if_upgt.c revision 1.26.2.1 1 /* $NetBSD: if_upgt.c,v 1.26.2.1 2020/01/17 21:47:32 ad Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.26.2.1 2020/01/17 21:47:32 ad Exp $");
22
23 #ifdef _KERNEL_OPT
24 #include "opt_usb.h"
25 #endif
26
27 #include <sys/param.h>
28 #include <sys/callout.h>
29 #include <sys/device.h>
30 #include <sys/errno.h>
31 #include <sys/kernel.h>
32 #include <sys/kthread.h>
33 #include <sys/mbuf.h>
34 #include <sys/proc.h>
35 #include <sys/sockio.h>
36 #include <sys/systm.h>
37 #include <sys/vnode.h>
38 #include <sys/bus.h>
39 #include <sys/endian.h>
40 #include <sys/intr.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_radiotap.h>
52
53 #include <dev/firmload.h>
54
55 #include <dev/usb/usb.h>
56 #include <dev/usb/usbdi.h>
57 #include <dev/usb/usbdi_util.h>
58 #include <dev/usb/usbdivar.h>
59 #include <dev/usb/usbdevs.h>
60
61 #include <dev/usb/if_upgtvar.h>
62
63 /*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
77 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
78 */
79
80 #ifdef UPGT_DEBUG
81 int upgt_debug = 2;
82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83 #else
84 #define DPRINTF(l, x...)
85 #endif
86
87 /*
88 * Prototypes.
89 */
90 static int upgt_match(device_t, cfdata_t, void *);
91 static void upgt_attach(device_t, device_t, void *);
92 static int upgt_detach(device_t, int);
93 static int upgt_activate(device_t, devact_t);
94
95 static void upgt_attach_hook(device_t);
96 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97 static int upgt_device_init(struct upgt_softc *);
98 static int upgt_mem_init(struct upgt_softc *);
99 static uint32_t upgt_mem_alloc(struct upgt_softc *);
100 static void upgt_mem_free(struct upgt_softc *, uint32_t);
101 static int upgt_fw_alloc(struct upgt_softc *);
102 static void upgt_fw_free(struct upgt_softc *);
103 static int upgt_fw_verify(struct upgt_softc *);
104 static int upgt_fw_load(struct upgt_softc *);
105 static int upgt_fw_copy(char *, char *, int);
106 static int upgt_eeprom_read(struct upgt_softc *);
107 static int upgt_eeprom_parse(struct upgt_softc *);
108 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113 static int upgt_ioctl(struct ifnet *, u_long, void *);
114 static int upgt_init(struct ifnet *);
115 static void upgt_stop(struct upgt_softc *);
116 static int upgt_media_change(struct ifnet *);
117 static void upgt_newassoc(struct ieee80211_node *, int);
118 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119 int);
120 static void upgt_newstate_task(void *);
121 static void upgt_next_scan(void *);
122 static void upgt_start(struct ifnet *);
123 static void upgt_watchdog(struct ifnet *);
124 static void upgt_tx_task(void *);
125 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
126 static void upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
128 static void upgt_setup_rates(struct upgt_softc *);
129 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
130 static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
131 static int upgt_set_channel(struct upgt_softc *, unsigned);
132 static void upgt_set_led(struct upgt_softc *, int);
133 static void upgt_set_led_blink(void *);
134 static int upgt_get_stats(struct upgt_softc *);
135
136 static int upgt_alloc_tx(struct upgt_softc *);
137 static int upgt_alloc_rx(struct upgt_softc *);
138 static int upgt_alloc_cmd(struct upgt_softc *);
139 static void upgt_free_tx(struct upgt_softc *);
140 static void upgt_free_rx(struct upgt_softc *);
141 static void upgt_free_cmd(struct upgt_softc *);
142 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143 struct usbd_pipe *, uint32_t *, int);
144
145 #if 0
146 static void upgt_hexdump(void *, int);
147 #endif
148 static uint32_t upgt_crc32_le(const void *, size_t);
149 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
150
151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152 upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154 static const struct usb_devno upgt_devs_1[] = {
155 /* version 1 devices */
156 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G },
157 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG_V1 }
158 };
159
160 static const struct usb_devno upgt_devs_2[] = {
161 /* version 2 devices */
162 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
163 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
164 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
165 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
169 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
170 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
171 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
172 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
173 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
176 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
177 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
178 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
180 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
181 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
182 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183 { USB_VENDOR_CONEXANT, USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
185 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
186 };
187
188 static int
189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190 size_t *sizep)
191 {
192 firmware_handle_t fh;
193 int error;
194
195 if ((error = firmware_open(dname, iname, &fh)) != 0)
196 return error;
197 *sizep = firmware_get_size(fh);
198 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199 firmware_close(fh);
200 return ENOMEM;
201 }
202 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203 firmware_free(*ucodep, *sizep);
204 firmware_close(fh);
205
206 return error;
207 }
208
209 static int
210 upgt_match(device_t parent, cfdata_t match, void *aux)
211 {
212 struct usb_attach_arg *uaa = aux;
213
214 if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215 return UMATCH_VENDOR_PRODUCT;
216
217 if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218 return UMATCH_VENDOR_PRODUCT;
219
220 return UMATCH_NONE;
221 }
222
223 static void
224 upgt_attach(device_t parent, device_t self, void *aux)
225 {
226 struct upgt_softc *sc = device_private(self);
227 struct usb_attach_arg *uaa = aux;
228 usb_interface_descriptor_t *id;
229 usb_endpoint_descriptor_t *ed;
230 usbd_status error;
231 char *devinfop;
232 int i;
233
234 aprint_naive("\n");
235 aprint_normal("\n");
236
237 /*
238 * Attach USB device.
239 */
240 sc->sc_dev = self;
241 sc->sc_udev = uaa->uaa_device;
242 sc->sc_init_state = UPGT_INIT_NONE;
243
244 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
245 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
246 usbd_devinfo_free(devinfop);
247
248 /* check device type */
249 if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
250 return;
251
252 /* set configuration number */
253 error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
254 if (error != 0) {
255 aprint_error_dev(sc->sc_dev, "failed to set configuration"
256 ", err=%s\n", usbd_errstr(error));
257 return;
258 }
259
260 /* get the first interface handle */
261 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
262 &sc->sc_iface);
263 if (error != 0) {
264 aprint_error_dev(sc->sc_dev,
265 "could not get interface handle\n");
266 return;
267 }
268
269 /* find endpoints */
270 id = usbd_get_interface_descriptor(sc->sc_iface);
271 sc->sc_rx_no = sc->sc_tx_no = -1;
272 for (i = 0; i < id->bNumEndpoints; i++) {
273 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
274 if (ed == NULL) {
275 aprint_error_dev(sc->sc_dev,
276 "no endpoint descriptor for iface %d\n", i);
277 return;
278 }
279
280 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
281 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
282 sc->sc_tx_no = ed->bEndpointAddress;
283 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
284 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
285 sc->sc_rx_no = ed->bEndpointAddress;
286
287 /*
288 * 0x01 TX pipe
289 * 0x81 RX pipe
290 *
291 * Deprecated scheme (not used with fw version >2.5.6.x):
292 * 0x02 TX MGMT pipe
293 * 0x82 TX MGMT pipe
294 */
295 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
296 break;
297 }
298 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
299 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
300 return;
301 }
302
303 /* setup tasks and timeouts */
304 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
305 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
306 callout_init(&sc->scan_to, 0);
307 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
308 callout_init(&sc->led_to, 0);
309 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
310 sc->sc_init_state = UPGT_INIT_INITED;
311
312 /*
313 * Open TX and RX USB bulk pipes.
314 */
315 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
316 &sc->sc_tx_pipeh);
317 if (error != 0) {
318 aprint_error_dev(sc->sc_dev,
319 "could not open TX pipe: %s\n", usbd_errstr(error));
320 goto fail;
321 }
322 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
323 &sc->sc_rx_pipeh);
324 if (error != 0) {
325 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
326 usbd_errstr(error));
327 goto fail;
328 }
329
330 /*
331 * Allocate TX, RX, and CMD xfers.
