if_upgt.c revision 1.26 1 /* $NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.26 2019/09/14 12:53:24 maxv Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242 sc->sc_init_state = UPGT_INIT_NONE;
243
244 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
245 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
246 usbd_devinfo_free(devinfop);
247
248 /* check device type */
249 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
250 return;
251
252 /* set configuration number */
253 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
254 if (error != 0) {
255 aprint_error_dev(sc->sc_dev, "failed to set configuration"
256 ", err=%s\n", usbd_errstr(error));
257 return;
258 }
259
260 /* get the first interface handle */
261 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
262 &sc->sc_iface);
263 if (error != 0) {
264 aprint_error_dev(sc->sc_dev,
265 "could not get interface handle\n");
266 return;
267 }
268
269 /* find endpoints */
270 id = usbd_get_interface_descriptor(sc->sc_iface);
271 sc->sc_rx_no = sc->sc_tx_no = -1;
272 for (i = 0; i < id->bNumEndpoints; i++) {
273 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
274 if (ed == NULL) {
275 aprint_error_dev(sc->sc_dev,
276 "no endpoint descriptor for iface %d\n", i);
277 return;
278 }
279
280 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
281 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
282 sc->sc_tx_no = ed->bEndpointAddress;
283 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
284 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
285 sc->sc_rx_no = ed->bEndpointAddress;
286
287 /*
288 * 0x01 TX pipe
289 * 0x81 RX pipe
290 *
291 * Deprecated scheme (not used with fw version >2.5.6.x):
292 * 0x02 TX MGMT pipe
293 * 0x82 TX MGMT pipe
294 */
295 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
296 break;
297 }
298 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
299 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
300 return;
301 }
302
303 /* setup tasks and timeouts */
304 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
305 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
306 callout_init(&sc->scan_to, 0);
307 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
308 callout_init(&sc->led_to, 0);
309 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
310 sc->sc_init_state = UPGT_INIT_INITED;
311
312 /*
313 * Open TX and RX USB bulk pipes.
314 */
315 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
316 &sc->sc_tx_pipeh);
317 if (error != 0) {
318 aprint_error_dev(sc->sc_dev,
319 "could not open TX pipe: %s\n", usbd_errstr(error));
320 goto fail;
321 }
322 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
323 &sc->sc_rx_pipeh);
324 if (error != 0) {
325 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
326 usbd_errstr(error));
327 goto fail;
328 }
329
330 /*
331 * Allocate TX, RX, and CMD xfers.
332 */
333 if (upgt_alloc_tx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_rx(sc) != 0)
336 goto fail;
337 if (upgt_alloc_cmd(sc) != 0)
338 goto fail;
339
340 /*
341 * We need the firmware loaded from file system to complete the attach.
342 */
343 config_mountroot(self, upgt_attach_hook);
344
345 return;
346 fail:
347 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
348 }
349
350 static void
351 upgt_attach_hook(device_t arg)
352 {
353 struct upgt_softc *sc = device_private(arg);
354 struct ieee80211com *ic = &sc->sc_ic;
355 struct ifnet *ifp = &sc->sc_if;
356 usbd_status error;
357 int i;
358
359 /*
360 * Load firmware file into memory.
361 */
362 if (upgt_fw_alloc(sc) != 0)
363 goto fail;
364
365 /*
366 * Initialize the device.
367 */
368 if (upgt_device_init(sc) != 0)
369 goto fail;
370
371 /*
372 * Verify the firmware.
373 */
374 if (upgt_fw_verify(sc) != 0)
375 goto fail;
376
377 /*
378 * Calculate device memory space.
379 */
380 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
381 aprint_error_dev(sc->sc_dev,
382 "could not find memory space addresses on FW\n");
383 goto fail;
384 }
385 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
386 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
387
388 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
390 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
392 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
393 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
394
395 upgt_mem_init(sc);
396
397 /*
398 * Load the firmware.
399 */
400 if (upgt_fw_load(sc) != 0)
401 goto fail;
402
403 /*
404 * Startup the RX pipe.
405 */
406 struct upgt_data *data_rx = &sc->rx_data;
407
408 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
409 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
410 error = usbd_transfer(data_rx->xfer);
411 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
412 aprint_error_dev(sc->sc_dev,
413 "could not queue RX transfer\n");
414 goto fail;
415 }
416 usbd_delay_ms(sc->sc_udev, 100);
417
418 /*
419 * Read the whole EEPROM content and parse it.
420 */
421 if (upgt_eeprom_read(sc) != 0)
422 goto fail;
423 if (upgt_eeprom_parse(sc) != 0)
424 goto fail;
425
426 /*
427 * Setup the 802.11 device.
428 */
429 ic->ic_ifp = ifp;
430 ic->ic_phytype = IEEE80211_T_OFDM;
431 ic->ic_opmode = IEEE80211_M_STA;
432 ic->ic_state = IEEE80211_S_INIT;
433 ic->ic_caps =
434 IEEE80211_C_MONITOR |
435 IEEE80211_C_SHPREAMBLE |
436 IEEE80211_C_SHSLOT;
437
438 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
439 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
440
441 for (i = 1; i <= 14; i++) {
442 ic->ic_channels[i].ic_freq =
443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 ic->ic_channels[i].ic_flags =
445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 }
448
449 ifp->if_softc = sc;
450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 ifp->if_init = upgt_init;
452 ifp->if_ioctl = upgt_ioctl;
453 ifp->if_start = upgt_start;
454 ifp->if_watchdog = upgt_watchdog;
455 IFQ_SET_READY(&ifp->if_snd);
456 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
457
458 if_attach(ifp);
459 ieee80211_ifattach(ic);
460 ic->ic_newassoc = upgt_newassoc;
461
462 sc->sc_newstate = ic->ic_newstate;
463 ic->ic_newstate = upgt_newstate;
464 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
465
466 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
467 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
468 &sc->sc_drvbpf);
469
470 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
471 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
472 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
473
474 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
475 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
476 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
477
478 aprint_normal_dev(sc->sc_dev, "address %s\n",
479 ether_sprintf(ic->ic_myaddr));
480
481 ieee80211_announce(ic);
482
483 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
484
485 /* device attached */
486 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
487
488 return;
489 fail:
490 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
491 }
492
493 static int
494 upgt_detach(device_t self, int flags)
495 {
496 struct upgt_softc *sc = device_private(self);
497 struct ifnet *ifp = &sc->sc_if;
498 struct ieee80211com *ic = &sc->sc_ic;
499 int s;
500
501 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
502
503 if (sc->sc_init_state < UPGT_INIT_INITED)
504 return 0;
505
506 s = splnet();
507
508 if (ifp->if_flags & IFF_RUNNING)
509 upgt_stop(sc);
510
511 /* remove tasks and timeouts */
512 callout_halt(&sc->scan_to, NULL);
513 callout_halt(&sc->led_to, NULL);
514 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
515 NULL);
516 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
517 NULL);
518 callout_destroy(&sc->scan_to);
519 callout_destroy(&sc->led_to);
520
521 /* abort and close TX / RX pipes */
522 if (sc->sc_tx_pipeh != NULL) {
523 usbd_abort_pipe(sc->sc_tx_pipeh);
524 }
525 if (sc->sc_rx_pipeh != NULL) {
526 usbd_abort_pipe(sc->sc_rx_pipeh);
527 }
528
529 /* free xfers */
530 upgt_free_tx(sc);
531 upgt_free_rx(sc);
532 upgt_free_cmd(sc);
533
534 /* Close TX / RX pipes */
535 if (sc->sc_tx_pipeh != NULL) {
536 usbd_close_pipe(sc->sc_tx_pipeh);
537 }
538 if (sc->sc_rx_pipeh != NULL) {
539 usbd_close_pipe(sc->sc_rx_pipeh);
540 }
541
542 /* free firmware */
543 upgt_fw_free(sc);
544
545 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
546 /* detach interface */
547 bpf_detach(ifp);
548 ieee80211_ifdetach(ic);
549 if_detach(ifp);
550 }
551
552 splx(s);
553
554 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
555
556 return 0;
557 }
558
559 static int
560 upgt_activate(device_t self, devact_t act)
561 {
562 struct upgt_softc *sc = device_private(self);
563
564 switch (act) {
565 case DVACT_DEACTIVATE:
566 if_deactivate(&sc->sc_if);
567 return 0;
568 default:
569 return EOPNOTSUPP;
570 }
571 }
572
573 static int
574 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
575 {
576
577 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
578 sc->sc_device_type = 1;
579 /* XXX */
580 aprint_error_dev(sc->sc_dev,
581 "version 1 devices not supported yet\n");
582 return 1;
583 } else
584 sc->sc_device_type = 2;
585
586 return 0;
587 }
588
589 static int
590 upgt_device_init(struct upgt_softc *sc)
591 {
592 struct upgt_data *data_cmd = &sc->cmd_data;
593 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
594 int len;
595
596 len = sizeof(init_cmd);
597 memcpy(data_cmd->buf, init_cmd, len);
598 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "could not send device init string\n");
601 return EIO;
602 }
603 usbd_delay_ms(sc->sc_udev, 100);
604
605 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
606
607 return 0;
608 }
609
610 static int
611 upgt_mem_init(struct upgt_softc *sc)
612 {
613 int i;
614
615 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
616 sc->sc_memory.page[i].used = 0;
617
618 if (i == 0) {
619 /*
620 * The first memory page is always reserved for
621 * command data.
