
365 */
366 if (upgt_device_init(sc) != 0)
367 goto fail;
368
369 /*
370 * Verify the firmware.
371 */
372 if (upgt_fw_verify(sc) != 0)
373 goto fail;
374
375 /*
376 * Calculate device memory space.
377 */
378 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
379 aprint_error_dev(sc->sc_dev,
380 "could not find memory space addresses on FW\n");
381 goto fail;
382 }
383 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
384 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
385
386 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
387 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
388 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
390 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
392
393 upgt_mem_init(sc);
394
395 /*
396 * Load the firmware.
397 */
398 if (upgt_fw_load(sc) != 0)
399 goto fail;
400
401 /*
402 * Startup the RX pipe.
403 */
404 struct upgt_data *data_rx = &sc->rx_data;
405
406 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
407 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
408 error = usbd_transfer(data_rx->xfer);
409 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
410 aprint_error_dev(sc->sc_dev,
411 "could not queue RX transfer\n");
412 goto fail;
413 }
414 usbd_delay_ms(sc->sc_udev, 100);
415
416 /*
417 * Read the whole EEPROM content and parse it.
418 */
419 if (upgt_eeprom_read(sc) != 0)
420 goto fail;
421 if (upgt_eeprom_parse(sc) != 0)
422 goto fail;
423
424 /*
425 * Setup the 802.11 device.
426 */
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM;
429 ic->ic_opmode = IEEE80211_M_STA;
430 ic->ic_state = IEEE80211_S_INIT;
431 ic->ic_caps =
432 IEEE80211_C_MONITOR |
433 IEEE80211_C_SHPREAMBLE |
434 IEEE80211_C_SHSLOT;
435
436 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
437 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
438
439 for (i = 1; i <= 14; i++) {
440 ic->ic_channels[i].ic_freq =
441 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
442 ic->ic_channels[i].ic_flags =
443 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
444 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
445 }
446
447 ifp->if_softc = sc;
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = upgt_init;
450 ifp->if_ioctl = upgt_ioctl;
451 ifp->if_start = upgt_start;
452 ifp->if_watchdog = upgt_watchdog;
453 IFQ_SET_READY(&ifp->if_snd);
454 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
455
456 if_attach(ifp);
457 ieee80211_ifattach(ic);
458 ic->ic_newassoc = upgt_newassoc;
459
460 sc->sc_newstate = ic->ic_newstate;
461 ic->ic_newstate = upgt_newstate;
462 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
463
464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466 &sc->sc_drvbpf);
467
468 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
469 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
471
472 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
473 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
475
476 aprint_normal_dev(sc->sc_dev, "address %s\n",
477 ether_sprintf(ic->ic_myaddr));
478
479 ieee80211_announce(ic);
480
481 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
482
483 /* device attached */
484 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
485
486 return;
487 fail:
488 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
489 }
490
491 static int
492 upgt_detach(device_t self, int flags)
493 {
494 struct upgt_softc *sc = device_private(self);
495 struct ifnet *ifp = &sc->sc_if;
496 struct ieee80211com *ic = &sc->sc_ic;
497 int s;
498
499 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
500
501 s = splnet();
502
503 if (ifp->if_flags & IFF_RUNNING)
504 upgt_stop(sc);
505
506 /* remove tasks and timeouts */
507 callout_halt(&sc->scan_to, NULL);
508 callout_halt(&sc->led_to, NULL);
509 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
510 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
511 callout_destroy(&sc->scan_to);
512 callout_destroy(&sc->led_to);
513
514 /* abort and close TX / RX pipes */
515 if (sc->sc_tx_pipeh != NULL) {
516 usbd_abort_pipe(sc->sc_tx_pipeh);
517 }
518 if (sc->sc_rx_pipeh != NULL) {
519 usbd_abort_pipe(sc->sc_rx_pipeh);
520 }
521
522 /* free xfers */
523 upgt_free_tx(sc);
524 upgt_free_rx(sc);
525 upgt_free_cmd(sc);
526
527 /* Close TX / RX pipes */
528 if (sc->sc_tx_pipeh != NULL) {
529 usbd_close_pipe(sc->sc_tx_pipeh);
530 }
531 if (sc->sc_rx_pipeh != NULL) {
532 usbd_close_pipe(sc->sc_rx_pipeh);
533 }
534
535 /* free firmware */
536 upgt_fw_free(sc);
537
538 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
539 /* detach interface */
540 bpf_detach(ifp);
541 ieee80211_ifdetach(ic);
542 if_detach(ifp);
543 }
544
545 splx(s);
546
547 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
548
549 return 0;
550 }
551
552 static int
553 upgt_activate(device_t self, devact_t act)
554 {
555 struct upgt_softc *sc = device_private(self);
556
557 switch (act) {
558 case DVACT_DEACTIVATE:
559 if_deactivate(&sc->sc_if);
560 return 0;
561 default:
562 return EOPNOTSUPP;
563 }
564 }
565
566 static int
567 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
568 {
569
570 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
571 sc->sc_device_type = 1;
572 /* XXX */
573 aprint_error_dev(sc->sc_dev,
574 "version 1 devices not supported yet\n");
575 return 1;
576 } else
577 sc->sc_device_type = 2;
578
579 return 0;
580 }
581
582 static int
583 upgt_device_init(struct upgt_softc *sc)
584 {
585 struct upgt_data *data_cmd = &sc->cmd_data;
586 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
587 int len;
588
589 len = sizeof(init_cmd);
590 memcpy(data_cmd->buf, init_cmd, len);
591 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
592 aprint_error_dev(sc->sc_dev,
593 "could not send device init string\n");
594 return EIO;
595 }
596 usbd_delay_ms(sc->sc_udev, 100);
597
598 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
599
600 return 0;
601 }
602
603 static int
604 upgt_mem_init(struct upgt_softc *sc)
605 {
606 int i;
607
608 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
609 sc->sc_memory.page[i].used = 0;
610
611 if (i == 0) {
612 /*
613 * The first memory page is always reserved for
614 * command data.
615 */
616 sc->sc_memory.page[i].addr =
617 sc->sc_memaddr_frame_start + MCLBYTES;
618 } else {
619 sc->sc_memory.page[i].addr =
620 sc->sc_memory.page[i - 1].addr + MCLBYTES;
621 }
622
623 if (sc->sc_memory.page[i].addr + MCLBYTES >=
624 sc->sc_memaddr_frame_end)
625 break;
626
627 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
628 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
629 }
630
631 sc->sc_memory.pages = i;
632
633 DPRINTF(2, "%s: memory pages=%d\n",
634 device_xname(sc->sc_dev), sc->sc_memory.pages);
635
636 return 0;
637 }
638
639 static uint32_t
640 upgt_mem_alloc(struct upgt_softc *sc)
641 {
642 int i;
643
644 for (i = 0; i < sc->sc_memory.pages; i++) {
645 if (sc->sc_memory.page[i].used == 0) {
646 sc->sc_memory.page[i].used = 1;
647 return sc->sc_memory.page[i].addr;
648 }
649 }
650
651 return 0;
652 }
653
654 static void
655 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
656 {
657 int i;
658
659 for (i = 0; i < sc->sc_memory.pages; i++) {
660 if (sc->sc_memory.page[i].addr == addr) {
661 sc->sc_memory.page[i].used = 0;
662 return;
663 }
664 }
665
666 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
667 addr);
668 }
669
670
671 static int
672 upgt_fw_alloc(struct upgt_softc *sc)
673 {
674 const char *name = "upgt-gw3887";
675 int error;
676
677 if (sc->sc_fw == NULL) {
678 error = firmware_load("upgt", name, &sc->sc_fw,
679 &sc->sc_fw_size);
680 if (error != 0) {
681 if (error == ENOENT) {
682 /*
683 * The firmware file for upgt(4) is not in
684 * the default distribution due to its lisence
685 * so explicitly notify it if the firmware file
686 * is not found.