332 */
333 if (upgt_alloc_tx(sc) != 0)
334 goto fail;
335 if (upgt_alloc_rx(sc) != 0)
336 goto fail;
337 if (upgt_alloc_cmd(sc) != 0)
338 goto fail;
339
340 /*
341 * We need the firmware loaded from file system to complete the attach.
342 */
343 config_mountroot(self, upgt_attach_hook);
344
345 return;
346 fail:
347 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
348 }
349
350 static void
351 upgt_attach_hook(device_t arg)
352 {
353 struct upgt_softc *sc = device_private(arg);
354 struct ieee80211com *ic = &sc->sc_ic;
355 struct ifnet *ifp = &sc->sc_if;
356 usbd_status error;
357 int i;
358
359 /*
360 * Load firmware file into memory.
361 */
362 if (upgt_fw_alloc(sc) != 0)
363 goto fail;
364
365 /*
366 * Initialize the device.
367 */
368 if (upgt_device_init(sc) != 0)
369 goto fail;
370
371 /*
372 * Verify the firmware.
373 */
374 if (upgt_fw_verify(sc) != 0)
375 goto fail;
376
377 /*
378 * Calculate device memory space.
379 */
380 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
381 aprint_error_dev(sc->sc_dev,
382 "could not find memory space addresses on FW\n");
383 goto fail;
384 }
385 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
386 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
387
388 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
389 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
390 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
391 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
392 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
393 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
394
395 upgt_mem_init(sc);
396
397 /*
398 * Load the firmware.
399 */
400 if (upgt_fw_load(sc) != 0)
401 goto fail;
402
403 /*
404 * Startup the RX pipe.
405 */
406 struct upgt_data *data_rx = &sc->rx_data;
407
408 usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
409 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
410 error = usbd_transfer(data_rx->xfer);
411 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
412 aprint_error_dev(sc->sc_dev,
413 "could not queue RX transfer\n");
414 goto fail;
415 }
416 usbd_delay_ms(sc->sc_udev, 100);
417
418 /*
419 * Read the whole EEPROM content and parse it.
420 */
421 if (upgt_eeprom_read(sc) != 0)
422 goto fail;
423 if (upgt_eeprom_parse(sc) != 0)
424 goto fail;
425
426 /*
427 * Setup the 802.11 device.
428 */
429 ic->ic_ifp = ifp;
430 ic->ic_phytype = IEEE80211_T_OFDM;
431 ic->ic_opmode = IEEE80211_M_STA;
432 ic->ic_state = IEEE80211_S_INIT;
433 ic->ic_caps =
434 IEEE80211_C_MONITOR |
435 IEEE80211_C_SHPREAMBLE |
436 IEEE80211_C_SHSLOT;
437
438 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
439 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
440
441 for (i = 1; i <= 14; i++) {
442 ic->ic_channels[i].ic_freq =
443 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444 ic->ic_channels[i].ic_flags =
445 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447 }
448
449 ifp->if_softc = sc;
450 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451 ifp->if_init = upgt_init;
452 ifp->if_ioctl = upgt_ioctl;
453 ifp->if_start = upgt_start;
454 ifp->if_watchdog = upgt_watchdog;
455 IFQ_SET_READY(&ifp->if_snd);
456 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
457
458 if_attach(ifp);
459 ieee80211_ifattach(ic);
460 ic->ic_newassoc = upgt_newassoc;
461
462 sc->sc_newstate = ic->ic_newstate;
463 ic->ic_newstate = upgt_newstate;
464 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
465
466 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
467 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
468 &sc->sc_drvbpf);
469
470 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
471 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
472 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
473
474 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
475 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
476 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
477
478 aprint_normal_dev(sc->sc_dev, "address %s\n",
479 ether_sprintf(ic->ic_myaddr));
480
481 ieee80211_announce(ic);
482
483 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
484
485 /* device attached */
486 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
487
488 return;
489 fail:
490 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
491 }
492
493 static int
494 upgt_detach(device_t self, int flags)
495 {
496 struct upgt_softc *sc = device_private(self);
497 struct ifnet *ifp = &sc->sc_if;
498 struct ieee80211com *ic = &sc->sc_ic;
499 int s;
500
501 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
502
503 if (sc->sc_init_state < UPGT_INIT_INITED)
504 return 0;
505
506 s = splnet();
507
508 if (ifp->if_flags & IFF_RUNNING)
509 upgt_stop(sc);
510
511 /* remove tasks and timeouts */
512 callout_halt(&sc->scan_to, NULL);
513 callout_halt(&sc->led_to, NULL);
514 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
515 NULL);
516 usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
517 NULL);
518 callout_destroy(&sc->scan_to);
519 callout_destroy(&sc->led_to);
520
521 /* abort and close TX / RX pipes */
522 if (sc->sc_tx_pipeh != NULL) {
523 usbd_abort_pipe(sc->sc_tx_pipeh);
524 }
525 if (sc->sc_rx_pipeh != NULL) {
526 usbd_abort_pipe(sc->sc_rx_pipeh);
527 }
528
529 /* free xfers */
530 upgt_free_tx(sc);
531 upgt_free_rx(sc);
532 upgt_free_cmd(sc);
533
534 /* Close TX / RX pipes */
535 if (sc->sc_tx_pipeh != NULL) {
536 usbd_close_pipe(sc->sc_tx_pipeh);
537 }
538 if (sc->sc_rx_pipeh != NULL) {
539 usbd_close_pipe(sc->sc_rx_pipeh);
540 }
541
542 /* free firmware */
543 upgt_fw_free(sc);
544
545 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
546 /* detach interface */
547 bpf_detach(ifp);
548 ieee80211_ifdetach(ic);
549 if_detach(ifp);
550 }
551
552 splx(s);
553
554 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
555
556 return 0;
557 }
558
559 static int
560 upgt_activate(device_t self, devact_t act)
561 {
562 struct upgt_softc *sc = device_private(self);
563
564 switch (act) {
565 case DVACT_DEACTIVATE:
566 if_deactivate(&sc->sc_if);
567 return 0;
568 default:
569 return EOPNOTSUPP;
570 }
571 }
572
573 static int
574 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
575 {
576
577 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
578 sc->sc_device_type = 1;
579 /* XXX */
580 aprint_error_dev(sc->sc_dev,
581 "version 1 devices not supported yet\n");
582 return 1;
583 } else
584 sc->sc_device_type = 2;
585
586 return 0;
587 }
588
589 static int
590 upgt_device_init(struct upgt_softc *sc)
591 {
592 struct upgt_data *data_cmd = &sc->cmd_data;
593 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
594 int len;
595
596 len = sizeof(init_cmd);
597 memcpy(data_cmd->buf, init_cmd, len);
598 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
599 aprint_error_dev(sc->sc_dev,
600 "could not send device init string\n");
601 return EIO;
602 }
603 usbd_delay_ms(sc->sc_udev, 100);
604
605 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
606
607 return 0;
608 }
609
610 static int
611 upgt_mem_init(struct upgt_softc *sc)
612 {
613 int i;
614
615 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
616 sc->sc_memory.page[i].used = 0;
617
618 if (i == 0) {
619 /*
620 * The first memory page is always reserved for
621 * command data.
622 */
623 sc->sc_memory.page[i].addr =
624 sc->sc_memaddr_frame_start + MCLBYTES;
625 } else {
626 sc->sc_memory.page[i].addr =
627 sc->sc_memory.page[i - 1].addr + MCLBYTES;
628 }
629
630 if (sc->sc_memory.page[i].addr + MCLBYTES >=
631 sc->sc_memaddr_frame_end)
632 break;
633
634 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
635 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
636 }
637
638 sc->sc_memory.pages = i;
639
640 DPRINTF(2, "%s: memory pages=%d\n",
641 device_xname(sc->sc_dev), sc->sc_memory.pages);
642
643 return 0;
644 }
645
646 static uint32_t
647 upgt_mem_alloc(struct upgt_softc *sc)
648 {
649 int i;
650
651 for (i = 0; i < sc->sc_memory.pages; i++) {
652 if (sc->sc_memory.page[i].used == 0) {
653 sc->sc_memory.page[i].used = 1;
654 return sc->sc_memory.page[i].addr;
655 }
656 }
657
658 return 0;
659 }
660
661 static void
662 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
663 {
664 int i;
665
666 for (i = 0; i < sc->sc_memory.pages; i++) {
667 if (sc->sc_memory.page[i].addr == addr) {
668 sc->sc_memory.page[i].used = 0;
669 return;
670 }
671 }
672
673 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
674 addr);
675 }
676
677
678 static int
679 upgt_fw_alloc(struct upgt_softc *sc)
680 {
681 const char *name = "upgt-gw3887";
682 int error;
683
684 if (sc->sc_fw == NULL) {
685 error = firmware_load("upgt", name, &sc->sc_fw,
686 &sc->sc_fw_size);
687 if (error != 0) {
688 if (error == ENOENT) {
689 /*
690 * The firmware file for upgt(4) is not in
691 * the default distribution due to its lisence
692 * so explicitly notify it if the firmware file
693 * is not found.
