Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.26.2.1
      1 /*	$NetBSD: if_upgt.c,v 1.26.2.1 2020/01/17 21:47:32 ad Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.26.2.1 2020/01/17 21:47:32 ad Exp $");
     22 
     23 #ifdef _KERNEL_OPT
     24 #include "opt_usb.h"
     25 #endif
     26 
     27 #include <sys/param.h>
     28 #include <sys/callout.h>
     29 #include <sys/device.h>
     30 #include <sys/errno.h>
     31 #include <sys/kernel.h>
     32 #include <sys/kthread.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/proc.h>
     35 #include <sys/sockio.h>
     36 #include <sys/systm.h>
     37 #include <sys/vnode.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/intr.h>
     41 
     42 #include <net/bpf.h>
     43 #include <net/if.h>
     44 #include <net/if_arp.h>
     45 #include <net/if_dl.h>
     46 #include <net/if_ether.h>
     47 #include <net/if_media.h>
     48 #include <net/if_types.h>
     49 
     50 #include <net80211/ieee80211_var.h>
     51 #include <net80211/ieee80211_radiotap.h>
     52 
     53 #include <dev/firmload.h>
     54 
     55 #include <dev/usb/usb.h>
     56 #include <dev/usb/usbdi.h>
     57 #include <dev/usb/usbdi_util.h>
     58 #include <dev/usb/usbdivar.h>
     59 #include <dev/usb/usbdevs.h>
     60 
     61 #include <dev/usb/if_upgtvar.h>
     62 
     63 /*
     64  * Driver for the USB PrismGT devices.
     65  *
     66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     68  *
     69  * TODO's:
     70  * - Fix MONITOR mode (MAC filter).
     71  * - Add HOSTAP mode.
     72  * - Add IBSS mode.
     73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     74  *
     75  * Parts of this driver has been influenced by reading the p54u driver
     76  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     77  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     78  */
     79 
     80 #ifdef UPGT_DEBUG
     81 int upgt_debug = 2;
     82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     83 #else
     84 #define DPRINTF(l, x...)
     85 #endif
     86 
     87 /*
     88  * Prototypes.
     89  */
     90 static int	upgt_match(device_t, cfdata_t, void *);
     91 static void	upgt_attach(device_t, device_t, void *);
     92 static int	upgt_detach(device_t, int);
     93 static int	upgt_activate(device_t, devact_t);
     94 
     95 static void	upgt_attach_hook(device_t);
     96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     97 static int	upgt_device_init(struct upgt_softc *);
     98 static int	upgt_mem_init(struct upgt_softc *);
     99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
    100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
    101 static int	upgt_fw_alloc(struct upgt_softc *);
    102 static void	upgt_fw_free(struct upgt_softc *);
    103 static int	upgt_fw_verify(struct upgt_softc *);
    104 static int	upgt_fw_load(struct upgt_softc *);
    105 static int	upgt_fw_copy(char *, char *, int);
    106 static int	upgt_eeprom_read(struct upgt_softc *);
    107 static int	upgt_eeprom_parse(struct upgt_softc *);
    108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    112 
    113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    114 static int	upgt_init(struct ifnet *);
    115 static void	upgt_stop(struct upgt_softc *);
    116 static int	upgt_media_change(struct ifnet *);
    117 static void	upgt_newassoc(struct ieee80211_node *, int);
    118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    119 		    int);
    120 static void	upgt_newstate_task(void *);
    121 static void	upgt_next_scan(void *);
    122 static void	upgt_start(struct ifnet *);
    123 static void	upgt_watchdog(struct ifnet *);
    124 static void	upgt_tx_task(void *);
    125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
    127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    128 static void	upgt_setup_rates(struct upgt_softc *);
    129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
    131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    132 static void	upgt_set_led(struct upgt_softc *, int);
    133 static void	upgt_set_led_blink(void *);
    134 static int	upgt_get_stats(struct upgt_softc *);
    135 
    136 static int	upgt_alloc_tx(struct upgt_softc *);
    137 static int	upgt_alloc_rx(struct upgt_softc *);
    138 static int	upgt_alloc_cmd(struct upgt_softc *);
    139 static void	upgt_free_tx(struct upgt_softc *);
    140 static void	upgt_free_rx(struct upgt_softc *);
    141 static void	upgt_free_cmd(struct upgt_softc *);
    142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    143 		    struct usbd_pipe *, uint32_t *, int);
    144 
    145 #if 0
    146 static void	upgt_hexdump(void *, int);
    147 #endif
    148 static uint32_t	upgt_crc32_le(const void *, size_t);
    149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    150 
    151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    153 
    154 static const struct usb_devno upgt_devs_1[] = {
    155 	/* version 1 devices */
    156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    158 };
    159 
    160 static const struct usb_devno upgt_devs_2[] = {
    161 	/* version 2 devices */
    162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    186 };
    187 
    188 static int
    189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    190     size_t *sizep)
    191 {
    192 	firmware_handle_t fh;
    193 	int error;
    194 
    195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    196 		return error;
    197 	*sizep = firmware_get_size(fh);
    198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    199 		firmware_close(fh);
    200 		return ENOMEM;
    201 	}
    202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    203 		firmware_free(*ucodep, *sizep);
    204 	firmware_close(fh);
    205 
    206 	return error;
    207 }
    208 
    209 static int
    210 upgt_match(device_t parent, cfdata_t match, void *aux)
    211 {
    212 	struct usb_attach_arg *uaa = aux;
    213 
    214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    215 		return UMATCH_VENDOR_PRODUCT;
    216 
    217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    218 		return UMATCH_VENDOR_PRODUCT;
    219 
    220 	return UMATCH_NONE;
    221 }
    222 
    223 static void
    224 upgt_attach(device_t parent, device_t self, void *aux)
    225 {
    226 	struct upgt_softc *sc = device_private(self);
    227 	struct usb_attach_arg *uaa = aux;
    228 	usb_interface_descriptor_t *id;
    229 	usb_endpoint_descriptor_t *ed;
    230 	usbd_status error;
    231 	char *devinfop;
    232 	int i;
    233 
    234 	aprint_naive("\n");
    235 	aprint_normal("\n");
    236 
    237 	/*
    238 	 * Attach USB device.
    239 	 */
    240 	sc->sc_dev = self;
    241 	sc->sc_udev = uaa->uaa_device;
    242 	sc->sc_init_state = UPGT_INIT_NONE;
    243 
    244 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    245 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    246 	usbd_devinfo_free(devinfop);
    247 
    248 	/* check device type */
    249 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
    250 		return;
    251 
    252 	/* set configuration number */
    253 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    254 	if (error != 0) {
    255 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    256 		    ", err=%s\n", usbd_errstr(error));
    257 		return;
    258 	}
    259 
    260 	/* get the first interface handle */
    261 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    262 	    &sc->sc_iface);
    263 	if (error != 0) {
    264 		aprint_error_dev(sc->sc_dev,
    265 		    "could not get interface handle\n");
    266 		return;
    267 	}
    268 
    269 	/* find endpoints */
    270 	id = usbd_get_interface_descriptor(sc->sc_iface);
    271 	sc->sc_rx_no = sc->sc_tx_no = -1;
    272 	for (i = 0; i < id->bNumEndpoints; i++) {
    273 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    274 		if (ed == NULL) {
    275 			aprint_error_dev(sc->sc_dev,
    276 			    "no endpoint descriptor for iface %d\n", i);
    277 			return;
    278 		}
    279 
    280 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    281 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    282 			sc->sc_tx_no = ed->bEndpointAddress;
    283 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    284 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    285 			sc->sc_rx_no = ed->bEndpointAddress;
    286 
    287 		/*
    288 		 * 0x01 TX pipe
    289 		 * 0x81 RX pipe
    290 		 *
    291 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    292 		 * 0x02 TX MGMT pipe
    293 		 * 0x82 TX MGMT pipe
    294 		 */
    295 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    296 			break;
    297 	}
    298 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    299 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    300 		return;
    301 	}
    302 
    303 	/* setup tasks and timeouts */
    304 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    305 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    306 	callout_init(&sc->scan_to, 0);
    307 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    308 	callout_init(&sc->led_to, 0);
    309 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    310 	sc->sc_init_state = UPGT_INIT_INITED;
    311 
    312 	/*
    313 	 * Open TX and RX USB bulk pipes.
    314 	 */
    315 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    316 	    &sc->sc_tx_pipeh);
    317 	if (error != 0) {
    318 		aprint_error_dev(sc->sc_dev,
    319 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    320 		goto fail;
    321 	}
    322 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    323 	    &sc->sc_rx_pipeh);
    324 	if (error != 0) {
    325 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    326 		    usbd_errstr(error));
    327 		goto fail;
    328 	}
    329 
    330 	/*
    331 	 * Allocate TX, RX, and CMD xfers.