687 */
688 aprint_error_dev(sc->sc_dev,
689 "firmware file %s is not installed\n",
690 name);
691 aprint_error_dev(sc->sc_dev,
692 "(it is not included in the default"
693 " distribution)\n");
694 aprint_error_dev(sc->sc_dev,
695 "see upgt(4) man page for details about "
696 "firmware installation\n");
697 } else {
698 aprint_error_dev(sc->sc_dev,
699 "could not read firmware %s\n", name);
700 }
701 return EIO;
702 }
703 }
704
705 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
706 name);
707
708 return 0;
709 }
710
711 static void
712 upgt_fw_free(struct upgt_softc *sc)
713 {
714
715 if (sc->sc_fw != NULL) {
716 firmware_free(sc->sc_fw, sc->sc_fw_size);
717 sc->sc_fw = NULL;
718 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
719 }
720 }
721
722 static int
723 upgt_fw_verify(struct upgt_softc *sc)
724 {
725 struct upgt_fw_bra_option *bra_option;
726 uint32_t bra_option_type, bra_option_len;
727 uint32_t *uc;
728 int offset, bra_end = 0;
729
730 /*
731 * Seek to beginning of Boot Record Area (BRA).
732 */
733 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
734 uc = (uint32_t *)(sc->sc_fw + offset);
735 if (*uc == 0)
736 break;
737 }
738 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
739 uc = (uint32_t *)(sc->sc_fw + offset);
740 if (*uc != 0)
741 break;
742 }
743 if (offset == sc->sc_fw_size) {
744 aprint_error_dev(sc->sc_dev,
745 "firmware Boot Record Area not found\n");
746 return EIO;
747 }
748 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
749 device_xname(sc->sc_dev), offset);
750
751 /*
752 * Parse Boot Record Area (BRA) options.
753 */
754 while (offset < sc->sc_fw_size && bra_end == 0) {
755 /* get current BRA option */
756 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
757 bra_option_type = le32toh(bra_option->type);
758 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
759
760 switch (bra_option_type) {
761 case UPGT_BRA_TYPE_FW:
762 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
763 device_xname(sc->sc_dev), bra_option_len);
764
765 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
766 aprint_error_dev(sc->sc_dev,
767 "wrong UPGT_BRA_TYPE_FW len\n");
768 return EIO;
769 }
770 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
771 bra_option_len) == 0) {
772 sc->sc_fw_type = UPGT_FWTYPE_LM86;
773 break;
774 }
775 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
776 bra_option_len) == 0) {
777 sc->sc_fw_type = UPGT_FWTYPE_LM87;
778 break;
779 }
780 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
781 bra_option_len) == 0) {
782 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
783 break;
784 }
785 aprint_error_dev(sc->sc_dev,
786 "unsupported firmware type\n");
787 return EIO;
788 case UPGT_BRA_TYPE_VERSION:
789 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
790 device_xname(sc->sc_dev), bra_option_len);
791 break;
792 case UPGT_BRA_TYPE_DEPIF:
793 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
794 device_xname(sc->sc_dev), bra_option_len);
795 break;
796 case UPGT_BRA_TYPE_EXPIF:
797 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
798 device_xname(sc->sc_dev), bra_option_len);
799 break;
800 case UPGT_BRA_TYPE_DESCR:
801 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
802 device_xname(sc->sc_dev), bra_option_len);
803
804 struct upgt_fw_bra_descr *descr =
805 (struct upgt_fw_bra_descr *)bra_option->data;
806
807 sc->sc_memaddr_frame_start =
808 le32toh(descr->memaddr_space_start);
809 sc->sc_memaddr_frame_end =
810 le32toh(descr->memaddr_space_end);
811
812 DPRINTF(2, "%s: memory address space start=0x%08x\n",
813 device_xname(sc->sc_dev),
814 sc->sc_memaddr_frame_start);
815 DPRINTF(2, "%s: memory address space end=0x%08x\n",
816 device_xname(sc->sc_dev),
817 sc->sc_memaddr_frame_end);
818 break;
819 case UPGT_BRA_TYPE_END:
820 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
821 device_xname(sc->sc_dev), bra_option_len);
822 bra_end = 1;
823 break;
824 default:
825 DPRINTF(1, "%s: unknown BRA option len=%d\n",
826 device_xname(sc->sc_dev), bra_option_len);
827 return EIO;
828 }
829
830 /* jump to next BRA option */
831 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
832 }
833
834 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
835
836 return 0;
837 }
838
839 static int
840 upgt_fw_load(struct upgt_softc *sc)
841 {
842 struct upgt_data *data_cmd = &sc->cmd_data;
843 struct upgt_data *data_rx = &sc->rx_data;
844 struct upgt_fw_x2_header *x2;
845 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
846 int offset, bsize, n, i, len;
847 uint32_t crc;
848
849 /* send firmware start load command */
850 len = sizeof(start_fwload_cmd);
851 memcpy(data_cmd->buf, start_fwload_cmd, len);
852 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
853 aprint_error_dev(sc->sc_dev,
854 "could not send start_firmware_load command\n");
855 return EIO;
856 }
857
858 /* send X2 header */
859 len = sizeof(struct upgt_fw_x2_header);
860 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
861 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
862 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
863 x2->len = htole32(sc->sc_fw_size);
864 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
865 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
866 sizeof(uint32_t));
867 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
868 aprint_error_dev(sc->sc_dev,
869 "could not send firmware X2 header\n");
870 return EIO;
871 }
872
873 /* download firmware */
874 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
875 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
876 bsize = UPGT_FW_BLOCK_SIZE;
877 else
878 bsize = sc->sc_fw_size - offset;
879
880 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
881
882 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
883 device_xname(sc->sc_dev), offset, n, bsize);
884
885 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
886 != 0) {
887 aprint_error_dev(sc->sc_dev,
888 "error while downloading firmware block\n");
889 return EIO;
890 }
891
892 bsize = n;
893 }
894 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
895
896 /* load firmware */
897 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
898 *((uint32_t *)(data_cmd->buf) ) = crc;
899 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
900 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
901 len = 6;
902 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
903 aprint_error_dev(sc->sc_dev,
904 "could not send load_firmware command\n");
905 return EIO;
906 }
907
908 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
909 len = UPGT_FW_BLOCK_SIZE;
910 memset(data_rx->buf, 0, 2);
911 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
912 USBD_SHORT_XFER_OK) != 0) {
913 aprint_error_dev(sc->sc_dev,
914 "could not read firmware response\n");
915 return EIO;
916 }
917
918 if (memcmp(data_rx->buf, "OK", 2) == 0)
919 break; /* firmware load was successful */
920 }
921 if (i == UPGT_FIRMWARE_TIMEOUT) {
922 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
923 return EIO;
924 }
925 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
926
927 return 0;
928 }
929
930 /*
931 * While copying the version 2 firmware, we need to replace two characters:
932 *
933 * 0x7e -> 0x7d 0x5e
934 * 0x7d -> 0x7d 0x5d
935 */
936 static int
937 upgt_fw_copy(char *src, char *dst, int size)
938 {
939 int i, j;
940
941 for (i = 0, j = 0; i < size && j < size; i++) {
942 switch (src[i]) {
943 case 0x7e:
944 dst[j] = 0x7d;
945 j++;
946 dst[j] = 0x5e;
947 j++;
948 break;
949 case 0x7d:
950 dst[j] = 0x7d;
951 j++;
952 dst[j] = 0x5d;
953 j++;
954 break;
955 default:
956 dst[j] = src[i];
957 j++;
958 break;
959 }
960 }
961
962 return i;
963 }
964
965 static int
966 upgt_eeprom_read(struct upgt_softc *sc)
967 {
968 struct upgt_data *data_cmd = &sc->cmd_data;
969 struct upgt_lmac_mem *mem;
970 struct upgt_lmac_eeprom *eeprom;
971 int offset, block, len;
972
973 offset = 0;
974 block = UPGT_EEPROM_BLOCK_SIZE;
975 while (offset < UPGT_EEPROM_SIZE) {
976 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
977 device_xname(sc->sc_dev), offset, block);
978
979 /*
980 * Transmit the URB containing the CMD data.