694 */
695 aprint_error_dev(sc->sc_dev,
696 "firmware file %s is not installed\n",
697 name);
698 aprint_error_dev(sc->sc_dev,
699 "(it is not included in the default"
700 " distribution)\n");
701 aprint_error_dev(sc->sc_dev,
702 "see upgt(4) man page for details about "
703 "firmware installation\n");
704 } else {
705 aprint_error_dev(sc->sc_dev,
706 "could not read firmware %s\n", name);
707 }
708 return EIO;
709 }
710 }
711
712 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
713 name);
714
715 return 0;
716 }
717
718 static void
719 upgt_fw_free(struct upgt_softc *sc)
720 {
721
722 if (sc->sc_fw != NULL) {
723 firmware_free(sc->sc_fw, sc->sc_fw_size);
724 sc->sc_fw = NULL;
725 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
726 }
727 }
728
729 static int
730 upgt_fw_verify(struct upgt_softc *sc)
731 {
732 struct upgt_fw_bra_option *bra_option;
733 uint32_t bra_option_type, bra_option_len;
734 uint32_t *uc;
735 int offset, bra_end = 0;
736
737 /*
738 * Seek to beginning of Boot Record Area (BRA).
739 */
740 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
741 uc = (uint32_t *)(sc->sc_fw + offset);
742 if (*uc == 0)
743 break;
744 }
745 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
746 uc = (uint32_t *)(sc->sc_fw + offset);
747 if (*uc != 0)
748 break;
749 }
750 if (offset == sc->sc_fw_size) {
751 aprint_error_dev(sc->sc_dev,
752 "firmware Boot Record Area not found\n");
753 return EIO;
754 }
755 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
756 device_xname(sc->sc_dev), offset);
757
758 /*
759 * Parse Boot Record Area (BRA) options.
760 */
761 while (offset < sc->sc_fw_size && bra_end == 0) {
762 /* get current BRA option */
763 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
764 bra_option_type = le32toh(bra_option->type);
765 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
766
767 switch (bra_option_type) {
768 case UPGT_BRA_TYPE_FW:
769 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
770 device_xname(sc->sc_dev), bra_option_len);
771
772 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
773 aprint_error_dev(sc->sc_dev,
774 "wrong UPGT_BRA_TYPE_FW len\n");
775 return EIO;
776 }
777 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
778 bra_option_len) == 0) {
779 sc->sc_fw_type = UPGT_FWTYPE_LM86;
780 break;
781 }
782 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
783 bra_option_len) == 0) {
784 sc->sc_fw_type = UPGT_FWTYPE_LM87;
785 break;
786 }
787 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
788 bra_option_len) == 0) {
789 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
790 break;
791 }
792 aprint_error_dev(sc->sc_dev,
793 "unsupported firmware type\n");
794 return EIO;
795 case UPGT_BRA_TYPE_VERSION:
796 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
797 device_xname(sc->sc_dev), bra_option_len);
798 break;
799 case UPGT_BRA_TYPE_DEPIF:
800 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
801 device_xname(sc->sc_dev), bra_option_len);
802 break;
803 case UPGT_BRA_TYPE_EXPIF:
804 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
805 device_xname(sc->sc_dev), bra_option_len);
806 break;
807 case UPGT_BRA_TYPE_DESCR:
808 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
809 device_xname(sc->sc_dev), bra_option_len);
810
811 struct upgt_fw_bra_descr *descr =
812 (struct upgt_fw_bra_descr *)bra_option->data;
813
814 sc->sc_memaddr_frame_start =
815 le32toh(descr->memaddr_space_start);
816 sc->sc_memaddr_frame_end =
817 le32toh(descr->memaddr_space_end);
818
819 DPRINTF(2, "%s: memory address space start=0x%08x\n",
820 device_xname(sc->sc_dev),
821 sc->sc_memaddr_frame_start);
822 DPRINTF(2, "%s: memory address space end=0x%08x\n",
823 device_xname(sc->sc_dev),
824 sc->sc_memaddr_frame_end);
825 break;
826 case UPGT_BRA_TYPE_END:
827 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
828 device_xname(sc->sc_dev), bra_option_len);
829 bra_end = 1;
830 break;
831 default:
832 DPRINTF(1, "%s: unknown BRA option len=%d\n",
833 device_xname(sc->sc_dev), bra_option_len);
834 return EIO;
835 }
836
837 /* jump to next BRA option */
838 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
839 }
840
841 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
842
843 return 0;
844 }
845
846 static int
847 upgt_fw_load(struct upgt_softc *sc)
848 {
849 struct upgt_data *data_cmd = &sc->cmd_data;
850 struct upgt_data *data_rx = &sc->rx_data;
851 struct upgt_fw_x2_header *x2;
852 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
853 int offset, bsize, n, i, len;
854 uint32_t crc;
855
856 /* send firmware start load command */
857 len = sizeof(start_fwload_cmd);
858 memcpy(data_cmd->buf, start_fwload_cmd, len);
859 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
860 aprint_error_dev(sc->sc_dev,
861 "could not send start_firmware_load command\n");
862 return EIO;
863 }
864
865 /* send X2 header */
866 len = sizeof(struct upgt_fw_x2_header);
867 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
868 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
869 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
870 x2->len = htole32(sc->sc_fw_size);
871 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
872 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
873 sizeof(uint32_t));
874 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
875 aprint_error_dev(sc->sc_dev,
876 "could not send firmware X2 header\n");
877 return EIO;
878 }
879
880 /* download firmware */
881 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
882 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
883 bsize = UPGT_FW_BLOCK_SIZE;
884 else
885 bsize = sc->sc_fw_size - offset;
886
887 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
888
889 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
890 device_xname(sc->sc_dev), offset, n, bsize);
891
892 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
893 != 0) {
894 aprint_error_dev(sc->sc_dev,
895 "error while downloading firmware block\n");
896 return EIO;
897 }
898
899 bsize = n;
900 }
901 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
902
903 /* load firmware */
904 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
905 *((uint32_t *)(data_cmd->buf) ) = crc;
906 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
907 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
908 len = 6;
909 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
910 aprint_error_dev(sc->sc_dev,
911 "could not send load_firmware command\n");
912 return EIO;
913 }
914
915 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
916 len = UPGT_FW_BLOCK_SIZE;
917 memset(data_rx->buf, 0, 2);
918 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
919 USBD_SHORT_XFER_OK) != 0) {
920 aprint_error_dev(sc->sc_dev,
921 "could not read firmware response\n");
922 return EIO;
923 }
924
925 if (memcmp(data_rx->buf, "OK", 2) == 0)
926 break; /* firmware load was successful */
927 }
928 if (i == UPGT_FIRMWARE_TIMEOUT) {
929 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
930 return EIO;
931 }
932 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
933
934 return 0;
935 }
936
937 /*
938 * While copying the version 2 firmware, we need to replace two characters:
939 *
940 * 0x7e -> 0x7d 0x5e
941 * 0x7d -> 0x7d 0x5d
942 */
943 static int
944 upgt_fw_copy(char *src, char *dst, int size)
945 {
946 int i, j;
947
948 for (i = 0, j = 0; i < size && j < size; i++) {
949 switch (src[i]) {
950 case 0x7e:
951 dst[j] = 0x7d;
952 j++;
953 dst[j] = 0x5e;
954 j++;
955 break;
956 case 0x7d:
957 dst[j] = 0x7d;
958 j++;
959 dst[j] = 0x5d;
960 j++;
961 break;
962 default:
963 dst[j] = src[i];
964 j++;
965 break;
966 }
967 }
968
969 return i;
970 }
971
972 static int
973 upgt_eeprom_read(struct upgt_softc *sc)
974 {
975 struct upgt_data *data_cmd = &sc->cmd_data;
976 struct upgt_lmac_mem *mem;
977 struct upgt_lmac_eeprom *eeprom;
978 int offset, block, len;
979
980 offset = 0;
981 block = UPGT_EEPROM_BLOCK_SIZE;
982 while (offset < UPGT_EEPROM_SIZE) {
983 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
984 device_xname(sc->sc_dev), offset, block);
985
986 /*
987 * Transmit the URB containing the CMD data.