    332 	 */
    333 	if (upgt_alloc_tx(sc) != 0)
    334 		goto fail;
    335 	if (upgt_alloc_rx(sc) != 0)
    336 		goto fail;
    337 	if (upgt_alloc_cmd(sc) != 0)
    338 		goto fail;
    339 
    340 	/*
    341 	 * We need the firmware loaded from file system to complete the attach.
    342 	 */
    343 	config_mountroot(self, upgt_attach_hook);
    344 
    345 	return;
    346 fail:
    347 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    348 }
    349 
    350 static void
    351 upgt_attach_hook(device_t arg)
    352 {
    353 	struct upgt_softc *sc = device_private(arg);
    354 	struct ieee80211com *ic = &sc->sc_ic;
    355 	struct ifnet *ifp = &sc->sc_if;
    356 	usbd_status error;
    357 	int i;
    358 
    359 	/*
    360 	 * Load firmware file into memory.
    361 	 */
    362 	if (upgt_fw_alloc(sc) != 0)
    363 		goto fail;
    364 
    365 	/*
    366 	 * Initialize the device.
    367 	 */
    368 	if (upgt_device_init(sc) != 0)
    369 		goto fail;
    370 
    371 	/*
    372 	 * Verify the firmware.
    373 	 */
    374 	if (upgt_fw_verify(sc) != 0)
    375 		goto fail;
    376 
    377 	/*
    378 	 * Calculate device memory space.
    379 	 */
    380 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    381 		aprint_error_dev(sc->sc_dev,
    382 		    "could not find memory space addresses on FW\n");
    383 		goto fail;
    384 	}
    385 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    386 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    387 
    388 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    390 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    391 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    392 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    393 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    394 
    395 	upgt_mem_init(sc);
    396 
    397 	/*
    398 	 * Load the firmware.
    399 	 */
    400 	if (upgt_fw_load(sc) != 0)
    401 		goto fail;
    402 
    403 	/*
    404 	 * Startup the RX pipe.
    405 	 */
    406 	struct upgt_data *data_rx = &sc->rx_data;
    407 
    408 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
    409 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    410 	error = usbd_transfer(data_rx->xfer);
    411 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    412 		aprint_error_dev(sc->sc_dev,
    413 		    "could not queue RX transfer\n");
    414 		goto fail;
    415 	}
    416 	usbd_delay_ms(sc->sc_udev, 100);
    417 
    418 	/*
    419 	 * Read the whole EEPROM content and parse it.
    420 	 */
    421 	if (upgt_eeprom_read(sc) != 0)
    422 		goto fail;
    423 	if (upgt_eeprom_parse(sc) != 0)
    424 		goto fail;
    425 
    426 	/*
    427 	 * Setup the 802.11 device.
    428 	 */
    429 	ic->ic_ifp = ifp;
    430 	ic->ic_phytype = IEEE80211_T_OFDM;
    431 	ic->ic_opmode = IEEE80211_M_STA;
    432 	ic->ic_state = IEEE80211_S_INIT;
    433 	ic->ic_caps =
    434 	    IEEE80211_C_MONITOR |
    435 	    IEEE80211_C_SHPREAMBLE |
    436 	    IEEE80211_C_SHSLOT;
    437 
    438 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    439 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    440 
    441 	for (i = 1; i <= 14; i++) {
    442 		ic->ic_channels[i].ic_freq =
    443 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    444 		ic->ic_channels[i].ic_flags =
    445 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    446 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    447 	}
    448 
    449 	ifp->if_softc = sc;
    450 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    451 	ifp->if_init = upgt_init;
    452 	ifp->if_ioctl = upgt_ioctl;
    453 	ifp->if_start = upgt_start;
    454 	ifp->if_watchdog = upgt_watchdog;
    455 	IFQ_SET_READY(&ifp->if_snd);
    456 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    457 
    458 	if_attach(ifp);
    459 	ieee80211_ifattach(ic);
    460 	ic->ic_newassoc = upgt_newassoc;
    461 
    462 	sc->sc_newstate = ic->ic_newstate;
    463 	ic->ic_newstate = upgt_newstate;
    464 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    465 
    466 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    467 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    468 	    &sc->sc_drvbpf);
    469 
    470 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    471 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    472 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    473 
    474 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    475 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    476 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    477 
    478 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    479 	    ether_sprintf(ic->ic_myaddr));
    480 
    481 	ieee80211_announce(ic);
    482 
    483 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    484 
    485 	/* device attached */
    486 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    487 
    488 	return;
    489 fail:
    490 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    491 }
    492 
    493 static int
    494 upgt_detach(device_t self, int flags)
    495 {
    496 	struct upgt_softc *sc = device_private(self);
    497 	struct ifnet *ifp = &sc->sc_if;
    498 	struct ieee80211com *ic = &sc->sc_ic;
    499 	int s;
    500 
    501 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    502 
    503 	if (sc->sc_init_state < UPGT_INIT_INITED)
    504 		return 0;
    505 
    506 	s = splnet();
    507 
    508 	if (ifp->if_flags & IFF_RUNNING)
    509 		upgt_stop(sc);
    510 
    511 	/* remove tasks and timeouts */
    512 	callout_halt(&sc->scan_to, NULL);
    513 	callout_halt(&sc->led_to, NULL);
    514 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
    515 	    NULL);
    516 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
    517 	    NULL);
    518 	callout_destroy(&sc->scan_to);
    519 	callout_destroy(&sc->led_to);
    520 
    521 	/* abort and close TX / RX pipes */
    522 	if (sc->sc_tx_pipeh != NULL) {
    523 		usbd_abort_pipe(sc->sc_tx_pipeh);
    524 	}
    525 	if (sc->sc_rx_pipeh != NULL) {
    526 		usbd_abort_pipe(sc->sc_rx_pipeh);
    527 	}
    528 
    529 	/* free xfers */
    530 	upgt_free_tx(sc);
    531 	upgt_free_rx(sc);
    532 	upgt_free_cmd(sc);
    533 
    534 	/* Close TX / RX pipes */
    535 	if (sc->sc_tx_pipeh != NULL) {
    536 		usbd_close_pipe(sc->sc_tx_pipeh);
    537 	}
    538 	if (sc->sc_rx_pipeh != NULL) {
    539 		usbd_close_pipe(sc->sc_rx_pipeh);
    540 	}
    541 
    542 	/* free firmware */
    543 	upgt_fw_free(sc);
    544 
    545 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    546 		/* detach interface */
    547 		bpf_detach(ifp);
    548 		ieee80211_ifdetach(ic);
    549 		if_detach(ifp);
    550 	}
    551 
    552 	splx(s);
    553 
    554 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    555 
    556 	return 0;
    557 }
    558 
    559 static int
    560 upgt_activate(device_t self, devact_t act)
    561 {
    562 	struct upgt_softc *sc = device_private(self);
    563 
    564 	switch (act) {
    565 	case DVACT_DEACTIVATE:
    566 		if_deactivate(&sc->sc_if);
    567 		return 0;
    568 	default:
    569 		return EOPNOTSUPP;
    570 	}
    571 }
    572 
    573 static int
    574 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    575 {
    576 
    577 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    578 		sc->sc_device_type = 1;
    579 		/* XXX */
    580 		aprint_error_dev(sc->sc_dev,
    581 		    "version 1 devices not supported yet\n");
    582 		return 1;
    583 	} else
    584 		sc->sc_device_type = 2;
    585 
    586 	return 0;
    587 }
    588 
    589 static int
    590 upgt_device_init(struct upgt_softc *sc)
    591 {
    592 	struct upgt_data *data_cmd = &sc->cmd_data;
    593 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    594 	int len;
    595 
    596 	len = sizeof(init_cmd);
    597 	memcpy(data_cmd->buf, init_cmd, len);
    598 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    599 		aprint_error_dev(sc->sc_dev,
    600 		    "could not send device init string\n");
    601 		return EIO;
    602 	}
    603 	usbd_delay_ms(sc->sc_udev, 100);
    604 
    605 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    606 
    607 	return 0;
    608 }
    609 
    610 static int
    611 upgt_mem_init(struct upgt_softc *sc)
    612 {
    613 	int i;
    614 
    615 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    616 		sc->sc_memory.page[i].used = 0;
    617 
    618 		if (i == 0) {
    619 			/*
    620 			 * The first memory page is always reserved for
    621 			 * command data.