622 */
623 sc->sc_memory.page[i].addr =
624 sc->sc_memaddr_frame_start + MCLBYTES;
625 } else {
626 sc->sc_memory.page[i].addr =
627 sc->sc_memory.page[i - 1].addr + MCLBYTES;
628 }
629
630 if (sc->sc_memory.page[i].addr + MCLBYTES >=
631 sc->sc_memaddr_frame_end)
632 break;
633
634 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
635 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
636 }
637
638 sc->sc_memory.pages = i;
639
640 DPRINTF(2, "%s: memory pages=%d\n",
641 device_xname(sc->sc_dev), sc->sc_memory.pages);
642
643 return 0;
644 }
645
646 static uint32_t
647 upgt_mem_alloc(struct upgt_softc *sc)
648 {
649 int i;
650
651 for (i = 0; i < sc->sc_memory.pages; i++) {
652 if (sc->sc_memory.page[i].used == 0) {
653 sc->sc_memory.page[i].used = 1;
654 return sc->sc_memory.page[i].addr;
655 }
656 }
657
658 return 0;
659 }
660
661 static void
662 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
663 {
664 int i;
665
666 for (i = 0; i < sc->sc_memory.pages; i++) {
667 if (sc->sc_memory.page[i].addr == addr) {
668 sc->sc_memory.page[i].used = 0;
669 return;
670 }
671 }
672
673 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
674 addr);
675 }
676
677
678 static int
679 upgt_fw_alloc(struct upgt_softc *sc)
680 {
681 const char *name = "upgt-gw3887";
682 int error;
683
684 if (sc->sc_fw == NULL) {
685 error = firmware_load("upgt", name, &sc->sc_fw,
686 &sc->sc_fw_size);
687 if (error != 0) {
688 if (error == ENOENT) {
689 /*
690 * The firmware file for upgt(4) is not in
691 * the default distribution due to its lisence
692 * so explicitly notify it if the firmware file
693 * is not found.
694 */
695 aprint_error_dev(sc->sc_dev,
696 "firmware file %s is not installed\n",
697 name);
698 aprint_error_dev(sc->sc_dev,
699 "(it is not included in the default"
700 " distribution)\n");
701 aprint_error_dev(sc->sc_dev,
702 "see upgt(4) man page for details about "
703 "firmware installation\n");
704 } else {
705 aprint_error_dev(sc->sc_dev,
706 "could not read firmware %s\n", name);
707 }
708 return EIO;
709 }
710 }
711
712 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
713 name);
714
715 return 0;
716 }
717
718 static void
719 upgt_fw_free(struct upgt_softc *sc)
720 {
721
722 if (sc->sc_fw != NULL) {
723 firmware_free(sc->sc_fw, sc->sc_fw_size);
724 sc->sc_fw = NULL;
725 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
726 }
727 }
728
729 static int
730 upgt_fw_verify(struct upgt_softc *sc)
731 {
732 struct upgt_fw_bra_option *bra_option;
733 uint32_t bra_option_type, bra_option_len;
734 uint32_t *uc;
735 int offset, bra_end = 0;
736
737 /*
738 * Seek to beginning of Boot Record Area (BRA).
739 */
740 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
741 uc = (uint32_t *)(sc->sc_fw + offset);
742 if (*uc == 0)
743 break;
744 }
745 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
746 uc = (uint32_t *)(sc->sc_fw + offset);
747 if (*uc != 0)
748 break;
749 }
750 if (offset == sc->sc_fw_size) {
751 aprint_error_dev(sc->sc_dev,
752 "firmware Boot Record Area not found\n");
753 return EIO;
754 }
755 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
756 device_xname(sc->sc_dev), offset);
757
758 /*
759 * Parse Boot Record Area (BRA) options.