988 */
989 len = sizeof(*mem) + sizeof(*eeprom) + block;
990
991 memset(data_cmd->buf, 0, len);
992
993 mem = (struct upgt_lmac_mem *)data_cmd->buf;
994 mem->addr = htole32(sc->sc_memaddr_frame_start +
995 UPGT_MEMSIZE_FRAME_HEAD);
996
997 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
998 eeprom->header1.flags = 0;
999 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1000 eeprom->header1.len = htole16((
1001 sizeof(struct upgt_lmac_eeprom) -
1002 sizeof(struct upgt_lmac_header)) + block);
1003
1004 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1005 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1006 eeprom->header2.flags = 0;
1007
1008 eeprom->offset = htole16(offset);
1009 eeprom->len = htole16(block);
1010
1011 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1012 len - sizeof(*mem));
1013
1014 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1015 USBD_FORCE_SHORT_XFER) != 0) {
1016 aprint_error_dev(sc->sc_dev,
1017 "could not transmit EEPROM data URB\n");
1018 return EIO;
1019 }
1020
1021 mutex_enter(&sc->sc_mtx);
1022 int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1023 mutex_exit(&sc->sc_mtx);
1024 if (res) {
1025 aprint_error_dev(sc->sc_dev,
1026 "timeout while waiting for EEPROM data\n");
1027 return EIO;
1028 }
1029
1030 offset += block;
1031 if (UPGT_EEPROM_SIZE - offset < block)
1032 block = UPGT_EEPROM_SIZE - offset;
1033 }
1034
1035 return 0;
1036 }
1037
1038 static int
1039 upgt_eeprom_parse(struct upgt_softc *sc)
1040 {
1041 struct ieee80211com *ic = &sc->sc_ic;
1042 struct upgt_eeprom_header *eeprom_header;
1043 struct upgt_eeprom_option *eeprom_option;
1044 uint16_t option_len;
1045 uint16_t option_type;
1046 uint16_t preamble_len;
1047 int option_end = 0;
1048
1049 /* calculate eeprom options start offset */
1050 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1051 preamble_len = le16toh(eeprom_header->preamble_len);
1052 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1053 (sizeof(struct upgt_eeprom_header) + preamble_len));
1054
1055 while (!option_end) {
1056 /* the eeprom option length is stored in words */
1057 option_len =
1058 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1059 option_type =
1060 le16toh(eeprom_option->type);
1061
1062 switch (option_type) {
1063 case UPGT_EEPROM_TYPE_NAME:
1064 DPRINTF(1, "%s: EEPROM name len=%d\n",
1065 device_xname(sc->sc_dev), option_len);
1066 break;
1067 case UPGT_EEPROM_TYPE_SERIAL:
1068 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1069 device_xname(sc->sc_dev), option_len);
1070 break;
1071 case UPGT_EEPROM_TYPE_MAC:
1072 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1073 device_xname(sc->sc_dev), option_len);
1074
1075 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1076 break;
1077 case UPGT_EEPROM_TYPE_HWRX:
1078 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1079 device_xname(sc->sc_dev), option_len);
1080
1081 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1082 break;
1083 case UPGT_EEPROM_TYPE_CHIP:
1084 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1085 device_xname(sc->sc_dev), option_len);
1086 break;
1087 case UPGT_EEPROM_TYPE_FREQ3:
1088 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1089 device_xname(sc->sc_dev), option_len);
1090
1091 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1092 option_len);
1093 break;
1094 case UPGT_EEPROM_TYPE_FREQ4:
1095 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1096 device_xname(sc->sc_dev), option_len);
1097
1098 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1099 option_len);
1100 break;
1101 case UPGT_EEPROM_TYPE_FREQ5:
1102 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1103 device_xname(sc->sc_dev), option_len);
1104 break;
1105 case UPGT_EEPROM_TYPE_FREQ6:
1106 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1107 device_xname(sc->sc_dev), option_len);
1108
1109 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1110 option_len);
1111 break;
1112 case UPGT_EEPROM_TYPE_END:
1113 DPRINTF(1, "%s: EEPROM end len=%d\n",
1114 device_xname(sc->sc_dev), option_len);
1115 option_end = 1;
1116 break;
1117 case UPGT_EEPROM_TYPE_OFF:
1118 DPRINTF(1, "%s: EEPROM off without end option\n",
1119 device_xname(sc->sc_dev));
1120 return EIO;
1121 default:
1122 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1123 device_xname(sc->sc_dev), option_type, option_len);
1124 break;
1125 }
1126
1127 /* jump to next EEPROM option */
1128 eeprom_option = (struct upgt_eeprom_option *)
1129 (eeprom_option->data + option_len);
1130 }
1131
1132 return 0;
1133 }
1134
1135 static void
1136 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1137 {
1138 struct upgt_eeprom_option_hwrx *option_hwrx;
1139
1140 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1141
1142 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1143
1144 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1145 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1146 }
1147
1148 static void
1149 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1150 {
1151 struct upgt_eeprom_freq3_header *freq3_header;
1152 struct upgt_lmac_freq3 *freq3;
1153 int i, elements, flags;
1154 unsigned channel;
1155
1156 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1157 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1158
1159 flags = freq3_header->flags;
1160 elements = freq3_header->elements;
1161
1162 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1163 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1164 __USE(flags);
1165
1166 for (i = 0; i < elements; i++) {
1167 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1168
1169 sc->sc_eeprom_freq3[channel] = freq3[i];
1170
1171 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1172 device_xname(sc->sc_dev),
1173 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1174 }
1175 }
1176
1177 static void
1178 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1179 {
1180 struct upgt_eeprom_freq4_header *freq4_header;
1181 struct upgt_eeprom_freq4_1 *freq4_1;
1182 struct upgt_eeprom_freq4_2 *freq4_2;
1183 int i, j, elements, settings, flags;
1184 unsigned channel;
1185
1186 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1187 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1188
1189 flags = freq4_header->flags;
1190 elements = freq4_header->elements;
1191 settings = freq4_header->settings;
1192
1193 /* we need this value later */
1194 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1195
1196 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1197 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1198 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1199 __USE(flags);
1200
1201 for (i = 0; i < elements; i++) {
1202 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1203
1204 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1205
1206 for (j = 0; j < settings; j++) {
1207 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1208 sc->sc_eeprom_freq4[channel][j].pad = 0;
1209 }
1210
1211 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1212 device_xname(sc->sc_dev),
1213 le16toh(freq4_1[i].freq), channel);
1214 }
1215 }
1216
1217 static void
1218 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1219 {
1220 struct upgt_lmac_freq6 *freq6;
1221 int i, elements;
1222 unsigned channel;
1223
1224 freq6 = (struct upgt_lmac_freq6 *)data;
1225
1226 elements = len / sizeof(struct upgt_lmac_freq6);
1227
1228 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1229
1230 for (i = 0; i < elements; i++) {
1231 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1232
1233 sc->sc_eeprom_freq6[channel] = freq6[i];
1234
1235 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1236 device_xname(sc->sc_dev),
1237 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1238 }
1239 }
1240
1241 static int
1242 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1243 {
1244 struct upgt_softc *sc = ifp->if_softc;
1245 struct ieee80211com *ic = &sc->sc_ic;
1246 int s, error = 0;
1247
1248 s = splnet();
1249
1250 switch (cmd) {
1251 case SIOCSIFFLAGS:
1252 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1253 break;
1254 if (ifp->if_flags & IFF_UP) {
1255 if ((ifp->if_flags & IFF_RUNNING) == 0)
1256 upgt_init(ifp);
1257 } else {
1258 if (ifp->if_flags & IFF_RUNNING)
1259 upgt_stop(sc);
1260 }
1261 break;
1262 case SIOCADDMULTI:
1263 case SIOCDELMULTI:
1264 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1265 /* setup multicast filter, etc */
1266 error = 0;
1267 }
1268 break;
1269 default:
1270 error = ieee80211_ioctl(ic, cmd, data);
1271 break;
1272 }
1273