    622 			 */
    623 			sc->sc_memory.page[i].addr =
    624 			    sc->sc_memaddr_frame_start + MCLBYTES;
    625 		} else {
    626 			sc->sc_memory.page[i].addr =
    627 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    628 		}
    629 
    630 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    631 		    sc->sc_memaddr_frame_end)
    632 			break;
    633 
    634 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    635 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    636 	}
    637 
    638 	sc->sc_memory.pages = i;
    639 
    640 	DPRINTF(2, "%s: memory pages=%d\n",
    641 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    642 
    643 	return 0;
    644 }
    645 
    646 static uint32_t
    647 upgt_mem_alloc(struct upgt_softc *sc)
    648 {
    649 	int i;
    650 
    651 	for (i = 0; i < sc->sc_memory.pages; i++) {
    652 		if (sc->sc_memory.page[i].used == 0) {
    653 			sc->sc_memory.page[i].used = 1;
    654 			return sc->sc_memory.page[i].addr;
    655 		}
    656 	}
    657 
    658 	return 0;
    659 }
    660 
    661 static void
    662 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    663 {
    664 	int i;
    665 
    666 	for (i = 0; i < sc->sc_memory.pages; i++) {
    667 		if (sc->sc_memory.page[i].addr == addr) {
    668 			sc->sc_memory.page[i].used = 0;
    669 			return;
    670 		}
    671 	}
    672 
    673 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    674 	    addr);
    675 }
    676 
    677 
    678 static int
    679 upgt_fw_alloc(struct upgt_softc *sc)
    680 {
    681 	const char *name = "upgt-gw3887";
    682 	int error;
    683 
    684 	if (sc->sc_fw == NULL) {
    685 		error = firmware_load("upgt", name, &sc->sc_fw,
    686 		    &sc->sc_fw_size);
    687 		if (error != 0) {
    688 			if (error == ENOENT) {
    689 				/*
    690 				 * The firmware file for upgt(4) is not in
    691 				 * the default distribution due to its lisence
    692 				 * so explicitly notify it if the firmware file
    693 				 * is not found.
    694 				 */
    695 				aprint_error_dev(sc->sc_dev,
    696 				    "firmware file %s is not installed\n",
    697 				    name);
    698 				aprint_error_dev(sc->sc_dev,
    699 				    "(it is not included in the default"
    700 				    " distribution)\n");
    701 				aprint_error_dev(sc->sc_dev,
    702 				    "see upgt(4) man page for details about "
    703 				    "firmware installation\n");
    704 			} else {
    705 				aprint_error_dev(sc->sc_dev,
    706 				    "could not read firmware %s\n", name);
    707 			}
    708 			return EIO;
    709 		}
    710 	}
    711 
    712 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    713 	    name);
    714 
    715 	return 0;
    716 }
    717 
    718 static void
    719 upgt_fw_free(struct upgt_softc *sc)
    720 {
    721 
    722 	if (sc->sc_fw != NULL) {
    723 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    724 		sc->sc_fw = NULL;
    725 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    726 	}
    727 }
    728 
    729 static int
    730 upgt_fw_verify(struct upgt_softc *sc)
    731 {
    732 	struct upgt_fw_bra_option *bra_option;
    733 	uint32_t bra_option_type, bra_option_len;
    734 	uint32_t *uc;
    735 	int offset, bra_end = 0;
    736 
    737 	/*
    738 	 * Seek to beginning of Boot Record Area (BRA).
    739 	 */
    740 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    741 		uc = (uint32_t *)(sc->sc_fw + offset);
    742 		if (*uc == 0)
    743 			break;
    744 	}
    745 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    746 		uc = (uint32_t *)(sc->sc_fw + offset);
    747 		if (*uc != 0)
    748 			break;
    749 	}
    750 	if (offset == sc->sc_fw_size) {
    751 		aprint_error_dev(sc->sc_dev,
    752 		    "firmware Boot Record Area not found\n");
    753 		return EIO;
    754 	}
    755 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    756 	    device_xname(sc->sc_dev), offset);
    757 
    758 	/*
    759 	 * Parse Boot Record Area (BRA) options.
    760 	 */
    761 	while (offset < sc->sc_fw_size && bra_end == 0) {
    762 		/* get current BRA option */
    763 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    764 		bra_option_type = le32toh(bra_option->type);
    765 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    766 
    767 		switch (bra_option_type) {
    768 		case UPGT_BRA_TYPE_FW:
    769 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    770 			    device_xname(sc->sc_dev), bra_option_len);
    771 
    772 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    773 				aprint_error_dev(sc->sc_dev,
    774 				    "wrong UPGT_BRA_TYPE_FW len\n");
    775 				return EIO;
    776 			}
    777 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    778 			    bra_option_len) == 0) {
    779 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    780 				break;
    781 			}
    782 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    783 			    bra_option_len) == 0) {
    784 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    785 				break;
    786 			}
    787 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    788 			    bra_option_len) == 0) {
    789 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    790 				break;
    791 			}
    792 			aprint_error_dev(sc->sc_dev,
    793 			    "unsupported firmware type\n");
    794 			return EIO;
    795 		case UPGT_BRA_TYPE_VERSION:
    796 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    797 			    device_xname(sc->sc_dev), bra_option_len);
    798 			break;
    799 		case UPGT_BRA_TYPE_DEPIF:
    800 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    801 			    device_xname(sc->sc_dev), bra_option_len);
    802 			break;
    803 		case UPGT_BRA_TYPE_EXPIF:
    804 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    805 			    device_xname(sc->sc_dev), bra_option_len);
    806 			break;
    807 		case UPGT_BRA_TYPE_DESCR:
    808 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    809 			    device_xname(sc->sc_dev), bra_option_len);
    810 
    811 			struct upgt_fw_bra_descr *descr =
    812 				(struct upgt_fw_bra_descr *)bra_option->data;
    813 
    814 			sc->sc_memaddr_frame_start =
    815 			    le32toh(descr->memaddr_space_start);
    816 			sc->sc_memaddr_frame_end =
    817 			    le32toh(descr->memaddr_space_end);
    818 
    819 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    820 			    device_xname(sc->sc_dev),
    821 			    sc->sc_memaddr_frame_start);
    822 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    823 			    device_xname(sc->sc_dev),
    824 			    sc->sc_memaddr_frame_end);
    825 			break;
    826 		case UPGT_BRA_TYPE_END:
    827 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    828 			    device_xname(sc->sc_dev), bra_option_len);
    829 			bra_end = 1;
    830 			break;
    831 		default:
    832 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    833 			    device_xname(sc->sc_dev), bra_option_len);
    834 			return EIO;
    835 		}
    836 
    837 		/* jump to next BRA option */
    838 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    839 	}
    840 
    841 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    842 
    843 	return 0;
    844 }
    845 
    846 static int
    847 upgt_fw_load(struct upgt_softc *sc)
    848 {
    849 	struct upgt_data *data_cmd = &sc->cmd_data;
    850 	struct upgt_data *data_rx = &sc->rx_data;
    851 	struct upgt_fw_x2_header *x2;
    852 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    853 	int offset, bsize, n, i, len;
    854 	uint32_t crc;
    855 
    856 	/* send firmware start load command */
    857 	len = sizeof(start_fwload_cmd);
    858 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    859 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    860 		aprint_error_dev(sc->sc_dev,
    861 		    "could not send start_firmware_load command\n");
    862 		return EIO;
    863 	}
    864 
    865 	/* send X2 header */
    866 	len = sizeof(struct upgt_fw_x2_header);
    867 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    868 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    869 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    870 	x2->len = htole32(sc->sc_fw_size);
    871 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    872 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    873 	    sizeof(uint32_t));
    874 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    875 		aprint_error_dev(sc->sc_dev,
    876 		    "could not send firmware X2 header\n");
    877 		return EIO;
    878 	}
    879 
    880 	/* download firmware */
    881 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    882 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    883 			bsize = UPGT_FW_BLOCK_SIZE;
    884 		else
    885 			bsize = sc->sc_fw_size - offset;
    886 
    887 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    888 
    889 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    890 		    device_xname(sc->sc_dev), offset, n, bsize);
    891 
    892 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    893 		    != 0) {
    894 			aprint_error_dev(sc->sc_dev,
    895 			    "error while downloading firmware block\n");
    896 			return EIO;
    897 		}
    898 
    899 		bsize = n;
    900 	}
    901 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    902 
    903 	/* load firmware */
    904 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    905 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    906 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    907 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    908 	len = 6;
    909 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    910 		aprint_error_dev(sc->sc_dev,
    911 		    "could not send load_firmware command\n");
    912 		return EIO;
    913 	}
    914 
    915 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    916 		len = UPGT_FW_BLOCK_SIZE;
    917 		memset(data_rx->buf, 0, 2);
    918 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    919 		    USBD_SHORT_XFER_OK) != 0) {
    920 			aprint_error_dev(sc->sc_dev,
    921 			    "could not read firmware response\n");
    922 			return EIO;
    923 		}
    924 
    925 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    926 			break;	/* firmware load was successful */
    927 	}
    928 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    929 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    930 		return EIO;
    931 	}
    932 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    933 
    934 	return 0;
    935 }
    936 
    937 /*
    938  * While copying the version 2 firmware, we need to replace two characters:
    939  *
    940  * 0x7e -> 0x7d 0x5e
    941  * 0x7d -> 0x7d 0x5d
    942  */
    943 static int
    944 upgt_fw_copy(char *src, char *dst, int size)
    945 {
    946 	int i, j;
    947 
    948 	for (i = 0, j = 0; i < size && j < size; i++) {
    949 		switch (src[i]) {
    950 		case 0x7e:
    951 			dst[j] = 0x7d;
    952 			j++;
    953 			dst[j] = 0x5e;
    954 			j++;
    955 			break;
    956 		case 0x7d:
    957 			dst[j] = 0x7d;
    958 			j++;
    959 			dst[j] = 0x5d;
    960 			j++;
    961 			break;
    962 		default:
    963 			dst[j] = src[i];
    964 			j++;
    965 			break;
    966 		}
    967 	}
    968 
    969 	return i;
    970 }
    971 
    972 static int
    973 upgt_eeprom_read(struct upgt_softc *sc)
    974 {
    975 	struct upgt_data *data_cmd = &sc->cmd_data;
    976 	struct upgt_lmac_mem *mem;
    977 	struct upgt_lmac_eeprom	*eeprom;
    978 	int offset, block, len;
    979 
    980 	offset = 0;
    981 	block = UPGT_EEPROM_BLOCK_SIZE;
    982 	while (offset < UPGT_EEPROM_SIZE) {
    983 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    984 		    device_xname(sc->sc_dev), offset, block);
    985 
    986 		/*
    987 		 * Transmit the URB containing the CMD data.