981 */
982 len = sizeof(*mem) + sizeof(*eeprom) + block;
983
984 memset(data_cmd->buf, 0, len);
985
986 mem = (struct upgt_lmac_mem *)data_cmd->buf;
987 mem->addr = htole32(sc->sc_memaddr_frame_start +
988 UPGT_MEMSIZE_FRAME_HEAD);
989
990 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
991 eeprom->header1.flags = 0;
992 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
993 eeprom->header1.len = htole16((
994 sizeof(struct upgt_lmac_eeprom) -
995 sizeof(struct upgt_lmac_header)) + block);
996
997 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
998 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
999 eeprom->header2.flags = 0;
1000
1001 eeprom->offset = htole16(offset);
1002 eeprom->len = htole16(block);
1003
1004 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1005 len - sizeof(*mem));
1006
1007 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1008 USBD_FORCE_SHORT_XFER) != 0) {
1009 aprint_error_dev(sc->sc_dev,
1010 "could not transmit EEPROM data URB\n");
1011 return EIO;
1012 }
1013 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1014 aprint_error_dev(sc->sc_dev,
1015 "timeout while waiting for EEPROM data\n");
1016 return EIO;
1017 }
1018
1019 offset += block;
1020 if (UPGT_EEPROM_SIZE - offset < block)
1021 block = UPGT_EEPROM_SIZE - offset;
1022 }
1023
1024 return 0;
1025 }
1026
1027 static int
1028 upgt_eeprom_parse(struct upgt_softc *sc)
1029 {
1030 struct ieee80211com *ic = &sc->sc_ic;
1031 struct upgt_eeprom_header *eeprom_header;
1032 struct upgt_eeprom_option *eeprom_option;
1033 uint16_t option_len;
1034 uint16_t option_type;
1035 uint16_t preamble_len;
1036 int option_end = 0;
1037
1038 /* calculate eeprom options start offset */
1039 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1040 preamble_len = le16toh(eeprom_header->preamble_len);
1041 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1042 (sizeof(struct upgt_eeprom_header) + preamble_len));
1043
1044 while (!option_end) {
1045 /* the eeprom option length is stored in words */
1046 option_len =
1047 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1048 option_type =
1049 le16toh(eeprom_option->type);
1050
1051 switch (option_type) {
1052 case UPGT_EEPROM_TYPE_NAME:
1053 DPRINTF(1, "%s: EEPROM name len=%d\n",
1054 device_xname(sc->sc_dev), option_len);
1055 break;
1056 case UPGT_EEPROM_TYPE_SERIAL:
1057 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1058 device_xname(sc->sc_dev), option_len);
1059 break;
1060 case UPGT_EEPROM_TYPE_MAC:
1061 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1062 device_xname(sc->sc_dev), option_len);
1063
1064 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1065 break;
1066 case UPGT_EEPROM_TYPE_HWRX:
1067 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1068 device_xname(sc->sc_dev), option_len);
1069
1070 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1071 break;
1072 case UPGT_EEPROM_TYPE_CHIP:
1073 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1074 device_xname(sc->sc_dev), option_len);
1075 break;
1076 case UPGT_EEPROM_TYPE_FREQ3:
1077 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1078 device_xname(sc->sc_dev), option_len);
1079
1080 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1081 option_len);
1082 break;
1083 case UPGT_EEPROM_TYPE_FREQ4:
1084 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1085 device_xname(sc->sc_dev), option_len);
1086
1087 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1088 option_len);
1089 break;
1090 case UPGT_EEPROM_TYPE_FREQ5:
1091 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1092 device_xname(sc->sc_dev), option_len);
1093 break;
1094 case UPGT_EEPROM_TYPE_FREQ6:
1095 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1096 device_xname(sc->sc_dev), option_len);
1097
1098 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1099 option_len);
1100 break;
1101 case UPGT_EEPROM_TYPE_END:
1102 DPRINTF(1, "%s: EEPROM end len=%d\n",
1103 device_xname(sc->sc_dev), option_len);
1104 option_end = 1;
1105 break;
1106 case UPGT_EEPROM_TYPE_OFF:
1107 DPRINTF(1, "%s: EEPROM off without end option\n",
1108 device_xname(sc->sc_dev));
1109 return EIO;
1110 default:
1111 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1112 device_xname(sc->sc_dev), option_type, option_len);
1113 break;
1114 }
1115
1116 /* jump to next EEPROM option */
1117 eeprom_option = (struct upgt_eeprom_option *)
1118 (eeprom_option->data + option_len);
1119 }
1120
1121 return 0;
1122 }
1123
1124 static void
1125 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1126 {
1127 struct upgt_eeprom_option_hwrx *option_hwrx;
1128
1129 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1130
1131 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1132
1133 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1134 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1135 }
1136
1137 static void
1138 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1139 {
1140 struct upgt_eeprom_freq3_header *freq3_header;
1141 struct upgt_lmac_freq3 *freq3;
1142 int i, elements, flags;
1143 unsigned channel;
1144
1145 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1146 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1147
1148 flags = freq3_header->flags;
1149 elements = freq3_header->elements;
1150
1151 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1152 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1153 __USE(flags);
1154
1155 for (i = 0; i < elements; i++) {
1156 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1157
1158 sc->sc_eeprom_freq3[channel] = freq3[i];
1159
1160 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1161 device_xname(sc->sc_dev),
1162 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1163 }
1164 }
1165
1166 static void
1167 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1168 {
1169 struct upgt_eeprom_freq4_header *freq4_header;
1170 struct upgt_eeprom_freq4_1 *freq4_1;
1171 struct upgt_eeprom_freq4_2 *freq4_2;
1172 int i, j, elements, settings, flags;
1173 unsigned channel;
1174
1175 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1176 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1177
1178 flags = freq4_header->flags;
1179 elements = freq4_header->elements;
1180 settings = freq4_header->settings;
1181
1182 /* we need this value later */
1183 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1184