1274 if (error == ENETRESET) {
1275 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1276 (IFF_UP | IFF_RUNNING))
1277 upgt_init(ifp);
1278 error = 0;
1279 }
1280
1281 splx(s);
1282
1283 return error;
1284 }
1285
1286 static int
1287 upgt_init(struct ifnet *ifp)
1288 {
1289 struct upgt_softc *sc = ifp->if_softc;
1290 struct ieee80211com *ic = &sc->sc_ic;
1291
1292 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1293
1294 if (ifp->if_flags & IFF_RUNNING)
1295 upgt_stop(sc);
1296
1297 ifp->if_flags |= IFF_RUNNING;
1298 ifp->if_flags &= ~IFF_OACTIVE;
1299
1300 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1301
1302 /* setup device rates */
1303 upgt_setup_rates(sc);
1304
1305 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1306 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1307 else
1308 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1309
1310 return 0;
1311 }
1312
1313 static void
1314 upgt_stop(struct upgt_softc *sc)
1315 {
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 struct ifnet *ifp = &sc->sc_if;
1318
1319 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1320
1321 /* device down */
1322 ifp->if_timer = 0;
1323 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1324
1325 /* change device back to initial state */
1326 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1327 }
1328
1329 static int
1330 upgt_media_change(struct ifnet *ifp)
1331 {
1332 struct upgt_softc *sc = ifp->if_softc;
1333 int error;
1334
1335 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1336
1337 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1338 return error;
1339
1340 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1341 (IFF_UP | IFF_RUNNING)) {
1342 /* give pending USB transfers a chance to finish */
1343 usbd_delay_ms(sc->sc_udev, 100);
1344 upgt_init(ifp);
1345 }
1346
1347 return 0;
1348 }
1349
1350 static void
1351 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1352 {
1353
1354 ni->ni_txrate = 0;
1355 }
1356
1357 static int
1358 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1359 {
1360 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1361
1362 /*
1363 * XXXSMP: This does not wait for the task, if it is in flight,
1364 * to complete. If this code works at all, it must rely on the
1365 * kernel lock to serialize with the USB task thread.
1366 */
1367 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1368 callout_stop(&sc->scan_to);
1369
1370 /* do it in a process context */
1371 sc->sc_state = nstate;
1372 sc->sc_arg = arg;
1373 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1374
1375 return 0;
1376 }
1377
1378 static void
1379 upgt_newstate_task(void *arg)
1380 {
1381 struct upgt_softc *sc = arg;
1382 struct ieee80211com *ic = &sc->sc_ic;
1383 struct ieee80211_node *ni;
1384 unsigned channel;
1385
1386 mutex_enter(&sc->sc_mtx);
1387
1388 switch (sc->sc_state) {
1389 case IEEE80211_S_INIT:
1390 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1391 device_xname(sc->sc_dev));
1392
1393 /* do not accept any frames if the device is down */
1394 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1395 upgt_set_led(sc, UPGT_LED_OFF);
1396 break;
1397 case IEEE80211_S_SCAN:
1398 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1399 device_xname(sc->sc_dev));
1400
1401 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1402 upgt_set_channel(sc, channel);
1403 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1404 callout_schedule(&sc->scan_to, hz / 5);
1405 break;
1406 case IEEE80211_S_AUTH:
1407 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1408 device_xname(sc->sc_dev));
1409
1410 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1411 upgt_set_channel(sc, channel);
1412 break;
1413 case IEEE80211_S_ASSOC:
1414 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1415 device_xname(sc->sc_dev));
1416
1417 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1418 upgt_set_channel(sc, channel);
1419 break;
1420 case IEEE80211_S_RUN:
1421 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1422 device_xname(sc->sc_dev));
1423
1424 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1425 upgt_set_channel(sc, channel);
1426
1427 ni = ic->ic_bss;
1428
1429 /*
1430 * TX rate control is done by the firmware.
1431 * Report the maximum rate which is available therefore.
1432 */
1433 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1434
1435 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1436 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1437 upgt_set_led(sc, UPGT_LED_ON);
1438 break;
1439 }
1440
1441 mutex_exit(&sc->sc_mtx);
1442
1443 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1444 }
1445
1446 static void
1447 upgt_next_scan(void *arg)
1448 {
1449 struct upgt_softc *sc = arg;
1450 struct ieee80211com *ic = &sc->sc_ic;
1451
1452 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1453
1454 if (ic->ic_state == IEEE80211_S_SCAN)
1455 ieee80211_next_scan(ic);
1456 }
1457
1458 static void
1459 upgt_start(struct ifnet *ifp)
1460 {
1461 struct upgt_softc *sc = ifp->if_softc;
1462 struct ieee80211com *ic = &sc->sc_ic;
1463 struct ether_header *eh;
1464 struct ieee80211_node *ni;
1465 struct mbuf *m;
1466 int i;
1467
1468 /* don't transmit packets if interface is busy or down */
1469 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1470 return;
1471
1472 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1473
1474 for (i = 0; i < UPGT_TX_COUNT; i++) {
1475 struct upgt_data *data_tx = &sc->tx_data[i];
1476
1477 if (data_tx->m != NULL)
1478 continue;
1479
1480 IF_POLL(&ic->ic_mgtq, m);
1481 if (m != NULL) {
1482 /* management frame */
1483 IF_DEQUEUE(&ic->ic_mgtq, m);
1484
1485 ni = M_GETCTX(m, struct ieee80211_node *);
1486 M_CLEARCTX(m);
1487
1488 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1489
1490 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1491 aprint_error_dev(sc->sc_dev,
1492 "no free prism memory\n");
1493 m_freem(m);
1494 ifp->if_oerrors++;
1495 break;
1496 }
1497 data_tx->ni = ni;
1498 data_tx->m = m;
1499 sc->tx_queued++;
1500 } else {
1501 /* data frame */
1502 if (ic->ic_state != IEEE80211_S_RUN)
1503 break;
1504
1505 IFQ_POLL(&ifp->if_snd, m);
1506 if (m == NULL)
1507 break;
1508
1509 IFQ_DEQUEUE(&ifp->if_snd, m);
1510 if (m->m_len < sizeof(struct ether_header) &&
1511 !(m = m_pullup(m, sizeof(struct ether_header))))
1512 continue;
1513
1514 eh = mtod(m, struct ether_header *);
1515 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1516 if (ni == NULL) {
1517 m_freem(m);
1518 continue;
1519 }
1520
1521 bpf_mtap(ifp, m, BPF_D_OUT);
1522
1523 m = ieee80211_encap(ic, m, ni);
1524 if (m == NULL) {
1525 ieee80211_free_node(ni);
1526 continue;
1527 }
1528
1529 bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1530
1531 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1532 aprint_error_dev(sc->sc_dev,
1533 "no free prism memory\n");
1534 m_freem(m);
1535 ieee80211_free_node(ni);
1536 ifp->if_oerrors++;
1537 break;
1538 }
1539 data_tx->ni = ni;
1540 data_tx->m = m;
1541 sc->tx_queued++;
1542 }
1543 }
1544
1545 if (sc->tx_queued > 0) {
1546 DPRINTF(2, "%s: tx_queued=%d\n",
1547 device_xname(sc->sc_dev), sc->tx_queued);
1548 /* process the TX queue in process context */
1549 ifp->if_timer = 5;
1550 ifp->if_flags |= IFF_OACTIVE;
1551 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1552 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1553 }
1554 }
1555
1556 static void
1557 upgt_watchdog(struct ifnet *ifp)
1558 {
1559 struct upgt_softc *sc = ifp->if_softc;
1560 struct ieee80211com *ic = &sc->sc_ic;
1561
1562 if (ic->ic_state == IEEE80211_S_INIT)
1563 return;
1564
1565 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1566
1567 /* TODO: what shall we do on TX timeout? */
1568
1569 ieee80211_watchdog(ic);
1570 }
1571
1572 static void
1573 upgt_tx_task(void *arg)
1574 {
1575 struct upgt_softc *sc = arg;
1576 struct ieee80211com *ic = &sc->sc_ic;
1577 struct ieee80211_frame *wh;
1578 struct ieee80211_key *k;
1579 struct ifnet *ifp = &sc->sc_if;
1580 struct upgt_lmac_mem *mem;
1581 struct upgt_lmac_tx_desc *txdesc;
1582 struct mbuf *m;
1583 uint32_t addr;
1584 int i, len, pad, s;
1585 usbd_status error;
1586
1587 mutex_enter(&sc->sc_mtx);
1588 upgt_set_led(sc, UPGT_LED_BLINK);
1589 mutex_exit(&sc->sc_mtx);
1590
1591 s = splnet();
1592
1593 for (i = 0; i < UPGT_TX_COUNT; i++) {
1594 struct upgt_data *data_tx = &sc->tx_data[i];
1595
1596 if (data_tx->m == NULL)
1597 continue;
1598
1599 m = data_tx->m;
1600 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1601
1602 /*
1603 * Software crypto.