    988 		 */
    989 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    990 
    991 		memset(data_cmd->buf, 0, len);
    992 
    993 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    994 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    995 		    UPGT_MEMSIZE_FRAME_HEAD);
    996 
    997 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    998 		eeprom->header1.flags = 0;
    999 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
   1000 		eeprom->header1.len = htole16((
   1001 		    sizeof(struct upgt_lmac_eeprom) -
   1002 		    sizeof(struct upgt_lmac_header)) + block);
   1003 
   1004 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   1005 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
   1006 		eeprom->header2.flags = 0;
   1007 
   1008 		eeprom->offset = htole16(offset);
   1009 		eeprom->len = htole16(block);
   1010 
   1011 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
   1012 		    len - sizeof(*mem));
   1013 
   1014 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
   1015 		    USBD_FORCE_SHORT_XFER) != 0) {
   1016 			aprint_error_dev(sc->sc_dev,
   1017 			    "could not transmit EEPROM data URB\n");
   1018 			return EIO;
   1019 		}
   1020 
   1021 		mutex_enter(&sc->sc_mtx);
   1022 		int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
   1023 		mutex_exit(&sc->sc_mtx);
   1024 		if (res) {
   1025 			aprint_error_dev(sc->sc_dev,
   1026 			    "timeout while waiting for EEPROM data\n");
   1027 			return EIO;
   1028 		}
   1029 
   1030 		offset += block;
   1031 		if (UPGT_EEPROM_SIZE - offset < block)
   1032 			block = UPGT_EEPROM_SIZE - offset;
   1033 	}
   1034 
   1035 	return 0;
   1036 }
   1037 
   1038 static int
   1039 upgt_eeprom_parse(struct upgt_softc *sc)
   1040 {
   1041 	struct ieee80211com *ic = &sc->sc_ic;
   1042 	struct upgt_eeprom_header *eeprom_header;
   1043 	struct upgt_eeprom_option *eeprom_option;
   1044 	uint16_t option_len;
   1045 	uint16_t option_type;
   1046 	uint16_t preamble_len;
   1047 	int option_end = 0;
   1048 
   1049 	/* calculate eeprom options start offset */
   1050 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1051 	preamble_len = le16toh(eeprom_header->preamble_len);
   1052 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1053 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1054 
   1055 	while (!option_end) {
   1056 		/* the eeprom option length is stored in words */
   1057 		option_len =
   1058 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1059 		option_type =
   1060 		    le16toh(eeprom_option->type);
   1061 
   1062 		switch (option_type) {
   1063 		case UPGT_EEPROM_TYPE_NAME:
   1064 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1065 			    device_xname(sc->sc_dev), option_len);
   1066 			break;
   1067 		case UPGT_EEPROM_TYPE_SERIAL:
   1068 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1069 			    device_xname(sc->sc_dev), option_len);
   1070 			break;
   1071 		case UPGT_EEPROM_TYPE_MAC:
   1072 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1073 			    device_xname(sc->sc_dev), option_len);
   1074 
   1075 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1076 			break;
   1077 		case UPGT_EEPROM_TYPE_HWRX:
   1078 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1079 			    device_xname(sc->sc_dev), option_len);
   1080 
   1081 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1082 			break;
   1083 		case UPGT_EEPROM_TYPE_CHIP:
   1084 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1085 			    device_xname(sc->sc_dev), option_len);
   1086 			break;
   1087 		case UPGT_EEPROM_TYPE_FREQ3:
   1088 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1089 			    device_xname(sc->sc_dev), option_len);
   1090 
   1091 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1092 			    option_len);
   1093 			break;
   1094 		case UPGT_EEPROM_TYPE_FREQ4:
   1095 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1096 			    device_xname(sc->sc_dev), option_len);
   1097 
   1098 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1099 			    option_len);
   1100 			break;
   1101 		case UPGT_EEPROM_TYPE_FREQ5:
   1102 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1103 			    device_xname(sc->sc_dev), option_len);
   1104 			break;
   1105 		case UPGT_EEPROM_TYPE_FREQ6:
   1106 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1107 			    device_xname(sc->sc_dev), option_len);
   1108 
   1109 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1110 			    option_len);
   1111 			break;
   1112 		case UPGT_EEPROM_TYPE_END:
   1113 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1114 			    device_xname(sc->sc_dev), option_len);
   1115 			option_end = 1;
   1116 			break;
   1117 		case UPGT_EEPROM_TYPE_OFF:
   1118 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1119 			    device_xname(sc->sc_dev));
   1120 			return EIO;
   1121 		default:
   1122 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1123 			    device_xname(sc->sc_dev), option_type, option_len);
   1124 			break;
   1125 		}
   1126 
   1127 		/* jump to next EEPROM option */
   1128 		eeprom_option = (struct upgt_eeprom_option *)
   1129 		    (eeprom_option->data + option_len);
   1130 	}
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 static void
   1136 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1137 {
   1138 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1139 
   1140 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1141 
   1142 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1143 
   1144 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1145 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1146 }
   1147 
   1148 static void
   1149 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1150 {
   1151 	struct upgt_eeprom_freq3_header *freq3_header;
   1152 	struct upgt_lmac_freq3 *freq3;
   1153 	int i, elements, flags;
   1154 	unsigned channel;
   1155 
   1156 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1157 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1158 
   1159 	flags = freq3_header->flags;
   1160 	elements = freq3_header->elements;
   1161 
   1162 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1163 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1164 	__USE(flags);
   1165 
   1166 	for (i = 0; i < elements; i++) {
   1167 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1168 
   1169 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1170 
   1171 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1172 		    device_xname(sc->sc_dev),
   1173 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1174 	}
   1175 }
   1176 
   1177 static void
   1178 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1179 {
   1180 	struct upgt_eeprom_freq4_header *freq4_header;
   1181 	struct upgt_eeprom_freq4_1 *freq4_1;
   1182 	struct upgt_eeprom_freq4_2 *freq4_2;
   1183 	int i, j, elements, settings, flags;
   1184 	unsigned channel;
   1185 
   1186 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1187 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1188 
   1189 	flags = freq4_header->flags;
   1190 	elements = freq4_header->elements;
   1191 	settings = freq4_header->settings;
   1192 
   1193 	/* we need this value later */
   1194 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1195 
   1196 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1197 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1198 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1199 	__USE(flags);
   1200 
   1201 	for (i = 0; i < elements; i++) {
   1202 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1203 
   1204 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1205 
   1206 		for (j = 0; j < settings; j++) {
   1207 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1208 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1209 		}
   1210 
   1211 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1212 		    device_xname(sc->sc_dev),
   1213 		    le16toh(freq4_1[i].freq), channel);
   1214 	}
   1215 }
   1216 
   1217 static void
   1218 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1219 {
   1220 	struct upgt_lmac_freq6 *freq6;
   1221 	int i, elements;
   1222 	unsigned channel;
   1223 
   1224 	freq6 = (struct upgt_lmac_freq6 *)data;
   1225 
   1226 	elements = len / sizeof(struct upgt_lmac_freq6);
   1227 
   1228 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1229 
   1230 	for (i = 0; i < elements; i++) {
   1231 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1232 
   1233 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1234 
   1235 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1236 		    device_xname(sc->sc_dev),
   1237 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1238 	}
   1239 }
   1240 
   1241 static int
   1242 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1243 {
   1244 	struct upgt_softc *sc = ifp->if_softc;
   1245 	struct ieee80211com *ic = &sc->sc_ic;
   1246 	int s, error = 0;
   1247 
   1248 	s = splnet();
   1249 
   1250 	switch (cmd) {
   1251 	case SIOCSIFFLAGS:
   1252 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1253 			break;
   1254 		if (ifp->if_flags & IFF_UP) {
   1255 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1256 				upgt_init(ifp);
   1257 		} else {
   1258 			if (ifp->if_flags & IFF_RUNNING)
   1259 				upgt_stop(sc);
   1260 		}
   1261 		break;
   1262 	case SIOCADDMULTI:
   1263 	case SIOCDELMULTI:
   1264 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1265 			/* setup multicast filter, etc */
   1266 			error = 0;
   1267 		}
   1268 		break;
   1269 	default:
   1270 		error = ieee80211_ioctl(ic, cmd, data);
   1271 		break;
   1272 	}
   1273 
   1274 	if (error == ENETRESET) {