760 */
761 while (offset < sc->sc_fw_size && bra_end == 0) {
762 /* get current BRA option */
763 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
764 bra_option_type = le32toh(bra_option->type);
765 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
766
767 switch (bra_option_type) {
768 case UPGT_BRA_TYPE_FW:
769 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
770 device_xname(sc->sc_dev), bra_option_len);
771
772 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
773 aprint_error_dev(sc->sc_dev,
774 "wrong UPGT_BRA_TYPE_FW len\n");
775 return EIO;
776 }
777 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
778 bra_option_len) == 0) {
779 sc->sc_fw_type = UPGT_FWTYPE_LM86;
780 break;
781 }
782 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
783 bra_option_len) == 0) {
784 sc->sc_fw_type = UPGT_FWTYPE_LM87;
785 break;
786 }
787 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
788 bra_option_len) == 0) {
789 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
790 break;
791 }
792 aprint_error_dev(sc->sc_dev,
793 "unsupported firmware type\n");
794 return EIO;
795 case UPGT_BRA_TYPE_VERSION:
796 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
797 device_xname(sc->sc_dev), bra_option_len);
798 break;
799 case UPGT_BRA_TYPE_DEPIF:
800 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
801 device_xname(sc->sc_dev), bra_option_len);
802 break;
803 case UPGT_BRA_TYPE_EXPIF:
804 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
805 device_xname(sc->sc_dev), bra_option_len);
806 break;
807 case UPGT_BRA_TYPE_DESCR:
808 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
809 device_xname(sc->sc_dev), bra_option_len);
810
811 struct upgt_fw_bra_descr *descr =
812 (struct upgt_fw_bra_descr *)bra_option->data;
813
814 sc->sc_memaddr_frame_start =
815 le32toh(descr->memaddr_space_start);
816 sc->sc_memaddr_frame_end =
817 le32toh(descr->memaddr_space_end);
818
819 DPRINTF(2, "%s: memory address space start=0x%08x\n",
820 device_xname(sc->sc_dev),
821 sc->sc_memaddr_frame_start);
822 DPRINTF(2, "%s: memory address space end=0x%08x\n",
823 device_xname(sc->sc_dev),
824 sc->sc_memaddr_frame_end);
825 break;
826 case UPGT_BRA_TYPE_END:
827 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
828 device_xname(sc->sc_dev), bra_option_len);
829 bra_end = 1;
830 break;
831 default:
832 DPRINTF(1, "%s: unknown BRA option len=%d\n",
833 device_xname(sc->sc_dev), bra_option_len);
834 return EIO;
835 }
836
837 /* jump to next BRA option */
838 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
839 }
840
841 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
842
843 return 0;
844 }
845
846 static int
847 upgt_fw_load(struct upgt_softc *sc)
848 {
849 struct upgt_data *data_cmd = &sc->cmd_data;
850 struct upgt_data *data_rx = &sc->rx_data;
851 struct upgt_fw_x2_header *x2;
852 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
853 int offset, bsize, n, i, len;
854 uint32_t crc;
855
856 /* send firmware start load command */
857 len = sizeof(start_fwload_cmd);
858 memcpy(data_cmd->buf, start_fwload_cmd, len);
859 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
860 aprint_error_dev(sc->sc_dev,
861 "could not send start_firmware_load command\n");
862 return EIO;
863 }
864
865 /* send X2 header */
866 len = sizeof(struct upgt_fw_x2_header);
867 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
868 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
869 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
870 x2->len = htole32(sc->sc_fw_size);
871 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
872 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
873 sizeof(uint32_t));
874 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
875 aprint_error_dev(sc->sc_dev,
876 "could not send firmware X2 header\n");
877 return EIO;
878 }
879
880 /* download firmware */
881 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
882 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
883 bsize = UPGT_FW_BLOCK_SIZE;
884 else
885 bsize = sc->sc_fw_size - offset;
886
887 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
888
889 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
890 device_xname(sc->sc_dev), offset, n, bsize);
891
892 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
893 != 0) {
894 aprint_error_dev(sc->sc_dev,
895 "error while downloading firmware block\n");
896 return EIO;
897 }
898
899 bsize = n;
900 }
901 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
902
903 /* load firmware */
904 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
905 *((uint32_t *)(data_cmd->buf) ) = crc;
906 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
907 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
908 len = 6;
909 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
910 aprint_error_dev(sc->sc_dev,
911 "could not send load_firmware command\n");
912 return EIO;
913 }
914
915 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
916 len = UPGT_FW_BLOCK_SIZE;
917 memset(data_rx->buf, 0, 2);
918 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
919 USBD_SHORT_XFER_OK) != 0) {
920 aprint_error_dev(sc->sc_dev,
921 "could not read firmware response\n");
922 return EIO;
923 }
924
925 if (memcmp(data_rx->buf, "OK", 2) == 0)
926 break; /* firmware load was successful */
927 }
928 if (i == UPGT_FIRMWARE_TIMEOUT) {
929 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
930 return EIO;
931 }
932 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
933
934 return 0;
935 }
936
937 /*
938 * While copying the version 2 firmware, we need to replace two characters:
939 *
940 * 0x7e -> 0x7d 0x5e
941 * 0x7d -> 0x7d 0x5d
942 */
943 static int
944 upgt_fw_copy(char *src, char *dst, int size)
945 {
946 int i, j;
947
948 for (i = 0, j = 0; i < size && j < size; i++) {
949 switch (src[i]) {
950 case 0x7e:
951 dst[j] = 0x7d;
952 j++;
953 dst[j] = 0x5e;
954 j++;
955 break;
956 case 0x7d:
957 dst[j] = 0x7d;
958 j++;
959 dst[j] = 0x5d;
960 j++;
961 break;
962 default:
963 dst[j] = src[i];
964 j++;
965 break;
966 }
967 }
968
969 return i;
970 }
971
972 static int
973 upgt_eeprom_read(struct upgt_softc *sc)
974 {
975 struct upgt_data *data_cmd = &sc->cmd_data;
976 struct upgt_lmac_mem *mem;
977 struct upgt_lmac_eeprom *eeprom;
978 int offset, block, len;
979
980 offset = 0;
981 block = UPGT_EEPROM_BLOCK_SIZE;
982 while (offset < UPGT_EEPROM_SIZE) {
983 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
984 device_xname(sc->sc_dev), offset, block);
985
986 /*
987 * Transmit the URB containing the CMD data.
988 */
989 len = sizeof(*mem) + sizeof(*eeprom) + block;
990
991 memset(data_cmd->buf, 0, len);
992
993 mem = (struct upgt_lmac_mem *)data_cmd->buf;
994 mem->addr = htole32(sc->sc_memaddr_frame_start +
995 UPGT_MEMSIZE_FRAME_HEAD);
996
997 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
998 eeprom->header1.flags = 0;
999 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1000 eeprom->header1.len = htole16((
1001 sizeof(struct upgt_lmac_eeprom) -
1002 sizeof(struct upgt_lmac_header)) + block);
1003
1004 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1005 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1006 eeprom->header2.flags = 0;
1007
1008 eeprom->offset = htole16(offset);
1009 eeprom->len = htole16(block);
1010
1011 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1012 len - sizeof(*mem));
1013
1014 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1015 USBD_FORCE_SHORT_XFER) != 0) {
1016 aprint_error_dev(sc->sc_dev,
1017 "could not transmit EEPROM data URB\n");
1018 return EIO;
1019 }
1020 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1021 aprint_error_dev(sc->sc_dev,
1022 "timeout while waiting for EEPROM data\n");
1023 return EIO;
1024 }
1025
1026 offset += block;
1027 if (UPGT_EEPROM_SIZE - offset < block)
1028 block = UPGT_EEPROM_SIZE - offset;
1029 }
1030
1031 return 0;
1032 }
1033
1034 static int
1035 upgt_eeprom_parse(struct upgt_softc *sc)
1036 {
1037 struct ieee80211com *ic = &sc->sc_ic;
1038 struct upgt_eeprom_header *eeprom_header;
1039 struct upgt_eeprom_option *eeprom_option;
1040 uint16_t option_len;
1041 uint16_t option_type;
1042 uint16_t preamble_len;
1043 int option_end = 0;
1044
1045 /* calculate eeprom options start offset */
1046 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1047 preamble_len = le16toh(eeprom_header->preamble_len);
1048 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1049 (sizeof(struct upgt_eeprom_header) + preamble_len));
1050
1051 while (!option_end) {
1052 /* the eeprom option length is stored in words */
1053 option_len =
1054 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1055 option_type =