1185 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1186 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1187 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1188 __USE(flags);
1189
1190 for (i = 0; i < elements; i++) {
1191 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1192
1193 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1194
1195 for (j = 0; j < settings; j++) {
1196 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1197 sc->sc_eeprom_freq4[channel][j].pad = 0;
1198 }
1199
1200 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1201 device_xname(sc->sc_dev),
1202 le16toh(freq4_1[i].freq), channel);
1203 }
1204 }
1205
1206 static void
1207 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1208 {
1209 struct upgt_lmac_freq6 *freq6;
1210 int i, elements;
1211 unsigned channel;
1212
1213 freq6 = (struct upgt_lmac_freq6 *)data;
1214
1215 elements = len / sizeof(struct upgt_lmac_freq6);
1216
1217 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1218
1219 for (i = 0; i < elements; i++) {
1220 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1221
1222 sc->sc_eeprom_freq6[channel] = freq6[i];
1223
1224 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1225 device_xname(sc->sc_dev),
1226 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1227 }
1228 }
1229
1230 static int
1231 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1232 {
1233 struct upgt_softc *sc = ifp->if_softc;
1234 struct ieee80211com *ic = &sc->sc_ic;
1235 int s, error = 0;
1236
1237 s = splnet();
1238
1239 switch (cmd) {
1240 case SIOCSIFFLAGS:
1241 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1242 break;
1243 if (ifp->if_flags & IFF_UP) {
1244 if ((ifp->if_flags & IFF_RUNNING) == 0)
1245 upgt_init(ifp);
1246 } else {
1247 if (ifp->if_flags & IFF_RUNNING)
1248 upgt_stop(sc);
1249 }
1250 break;
1251 case SIOCADDMULTI:
1252 case SIOCDELMULTI:
1253 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1254 /* setup multicast filter, etc */
1255 error = 0;
1256 }
1257 break;
1258 default:
1259 error = ieee80211_ioctl(ic, cmd, data);
1260 break;
1261 }
1262
1263 if (error == ENETRESET) {
1264 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1265 (IFF_UP | IFF_RUNNING))
1266 upgt_init(ifp);
1267 error = 0;
1268 }
1269
1270 splx(s);
1271
1272 return error;
1273 }
1274
1275 static int
1276 upgt_init(struct ifnet *ifp)
1277 {
1278 struct upgt_softc *sc = ifp->if_softc;
1279 struct ieee80211com *ic = &sc->sc_ic;
1280
1281 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1282
1283 if (ifp->if_flags & IFF_RUNNING)
1284 upgt_stop(sc);
1285
1286 ifp->if_flags |= IFF_RUNNING;
1287 ifp->if_flags &= ~IFF_OACTIVE;
1288
1289 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1290
1291 /* setup device rates */
1292 upgt_setup_rates(sc);
1293
1294 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1295 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1296 else
1297 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1298
1299 return 0;
1300 }
1301
1302 static void
1303 upgt_stop(struct upgt_softc *sc)
1304 {
1305 struct ieee80211com *ic = &sc->sc_ic;
1306 struct ifnet *ifp = &sc->sc_if;
1307
1308 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1309
1310 /* device down */
1311 ifp->if_timer = 0;
1312 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1313
1314 /* change device back to initial state */
1315 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1316 }
1317
1318 static int
1319 upgt_media_change(struct ifnet *ifp)
1320 {
1321 struct upgt_softc *sc = ifp->if_softc;
1322 int error;
1323
1324 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1325
1326 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1327 return error;
1328
1329 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1330 (IFF_UP | IFF_RUNNING)) {
1331 /* give pending USB transfers a chance to finish */
1332 usbd_delay_ms(sc->sc_udev, 100);
1333 upgt_init(ifp);
1334 }
1335
1336 return 0;
1337 }
1338
1339 static void
1340 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1341 {
1342
1343 ni->ni_txrate = 0;
1344 }
1345
1346 static int
1347 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1348 {
1349 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1350
1351 /*
1352 * XXXSMP: This does not wait for the task, if it is in flight,
1353 * to complete. If this code works at all, it must rely on the
1354 * kernel lock to serialize with the USB task thread.
1355 */
1356 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1357 callout_stop(&sc->scan_to);
1358
1359 /* do it in a process context */
1360 sc->sc_state = nstate;
1361 sc->sc_arg = arg;
1362 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1363
1364 return 0;
1365 }
1366
1367 static void
1368 upgt_newstate_task(void *arg)
1369 {
1370 struct upgt_softc *sc = arg;
1371 struct ieee80211com *ic = &sc->sc_ic;
1372 struct ieee80211_node *ni;
1373 unsigned channel;
1374
1375 mutex_enter(&sc->sc_mtx);
1376
1377 switch (sc->sc_state) {
1378 case IEEE80211_S_INIT:
1379 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1380 device_xname(sc->sc_dev));
1381
1382 /* do not accept any frames if the device is down */
1383 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1384 upgt_set_led(sc, UPGT_LED_OFF);
1385 break;
1386 case IEEE80211_S_SCAN:
1387 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1388 device_xname(sc->sc_dev));
1389
1390 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1391 upgt_set_channel(sc, channel);
1392 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1393 callout_schedule(&sc->scan_to, hz / 5);
1394 break;
1395 case IEEE80211_S_AUTH:
1396 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1397 device_xname(sc->sc_dev));
1398
1399 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1400 upgt_set_channel(sc, channel);
1401 break;
1402 case IEEE80211_S_ASSOC:
1403 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1404 device_xname(sc->sc_dev));
1405
1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 upgt_set_channel(sc, channel);
1408 break;
1409 case IEEE80211_S_RUN:
1410 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1411 device_xname(sc->sc_dev));
1412
1413 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1414 upgt_set_channel(sc, channel);
1415
1416 ni = ic->ic_bss;
1417
1418 /*
1419 * TX rate control is done by the firmware.
1420 * Report the maximum rate which is available therefore.