1604 */
1605 wh = mtod(m, struct ieee80211_frame *);
1606
1607 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1608 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1609 if (k == NULL) {
1610 m_freem(m);
1611 data_tx->m = NULL;
1612 ieee80211_free_node(data_tx->ni);
1613 data_tx->ni = NULL;
1614 ifp->if_oerrors++;
1615 break;
1616 }
1617
1618 /* in case packet header moved, reset pointer */
1619 wh = mtod(m, struct ieee80211_frame *);
1620 }
1621
1622 /*
1623 * Transmit the URB containing the TX data.
1624 */
1625 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1626
1627 mem = (struct upgt_lmac_mem *)data_tx->buf;
1628 mem->addr = htole32(addr);
1629
1630 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1631
1632 /* XXX differ between data and mgmt frames? */
1633 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1634 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1635 txdesc->header1.len = htole16(m->m_pkthdr.len);
1636
1637 txdesc->header2.reqid = htole32(data_tx->addr);
1638 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1639 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1640
1641 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1642 IEEE80211_FC0_TYPE_MGT) {
1643 /* always send mgmt frames at lowest rate (DS1) */
1644 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1645 } else {
1646 memcpy(txdesc->rates, sc->sc_cur_rateset,
1647 sizeof(txdesc->rates));
1648 }
1649 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1650 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1651
1652 if (sc->sc_drvbpf != NULL) {
1653 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1654
1655 tap->wt_flags = 0;
1656 tap->wt_rate = 0; /* TODO: where to get from? */
1657 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1658 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1659
1660 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1661 BPF_D_OUT);
1662 }
1663
1664 /* copy frame below our TX descriptor header */
1665 m_copydata(m, 0, m->m_pkthdr.len,
1666 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1667
1668 /* calculate frame size */
1669 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1670
1671 if (len & 3) {
1672 /* we need to align the frame to a 4 byte boundary */
1673 pad = 4 - (len & 3);
1674 memset(data_tx->buf + len, 0, pad);
1675 len += pad;
1676 }
1677
1678 /* calculate frame checksum */
1679 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1680 len - sizeof(*mem));
1681
1682 /* we do not need the mbuf anymore */
1683 m_freem(m);
1684 data_tx->m = NULL;
1685
1686 ieee80211_free_node(data_tx->ni);
1687 data_tx->ni = NULL;
1688
1689 DPRINTF(2, "%s: TX start data sending\n",
1690 device_xname(sc->sc_dev));
1691
1692 usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1693 USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1694 error = usbd_transfer(data_tx->xfer);
1695 if (error != USBD_NORMAL_COMPLETION &&
1696 error != USBD_IN_PROGRESS) {
1697 aprint_error_dev(sc->sc_dev,
1698 "could not transmit TX data URB\n");
1699 ifp->if_oerrors++;
1700 break;
1701 }
1702
1703 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1704 device_xname(sc->sc_dev), len);
1705 }
1706
1707 splx(s);
1708
1709 /*
1710 * If we don't regulary read the device statistics, the RX queue
1711 * will stall. It's strange, but it works, so we keep reading
1712 * the statistics here. *shrug*
1713 */
1714 mutex_enter(&sc->sc_mtx);
1715 upgt_get_stats(sc);
1716 mutex_exit(&sc->sc_mtx);
1717 }
1718
1719 static void
1720 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1721 {
1722 struct ifnet *ifp = &sc->sc_if;
1723 struct upgt_lmac_tx_done_desc *desc;
1724 int i, s;
1725
1726 s = splnet();
1727
1728 desc = (struct upgt_lmac_tx_done_desc *)data;
1729
1730 for (i = 0; i < UPGT_TX_COUNT; i++) {
1731 struct upgt_data *data_tx = &sc->tx_data[i];
1732
1733 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1734 upgt_mem_free(sc, data_tx->addr);
1735 data_tx->addr = 0;
1736
1737 sc->tx_queued--;
1738 ifp->if_opackets++;
1739
1740 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1741 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1742 le32toh(desc->header2.reqid),
1743 le16toh(desc->status),
1744 le16toh(desc->rssi));
1745 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1746 break;
1747 }
1748 }
1749
1750 if (sc->tx_queued == 0) {
1751 /* TX queued was processed, continue */
1752 ifp->if_timer = 0;
1753 ifp->if_flags &= ~IFF_OACTIVE;
1754 upgt_start(ifp);
1755 }
1756
1757 splx(s);
1758 }
1759
1760 static void
1761 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1762 {
1763 struct upgt_data *data_rx = priv;
1764 struct upgt_softc *sc = data_rx->sc;
1765 int len;
1766 struct upgt_lmac_header *header;
1767 struct upgt_lmac_eeprom *eeprom;
1768 uint8_t h1_type;
1769 uint16_t h2_type;
1770
1771 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1772
1773 if (status != USBD_NORMAL_COMPLETION) {
1774 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1775 return;
1776 if (status == USBD_STALLED)
1777 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1778 goto skip;
1779 }
1780 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1781
1782 /*
1783 * Check what type of frame came in.