1056 le16toh(eeprom_option->type);
1057
1058 switch (option_type) {
1059 case UPGT_EEPROM_TYPE_NAME:
1060 DPRINTF(1, "%s: EEPROM name len=%d\n",
1061 device_xname(sc->sc_dev), option_len);
1062 break;
1063 case UPGT_EEPROM_TYPE_SERIAL:
1064 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1065 device_xname(sc->sc_dev), option_len);
1066 break;
1067 case UPGT_EEPROM_TYPE_MAC:
1068 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1069 device_xname(sc->sc_dev), option_len);
1070
1071 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1072 break;
1073 case UPGT_EEPROM_TYPE_HWRX:
1074 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1075 device_xname(sc->sc_dev), option_len);
1076
1077 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1078 break;
1079 case UPGT_EEPROM_TYPE_CHIP:
1080 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1081 device_xname(sc->sc_dev), option_len);
1082 break;
1083 case UPGT_EEPROM_TYPE_FREQ3:
1084 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1085 device_xname(sc->sc_dev), option_len);
1086
1087 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1088 option_len);
1089 break;
1090 case UPGT_EEPROM_TYPE_FREQ4:
1091 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1092 device_xname(sc->sc_dev), option_len);
1093
1094 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1095 option_len);
1096 break;
1097 case UPGT_EEPROM_TYPE_FREQ5:
1098 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1099 device_xname(sc->sc_dev), option_len);
1100 break;
1101 case UPGT_EEPROM_TYPE_FREQ6:
1102 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1103 device_xname(sc->sc_dev), option_len);
1104
1105 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1106 option_len);
1107 break;
1108 case UPGT_EEPROM_TYPE_END:
1109 DPRINTF(1, "%s: EEPROM end len=%d\n",
1110 device_xname(sc->sc_dev), option_len);
1111 option_end = 1;
1112 break;
1113 case UPGT_EEPROM_TYPE_OFF:
1114 DPRINTF(1, "%s: EEPROM off without end option\n",
1115 device_xname(sc->sc_dev));
1116 return EIO;
1117 default:
1118 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1119 device_xname(sc->sc_dev), option_type, option_len);
1120 break;
1121 }
1122
1123 /* jump to next EEPROM option */
1124 eeprom_option = (struct upgt_eeprom_option *)
1125 (eeprom_option->data + option_len);
1126 }
1127
1128 return 0;
1129 }
1130
1131 static void
1132 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1133 {
1134 struct upgt_eeprom_option_hwrx *option_hwrx;
1135
1136 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1137
1138 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1139
1140 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1141 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1142 }
1143
1144 static void
1145 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1146 {
1147 struct upgt_eeprom_freq3_header *freq3_header;
1148 struct upgt_lmac_freq3 *freq3;
1149 int i, elements, flags;
1150 unsigned channel;
1151
1152 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1153 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1154
1155 flags = freq3_header->flags;
1156 elements = freq3_header->elements;
1157
1158 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1159 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1160 __USE(flags);
1161
1162 for (i = 0; i < elements; i++) {
1163 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1164
1165 sc->sc_eeprom_freq3[channel] = freq3[i];
1166
1167 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1168 device_xname(sc->sc_dev),
1169 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1170 }
1171 }
1172
1173 static void
1174 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1175 {
1176 struct upgt_eeprom_freq4_header *freq4_header;
1177 struct upgt_eeprom_freq4_1 *freq4_1;
1178 struct upgt_eeprom_freq4_2 *freq4_2;
1179 int i, j, elements, settings, flags;
1180 unsigned channel;
1181
1182 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1183 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1184
1185 flags = freq4_header->flags;
1186 elements = freq4_header->elements;
1187 settings = freq4_header->settings;
1188
1189 /* we need this value later */
1190 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1191
1192 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1193 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1194 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1195 __USE(flags);
1196
1197 for (i = 0; i < elements; i++) {
1198 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1199
1200 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1201
1202 for (j = 0; j < settings; j++) {
1203 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1204 sc->sc_eeprom_freq4[channel][j].pad = 0;
1205 }
1206
1207 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1208 device_xname(sc->sc_dev),
1209 le16toh(freq4_1[i].freq), channel);
1210 }
1211 }
1212
1213 static void
1214 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1215 {
1216 struct upgt_lmac_freq6 *freq6;
1217 int i, elements;
1218 unsigned channel;
1219
1220 freq6 = (struct upgt_lmac_freq6 *)data;
1221
1222 elements = len / sizeof(struct upgt_lmac_freq6);
1223
1224 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1225
1226 for (i = 0; i < elements; i++) {
1227 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1228
1229 sc->sc_eeprom_freq6[channel] = freq6[i];
1230
1231 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1232 device_xname(sc->sc_dev),
1233 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1234 }
1235 }
1236
1237 static int
1238 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1239 {
1240 struct upgt_softc *sc = ifp->if_softc;
1241 struct ieee80211com *ic = &sc->sc_ic;
1242 int s, error = 0;
1243
1244 s = splnet();
1245
1246 switch (cmd) {
1247 case SIOCSIFFLAGS:
1248 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1249 break;
1250 if (ifp->if_flags & IFF_UP) {
1251 if ((ifp->if_flags & IFF_RUNNING) == 0)
1252 upgt_init(ifp);
1253 } else {
1254 if (ifp->if_flags & IFF_RUNNING)
1255 upgt_stop(sc);
1256 }
1257 break;
1258 case SIOCADDMULTI:
1259 case SIOCDELMULTI:
1260 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1261 /* setup multicast filter, etc */
1262 error = 0;
1263 }
1264 break;
1265 default:
1266 error = ieee80211_ioctl(ic, cmd, data);
1267 break;
1268 }
1269
1270 if (error == ENETRESET) {
1271 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1272 (IFF_UP | IFF_RUNNING))
1273 upgt_init(ifp);
1274 error = 0;
1275 }
1276
1277 splx(s);
1278
1279 return error;
1280 }
1281
1282 static int
1283 upgt_init(struct ifnet *ifp)
1284 {
1285 struct upgt_softc *sc = ifp->if_softc;
1286 struct ieee80211com *ic = &sc->sc_ic;
1287
1288 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1289
1290 if (ifp->if_flags & IFF_RUNNING)
1291 upgt_stop(sc);
1292
1293 ifp->if_flags |= IFF_RUNNING;
1294 ifp->if_flags &= ~IFF_OACTIVE;
1295
1296 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1297
1298 /* setup device rates */
1299 upgt_setup_rates(sc);
1300
1301 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1302 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1303 else
1304 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1305
1306 return 0;
1307 }
1308
1309 static void
1310 upgt_stop(struct upgt_softc *sc)
1311 {
1312 struct ieee80211com *ic = &sc->sc_ic;
1313 struct ifnet *ifp = &sc->sc_if;
1314
1315 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1316
1317 /* device down */
1318 ifp->if_timer = 0;
1319 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1320
1321 /* change device back to initial state */
1322 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1323 }
1324
1325 static int
1326 upgt_media_change(struct ifnet *ifp)
1327 {
1328 struct upgt_softc *sc = ifp->if_softc;
1329 int error;
1330
1331 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1332
1333 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1334 return error;
1335
1336 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1337 (IFF_UP | IFF_RUNNING)) {
1338 /* give pending USB transfers a chance to finish */
1339 usbd_delay_ms(sc->sc_udev, 100);
1340 upgt_init(ifp);
1341 }
1342
1343 return 0;
1344 }
1345
1346 static void
1347 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1348 {
1349
1350 ni->ni_txrate = 0;
1351 }
1352
1353 static int
1354 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1355 {
1356 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1357
1358 /*
1359 * XXXSMP: This does not wait for the task, if it is in flight,
1360 * to complete. If this code works at all, it must rely on the
1361 * kernel lock to serialize with the USB task thread.