1421 */
1422 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1423
1424 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1425 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1426 upgt_set_led(sc, UPGT_LED_ON);
1427 break;
1428 }
1429
1430 mutex_exit(&sc->sc_mtx);
1431
1432 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1433 }
1434
1435 static void
1436 upgt_next_scan(void *arg)
1437 {
1438 struct upgt_softc *sc = arg;
1439 struct ieee80211com *ic = &sc->sc_ic;
1440
1441 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1442
1443 if (ic->ic_state == IEEE80211_S_SCAN)
1444 ieee80211_next_scan(ic);
1445 }
1446
1447 static void
1448 upgt_start(struct ifnet *ifp)
1449 {
1450 struct upgt_softc *sc = ifp->if_softc;
1451 struct ieee80211com *ic = &sc->sc_ic;
1452 struct ether_header *eh;
1453 struct ieee80211_node *ni;
1454 struct mbuf *m;
1455 int i;
1456
1457 /* don't transmit packets if interface is busy or down */
1458 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1459 return;
1460
1461 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1462
1463 for (i = 0; i < UPGT_TX_COUNT; i++) {
1464 struct upgt_data *data_tx = &sc->tx_data[i];
1465
1466 if (data_tx->m != NULL)
1467 continue;
1468
1469 IF_POLL(&ic->ic_mgtq, m);
1470 if (m != NULL) {
1471 /* management frame */
1472 IF_DEQUEUE(&ic->ic_mgtq, m);
1473
1474 ni = M_GETCTX(m, struct ieee80211_node *);
1475 M_CLEARCTX(m);
1476
1477 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1478
1479 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1480 aprint_error_dev(sc->sc_dev,
1481 "no free prism memory\n");
1482 m_freem(m);
1483 ifp->if_oerrors++;
1484 break;
1485 }
1486 data_tx->ni = ni;
1487 data_tx->m = m;
1488 sc->tx_queued++;
1489 } else {
1490 /* data frame */
1491 if (ic->ic_state != IEEE80211_S_RUN)
1492 break;
1493
1494 IFQ_POLL(&ifp->if_snd, m);
1495 if (m == NULL)
1496 break;
1497
1498 IFQ_DEQUEUE(&ifp->if_snd, m);
1499 if (m->m_len < sizeof(struct ether_header) &&
1500 !(m = m_pullup(m, sizeof(struct ether_header))))
1501 continue;
1502
1503 eh = mtod(m, struct ether_header *);
1504 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1505 if (ni == NULL) {
1506 m_freem(m);
1507 continue;
1508 }
1509
1510 bpf_mtap(ifp, m, BPF_D_OUT);
1511
1512 m = ieee80211_encap(ic, m, ni);
1513 if (m == NULL) {
1514 ieee80211_free_node(ni);
1515 continue;
1516 }
1517
1518 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1519
1520 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1521 aprint_error_dev(sc->sc_dev,
1522 "no free prism memory\n");
1523 m_freem(m);
1524 ieee80211_free_node(ni);
1525 ifp->if_oerrors++;
1526 break;
1527 }
1528 data_tx->ni = ni;
1529 data_tx->m = m;
1530 sc->tx_queued++;
1531 }
1532 }
1533
1534 if (sc->tx_queued > 0) {
1535 DPRINTF(2, "%s: tx_queued=%d\n",
1536 device_xname(sc->sc_dev), sc->tx_queued);
1537 /* process the TX queue in process context */
1538 ifp->if_timer = 5;
1539 ifp->if_flags |= IFF_OACTIVE;
1540 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1541 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1542 }
1543 }
1544
1545 static void
1546 upgt_watchdog(struct ifnet *ifp)
1547 {
1548 struct upgt_softc *sc = ifp->if_softc;
1549 struct ieee80211com *ic = &sc->sc_ic;
1550
1551 if (ic->ic_state == IEEE80211_S_INIT)
1552 return;
1553
1554 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1555
1556 /* TODO: what shall we do on TX timeout? */
1557
1558 ieee80211_watchdog(ic);
1559 }
1560
1561 static void
1562 upgt_tx_task(void *arg)
1563 {
1564 struct upgt_softc *sc = arg;
1565 struct ieee80211com *ic = &sc->sc_ic;
1566 struct ieee80211_frame *wh;
1567 struct ieee80211_key *k;
1568 struct ifnet *ifp = &sc->sc_if;
1569 struct upgt_lmac_mem *mem;
1570 struct upgt_lmac_tx_desc *txdesc;
1571 struct mbuf *m;
1572 uint32_t addr;
1573 int i, len, pad, s;
1574 usbd_status error;
1575
1576 mutex_enter(&sc->sc_mtx);
1577 upgt_set_led(sc, UPGT_LED_BLINK);
1578 mutex_exit(&sc->sc_mtx);
1579
1580 s = splnet();
1581
1582 for (i = 0; i < UPGT_TX_COUNT; i++) {
1583 struct upgt_data *data_tx = &sc->tx_data[i];
1584
1585 if (data_tx->m == NULL)
1586 continue;
1587
1588 m = data_tx->m;
1589 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1590
1591 /*
1592 * Software crypto.
1593 */
1594 wh = mtod(m, struct ieee80211_frame *);
1595
1596 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1597 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1598 if (k == NULL) {
1599 m_freem(m);
1600 data_tx->m = NULL;
1601 ieee80211_free_node(data_tx->ni);
1602 data_tx->ni = NULL;
1603 ifp->if_oerrors++;
1604 break;
1605 }
1606
1607 /* in case packet header moved, reset pointer */
1608 wh = mtod(m, struct ieee80211_frame *);
1609 }
1610
1611 /*
1612 * Transmit the URB containing the TX data.