   1275 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1276 		    (IFF_UP | IFF_RUNNING))
   1277 			upgt_init(ifp);
   1278 		error = 0;
   1279 	}
   1280 
   1281 	splx(s);
   1282 
   1283 	return error;
   1284 }
   1285 
   1286 static int
   1287 upgt_init(struct ifnet *ifp)
   1288 {
   1289 	struct upgt_softc *sc = ifp->if_softc;
   1290 	struct ieee80211com *ic = &sc->sc_ic;
   1291 
   1292 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1293 
   1294 	if (ifp->if_flags & IFF_RUNNING)
   1295 		upgt_stop(sc);
   1296 
   1297 	ifp->if_flags |= IFF_RUNNING;
   1298 	ifp->if_flags &= ~IFF_OACTIVE;
   1299 
   1300 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1301 
   1302 	/* setup device rates */
   1303 	upgt_setup_rates(sc);
   1304 
   1305 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1306 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1307 	else
   1308 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1309 
   1310 	return 0;
   1311 }
   1312 
   1313 static void
   1314 upgt_stop(struct upgt_softc *sc)
   1315 {
   1316 	struct ieee80211com *ic = &sc->sc_ic;
   1317 	struct ifnet *ifp = &sc->sc_if;
   1318 
   1319 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1320 
   1321 	/* device down */
   1322 	ifp->if_timer = 0;
   1323 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1324 
   1325 	/* change device back to initial state */
   1326 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1327 }
   1328 
   1329 static int
   1330 upgt_media_change(struct ifnet *ifp)
   1331 {
   1332 	struct upgt_softc *sc = ifp->if_softc;
   1333 	int error;
   1334 
   1335 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1336 
   1337 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
   1338 		return error;
   1339 
   1340 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1341 	    (IFF_UP | IFF_RUNNING)) {
   1342 		/* give pending USB transfers a chance to finish */
   1343 		usbd_delay_ms(sc->sc_udev, 100);
   1344 		upgt_init(ifp);
   1345 	}
   1346 
   1347 	return 0;
   1348 }
   1349 
   1350 static void
   1351 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1352 {
   1353 
   1354 	ni->ni_txrate = 0;
   1355 }
   1356 
   1357 static int
   1358 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1359 {
   1360 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1361 
   1362 	/*
   1363 	 * XXXSMP: This does not wait for the task, if it is in flight,
   1364 	 * to complete.  If this code works at all, it must rely on the
   1365 	 * kernel lock to serialize with the USB task thread.
   1366 	 */
   1367 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1368 	callout_stop(&sc->scan_to);
   1369 
   1370 	/* do it in a process context */
   1371 	sc->sc_state = nstate;
   1372 	sc->sc_arg = arg;
   1373 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 static void
   1379 upgt_newstate_task(void *arg)
   1380 {
   1381 	struct upgt_softc *sc = arg;
   1382 	struct ieee80211com *ic = &sc->sc_ic;
   1383 	struct ieee80211_node *ni;
   1384 	unsigned channel;
   1385 
   1386 	mutex_enter(&sc->sc_mtx);
   1387 
   1388 	switch (sc->sc_state) {
   1389 	case IEEE80211_S_INIT:
   1390 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1391 		    device_xname(sc->sc_dev));
   1392 
   1393 		/* do not accept any frames if the device is down */
   1394 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1395 		upgt_set_led(sc, UPGT_LED_OFF);
   1396 		break;
   1397 	case IEEE80211_S_SCAN:
   1398 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1399 		    device_xname(sc->sc_dev));
   1400 
   1401 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1402 		upgt_set_channel(sc, channel);
   1403 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1404 		callout_schedule(&sc->scan_to, hz / 5);
   1405 		break;
   1406 	case IEEE80211_S_AUTH:
   1407 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1408 		    device_xname(sc->sc_dev));
   1409 
   1410 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1411 		upgt_set_channel(sc, channel);
   1412 		break;
   1413 	case IEEE80211_S_ASSOC:
   1414 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1415 		    device_xname(sc->sc_dev));
   1416 
   1417 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1418 		upgt_set_channel(sc, channel);
   1419 		break;
   1420 	case IEEE80211_S_RUN:
   1421 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1422 		    device_xname(sc->sc_dev));
   1423 
   1424 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1425 		upgt_set_channel(sc, channel);
   1426 
   1427 		ni = ic->ic_bss;
   1428 
   1429 		/*
   1430 		 * TX rate control is done by the firmware.
   1431 		 * Report the maximum rate which is available therefore.
   1432 		 */
   1433 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1434 
   1435 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1436 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1437 		upgt_set_led(sc, UPGT_LED_ON);
   1438 		break;
   1439 	}
   1440 
   1441 	mutex_exit(&sc->sc_mtx);
   1442 
   1443 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1444 }
   1445 
   1446 static void
   1447 upgt_next_scan(void *arg)
   1448 {
   1449 	struct upgt_softc *sc = arg;
   1450 	struct ieee80211com *ic = &sc->sc_ic;
   1451 
   1452 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1453 
   1454 	if (ic->ic_state == IEEE80211_S_SCAN)
   1455 		ieee80211_next_scan(ic);
   1456 }
   1457 
   1458 static void
   1459 upgt_start(struct ifnet *ifp)
   1460 {
   1461 	struct upgt_softc *sc = ifp->if_softc;
   1462 	struct ieee80211com *ic = &sc->sc_ic;
   1463 	struct ether_header *eh;
   1464 	struct ieee80211_node *ni;
   1465 	struct mbuf *m;
   1466 	int i;
   1467 
   1468 	/* don't transmit packets if interface is busy or down */
   1469 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1470 		return;
   1471 
   1472 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1473 
   1474 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1475 		struct upgt_data *data_tx = &sc->tx_data[i];
   1476 
   1477 		if (data_tx->m != NULL)
   1478 			continue;
   1479 
   1480 		IF_POLL(&ic->ic_mgtq, m);
   1481 		if (m != NULL) {
   1482 			/* management frame */
   1483 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1484 
   1485 			ni = M_GETCTX(m, struct ieee80211_node *);
   1486 			M_CLEARCTX(m);
   1487 
   1488 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   1489 
   1490 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1491 				aprint_error_dev(sc->sc_dev,
   1492 				    "no free prism memory\n");
   1493 				m_freem(m);
   1494 				ifp->if_oerrors++;
   1495 				break;
   1496 			}
   1497 			data_tx->ni = ni;
   1498 			data_tx->m = m;
   1499 			sc->tx_queued++;
   1500 		} else {
   1501 			/* data frame */
   1502 			if (ic->ic_state != IEEE80211_S_RUN)
   1503 				break;
   1504 
   1505 			IFQ_POLL(&ifp->if_snd, m);
   1506 			if (m == NULL)
   1507 				break;
   1508 
   1509 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1510 			if (m->m_len < sizeof(struct ether_header) &&
   1511 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1512 				continue;
   1513 
   1514 			eh = mtod(m, struct ether_header *);
   1515 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1516 			if (ni == NULL) {
   1517 				m_freem(m);
   1518 				continue;
   1519 			}
   1520 
   1521 			bpf_mtap(ifp, m, BPF_D_OUT);
   1522 
   1523 			m = ieee80211_encap(ic, m, ni);
   1524 			if (m == NULL) {
   1525 				ieee80211_free_node(ni);
   1526 				continue;
   1527 			}
   1528 
   1529 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   1530 
   1531 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1532 				aprint_error_dev(sc->sc_dev,
   1533 				    "no free prism memory\n");
   1534 				m_freem(m);
   1535 				ieee80211_free_node(ni);
   1536 				ifp->if_oerrors++;
   1537 				break;
   1538 			}
   1539 			data_tx->ni = ni;
   1540 			data_tx->m = m;
   1541 			sc->tx_queued++;
   1542 		}
   1543 	}
   1544 
   1545 	if (sc->tx_queued > 0) {
   1546 		DPRINTF(2, "%s: tx_queued=%d\n",
   1547 		    device_xname(sc->sc_dev), sc->tx_queued);
   1548 		/* process the TX queue in process context */
   1549 		ifp->if_timer = 5;
   1550 		ifp->if_flags |= IFF_OACTIVE;
   1551 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1552 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1553 	}
   1554 }
   1555 
   1556 static void
   1557 upgt_watchdog(struct ifnet *ifp)
   1558 {
   1559 	struct upgt_softc *sc = ifp->if_softc;
   1560 	struct ieee80211com *ic = &sc->sc_ic;
   1561 
   1562 	if (ic->ic_state == IEEE80211_S_INIT)
   1563 		return;
   1564 
   1565 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1566 
   1567 	/* TODO: what shall we do on TX timeout? */
   1568 
   1569 	ieee80211_watchdog(ic);
   1570 }
   1571 
   1572 static void
   1573 upgt_tx_task(void *arg)
   1574 {
   1575 	struct upgt_softc *sc = arg;
   1576 	struct ieee80211com *ic = &sc->sc_ic;
   1577 	struct ieee80211_frame *wh;
   1578 	struct ieee80211_key *k;
   1579 	struct ifnet *ifp = &sc->sc_if;
   1580 	struct upgt_lmac_mem *mem;
   1581 	struct upgt_lmac_tx_desc *txdesc;
   1582 	struct mbuf *m;
   1583 	uint32_t addr;
   1584 	int i, len, pad, s;
   1585 	usbd_status error;
   1586 
   1587 	mutex_enter(&sc->sc_mtx);
   1588 	upgt_set_led(sc, UPGT_LED_BLINK);
   1589 	mutex_exit(&sc->sc_mtx);
   1590 
   1591 	s = splnet();
   1592 
   1593 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1594 		struct upgt_data *data_tx = &sc->tx_data[i];
   1595 
   1596 		if (data_tx->m == NULL)
   1597 			continue;
   1598 
   1599 		m = data_tx->m;
   1600 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1601 
   1602 		/*
   1603 		 * Software crypto.