1362 */
1363 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1364 callout_stop(&sc->scan_to);
1365
1366 /* do it in a process context */
1367 sc->sc_state = nstate;
1368 sc->sc_arg = arg;
1369 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1370
1371 return 0;
1372 }
1373
1374 static void
1375 upgt_newstate_task(void *arg)
1376 {
1377 struct upgt_softc *sc = arg;
1378 struct ieee80211com *ic = &sc->sc_ic;
1379 struct ieee80211_node *ni;
1380 unsigned channel;
1381
1382 mutex_enter(&sc->sc_mtx);
1383
1384 switch (sc->sc_state) {
1385 case IEEE80211_S_INIT:
1386 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1387 device_xname(sc->sc_dev));
1388
1389 /* do not accept any frames if the device is down */
1390 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1391 upgt_set_led(sc, UPGT_LED_OFF);
1392 break;
1393 case IEEE80211_S_SCAN:
1394 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1395 device_xname(sc->sc_dev));
1396
1397 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1398 upgt_set_channel(sc, channel);
1399 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1400 callout_schedule(&sc->scan_to, hz / 5);
1401 break;
1402 case IEEE80211_S_AUTH:
1403 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1404 device_xname(sc->sc_dev));
1405
1406 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1407 upgt_set_channel(sc, channel);
1408 break;
1409 case IEEE80211_S_ASSOC:
1410 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1411 device_xname(sc->sc_dev));
1412
1413 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1414 upgt_set_channel(sc, channel);
1415 break;
1416 case IEEE80211_S_RUN:
1417 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1418 device_xname(sc->sc_dev));
1419
1420 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1421 upgt_set_channel(sc, channel);
1422
1423 ni = ic->ic_bss;
1424
1425 /*
1426 * TX rate control is done by the firmware.
1427 * Report the maximum rate which is available therefore.
1428 */
1429 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1430
1431 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1432 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1433 upgt_set_led(sc, UPGT_LED_ON);
1434 break;
1435 }
1436
1437 mutex_exit(&sc->sc_mtx);
1438
1439 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1440 }
1441
1442 static void
1443 upgt_next_scan(void *arg)
1444 {
1445 struct upgt_softc *sc = arg;
1446 struct ieee80211com *ic = &sc->sc_ic;
1447
1448 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1449
1450 if (ic->ic_state == IEEE80211_S_SCAN)
1451 ieee80211_next_scan(ic);
1452 }
1453
1454 static void
1455 upgt_start(struct ifnet *ifp)
1456 {
1457 struct upgt_softc *sc = ifp->if_softc;
1458 struct ieee80211com *ic = &sc->sc_ic;
1459 struct ether_header *eh;
1460 struct ieee80211_node *ni;
1461 struct mbuf *m;
1462 int i;
1463
1464 /* don't transmit packets if interface is busy or down */
1465 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1466 return;
1467
1468 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1469
1470 for (i = 0; i < UPGT_TX_COUNT; i++) {
1471 struct upgt_data *data_tx = &sc->tx_data[i];
1472
1473 if (data_tx->m != NULL)
1474 continue;
1475
1476 IF_POLL(&ic->ic_mgtq, m);
1477 if (m != NULL) {
1478 /* management frame */
1479 IF_DEQUEUE(&ic->ic_mgtq, m);
1480
1481 ni = M_GETCTX(m, struct ieee80211_node *);
1482 M_CLEARCTX(m);
1483
1484 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1485
1486 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1487 aprint_error_dev(sc->sc_dev,
1488 "no free prism memory\n");
1489 m_freem(m);
1490 ifp->if_oerrors++;
1491 break;
1492 }
1493 data_tx->ni = ni;
1494 data_tx->m = m;
1495 sc->tx_queued++;
1496 } else {
1497 /* data frame */
1498 if (ic->ic_state != IEEE80211_S_RUN)
1499 break;
1500
1501 IFQ_POLL(&ifp->if_snd, m);
1502 if (m == NULL)
1503 break;
1504
1505 IFQ_DEQUEUE(&ifp->if_snd, m);
1506 if (m->m_len < sizeof(struct ether_header) &&
1507 !(m = m_pullup(m, sizeof(struct ether_header))))
1508 continue;
1509
1510 eh = mtod(m, struct ether_header *);
1511 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1512 if (ni == NULL) {
1513 m_freem(m);
1514 continue;
1515 }
1516
1517 bpf_mtap(ifp, m, BPF_D_OUT);
1518
1519 m = ieee80211_encap(ic, m, ni);
1520 if (m == NULL) {
1521 ieee80211_free_node(ni);
1522 continue;
1523 }
1524
1525 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1526
1527 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1528 aprint_error_dev(sc->sc_dev,
1529 "no free prism memory\n");
1530 m_freem(m);
1531 ieee80211_free_node(ni);
1532 ifp->if_oerrors++;
1533 break;
1534 }
1535 data_tx->ni = ni;
1536 data_tx->m = m;
1537 sc->tx_queued++;
1538 }
1539 }
1540
1541 if (sc->tx_queued > 0) {
1542 DPRINTF(2, "%s: tx_queued=%d\n",
1543 device_xname(sc->sc_dev), sc->tx_queued);
1544 /* process the TX queue in process context */
1545 ifp->if_timer = 5;
1546 ifp->if_flags |= IFF_OACTIVE;
1547 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1548 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1549 }
1550 }
1551
1552 static void
1553 upgt_watchdog(struct ifnet *ifp)
1554 {
1555 struct upgt_softc *sc = ifp->if_softc;
1556 struct ieee80211com *ic = &sc->sc_ic;
1557
1558 if (ic->ic_state == IEEE80211_S_INIT)
1559 return;
1560
1561 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1562
1563 /* TODO: what shall we do on TX timeout? */
1564
1565 ieee80211_watchdog(ic);
1566 }
1567
1568 static void
1569 upgt_tx_task(void *arg)
1570 {
1571 struct upgt_softc *sc = arg;
1572 struct ieee80211com *ic = &sc->sc_ic;
1573 struct ieee80211_frame *wh;
1574 struct ieee80211_key *k;
1575 struct ifnet *ifp = &sc->sc_if;
1576 struct upgt_lmac_mem *mem;
1577 struct upgt_lmac_tx_desc *txdesc;
1578 struct mbuf *m;
1579 uint32_t addr;
1580 int i, len, pad, s;
1581 usbd_status error;
1582
1583 mutex_enter(&sc->sc_mtx);
1584 upgt_set_led(sc, UPGT_LED_BLINK);
1585 mutex_exit(&sc->sc_mtx);
1586
1587 s = splnet();
1588
1589 for (i = 0; i < UPGT_TX_COUNT; i++) {
1590 struct upgt_data *data_tx = &sc->tx_data[i];
1591
1592 if (data_tx->m == NULL)
1593 continue;
1594
1595 m = data_tx->m;
1596 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1597
1598 /*
1599 * Software crypto.
1600 */
1601 wh = mtod(m, struct ieee80211_frame *);
1602
1603 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1604 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1605 if (k == NULL) {
1606 m_freem(m);
1607 data_tx->m = NULL;
1608 ieee80211_free_node(data_tx->ni);
1609 data_tx->ni = NULL;
1610 ifp->if_oerrors++;
1611 break;
1612 }
1613
1614 /* in case packet header moved, reset pointer */
1615 wh = mtod(m, struct ieee80211_frame *);
1616 }
1617
1618 /*
1619 * Transmit the URB containing the TX data.