1784 */
1785 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1786
1787 h1_type = header->header1.type;
1788 h2_type = le16toh(header->header2.type);
1789
1790 if (h1_type == UPGT_H1_TYPE_CTRL &&
1791 h2_type == UPGT_H2_TYPE_EEPROM) {
1792 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1793 uint16_t eeprom_offset = le16toh(eeprom->offset);
1794 uint16_t eeprom_len = le16toh(eeprom->len);
1795
1796 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1797 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1798
1799 mutex_enter(&sc->sc_mtx);
1800 memcpy(sc->sc_eeprom + eeprom_offset,
1801 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1802 eeprom_len);
1803
1804 /* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1805 /* Note eeprom data arrived */
1806 cv_broadcast(&sc->sc_cv);
1807 mutex_exit(&sc->sc_mtx);
1808 } else
1809 if (h1_type == UPGT_H1_TYPE_CTRL &&
1810 h2_type == UPGT_H2_TYPE_TX_DONE) {
1811 DPRINTF(2, "%s: received 802.11 TX done\n",
1812 device_xname(sc->sc_dev));
1813
1814 upgt_tx_done(sc, data_rx->buf + 4);
1815 } else
1816 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1817 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1818 DPRINTF(3, "%s: received 802.11 RX data\n",
1819 device_xname(sc->sc_dev));
1820
1821 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1822 } else
1823 if (h1_type == UPGT_H1_TYPE_CTRL &&
1824 h2_type == UPGT_H2_TYPE_STATS) {
1825 DPRINTF(2, "%s: received statistic data\n",
1826 device_xname(sc->sc_dev));
1827
1828 /* TODO: what could we do with the statistic data? */
1829 } else {
1830 /* ignore unknown frame types */
1831 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1832 device_xname(sc->sc_dev), header->header1.type);
1833 }
1834
1835 skip: /* setup new transfer */
1836 usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1837 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1838 (void)usbd_transfer(xfer);
1839 }
1840
1841 static void
1842 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1843 {
1844 struct ieee80211com *ic = &sc->sc_ic;
1845 struct ifnet *ifp = &sc->sc_if;
1846 struct upgt_lmac_rx_desc *rxdesc;
1847 struct ieee80211_frame *wh;
1848 struct ieee80211_node *ni;
1849 struct mbuf *m;
1850 int s;
1851
1852 /* access RX packet descriptor */
1853 rxdesc = (struct upgt_lmac_rx_desc *)data;
1854
1855 /* create mbuf which is suitable for strict alignment archs */
1856 m = m_devget(rxdesc->data, pkglen, 0, ifp);
1857 if (m == NULL) {
1858 DPRINTF(1, "%s: could not create RX mbuf\n",
1859 device_xname(sc->sc_dev));
1860 ifp->if_ierrors++;
1861 return;
1862 }
1863
1864 s = splnet();
1865
1866 if (sc->sc_drvbpf != NULL) {
1867 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1868
1869 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1870 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1871 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1872 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1873 tap->wr_antsignal = rxdesc->rssi;
1874
1875 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1876 }
1877
1878 /* trim FCS */
1879 m_adj(m, -IEEE80211_CRC_LEN);
1880
1881 wh = mtod(m, struct ieee80211_frame *);
1882 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1883
1884 /* push the frame up to the 802.11 stack */
1885 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1886
1887 /* node is no longer needed */
1888 ieee80211_free_node(ni);
1889
1890 splx(s);
1891
1892 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1893 }
1894
1895 static void
1896 upgt_setup_rates(struct upgt_softc *sc)
1897 {
1898 struct ieee80211com *ic = &sc->sc_ic;
1899
1900 /*
1901 * 0x01 = OFMD6 0x10 = DS1
1902 * 0x04 = OFDM9 0x11 = DS2
1903 * 0x06 = OFDM12 0x12 = DS5
1904 * 0x07 = OFDM18 0x13 = DS11
1905 * 0x08 = OFDM24
1906 * 0x09 = OFDM36
1907 * 0x0a = OFDM48
1908 * 0x0b = OFDM54
1909 */
1910 const uint8_t rateset_auto_11b[] =
1911 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1912 const uint8_t rateset_auto_11g[] =
1913 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1914 const uint8_t rateset_fix_11bg[] =
1915 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1916 0x08, 0x09, 0x0a, 0x0b };
1917
1918 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1919 /*
1920 * Automatic rate control is done by the device.
1921 * We just pass the rateset from which the device
1922 * will pickup a rate.
1923 */
1924 if (ic->ic_curmode == IEEE80211_MODE_11B)
1925 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1926 sizeof(sc->sc_cur_rateset));
1927 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1928 ic->ic_curmode == IEEE80211_MODE_AUTO)
1929 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1930 sizeof(sc->sc_cur_rateset));
1931 } else {
1932 /* set a fixed rate */
1933 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1934 sizeof(sc->sc_cur_rateset));
1935 }
1936 }
1937
1938 static uint8_t
1939 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1940 {
1941 struct ieee80211com *ic = &sc->sc_ic;
1942
1943 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1944 if (rate < 0 || rate > 3)
1945 /* invalid rate */
1946 return 0;
1947
1948 switch (rate) {
1949 case 0:
1950 return 2;
1951 case 1:
1952 return 4;
1953 case 2:
1954 return 11;
1955 case 3:
1956 return 22;
1957 default:
1958 return 0;
1959 }
1960 }
1961
1962 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1963 if (rate < 0 || rate > 11)
1964 /* invalid rate */
1965 return 0;
1966
1967 switch (rate) {
1968 case 0:
1969 return 2;
1970 case 1:
1971 return 4;
1972 case 2:
1973 return 11;
1974 case 3:
1975 return 22;
1976 case 4:
1977 return 12;
1978 case 5:
1979 return 18;
1980 case 6:
1981 return 24;
1982 case 7:
1983 return 36;
1984 case 8:
1985 return 48;
1986 case 9:
1987 return 72;
1988 case 10:
1989 return 96;
1990 case 11:
1991 return 108;
1992 default:
1993 return 0;
1994 }
1995 }
1996
1997 return 0;
1998 }
1999
2000 static int
2001 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
2002 {
2003 struct ieee80211com *ic = &sc->sc_ic;
2004 struct ieee80211_node *ni = ic->ic_bss;
2005 struct upgt_data *data_cmd = &sc->cmd_data;
2006 struct upgt_lmac_mem *mem;
2007 struct upgt_lmac_filter *filter;
2008 int len;
2009 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2010
2011 /*
2012 * Transmit the URB containing the CMD data.
2013 */
2014 len = sizeof(*mem) + sizeof(*filter);
2015
2016 memset(data_cmd->buf, 0, len);
2017
2018 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2019 mem->addr = htole32(sc->sc_memaddr_frame_start +
2020 UPGT_MEMSIZE_FRAME_HEAD);
2021
2022 filter = (struct upgt_lmac_filter *)(mem + 1);
2023
2024 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2025 filter->header1.type = UPGT_H1_TYPE_CTRL;
2026 filter->header1.len = htole16(
2027 sizeof(struct upgt_lmac_filter) -
2028 sizeof(struct upgt_lmac_header));
2029
2030 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2031 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2032 filter->header2.flags = 0;
2033
2034 switch (state) {
2035 case IEEE80211_S_INIT:
2036 DPRINTF(1, "%s: set MAC filter to INIT\n",
2037 device_xname(sc->sc_dev));
2038
2039 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2040 break;
2041 case IEEE80211_S_SCAN:
2042 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2043 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2044
2045 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2046 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2047 IEEE80211_ADDR_COPY(filter->src, broadcast);
2048 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2049 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2050 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2051 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2052 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2053 break;
2054 case IEEE80211_S_RUN:
2055 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2056 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2057
2058 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2059 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2060 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2061 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2062 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2063 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2064 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2065 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2066 break;
2067 default:
2068 aprint_error_dev(sc->sc_dev,
2069 "MAC filter does not know that state\n");
2070 break;
2071 }
2072
2073 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2074
2075 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2076 aprint_error_dev(sc->sc_dev,
2077 "could not transmit macfilter CMD data URB\n");
2078 return EIO;
2079 }
2080
2081 return 0;
2082 }
2083
2084 static int
2085 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2086 {
2087 struct upgt_data *data_cmd = &sc->cmd_data;
2088 struct upgt_lmac_mem *mem;
2089 struct upgt_lmac_channel *chan;
2090 int len;
2091
2092 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2093 channel);
2094
2095 /*
2096 * Transmit the URB containing the CMD data.
2097 */
2098 len = sizeof(*mem) + sizeof(*chan);
2099
2100 memset(data_cmd->buf, 0, len);
2101
2102 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2103 mem->addr = htole32(sc->sc_memaddr_frame_start +
2104 UPGT_MEMSIZE_FRAME_HEAD);
2105
2106 chan = (struct upgt_lmac_channel *)(mem + 1);
2107
2108 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2109 chan->header1.type = UPGT_H1_TYPE_CTRL;
2110 chan->header1.len = htole16(
2111 sizeof(struct upgt_lmac_channel) -
2112 sizeof(struct upgt_lmac_header));
2113
2114 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2115 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2116 chan->header2.flags = 0;
2117
2118 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2119 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2120 chan->freq6 = sc->sc_eeprom_freq6[channel];
2121 chan->settings = sc->sc_eeprom_freq6_settings;
2122 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2123
2124 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2125 sizeof(chan->freq3_1));
2126
2127 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2128 sizeof(sc->sc_eeprom_freq4[channel]));
2129
2130 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2131 sizeof(chan->freq3_2));
2132
2133 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2134
2135 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2136 aprint_error_dev(sc->sc_dev,
2137 "could not transmit channel CMD data URB\n");
2138 return EIO;
2139 }
2140
2141 return 0;
2142 }
2143
2144 static void
2145 upgt_set_led(struct upgt_softc *sc, int action)
2146 {
2147 struct ieee80211com *ic = &sc->sc_ic;
2148 struct upgt_data *data_cmd = &sc->cmd_data;
2149 struct upgt_lmac_mem *mem;
2150 struct upgt_lmac_led *led;
2151 struct timeval t;
2152 int len;
2153
2154 /*
2155 * Transmit the URB containing the CMD data.