   1604 		 */
   1605 		wh = mtod(m, struct ieee80211_frame *);
   1606 
   1607 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1608 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1609 			if (k == NULL) {
   1610 				m_freem(m);
   1611 				data_tx->m = NULL;
   1612 				ieee80211_free_node(data_tx->ni);
   1613 				data_tx->ni = NULL;
   1614 				ifp->if_oerrors++;
   1615 				break;
   1616 			}
   1617 
   1618 			/* in case packet header moved, reset pointer */
   1619 			wh = mtod(m, struct ieee80211_frame *);
   1620 		}
   1621 
   1622 		/*
   1623 		 * Transmit the URB containing the TX data.
   1624 		 */
   1625 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1626 
   1627 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1628 		mem->addr = htole32(addr);
   1629 
   1630 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1631 
   1632 		/* XXX differ between data and mgmt frames? */
   1633 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1634 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1635 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1636 
   1637 		txdesc->header2.reqid = htole32(data_tx->addr);
   1638 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1639 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1640 
   1641 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1642 		    IEEE80211_FC0_TYPE_MGT) {
   1643 			/* always send mgmt frames at lowest rate (DS1) */
   1644 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1645 		} else {
   1646 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1647 			    sizeof(txdesc->rates));
   1648 		}
   1649 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1650 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1651 
   1652 		if (sc->sc_drvbpf != NULL) {
   1653 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1654 
   1655 			tap->wt_flags = 0;
   1656 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1657 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1658 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1659 
   1660 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
   1661 			    BPF_D_OUT);
   1662 		}
   1663 
   1664 		/* copy frame below our TX descriptor header */
   1665 		m_copydata(m, 0, m->m_pkthdr.len,
   1666 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1667 
   1668 		/* calculate frame size */
   1669 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1670 
   1671 		if (len & 3) {
   1672 			/* we need to align the frame to a 4 byte boundary */
   1673 			pad = 4 - (len & 3);
   1674 			memset(data_tx->buf + len, 0, pad);
   1675 			len += pad;
   1676 		}
   1677 
   1678 		/* calculate frame checksum */
   1679 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1680 		    len - sizeof(*mem));
   1681 
   1682 		/* we do not need the mbuf anymore */
   1683 		m_freem(m);
   1684 		data_tx->m = NULL;
   1685 
   1686 		ieee80211_free_node(data_tx->ni);
   1687 		data_tx->ni = NULL;
   1688 
   1689 		DPRINTF(2, "%s: TX start data sending\n",
   1690 		    device_xname(sc->sc_dev));
   1691 
   1692 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
   1693 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
   1694 		error = usbd_transfer(data_tx->xfer);
   1695 		if (error != USBD_NORMAL_COMPLETION &&
   1696 		    error != USBD_IN_PROGRESS) {
   1697 			aprint_error_dev(sc->sc_dev,
   1698 			    "could not transmit TX data URB\n");
   1699 			ifp->if_oerrors++;
   1700 			break;
   1701 		}
   1702 
   1703 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1704 		    device_xname(sc->sc_dev), len);
   1705 	}
   1706 
   1707 	splx(s);
   1708 
   1709 	/*
   1710 	 * If we don't regulary read the device statistics, the RX queue
   1711 	 * will stall.  It's strange, but it works, so we keep reading
   1712 	 * the statistics here.  *shrug*
   1713 	 */
   1714 	mutex_enter(&sc->sc_mtx);
   1715 	upgt_get_stats(sc);
   1716 	mutex_exit(&sc->sc_mtx);
   1717 }
   1718 
   1719 static void
   1720 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1721 {
   1722 	struct ifnet *ifp = &sc->sc_if;
   1723 	struct upgt_lmac_tx_done_desc *desc;
   1724 	int i, s;
   1725 
   1726 	s = splnet();
   1727 
   1728 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1729 
   1730 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1731 		struct upgt_data *data_tx = &sc->tx_data[i];
   1732 
   1733 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1734 			upgt_mem_free(sc, data_tx->addr);
   1735 			data_tx->addr = 0;
   1736 
   1737 			sc->tx_queued--;
   1738 			ifp->if_opackets++;
   1739 
   1740 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1741 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1742 			    le32toh(desc->header2.reqid),
   1743 			    le16toh(desc->status),
   1744 			    le16toh(desc->rssi));
   1745 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1746 			break;
   1747 		}
   1748 	}
   1749 
   1750 	if (sc->tx_queued == 0) {
   1751 		/* TX queued was processed, continue */
   1752 		ifp->if_timer = 0;
   1753 		ifp->if_flags &= ~IFF_OACTIVE;
   1754 		upgt_start(ifp);
   1755 	}
   1756 
   1757 	splx(s);
   1758 }
   1759 
   1760 static void
   1761 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
   1762 {
   1763 	struct upgt_data *data_rx = priv;
   1764 	struct upgt_softc *sc = data_rx->sc;
   1765 	int len;
   1766 	struct upgt_lmac_header *header;
   1767 	struct upgt_lmac_eeprom *eeprom;
   1768 	uint8_t h1_type;
   1769 	uint16_t h2_type;
   1770 
   1771 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1772 
   1773 	if (status != USBD_NORMAL_COMPLETION) {
   1774 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1775 			return;
   1776 		if (status == USBD_STALLED)
   1777 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1778 		goto skip;
   1779 	}
   1780 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1781 
   1782 	/*
   1783 	 * Check what type of frame came in.