1620 */
1621 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1622
1623 mem = (struct upgt_lmac_mem *)data_tx->buf;
1624 mem->addr = htole32(addr);
1625
1626 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1627
1628 /* XXX differ between data and mgmt frames? */
1629 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1630 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1631 txdesc->header1.len = htole16(m->m_pkthdr.len);
1632
1633 txdesc->header2.reqid = htole32(data_tx->addr);
1634 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1635 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1636
1637 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1638 IEEE80211_FC0_TYPE_MGT) {
1639 /* always send mgmt frames at lowest rate (DS1) */
1640 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1641 } else {
1642 memcpy(txdesc->rates, sc->sc_cur_rateset,
1643 sizeof(txdesc->rates));
1644 }
1645 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1646 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1647
1648 if (sc->sc_drvbpf != NULL) {
1649 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1650
1651 tap->wt_flags = 0;
1652 tap->wt_rate = 0; /* TODO: where to get from? */
1653 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1654 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1655
1656 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1657 BPF_D_OUT);
1658 }
1659
1660 /* copy frame below our TX descriptor header */
1661 m_copydata(m, 0, m->m_pkthdr.len,
1662 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1663
1664 /* calculate frame size */
1665 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1666
1667 if (len & 3) {
1668 /* we need to align the frame to a 4 byte boundary */
1669 pad = 4 - (len & 3);
1670 memset(data_tx->buf + len, 0, pad);
1671 len += pad;
1672 }
1673
1674 /* calculate frame checksum */
1675 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1676 len - sizeof(*mem));
1677
1678 /* we do not need the mbuf anymore */
1679 m_freem(m);
1680 data_tx->m = NULL;
1681
1682 ieee80211_free_node(data_tx->ni);
1683 data_tx->ni = NULL;
1684
1685 DPRINTF(2, "%s: TX start data sending\n",
1686 device_xname(sc->sc_dev));
1687
1688 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1689 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1690 error = usbd_transfer(data_tx->xfer);
1691 if (error != USBD_NORMAL_COMPLETION &&
1692 error != USBD_IN_PROGRESS) {
1693 aprint_error_dev(sc->sc_dev,
1694 "could not transmit TX data URB\n");
1695 ifp->if_oerrors++;
1696 break;
1697 }
1698
1699 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1700 device_xname(sc->sc_dev), len);
1701 }
1702
1703 splx(s);
1704
1705 /*
1706 * If we don't regulary read the device statistics, the RX queue
1707 * will stall. It's strange, but it works, so we keep reading
1708 * the statistics here. *shrug*
1709 */
1710 mutex_enter(&sc->sc_mtx);
1711 upgt_get_stats(sc);
1712 mutex_exit(&sc->sc_mtx);
1713 }
1714
1715 static void
1716 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1717 {
1718 struct ifnet *ifp = &sc->sc_if;
1719 struct upgt_lmac_tx_done_desc *desc;
1720 int i, s;
1721
1722 s = splnet();
1723
1724 desc = (struct upgt_lmac_tx_done_desc *)data;
1725
1726 for (i = 0; i < UPGT_TX_COUNT; i++) {
1727 struct upgt_data *data_tx = &sc->tx_data[i];
1728
1729 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1730 upgt_mem_free(sc, data_tx->addr);
1731 data_tx->addr = 0;
1732
1733 sc->tx_queued--;
1734 ifp->if_opackets++;
1735
1736 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1737 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1738 le32toh(desc->header2.reqid),
1739 le16toh(desc->status),
1740 le16toh(desc->rssi));
1741 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1742 break;
1743 }
1744 }
1745
1746 if (sc->tx_queued == 0) {
1747 /* TX queued was processed, continue */
1748 ifp->if_timer = 0;
1749 ifp->if_flags &= ~IFF_OACTIVE;
1750 upgt_start(ifp);
1751 }
1752
1753 splx(s);
1754 }
1755
1756 static void
1757 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1758 {
1759 struct upgt_data *data_rx = priv;
1760 struct upgt_softc *sc = data_rx->sc;
1761 int len;
1762 struct upgt_lmac_header *header;
1763 struct upgt_lmac_eeprom *eeprom;
1764 uint8_t h1_type;
1765 uint16_t h2_type;
1766
1767 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1768
1769 if (status != USBD_NORMAL_COMPLETION) {
1770 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1771 return;
1772 if (status == USBD_STALLED)
1773 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1774 goto skip;
1775 }
1776 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1777
1778 /*
1779 * Check what type of frame came in.
1780 */
1781 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1782
1783 h1_type = header->header1.type;
1784 h2_type = le16toh(header->header2.type);
1785
1786 if (h1_type == UPGT_H1_TYPE_CTRL &&
1787 h2_type == UPGT_H2_TYPE_EEPROM) {
1788 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1789 uint16_t eeprom_offset = le16toh(eeprom->offset);
1790 uint16_t eeprom_len = le16toh(eeprom->len);
1791
1792 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1793 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1794
1795 memcpy(sc->sc_eeprom + eeprom_offset,
1796 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1797 eeprom_len);
1798
1799 /* EEPROM data has arrived in time, wakeup tsleep() */
1800 wakeup(sc);
1801 } else
1802 if (h1_type == UPGT_H1_TYPE_CTRL &&
1803 h2_type == UPGT_H2_TYPE_TX_DONE) {
1804 DPRINTF(2, "%s: received 802.11 TX done\n",
1805 device_xname(sc->sc_dev));
1806
1807 upgt_tx_done(sc, data_rx->buf + 4);
1808 } else
1809 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1810 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1811 DPRINTF(3, "%s: received 802.11 RX data\n",
1812 device_xname(sc->sc_dev));
1813
1814 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1815 } else
1816 if (h1_type == UPGT_H1_TYPE_CTRL &&
1817 h2_type == UPGT_H2_TYPE_STATS) {
1818 DPRINTF(2, "%s: received statistic data\n",
1819 device_xname(sc->sc_dev));
1820
1821 /* TODO: what could we do with the statistic data? */
1822 } else {
1823 /* ignore unknown frame types */
1824 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1825 device_xname(sc->sc_dev), header->header1.type);
1826 }
1827
1828 skip: /* setup new transfer */
1829 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1830 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1831 (void)usbd_transfer(xfer);
1832 }
1833
1834 static void
1835 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1836 {
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 struct ifnet *ifp = &sc->sc_if;
1839 struct upgt_lmac_rx_desc *rxdesc;
1840 struct ieee80211_frame *wh;
1841 struct ieee80211_node *ni;
1842 struct mbuf *m;
1843 int s;
1844
1845 /* access RX packet descriptor */
1846 rxdesc = (struct upgt_lmac_rx_desc *)data;
1847
1848 /* create mbuf which is suitable for strict alignment archs */
1849 m = m_devget(rxdesc->data, pkglen, 0, ifp);
1850 if (m == NULL) {
1851 DPRINTF(1, "%s: could not create RX mbuf\n",
1852 device_xname(sc->sc_dev));
1853 ifp->if_ierrors++;
1854 return;
1855 }
1856
1857 s = splnet();
1858
1859 if (sc->sc_drvbpf != NULL) {
1860 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1861
1862 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1863 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1864 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1865 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1866 tap->wr_antsignal = rxdesc->rssi;
1867
1868 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1869 }
1870
1871 /* trim FCS */
1872 m_adj(m, -IEEE80211_CRC_LEN);
1873
1874 wh = mtod(m, struct ieee80211_frame *);
1875 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1876
1877 /* push the frame up to the 802.11 stack */
1878 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1879
1880 /* node is no longer needed */
1881 ieee80211_free_node(ni);
1882
1883 splx(s);
1884
1885 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1886 }
1887
1888 static void
1889 upgt_setup_rates(struct upgt_softc *sc)
1890 {
1891 struct ieee80211com *ic = &sc->sc_ic;
1892
1893 /*
1894 * 0x01 = OFMD6 0x10 = DS1
1895 * 0x04 = OFDM9 0x11 = DS2
1896 * 0x06 = OFDM12 0x12 = DS5
1897 * 0x07 = OFDM18 0x13 = DS11
1898 * 0x08 = OFDM24
1899 * 0x09 = OFDM36
1900 * 0x0a = OFDM48
1901 * 0x0b = OFDM54
1902 */
1903 const uint8_t rateset_auto_11b[] =
1904 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1905 const uint8_t rateset_auto_11g[] =
1906 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1907 const uint8_t rateset_fix_11bg[] =
1908 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1909 0x08, 0x09, 0x0a, 0x0b };
1910
1911 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1912 /*
1913 * Automatic rate control is done by the device.