1613 */
1614 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1615
1616 mem = (struct upgt_lmac_mem *)data_tx->buf;
1617 mem->addr = htole32(addr);
1618
1619 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1620
1621 /* XXX differ between data and mgmt frames? */
1622 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1623 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1624 txdesc->header1.len = htole16(m->m_pkthdr.len);
1625
1626 txdesc->header2.reqid = htole32(data_tx->addr);
1627 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1628 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1629
1630 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1631 IEEE80211_FC0_TYPE_MGT) {
1632 /* always send mgmt frames at lowest rate (DS1) */
1633 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1634 } else {
1635 memcpy(txdesc->rates, sc->sc_cur_rateset,
1636 sizeof(txdesc->rates));
1637 }
1638 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1639 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1640
1641 if (sc->sc_drvbpf != NULL) {
1642 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1643
1644 tap->wt_flags = 0;
1645 tap->wt_rate = 0; /* TODO: where to get from? */
1646 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1647 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1648
1649 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1650 BPF_D_OUT);
1651 }
1652
1653 /* copy frame below our TX descriptor header */
1654 m_copydata(m, 0, m->m_pkthdr.len,
1655 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1656
1657 /* calculate frame size */
1658 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1659
1660 if (len & 3) {
1661 /* we need to align the frame to a 4 byte boundary */
1662 pad = 4 - (len & 3);
1663 memset(data_tx->buf + len, 0, pad);
1664 len += pad;
1665 }
1666
1667 /* calculate frame checksum */
1668 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1669 len - sizeof(*mem));
1670
1671 /* we do not need the mbuf anymore */
1672 m_freem(m);
1673 data_tx->m = NULL;
1674
1675 ieee80211_free_node(data_tx->ni);
1676 data_tx->ni = NULL;
1677
1678 DPRINTF(2, "%s: TX start data sending\n",
1679 device_xname(sc->sc_dev));
1680
1681 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1682 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1683 error = usbd_transfer(data_tx->xfer);
1684 if (error != USBD_NORMAL_COMPLETION &&
1685 error != USBD_IN_PROGRESS) {
1686 aprint_error_dev(sc->sc_dev,
1687 "could not transmit TX data URB\n");
1688 ifp->if_oerrors++;
1689 break;
1690 }
1691
1692 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1693 device_xname(sc->sc_dev), len);
1694 }
1695
1696 splx(s);
1697
1698 /*
1699 * If we don't regulary read the device statistics, the RX queue
1700 * will stall. It's strange, but it works, so we keep reading
1701 * the statistics here. *shrug*
1702 */
1703 mutex_enter(&sc->sc_mtx);
1704 upgt_get_stats(sc);
1705 mutex_exit(&sc->sc_mtx);
1706 }
1707
1708 static void
1709 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1710 {
1711 struct ifnet *ifp = &sc->sc_if;
1712 struct upgt_lmac_tx_done_desc *desc;
1713 int i, s;
1714
1715 s = splnet();
1716
1717 desc = (struct upgt_lmac_tx_done_desc *)data;
1718
1719 for (i = 0; i < UPGT_TX_COUNT; i++) {
1720 struct upgt_data *data_tx = &sc->tx_data[i];
1721
1722 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1723 upgt_mem_free(sc, data_tx->addr);
1724 data_tx->addr = 0;
1725
1726 sc->tx_queued--;
1727 ifp->if_opackets++;
1728
1729 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1730 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1731 le32toh(desc->header2.reqid),
1732 le16toh(desc->status),
1733 le16toh(desc->rssi));
1734 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1735 break;
1736 }
1737 }
1738
1739 if (sc->tx_queued == 0) {
1740 /* TX queued was processed, continue */
1741 ifp->if_timer = 0;
1742 ifp->if_flags &= ~IFF_OACTIVE;
1743 upgt_start(ifp);
1744 }
1745
1746 splx(s);
1747 }
1748
1749 static void
1750 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1751 {
1752 struct upgt_data *data_rx = priv;
1753 struct upgt_softc *sc = data_rx->sc;
1754 int len;
1755 struct upgt_lmac_header *header;
1756 struct upgt_lmac_eeprom *eeprom;
1757 uint8_t h1_type;
1758 uint16_t h2_type;
1759
1760 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1761
1762 if (status != USBD_NORMAL_COMPLETION) {
1763 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1764 return;
1765 if (status == USBD_STALLED)
1766 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1767 goto skip;
1768 }
1769 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1770
1771 /*
1772 * Check what type of frame came in.
1773 */
1774 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1775
1776 h1_type = header->header1.type;
1777 h2_type = le16toh(header->header2.type);
1778
1779 if (h1_type == UPGT_H1_TYPE_CTRL &&
1780 h2_type == UPGT_H2_TYPE_EEPROM) {
1781 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1782 uint16_t eeprom_offset = le16toh(eeprom->offset);
1783 uint16_t eeprom_len = le16toh(eeprom->len);
1784
1785 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1786 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1787
1788 memcpy(sc->sc_eeprom + eeprom_offset,
1789 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1790 eeprom_len);
1791
1792 /* EEPROM data has arrived in time, wakeup tsleep() */
1793 wakeup(sc);
1794 } else
1795 if (h1_type == UPGT_H1_TYPE_CTRL &&
1796 h2_type == UPGT_H2_TYPE_TX_DONE) {
1797 DPRINTF(2, "%s: received 802.11 TX done\n",
1798 device_xname(sc->sc_dev));
1799
1800 upgt_tx_done(sc, data_rx->buf + 4);
1801 } else
1802 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1803 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1804 DPRINTF(3, "%s: received 802.11 RX data\n",
1805 device_xname(sc->sc_dev));
1806
1807 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1808 } else
1809 if (h1_type == UPGT_H1_TYPE_CTRL &&
1810 h2_type == UPGT_H2_TYPE_STATS) {
1811 DPRINTF(2, "%s: received statistic data\n",
1812 device_xname(sc->sc_dev));
1813
1814 /* TODO: what could we do with the statistic data? */
1815 } else {
1816 /* ignore unknown frame types */
1817 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1818 device_xname(sc->sc_dev), header->header1.type);
1819 }
1820
1821 skip: /* setup new transfer */
1822 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1823 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1824 (void)usbd_transfer(xfer);
1825 }
1826
1827 static void
1828 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1829 {
1830 struct ieee80211com *ic = &sc->sc_ic;
1831 struct ifnet *ifp = &sc->sc_if;
1832 struct upgt_lmac_rx_desc *rxdesc;
1833 struct ieee80211_frame *wh;
1834 struct ieee80211_node *ni;
1835 struct mbuf *m;
1836 int s;
1837
1838 /* access RX packet descriptor */
1839 rxdesc = (struct upgt_lmac_rx_desc *)data;
1840
1841 /* create mbuf which is suitable for strict alignment archs */
1842 #define ETHER_ALIGN 0
1843 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1844 if (m == NULL) {
1845 DPRINTF(1, "%s: could not create RX mbuf\n",
1846 device_xname(sc->sc_dev));
1847 ifp->if_ierrors++;
1848 return;
1849 }
1850
1851 s = splnet();
1852
1853 if (sc->sc_drvbpf != NULL) {
1854 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1855
1856 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1857 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1858 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1859 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1860 tap->wr_antsignal = rxdesc->rssi;
1861
1862 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1863 }
1864
1865 /* trim FCS */
1866 m_adj(m, -IEEE80211_CRC_LEN);
1867
1868 wh = mtod(m, struct ieee80211_frame *);
1869 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1870
1871 /* push the frame up to the 802.11 stack */
1872 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1873
1874 /* node is no longer needed */
1875 ieee80211_free_node(ni);
1876
1877 splx(s);
1878
1879 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1880 }
1881
1882 static void
1883 upgt_setup_rates(struct upgt_softc *sc)
1884 {
1885 struct ieee80211com *ic = &sc->sc_ic;
1886
1887 /*
1888 * 0x01 = OFMD6 0x10 = DS1
1889 * 0x04 = OFDM9 0x11 = DS2
1890 * 0x06 = OFDM12 0x12 = DS5
1891 * 0x07 = OFDM18 0x13 = DS11
1892 * 0x08 = OFDM24
1893 * 0x09 = OFDM36
1894 * 0x0a = OFDM48
1895 * 0x0b = OFDM54
1896 */
1897 const uint8_t rateset_auto_11b[] =
1898 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1899 const uint8_t rateset_auto_11g[] =
1900 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1901 const uint8_t rateset_fix_11bg[] =
1902 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1903 0x08, 0x09, 0x0a, 0x0b };
1904
1905 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1906 /*
1907 * Automatic rate control is done by the device.