   1784 	 */
   1785 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1786 
   1787 	h1_type = header->header1.type;
   1788 	h2_type = le16toh(header->header2.type);
   1789 
   1790 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1791 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1792 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1793 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1794 		uint16_t eeprom_len = le16toh(eeprom->len);
   1795 
   1796 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1797 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1798 
   1799 		mutex_enter(&sc->sc_mtx);
   1800 		memcpy(sc->sc_eeprom + eeprom_offset,
   1801 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1802 		    eeprom_len);
   1803 
   1804 		/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
   1805 		/* Note eeprom data arrived */
   1806 		cv_broadcast(&sc->sc_cv);
   1807 		mutex_exit(&sc->sc_mtx);
   1808 	} else
   1809 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1810 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1811 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1812 		    device_xname(sc->sc_dev));
   1813 
   1814 		upgt_tx_done(sc, data_rx->buf + 4);
   1815 	} else
   1816 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1817 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1818 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1819 		    device_xname(sc->sc_dev));
   1820 
   1821 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1822 	} else
   1823 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1824 	    h2_type == UPGT_H2_TYPE_STATS) {
   1825 		DPRINTF(2, "%s: received statistic data\n",
   1826 		    device_xname(sc->sc_dev));
   1827 
   1828 		/* TODO: what could we do with the statistic data? */
   1829 	} else {
   1830 		/* ignore unknown frame types */
   1831 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1832 		    device_xname(sc->sc_dev), header->header1.type);
   1833 	}
   1834 
   1835 skip:	/* setup new transfer */
   1836 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
   1837 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1838 	(void)usbd_transfer(xfer);
   1839 }
   1840 
   1841 static void
   1842 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1843 {
   1844 	struct ieee80211com *ic = &sc->sc_ic;
   1845 	struct ifnet *ifp = &sc->sc_if;
   1846 	struct upgt_lmac_rx_desc *rxdesc;
   1847 	struct ieee80211_frame *wh;
   1848 	struct ieee80211_node *ni;
   1849 	struct mbuf *m;
   1850 	int s;
   1851 
   1852 	/* access RX packet descriptor */
   1853 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1854 
   1855 	/* create mbuf which is suitable for strict alignment archs */
   1856 	m = m_devget(rxdesc->data, pkglen, 0, ifp);
   1857 	if (m == NULL) {
   1858 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1859 		   device_xname(sc->sc_dev));
   1860 		ifp->if_ierrors++;
   1861 		return;
   1862 	}
   1863 
   1864 	s = splnet();
   1865 
   1866 	if (sc->sc_drvbpf != NULL) {
   1867 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1868 
   1869 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1870 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1871 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1872 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1873 		tap->wr_antsignal = rxdesc->rssi;
   1874 
   1875 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   1876 	}
   1877 
   1878 	/* trim FCS */
   1879 	m_adj(m, -IEEE80211_CRC_LEN);
   1880 
   1881 	wh = mtod(m, struct ieee80211_frame *);
   1882 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1883 
   1884 	/* push the frame up to the 802.11 stack */
   1885 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1886 
   1887 	/* node is no longer needed */
   1888 	ieee80211_free_node(ni);
   1889 
   1890 	splx(s);
   1891 
   1892 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1893 }
   1894 
   1895 static void
   1896 upgt_setup_rates(struct upgt_softc *sc)
   1897 {
   1898 	struct ieee80211com *ic = &sc->sc_ic;
   1899 
   1900 	/*
   1901 	 * 0x01 = OFMD6   0x10 = DS1
   1902 	 * 0x04 = OFDM9   0x11 = DS2
   1903 	 * 0x06 = OFDM12  0x12 = DS5
   1904 	 * 0x07 = OFDM18  0x13 = DS11
   1905 	 * 0x08 = OFDM24
   1906 	 * 0x09 = OFDM36
   1907 	 * 0x0a = OFDM48
   1908 	 * 0x0b = OFDM54
   1909 	 */
   1910 	const uint8_t rateset_auto_11b[] =
   1911 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1912 	const uint8_t rateset_auto_11g[] =
   1913 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1914 	const uint8_t rateset_fix_11bg[] =
   1915 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1916 	      0x08, 0x09, 0x0a, 0x0b };
   1917 
   1918 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1919 		/*
   1920 		 * Automatic rate control is done by the device.
   1921 		 * We just pass the rateset from which the device
   1922 		 * will pickup a rate.
   1923 		 */
   1924 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1925 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1926 			    sizeof(sc->sc_cur_rateset));
   1927 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1928 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1929 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1930 			    sizeof(sc->sc_cur_rateset));
   1931 	} else {
   1932 		/* set a fixed rate */
   1933 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1934 		    sizeof(sc->sc_cur_rateset));
   1935 	}
   1936 }
   1937 
   1938 static uint8_t
   1939 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1940 {
   1941 	struct ieee80211com *ic = &sc->sc_ic;
   1942 
   1943 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1944 		if (rate < 0 || rate > 3)
   1945 			/* invalid rate */
   1946 			return 0;
   1947 
   1948 		switch (rate) {
   1949 		case 0:
   1950 			return 2;
   1951 		case 1:
   1952 			return 4;
   1953 		case 2:
   1954 			return 11;
   1955 		case 3:
   1956 			return 22;
   1957 		default:
   1958 			return 0;
   1959 		}
   1960 	}
   1961 
   1962 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1963 		if (rate < 0 || rate > 11)
   1964 			/* invalid rate */
   1965 			return 0;
   1966 
   1967 		switch (rate) {
   1968 		case 0:
   1969 			return 2;
   1970 		case 1:
   1971 			return 4;
   1972 		case 2:
   1973 			return 11;
   1974 		case 3:
   1975 			return 22;
   1976 		case 4:
   1977 			return 12;
   1978 		case 5:
   1979 			return 18;
   1980 		case 6:
   1981 			return 24;
   1982 		case 7:
   1983 			return 36;
   1984 		case 8:
   1985 			return 48;
   1986 		case 9:
   1987 			return 72;
   1988 		case 10:
   1989 			return 96;
   1990 		case 11:
   1991 			return 108;
   1992 		default:
   1993 			return 0;
   1994 		}
   1995 	}
   1996 
   1997 	return 0;
   1998 }
   1999 
   2000 static int
   2001 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   2002 {
   2003 	struct ieee80211com *ic = &sc->sc_ic;
   2004 	struct ieee80211_node *ni = ic->ic_bss;
   2005 	struct upgt_data *data_cmd = &sc->cmd_data;
   2006 	struct upgt_lmac_mem *mem;
   2007 	struct upgt_lmac_filter *filter;
   2008 	int len;
   2009 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   2010 
   2011 	/*
   2012 	 * Transmit the URB containing the CMD data.
   2013 	 */
   2014 	len = sizeof(*mem) + sizeof(*filter);
   2015 
   2016 	memset(data_cmd->buf, 0, len);
   2017 
   2018 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2019 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2020 	    UPGT_MEMSIZE_FRAME_HEAD);
   2021 
   2022 	filter = (struct upgt_lmac_filter *)(mem + 1);
   2023 
   2024 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2025 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   2026 	filter->header1.len = htole16(
   2027 	    sizeof(struct upgt_lmac_filter) -
   2028 	    sizeof(struct upgt_lmac_header));
   2029 
   2030 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2031 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2032 	filter->header2.flags = 0;
   2033 
   2034 	switch (state) {
   2035 	case IEEE80211_S_INIT:
   2036 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2037 		    device_xname(sc->sc_dev));
   2038 
   2039 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2040 		break;
   2041 	case IEEE80211_S_SCAN:
   2042 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2043 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2044 
   2045 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2046 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2047 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2048 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2049 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2050 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2051 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2052 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2053 		break;
   2054 	case IEEE80211_S_RUN:
   2055 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2056 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2057 
   2058 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2059 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2060 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2061 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2062 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2063 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2064 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2065 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2066 		break;
   2067 	default:
   2068 		aprint_error_dev(sc->sc_dev,
   2069 		    "MAC filter does not know that state\n");
   2070 		break;
   2071 	}
   2072 
   2073 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2074 
   2075 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2076 		aprint_error_dev(sc->sc_dev,
   2077 		    "could not transmit macfilter CMD data URB\n");
   2078 		return EIO;
   2079 	}
   2080 
   2081 	return 0;
   2082 }
   2083 
   2084 static int
   2085 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2086 {
   2087 	struct upgt_data *data_cmd = &sc->cmd_data;
   2088 	struct upgt_lmac_mem *mem;
   2089 	struct upgt_lmac_channel *chan;
   2090 	int len;
   2091 
   2092 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2093 	    channel);
   2094 
   2095 	/*
   2096 	 * Transmit the URB containing the CMD data.
   2097 	 */
   2098 	len = sizeof(*mem) + sizeof(*chan);
   2099 
   2100 	memset(data_cmd->buf, 0, len);
   2101 
   2102 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2103 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2104 	    UPGT_MEMSIZE_FRAME_HEAD);
   2105 
   2106 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2107 
   2108 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2109 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2110 	chan->header1.len = htole16(
   2111 	    sizeof(struct upgt_lmac_channel) -
   2112 	    sizeof(struct upgt_lmac_header));
   2113 
   2114 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2115 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2116 	chan->header2.flags = 0;
   2117 
   2118 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2119 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2120 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2121 	chan->settings = sc->sc_eeprom_freq6_settings;
   2122 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2123 
   2124 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2125 	    sizeof(chan->freq3_1));
   2126 
   2127 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2128 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2129 
   2130 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2131 	    sizeof(chan->freq3_2));
   2132 
   2133 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2134 
   2135 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2136 		aprint_error_dev(sc->sc_dev,
   2137 		    "could not transmit channel CMD data URB\n");
   2138 		return EIO;
   2139 	}
   2140 
   2141 	return 0;
   2142 }
   2143 
   2144 static void
   2145 upgt_set_led(struct upgt_softc *sc, int action)
   2146 {
   2147 	struct ieee80211com *ic = &sc->sc_ic;
   2148 	struct upgt_data *data_cmd = &sc->cmd_data;
   2149 	struct upgt_lmac_mem *mem;
   2150 	struct upgt_lmac_led *led;
   2151 	struct timeval t;
   2152 	int len;
   2153 
   2154 	/*
   2155 	 * Transmit the URB containing the CMD data.