2156 */
2157 len = sizeof(*mem) + sizeof(*led);
2158
2159 memset(data_cmd->buf, 0, len);
2160
2161 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2162 mem->addr = htole32(sc->sc_memaddr_frame_start +
2163 UPGT_MEMSIZE_FRAME_HEAD);
2164
2165 led = (struct upgt_lmac_led *)(mem + 1);
2166
2167 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2168 led->header1.type = UPGT_H1_TYPE_CTRL;
2169 led->header1.len = htole16(
2170 sizeof(struct upgt_lmac_led) -
2171 sizeof(struct upgt_lmac_header));
2172
2173 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2174 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2175 led->header2.flags = 0;
2176
2177 switch (action) {
2178 case UPGT_LED_OFF:
2179 led->mode = htole16(UPGT_LED_MODE_SET);
2180 led->action_fix = 0;
2181 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2182 led->action_tmp_dur = 0;
2183 break;
2184 case UPGT_LED_ON:
2185 led->mode = htole16(UPGT_LED_MODE_SET);
2186 led->action_fix = 0;
2187 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2188 led->action_tmp_dur = 0;
2189 break;
2190 case UPGT_LED_BLINK:
2191 if (ic->ic_state != IEEE80211_S_RUN)
2192 return;
2193 if (sc->sc_led_blink)
2194 /* previous blink was not finished */
2195 return;
2196 led->mode = htole16(UPGT_LED_MODE_SET);
2197 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2198 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2199 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2200 /* lock blink */
2201 sc->sc_led_blink = 1;
2202 t.tv_sec = 0;
2203 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2204 callout_schedule(&sc->led_to, tvtohz(&t));
2205 break;
2206 default:
2207 return;
2208 }
2209
2210 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2211
2212 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2213 aprint_error_dev(sc->sc_dev,
2214 "could not transmit led CMD URB\n");
2215 }
2216 }
2217
2218 static void
2219 upgt_set_led_blink(void *arg)
2220 {
2221 struct upgt_softc *sc = arg;
2222
2223 /* blink finished, we are ready for a next one */
2224 sc->sc_led_blink = 0;
2225 callout_stop(&sc->led_to);
2226 }
2227
2228 static int
2229 upgt_get_stats(struct upgt_softc *sc)
2230 {
2231 struct upgt_data *data_cmd = &sc->cmd_data;
2232 struct upgt_lmac_mem *mem;
2233 struct upgt_lmac_stats *stats;
2234 int len;
2235
2236 /*
2237 * Transmit the URB containing the CMD data.
2238 */
2239 len = sizeof(*mem) + sizeof(*stats);
2240
2241 memset(data_cmd->buf, 0, len);
2242
2243 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2244 mem->addr = htole32(sc->sc_memaddr_frame_start +
2245 UPGT_MEMSIZE_FRAME_HEAD);
2246
2247 stats = (struct upgt_lmac_stats *)(mem + 1);
2248
2249 stats->header1.flags = 0;
2250 stats->header1.type = UPGT_H1_TYPE_CTRL;
2251 stats->header1.len = htole16(
2252 sizeof(struct upgt_lmac_stats) -
2253 sizeof(struct upgt_lmac_header));
2254
2255 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2256 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2257 stats->header2.flags = 0;
2258
2259 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2260
2261 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2262 aprint_error_dev(sc->sc_dev,
2263 "could not transmit statistics CMD data URB\n");
2264 return EIO;
2265 }
2266
2267 return 0;
2268
2269 }
2270
2271 static int
2272 upgt_alloc_tx(struct upgt_softc *sc)
2273 {
2274 int i;
2275
2276 sc->tx_queued = 0;
2277
2278 for (i = 0; i < UPGT_TX_COUNT; i++) {
2279 struct upgt_data *data_tx = &sc->tx_data[i];
2280
2281 data_tx->sc = sc;
2282
2283 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2284 USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2285 if (err) {
2286 aprint_error_dev(sc->sc_dev,
2287 "could not allocate TX xfer\n");
2288 return err;
2289 }
2290
2291 data_tx->buf = usbd_get_buffer(data_tx->xfer);
2292 }
2293
2294 return 0;
2295 }
2296
2297 static int
2298 upgt_alloc_rx(struct upgt_softc *sc)
2299 {
2300 struct upgt_data *data_rx = &sc->rx_data;
2301
2302 data_rx->sc = sc;
2303
2304 int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2305 0, 0, &data_rx->xfer);
2306 if (err) {
2307 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2308 return err;
2309 }
2310
2311 data_rx->buf = usbd_get_buffer(data_rx->xfer);
2312
2313 return 0;
2314 }
2315
2316 static int
2317 upgt_alloc_cmd(struct upgt_softc *sc)
2318 {
2319 struct upgt_data *data_cmd = &sc->cmd_data;
2320
2321 data_cmd->sc = sc;
2322
2323 int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2324 USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2325 if (err) {
2326 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2327 return err;
2328 }
2329
2330 data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2331
2332 cv_init(&sc->sc_cv, "upgteeprom");
2333 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2334
2335 return 0;
2336 }
2337
2338 static void
2339 upgt_free_tx(struct upgt_softc *sc)
2340 {
2341 int i;
2342
2343 for (i = 0; i < UPGT_TX_COUNT; i++) {
2344 struct upgt_data *data_tx = &sc->tx_data[i];
2345
2346 if (data_tx->xfer != NULL) {
2347 usbd_destroy_xfer(data_tx->xfer);
2348 data_tx->xfer = NULL;
2349 }
2350
2351 data_tx->ni = NULL;
2352 }
2353 }
2354
2355 static void
2356 upgt_free_rx(struct upgt_softc *sc)
2357 {
2358 struct upgt_data *data_rx = &sc->rx_data;
2359
2360 if (data_rx->xfer != NULL) {
2361 usbd_destroy_xfer(data_rx->xfer);
2362 data_rx->xfer = NULL;
2363 }
2364
2365 data_rx->ni = NULL;
2366 }
2367
2368 static void
2369 upgt_free_cmd(struct upgt_softc *sc)
2370 {
2371 struct upgt_data *data_cmd = &sc->cmd_data;
2372
2373 if (data_cmd->xfer != NULL) {
2374 usbd_destroy_xfer(data_cmd->xfer);
2375 data_cmd->xfer = NULL;
2376 }
2377
2378 mutex_destroy(&sc->sc_mtx);
2379 cv_destroy(&sc->sc_cv);
2380 }
2381
2382 static int
2383 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2384 struct usbd_pipe *pipeh, uint32_t *size, int flags)
2385 {
2386 usbd_status status;
2387
2388 status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2389 data->buf, size);
2390 if (status != USBD_NORMAL_COMPLETION) {
2391 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2392 usbd_errstr(status));
2393 return EIO;
2394 }
2395
2396 return 0;
2397 }
2398
2399 #if 0
2400 static void
2401 upgt_hexdump(void *buf, int len)
2402 {
2403 int i;
2404
2405 for (i = 0; i < len; i++) {
2406 if (i % 16 == 0)
2407 printf("%s%5i:", i ? "\n" : "", i);
2408 if (i % 4 == 0)
2409 printf(" ");
2410 printf("%02x", (int)*((uint8_t *)buf + i));
2411 }
2412 printf("\n");
2413 }
2414 #endif
2415
2416 static uint32_t
2417 upgt_crc32_le(const void *buf, size_t size)
2418 {
2419 uint32_t crc;
2420
2421 crc = ether_crc32_le(buf, size);
2422
2423 /* apply final XOR value as common for CRC-32 */
2424 crc = htole32(crc ^ 0xffffffffU);
2425
2426 return crc;
2427 }
2428
2429 /*
2430 * The firmware awaits a checksum for each frame we send to it.
2431 * The algorithm used is uncommon but somehow similar to CRC32.
2432 */
2433 static uint32_t
2434 upgt_chksum_le(const uint32_t *buf, size_t size)
2435 {
2436 int i;
2437 uint32_t crc = 0;
2438
2439 for (i = 0; i < size; i += sizeof(uint32_t)) {
2440 crc = htole32(crc ^ *buf++);
2441 crc = htole32((crc >> 5) ^ (crc << 3));
2442 }
2443
2444 return crc;
2445 }
2446