1908 * We just pass the rateset from which the device
1909 * will pickup a rate.
1910 */
1911 if (ic->ic_curmode == IEEE80211_MODE_11B)
1912 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1913 sizeof(sc->sc_cur_rateset));
1914 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1915 ic->ic_curmode == IEEE80211_MODE_AUTO)
1916 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1917 sizeof(sc->sc_cur_rateset));
1918 } else {
1919 /* set a fixed rate */
1920 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1921 sizeof(sc->sc_cur_rateset));
1922 }
1923 }
1924
1925 static uint8_t
1926 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1927 {
1928 struct ieee80211com *ic = &sc->sc_ic;
1929
1930 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1931 if (rate < 0 || rate > 3)
1932 /* invalid rate */
1933 return 0;
1934
1935 switch (rate) {
1936 case 0:
1937 return 2;
1938 case 1:
1939 return 4;
1940 case 2:
1941 return 11;
1942 case 3:
1943 return 22;
1944 default:
1945 return 0;
1946 }
1947 }
1948
1949 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1950 if (rate < 0 || rate > 11)
1951 /* invalid rate */
1952 return 0;
1953
1954 switch (rate) {
1955 case 0:
1956 return 2;
1957 case 1:
1958 return 4;
1959 case 2:
1960 return 11;
1961 case 3:
1962 return 22;
1963 case 4:
1964 return 12;
1965 case 5:
1966 return 18;
1967 case 6:
1968 return 24;
1969 case 7:
1970 return 36;
1971 case 8:
1972 return 48;
1973 case 9:
1974 return 72;
1975 case 10:
1976 return 96;
1977 case 11:
1978 return 108;
1979 default:
1980 return 0;
1981 }
1982 }
1983
1984 return 0;
1985 }
1986
1987 static int
1988 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1989 {
1990 struct ieee80211com *ic = &sc->sc_ic;
1991 struct ieee80211_node *ni = ic->ic_bss;
1992 struct upgt_data *data_cmd = &sc->cmd_data;
1993 struct upgt_lmac_mem *mem;
1994 struct upgt_lmac_filter *filter;
1995 int len;
1996 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1997
1998 /*
1999 * Transmit the URB containing the CMD data.
2000 */
2001 len = sizeof(*mem) + sizeof(*filter);
2002
2003 memset(data_cmd->buf, 0, len);
2004
2005 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2006 mem->addr = htole32(sc->sc_memaddr_frame_start +
2007 UPGT_MEMSIZE_FRAME_HEAD);
2008
2009 filter = (struct upgt_lmac_filter *)(mem + 1);
2010
2011 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2012 filter->header1.type = UPGT_H1_TYPE_CTRL;
2013 filter->header1.len = htole16(
2014 sizeof(struct upgt_lmac_filter) -
2015 sizeof(struct upgt_lmac_header));
2016
2017 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2018 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2019 filter->header2.flags = 0;
2020
2021 switch (state) {
2022 case IEEE80211_S_INIT:
2023 DPRINTF(1, "%s: set MAC filter to INIT\n",
2024 device_xname(sc->sc_dev));
2025
2026 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2027 break;
2028 case IEEE80211_S_SCAN:
2029 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2030 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2031
2032 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2033 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2034 IEEE80211_ADDR_COPY(filter->src, broadcast);
2035 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2036 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2037 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2038 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2039 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2040 break;
2041 case IEEE80211_S_RUN:
2042 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2043 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2044
2045 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2046 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2047 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2048 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2049 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2050 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2051 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2052 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2053 break;
2054 default:
2055 aprint_error_dev(sc->sc_dev,
2056 "MAC filter does not know that state\n");
2057 break;
2058 }
2059
2060 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2061
2062 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2063 aprint_error_dev(sc->sc_dev,
2064 "could not transmit macfilter CMD data URB\n");
2065 return EIO;
2066 }
2067
2068 return 0;
2069 }
2070
2071 static int
2072 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2073 {
2074 struct upgt_data *data_cmd = &sc->cmd_data;
2075 struct upgt_lmac_mem *mem;
2076 struct upgt_lmac_channel *chan;
2077 int len;
2078
2079 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2080 channel);
2081
2082 /*
2083 * Transmit the URB containing the CMD data.
2084 */
2085 len = sizeof(*mem) + sizeof(*chan);
2086
2087 memset(data_cmd->buf, 0, len);
2088
2089 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2090 mem->addr = htole32(sc->sc_memaddr_frame_start +
2091 UPGT_MEMSIZE_FRAME_HEAD);
2092
2093 chan = (struct upgt_lmac_channel *)(mem + 1);
2094
2095 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2096 chan->header1.type = UPGT_H1_TYPE_CTRL;
2097 chan->header1.len = htole16(
2098 sizeof(struct upgt_lmac_channel) -
2099 sizeof(struct upgt_lmac_header));
2100
2101 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2102 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2103 chan->header2.flags = 0;
2104
2105 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2106 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2107 chan->freq6 = sc->sc_eeprom_freq6[channel];
2108 chan->settings = sc->sc_eeprom_freq6_settings;
2109 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2110
2111 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2112 sizeof(chan->freq3_1));
2113
2114 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2115 sizeof(sc->sc_eeprom_freq4[channel]));
2116
2117 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2118 sizeof(chan->freq3_2));
2119
2120 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2121
2122 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2123 aprint_error_dev(sc->sc_dev,
2124 "could not transmit channel CMD data URB\n");
2125 return EIO;
2126 }
2127
2128 return 0;
2129 }
2130
2131 static void
2132 upgt_set_led(struct upgt_softc *sc, int action)
2133 {
2134 struct ieee80211com *ic = &sc->sc_ic;
2135 struct upgt_data *data_cmd = &sc->cmd_data;
2136 struct upgt_lmac_mem *mem;
2137 struct upgt_lmac_led *led;
2138 struct timeval t;
2139 int len;
2140
2141 /*
2142 * Transmit the URB containing the CMD data.