   2156 	 */
   2157 	len = sizeof(*mem) + sizeof(*led);
   2158 
   2159 	memset(data_cmd->buf, 0, len);
   2160 
   2161 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2162 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2163 	    UPGT_MEMSIZE_FRAME_HEAD);
   2164 
   2165 	led = (struct upgt_lmac_led *)(mem + 1);
   2166 
   2167 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2168 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2169 	led->header1.len = htole16(
   2170 	    sizeof(struct upgt_lmac_led) -
   2171 	    sizeof(struct upgt_lmac_header));
   2172 
   2173 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2174 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2175 	led->header2.flags = 0;
   2176 
   2177 	switch (action) {
   2178 	case UPGT_LED_OFF:
   2179 		led->mode = htole16(UPGT_LED_MODE_SET);
   2180 		led->action_fix = 0;
   2181 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2182 		led->action_tmp_dur = 0;
   2183 		break;
   2184 	case UPGT_LED_ON:
   2185 		led->mode = htole16(UPGT_LED_MODE_SET);
   2186 		led->action_fix = 0;
   2187 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2188 		led->action_tmp_dur = 0;
   2189 		break;
   2190 	case UPGT_LED_BLINK:
   2191 		if (ic->ic_state != IEEE80211_S_RUN)
   2192 			return;
   2193 		if (sc->sc_led_blink)
   2194 			/* previous blink was not finished */
   2195 			return;
   2196 		led->mode = htole16(UPGT_LED_MODE_SET);
   2197 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2198 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2199 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2200 		/* lock blink */
   2201 		sc->sc_led_blink = 1;
   2202 		t.tv_sec = 0;
   2203 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2204 		callout_schedule(&sc->led_to, tvtohz(&t));
   2205 		break;
   2206 	default:
   2207 		return;
   2208 	}
   2209 
   2210 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2211 
   2212 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2213 		aprint_error_dev(sc->sc_dev,
   2214 		    "could not transmit led CMD URB\n");
   2215 	}
   2216 }
   2217 
   2218 static void
   2219 upgt_set_led_blink(void *arg)
   2220 {
   2221 	struct upgt_softc *sc = arg;
   2222 
   2223 	/* blink finished, we are ready for a next one */
   2224 	sc->sc_led_blink = 0;
   2225 	callout_stop(&sc->led_to);
   2226 }
   2227 
   2228 static int
   2229 upgt_get_stats(struct upgt_softc *sc)
   2230 {
   2231 	struct upgt_data *data_cmd = &sc->cmd_data;
   2232 	struct upgt_lmac_mem *mem;
   2233 	struct upgt_lmac_stats *stats;
   2234 	int len;
   2235 
   2236 	/*
   2237 	 * Transmit the URB containing the CMD data.
   2238 	 */
   2239 	len = sizeof(*mem) + sizeof(*stats);
   2240 
   2241 	memset(data_cmd->buf, 0, len);
   2242 
   2243 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2244 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2245 	    UPGT_MEMSIZE_FRAME_HEAD);
   2246 
   2247 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2248 
   2249 	stats->header1.flags = 0;
   2250 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2251 	stats->header1.len = htole16(
   2252 	    sizeof(struct upgt_lmac_stats) -
   2253 	    sizeof(struct upgt_lmac_header));
   2254 
   2255 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2256 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2257 	stats->header2.flags = 0;
   2258 
   2259 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2260 
   2261 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2262 		aprint_error_dev(sc->sc_dev,
   2263 		    "could not transmit statistics CMD data URB\n");
   2264 		return EIO;
   2265 	}
   2266 
   2267 	return 0;
   2268 
   2269 }
   2270 
   2271 static int
   2272 upgt_alloc_tx(struct upgt_softc *sc)
   2273 {
   2274 	int i;
   2275 
   2276 	sc->tx_queued = 0;
   2277 
   2278 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2279 		struct upgt_data *data_tx = &sc->tx_data[i];
   2280 
   2281 		data_tx->sc = sc;
   2282 
   2283 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2284 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
   2285 		if (err) {
   2286 			aprint_error_dev(sc->sc_dev,
   2287 			    "could not allocate TX xfer\n");
   2288 			return err;
   2289 		}
   2290 
   2291 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
   2292 	}
   2293 
   2294 	return 0;
   2295 }
   2296 
   2297 static int
   2298 upgt_alloc_rx(struct upgt_softc *sc)
   2299 {
   2300 	struct upgt_data *data_rx = &sc->rx_data;
   2301 
   2302 	data_rx->sc = sc;
   2303 
   2304 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
   2305 	    0, 0, &data_rx->xfer);
   2306 	if (err) {
   2307 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2308 		return err;
   2309 	}
   2310 
   2311 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
   2312 
   2313 	return 0;
   2314 }
   2315 
   2316 static int
   2317 upgt_alloc_cmd(struct upgt_softc *sc)
   2318 {
   2319 	struct upgt_data *data_cmd = &sc->cmd_data;
   2320 
   2321 	data_cmd->sc = sc;
   2322 
   2323 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2324 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
   2325 	if (err) {
   2326 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2327 		return err;
   2328 	}
   2329 
   2330 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
   2331 
   2332 	cv_init(&sc->sc_cv, "upgteeprom");
   2333 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
   2334 
   2335 	return 0;
   2336 }
   2337 
   2338 static void
   2339 upgt_free_tx(struct upgt_softc *sc)
   2340 {
   2341 	int i;
   2342 
   2343 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2344 		struct upgt_data *data_tx = &sc->tx_data[i];
   2345 
   2346 		if (data_tx->xfer != NULL) {
   2347 			usbd_destroy_xfer(data_tx->xfer);
   2348 			data_tx->xfer = NULL;
   2349 		}
   2350 
   2351 		data_tx->ni = NULL;
   2352 	}
   2353 }
   2354 
   2355 static void
   2356 upgt_free_rx(struct upgt_softc *sc)
   2357 {
   2358 	struct upgt_data *data_rx = &sc->rx_data;
   2359 
   2360 	if (data_rx->xfer != NULL) {
   2361 		usbd_destroy_xfer(data_rx->xfer);
   2362 		data_rx->xfer = NULL;
   2363 	}
   2364 
   2365 	data_rx->ni = NULL;
   2366 }
   2367 
   2368 static void
   2369 upgt_free_cmd(struct upgt_softc *sc)
   2370 {
   2371 	struct upgt_data *data_cmd = &sc->cmd_data;
   2372 
   2373 	if (data_cmd->xfer != NULL) {
   2374 		usbd_destroy_xfer(data_cmd->xfer);
   2375 		data_cmd->xfer = NULL;
   2376 	}
   2377 
   2378 	mutex_destroy(&sc->sc_mtx);
   2379 	cv_destroy(&sc->sc_cv);
   2380 }
   2381 
   2382 static int
   2383 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2384     struct usbd_pipe *pipeh, uint32_t *size, int flags)
   2385 {
   2386         usbd_status status;
   2387 
   2388 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
   2389 	    data->buf, size);
   2390 	if (status != USBD_NORMAL_COMPLETION) {
   2391 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2392 		    usbd_errstr(status));
   2393 		return EIO;
   2394 	}
   2395 
   2396 	return 0;
   2397 }
   2398 
   2399 #if 0
   2400 static void
   2401 upgt_hexdump(void *buf, int len)
   2402 {
   2403 	int i;
   2404 
   2405 	for (i = 0; i < len; i++) {
   2406 		if (i % 16 == 0)
   2407 			printf("%s%5i:", i ? "\n" : "", i);
   2408 		if (i % 4 == 0)
   2409 			printf(" ");
   2410 		printf("%02x", (int)*((uint8_t *)buf + i));
   2411 	}
   2412 	printf("\n");
   2413 }
   2414 #endif
   2415 
   2416 static uint32_t
   2417 upgt_crc32_le(const void *buf, size_t size)
   2418 {
   2419 	uint32_t crc;
   2420 
   2421 	crc = ether_crc32_le(buf, size);
   2422 
   2423 	/* apply final XOR value as common for CRC-32 */
   2424 	crc = htole32(crc ^ 0xffffffffU);
   2425 
   2426 	return crc;
   2427 }
   2428 
   2429 /*
   2430  * The firmware awaits a checksum for each frame we send to it.
   2431  * The algorithm used is uncommon but somehow similar to CRC32.
   2432  */
   2433 static uint32_t
   2434 upgt_chksum_le(const uint32_t *buf, size_t size)
   2435 {
   2436 	int i;
   2437 	uint32_t crc = 0;
   2438 
   2439 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2440 		crc = htole32(crc ^ *buf++);
   2441 		crc = htole32((crc >> 5) ^ (crc << 3));
   2442 	}
   2443 
   2444 	return crc;
   2445 }
   2446