1914 * We just pass the rateset from which the device
1915 * will pickup a rate.
1916 */
1917 if (ic->ic_curmode == IEEE80211_MODE_11B)
1918 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1919 sizeof(sc->sc_cur_rateset));
1920 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1921 ic->ic_curmode == IEEE80211_MODE_AUTO)
1922 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1923 sizeof(sc->sc_cur_rateset));
1924 } else {
1925 /* set a fixed rate */
1926 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1927 sizeof(sc->sc_cur_rateset));
1928 }
1929 }
1930
1931 static uint8_t
1932 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1933 {
1934 struct ieee80211com *ic = &sc->sc_ic;
1935
1936 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1937 if (rate < 0 || rate > 3)
1938 /* invalid rate */
1939 return 0;
1940
1941 switch (rate) {
1942 case 0:
1943 return 2;
1944 case 1:
1945 return 4;
1946 case 2:
1947 return 11;
1948 case 3:
1949 return 22;
1950 default:
1951 return 0;
1952 }
1953 }
1954
1955 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1956 if (rate < 0 || rate > 11)
1957 /* invalid rate */
1958 return 0;
1959
1960 switch (rate) {
1961 case 0:
1962 return 2;
1963 case 1:
1964 return 4;
1965 case 2:
1966 return 11;
1967 case 3:
1968 return 22;
1969 case 4:
1970 return 12;
1971 case 5:
1972 return 18;
1973 case 6:
1974 return 24;
1975 case 7:
1976 return 36;
1977 case 8:
1978 return 48;
1979 case 9:
1980 return 72;
1981 case 10:
1982 return 96;
1983 case 11:
1984 return 108;
1985 default:
1986 return 0;
1987 }
1988 }
1989
1990 return 0;
1991 }
1992
1993 static int
1994 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1995 {
1996 struct ieee80211com *ic = &sc->sc_ic;
1997 struct ieee80211_node *ni = ic->ic_bss;
1998 struct upgt_data *data_cmd = &sc->cmd_data;
1999 struct upgt_lmac_mem *mem;
2000 struct upgt_lmac_filter *filter;
2001 int len;
2002 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2003
2004 /*
2005 * Transmit the URB containing the CMD data.
2006 */
2007 len = sizeof(*mem) + sizeof(*filter);
2008
2009 memset(data_cmd->buf, 0, len);
2010
2011 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2012 mem->addr = htole32(sc->sc_memaddr_frame_start +
2013 UPGT_MEMSIZE_FRAME_HEAD);
2014
2015 filter = (struct upgt_lmac_filter *)(mem + 1);
2016
2017 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2018 filter->header1.type = UPGT_H1_TYPE_CTRL;
2019 filter->header1.len = htole16(
2020 sizeof(struct upgt_lmac_filter) -
2021 sizeof(struct upgt_lmac_header));
2022
2023 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2024 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2025 filter->header2.flags = 0;
2026
2027 switch (state) {
2028 case IEEE80211_S_INIT:
2029 DPRINTF(1, "%s: set MAC filter to INIT\n",
2030 device_xname(sc->sc_dev));
2031
2032 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2033 break;
2034 case IEEE80211_S_SCAN:
2035 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2036 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2037
2038 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2039 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2040 IEEE80211_ADDR_COPY(filter->src, broadcast);
2041 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2042 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2043 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2044 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2045 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2046 break;
2047 case IEEE80211_S_RUN:
2048 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2049 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2050
2051 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2052 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2053 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2054 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2055 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2056 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2057 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2058 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2059 break;
2060 default:
2061 aprint_error_dev(sc->sc_dev,
2062 "MAC filter does not know that state\n");
2063 break;
2064 }
2065
2066 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2067
2068 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2069 aprint_error_dev(sc->sc_dev,
2070 "could not transmit macfilter CMD data URB\n");
2071 return EIO;
2072 }
2073
2074 return 0;
2075 }
2076
2077 static int
2078 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2079 {
2080 struct upgt_data *data_cmd = &sc->cmd_data;
2081 struct upgt_lmac_mem *mem;
2082 struct upgt_lmac_channel *chan;
2083 int len;
2084
2085 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2086 channel);
2087
2088 /*
2089 * Transmit the URB containing the CMD data.
2090 */
2091 len = sizeof(*mem) + sizeof(*chan);
2092
2093 memset(data_cmd->buf, 0, len);
2094
2095 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2096 mem->addr = htole32(sc->sc_memaddr_frame_start +
2097 UPGT_MEMSIZE_FRAME_HEAD);
2098
2099 chan = (struct upgt_lmac_channel *)(mem + 1);
2100
2101 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2102 chan->header1.type = UPGT_H1_TYPE_CTRL;
2103 chan->header1.len = htole16(
2104 sizeof(struct upgt_lmac_channel) -
2105 sizeof(struct upgt_lmac_header));
2106
2107 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2108 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2109 chan->header2.flags = 0;
2110
2111 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2112 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2113 chan->freq6 = sc->sc_eeprom_freq6[channel];
2114 chan->settings = sc->sc_eeprom_freq6_settings;
2115 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2116
2117 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2118 sizeof(chan->freq3_1));
2119
2120 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2121 sizeof(sc->sc_eeprom_freq4[channel]));
2122
2123 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2124 sizeof(chan->freq3_2));
2125
2126 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2127
2128 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2129 aprint_error_dev(sc->sc_dev,
2130 "could not transmit channel CMD data URB\n");
2131 return EIO;
2132 }
2133
2134 return 0;
2135 }
2136
2137 static void
2138 upgt_set_led(struct upgt_softc *sc, int action)
2139 {
2140 struct ieee80211com *ic = &sc->sc_ic;
2141 struct upgt_data *data_cmd = &sc->cmd_data;
2142 struct upgt_lmac_mem *mem;
2143 struct upgt_lmac_led *led;
2144 struct timeval t;
2145 int len;
2146
2147 /*
2148 * Transmit the URB containing the CMD data.