2143 */
2144 len = sizeof(*mem) + sizeof(*led);
2145
2146 memset(data_cmd->buf, 0, len);
2147
2148 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2149 mem->addr = htole32(sc->sc_memaddr_frame_start +
2150 UPGT_MEMSIZE_FRAME_HEAD);
2151
2152 led = (struct upgt_lmac_led *)(mem + 1);
2153
2154 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2155 led->header1.type = UPGT_H1_TYPE_CTRL;
2156 led->header1.len = htole16(
2157 sizeof(struct upgt_lmac_led) -
2158 sizeof(struct upgt_lmac_header));
2159
2160 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2161 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2162 led->header2.flags = 0;
2163
2164 switch (action) {
2165 case UPGT_LED_OFF:
2166 led->mode = htole16(UPGT_LED_MODE_SET);
2167 led->action_fix = 0;
2168 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2169 led->action_tmp_dur = 0;
2170 break;
2171 case UPGT_LED_ON:
2172 led->mode = htole16(UPGT_LED_MODE_SET);
2173 led->action_fix = 0;
2174 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2175 led->action_tmp_dur = 0;
2176 break;
2177 case UPGT_LED_BLINK:
2178 if (ic->ic_state != IEEE80211_S_RUN)
2179 return;
2180 if (sc->sc_led_blink)
2181 /* previous blink was not finished */
2182 return;
2183 led->mode = htole16(UPGT_LED_MODE_SET);
2184 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2185 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2186 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2187 /* lock blink */
2188 sc->sc_led_blink = 1;
2189 t.tv_sec = 0;
2190 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2191 callout_schedule(&sc->led_to, tvtohz(&t));
2192 break;
2193 default:
2194 return;
2195 }
2196
2197 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2198
2199 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2200 aprint_error_dev(sc->sc_dev,
2201 "could not transmit led CMD URB\n");
2202 }
2203 }
2204
2205 static void
2206 upgt_set_led_blink(void *arg)
2207 {
2208 struct upgt_softc *sc = arg;
2209
2210 /* blink finished, we are ready for a next one */
2211 sc->sc_led_blink = 0;
2212 callout_stop(&sc->led_to);
2213 }
2214
2215 static int
2216 upgt_get_stats(struct upgt_softc *sc)
2217 {
2218 struct upgt_data *data_cmd = &sc->cmd_data;
2219 struct upgt_lmac_mem *mem;
2220 struct upgt_lmac_stats *stats;
2221 int len;
2222
2223 /*
2224 * Transmit the URB containing the CMD data.
2225 */
2226 len = sizeof(*mem) + sizeof(*stats);
2227
2228 memset(data_cmd->buf, 0, len);
2229
2230 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2231 mem->addr = htole32(sc->sc_memaddr_frame_start +
2232 UPGT_MEMSIZE_FRAME_HEAD);
2233
2234 stats = (struct upgt_lmac_stats *)(mem + 1);
2235
2236 stats->header1.flags = 0;
2237 stats->header1.type = UPGT_H1_TYPE_CTRL;
2238 stats->header1.len = htole16(
2239 sizeof(struct upgt_lmac_stats) -
2240 sizeof(struct upgt_lmac_header));
2241
2242 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2243 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2244 stats->header2.flags = 0;
2245
2246 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2247
2248 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2249 aprint_error_dev(sc->sc_dev,
2250 "could not transmit statistics CMD data URB\n");
2251 return EIO;
2252 }
2253
2254 return 0;
2255
2256 }
2257
2258 static int
2259 upgt_alloc_tx(struct upgt_softc *sc)
2260 {
2261 int i;
2262
2263 sc->tx_queued = 0;
2264
2265 for (i = 0; i < UPGT_TX_COUNT; i++) {
2266 struct upgt_data *data_tx = &sc->tx_data[i];
2267
2268 data_tx->sc = sc;
2269
2270 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2271 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2272 if (err) {
2273 aprint_error_dev(sc->sc_dev,
2274 "could not allocate TX xfer\n");
2275 return err;
2276 }
2277
2278 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2279 }
2280
2281 return 0;
2282 }
2283
2284 static int
2285 upgt_alloc_rx(struct upgt_softc *sc)
2286 {
2287 struct upgt_data *data_rx = &sc->rx_data;
2288
2289 data_rx->sc = sc;
2290
2291 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2292 0, 0, &data_rx->xfer);
2293 if (err) {
2294 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2295 return err;
2296 }
2297
2298 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2299
2300 return 0;
2301 }
2302
2303 static int
2304 upgt_alloc_cmd(struct upgt_softc *sc)
2305 {
2306 struct upgt_data *data_cmd = &sc->cmd_data;
2307
2308 data_cmd->sc = sc;
2309
2310 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2311 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2312 if (err) {
2313 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2314 return err;
2315 }
2316
2317 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2318
2319 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2320
2321 return 0;
2322 }
2323
2324 static void
2325 upgt_free_tx(struct upgt_softc *sc)
2326 {
2327 int i;
2328
2329 for (i = 0; i < UPGT_TX_COUNT; i++) {
2330 struct upgt_data *data_tx = &sc->tx_data[i];
2331
2332 if (data_tx->xfer != NULL) {
2333 usbd_destroy_xfer(data_tx->xfer);
2334 data_tx->xfer = NULL;
2335 }
2336
2337 data_tx->ni = NULL;
2338 }
2339 }
2340
2341 static void
2342 upgt_free_rx(struct upgt_softc *sc)
2343 {
2344 struct upgt_data *data_rx = &sc->rx_data;
2345
2346 if (data_rx->xfer != NULL) {
2347 usbd_destroy_xfer(data_rx->xfer);
2348 data_rx->xfer = NULL;
2349 }
2350
2351 data_rx->ni = NULL;
2352 }
2353
2354 static void
2355 upgt_free_cmd(struct upgt_softc *sc)
2356 {
2357 struct upgt_data *data_cmd = &sc->cmd_data;
2358
2359 if (data_cmd->xfer != NULL) {
2360 usbd_destroy_xfer(data_cmd->xfer);
2361 data_cmd->xfer = NULL;
2362 }
2363
2364 mutex_destroy(&sc->sc_mtx);
2365 }
2366
2367 static int
2368 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2369 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2370 {
2371 usbd_status status;
2372
2373 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2374 data->buf, size);
2375 if (status != USBD_NORMAL_COMPLETION) {
2376 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2377 usbd_errstr(status));
2378 return EIO;
2379 }
2380
2381 return 0;
2382 }
2383
2384 #if 0
2385 static void
2386 upgt_hexdump(void *buf, int len)
2387 {
2388 int i;
2389
2390 for (i = 0; i < len; i++) {
2391 if (i % 16 == 0)
2392 printf("%s%5i:", i ? "\n" : "", i);
2393 if (i % 4 == 0)
2394 printf(" ");
2395 printf("%02x", (int)*((uint8_t *)buf + i));
2396 }
2397 printf("\n");
2398 }
2399 #endif
2400
2401 static uint32_t
2402 upgt_crc32_le(const void *buf, size_t size)
2403 {
2404 uint32_t crc;
2405
2406 crc = ether_crc32_le(buf, size);
2407
2408 /* apply final XOR value as common for CRC-32 */
2409 crc = htole32(crc ^ 0xffffffffU);
2410
2411 return crc;
2412 }
2413
2414 /*
2415 * The firmware awaits a checksum for each frame we send to it.
2416 * The algorithm used is uncommon but somehow similar to CRC32.
2417 */
2418 static uint32_t
2419 upgt_chksum_le(const uint32_t *buf, size_t size)
2420 {
2421 int i;
2422 uint32_t crc = 0;
2423
2424 for (i = 0; i < size; i += sizeof(uint32_t)) {
2425 crc = htole32(crc ^ *buf++);
2426 crc = htole32((crc >> 5) ^ (crc << 3));
2427 }
2428
2429 return crc;
2430 }
2431