2149 */
2150 len = sizeof(*mem) + sizeof(*led);
2151
2152 memset(data_cmd->buf, 0, len);
2153
2154 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2155 mem->addr = htole32(sc->sc_memaddr_frame_start +
2156 UPGT_MEMSIZE_FRAME_HEAD);
2157
2158 led = (struct upgt_lmac_led *)(mem + 1);
2159
2160 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2161 led->header1.type = UPGT_H1_TYPE_CTRL;
2162 led->header1.len = htole16(
2163 sizeof(struct upgt_lmac_led) -
2164 sizeof(struct upgt_lmac_header));
2165
2166 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2167 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2168 led->header2.flags = 0;
2169
2170 switch (action) {
2171 case UPGT_LED_OFF:
2172 led->mode = htole16(UPGT_LED_MODE_SET);
2173 led->action_fix = 0;
2174 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2175 led->action_tmp_dur = 0;
2176 break;
2177 case UPGT_LED_ON:
2178 led->mode = htole16(UPGT_LED_MODE_SET);
2179 led->action_fix = 0;
2180 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2181 led->action_tmp_dur = 0;
2182 break;
2183 case UPGT_LED_BLINK:
2184 if (ic->ic_state != IEEE80211_S_RUN)
2185 return;
2186 if (sc->sc_led_blink)
2187 /* previous blink was not finished */
2188 return;
2189 led->mode = htole16(UPGT_LED_MODE_SET);
2190 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2191 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2192 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2193 /* lock blink */
2194 sc->sc_led_blink = 1;
2195 t.tv_sec = 0;
2196 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2197 callout_schedule(&sc->led_to, tvtohz(&t));
2198 break;
2199 default:
2200 return;
2201 }
2202
2203 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2204
2205 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2206 aprint_error_dev(sc->sc_dev,
2207 "could not transmit led CMD URB\n");
2208 }
2209 }
2210
2211 static void
2212 upgt_set_led_blink(void *arg)
2213 {
2214 struct upgt_softc *sc = arg;
2215
2216 /* blink finished, we are ready for a next one */
2217 sc->sc_led_blink = 0;
2218 callout_stop(&sc->led_to);
2219 }
2220
2221 static int
2222 upgt_get_stats(struct upgt_softc *sc)
2223 {
2224 struct upgt_data *data_cmd = &sc->cmd_data;
2225 struct upgt_lmac_mem *mem;
2226 struct upgt_lmac_stats *stats;
2227 int len;
2228
2229 /*
2230 * Transmit the URB containing the CMD data.
2231 */
2232 len = sizeof(*mem) + sizeof(*stats);
2233
2234 memset(data_cmd->buf, 0, len);
2235
2236 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2237 mem->addr = htole32(sc->sc_memaddr_frame_start +
2238 UPGT_MEMSIZE_FRAME_HEAD);
2239
2240 stats = (struct upgt_lmac_stats *)(mem + 1);
2241
2242 stats->header1.flags = 0;
2243 stats->header1.type = UPGT_H1_TYPE_CTRL;
2244 stats->header1.len = htole16(
2245 sizeof(struct upgt_lmac_stats) -
2246 sizeof(struct upgt_lmac_header));
2247
2248 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2249 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2250 stats->header2.flags = 0;
2251
2252 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2253
2254 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2255 aprint_error_dev(sc->sc_dev,
2256 "could not transmit statistics CMD data URB\n");
2257 return EIO;
2258 }
2259
2260 return 0;
2261
2262 }
2263
2264 static int
2265 upgt_alloc_tx(struct upgt_softc *sc)
2266 {
2267 int i;
2268
2269 sc->tx_queued = 0;
2270
2271 for (i = 0; i < UPGT_TX_COUNT; i++) {
2272 struct upgt_data *data_tx = &sc->tx_data[i];
2273
2274 data_tx->sc = sc;
2275
2276 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2277 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2278 if (err) {
2279 aprint_error_dev(sc->sc_dev,
2280 "could not allocate TX xfer\n");
2281 return err;
2282 }
2283
2284 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2285 }
2286
2287 return 0;
2288 }
2289
2290 static int
2291 upgt_alloc_rx(struct upgt_softc *sc)
2292 {
2293 struct upgt_data *data_rx = &sc->rx_data;
2294
2295 data_rx->sc = sc;
2296
2297 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2298 0, 0, &data_rx->xfer);
2299 if (err) {
2300 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2301 return err;
2302 }
2303
2304 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2305
2306 return 0;
2307 }
2308
2309 static int
2310 upgt_alloc_cmd(struct upgt_softc *sc)
2311 {
2312 struct upgt_data *data_cmd = &sc->cmd_data;
2313
2314 data_cmd->sc = sc;
2315
2316 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2317 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2318 if (err) {
2319 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2320 return err;
2321 }
2322
2323 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2324
2325 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2326
2327 return 0;
2328 }
2329
2330 static void
2331 upgt_free_tx(struct upgt_softc *sc)
2332 {
2333 int i;
2334
2335 for (i = 0; i < UPGT_TX_COUNT; i++) {
2336 struct upgt_data *data_tx = &sc->tx_data[i];
2337
2338 if (data_tx->xfer != NULL) {
2339 usbd_destroy_xfer(data_tx->xfer);
2340 data_tx->xfer = NULL;
2341 }
2342
2343 data_tx->ni = NULL;
2344 }
2345 }
2346
2347 static void
2348 upgt_free_rx(struct upgt_softc *sc)
2349 {
2350 struct upgt_data *data_rx = &sc->rx_data;
2351
2352 if (data_rx->xfer != NULL) {
2353 usbd_destroy_xfer(data_rx->xfer);
2354 data_rx->xfer = NULL;
2355 }
2356
2357 data_rx->ni = NULL;
2358 }
2359
2360 static void
2361 upgt_free_cmd(struct upgt_softc *sc)
2362 {
2363 struct upgt_data *data_cmd = &sc->cmd_data;
2364
2365 if (data_cmd->xfer != NULL) {
2366 usbd_destroy_xfer(data_cmd->xfer);
2367 data_cmd->xfer = NULL;
2368 }
2369
2370 mutex_destroy(&sc->sc_mtx);
2371 }
2372
2373 static int
2374 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2375 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2376 {
2377 usbd_status status;
2378
2379 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2380 data->buf, size);
2381 if (status != USBD_NORMAL_COMPLETION) {
2382 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2383 usbd_errstr(status));
2384 return EIO;
2385 }
2386
2387 return 0;
2388 }
2389
2390 #if 0
2391 static void
2392 upgt_hexdump(void *buf, int len)
2393 {
2394 int i;
2395
2396 for (i = 0; i < len; i++) {
2397 if (i % 16 == 0)
2398 printf("%s%5i:", i ? "\n" : "", i);
2399 if (i % 4 == 0)
2400 printf(" ");
2401 printf("%02x", (int)*((uint8_t *)buf + i));
2402 }
2403 printf("\n");
2404 }
2405 #endif
2406
2407 static uint32_t
2408 upgt_crc32_le(const void *buf, size_t size)
2409 {
2410 uint32_t crc;
2411
2412 crc = ether_crc32_le(buf, size);
2413
2414 /* apply final XOR value as common for CRC-32 */
2415 crc = htole32(crc ^ 0xffffffffU);
2416
2417 return crc;
2418 }
2419
2420 /*
2421 * The firmware awaits a checksum for each frame we send to it.
2422 * The algorithm used is uncommon but somehow similar to CRC32.
2423 */
2424 static uint32_t
2425 upgt_chksum_le(const uint32_t *buf, size_t size)
2426 {
2427 int i;
2428 uint32_t crc = 0;
2429
2430 for (i = 0; i < size; i += sizeof(uint32_t)) {
2431 crc = htole32(crc ^ *buf++);
2432 crc = htole32((crc >> 5) ^ (crc << 3));
2433 }
2434
2435 return crc;
2436 }
2437