if_upgt.c revision 1.3.6.2 1 /* $NetBSD: if_upgt.c,v 1.3.6.2 2011/03/05 20:54:12 rmind Exp $ */
2 /* $OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4 /*
5 * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.3.6.2 2011/03/05 20:54:12 rmind Exp $");
22
23 #include <sys/param.h>
24 #include <sys/callout.h>
25 #include <sys/device.h>
26 #include <sys/errno.h>
27 #include <sys/kernel.h>
28 #include <sys/kthread.h>
29 #include <sys/mbuf.h>
30 #include <sys/proc.h>
31 #include <sys/sockio.h>
32 #include <sys/systm.h>
33 #include <sys/vnode.h>
34
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/intr.h>
38
39 #include <net/bpf.h>
40 #include <net/if.h>
41 #include <net/if_arp.h>
42 #include <net/if_dl.h>
43 #include <net/if_ether.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_radiotap.h>
49
50 #include <dev/firmload.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56
57 #include <dev/usb/if_upgtvar.h>
58
59 /*
60 * Driver for the USB PrismGT devices.
61 *
62 * For now just USB 2.0 devices with the GW3887 chipset are supported.
63 * The driver has been written based on the firmware version 2.13.1.0_LM87.
64 *
65 * TODO's:
66 * - Fix MONITOR mode (MAC filter).
67 * - Add HOSTAP mode.
68 * - Add IBSS mode.
69 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
70 *
71 * Parts of this driver has been influenced by reading the p54u driver
72 * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
73 * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
74 */
75
76 #ifdef UPGT_DEBUG
77 int upgt_debug = 2;
78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
79 #else
80 #define DPRINTF(l, x...)
81 #endif
82
83 /*
84 * Prototypes.
85 */
86 static int upgt_match(device_t, cfdata_t, void *);
87 static void upgt_attach(device_t, device_t, void *);
88 static int upgt_detach(device_t, int);
89 static int upgt_activate(device_t, devact_t);
90
91 static void upgt_attach_hook(device_t);
92 static int upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
93 static int upgt_device_init(struct upgt_softc *);
94 static int upgt_mem_init(struct upgt_softc *);
95 static uint32_t upgt_mem_alloc(struct upgt_softc *);
96 static void upgt_mem_free(struct upgt_softc *, uint32_t);
97 static int upgt_fw_alloc(struct upgt_softc *);
98 static void upgt_fw_free(struct upgt_softc *);
99 static int upgt_fw_verify(struct upgt_softc *);
100 static int upgt_fw_load(struct upgt_softc *);
101 static int upgt_fw_copy(char *, char *, int);
102 static int upgt_eeprom_read(struct upgt_softc *);
103 static int upgt_eeprom_parse(struct upgt_softc *);
104 static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
105 static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
106 static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
107 static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
108
109 static int upgt_ioctl(struct ifnet *, u_long, void *);
110 static int upgt_init(struct ifnet *);
111 static void upgt_stop(struct upgt_softc *);
112 static int upgt_media_change(struct ifnet *);
113 static void upgt_newassoc(struct ieee80211_node *, int);
114 static int upgt_newstate(struct ieee80211com *, enum ieee80211_state,
115 int);
116 static void upgt_newstate_task(void *);
117 static void upgt_next_scan(void *);
118 static void upgt_start(struct ifnet *);
119 static void upgt_watchdog(struct ifnet *);
120 static void upgt_tx_task(void *);
121 static void upgt_tx_done(struct upgt_softc *, uint8_t *);
122 static void upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
123 static void upgt_rx(struct upgt_softc *, uint8_t *, int);
124 static void upgt_setup_rates(struct upgt_softc *);
125 static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
126 static int upgt_set_macfilter(struct upgt_softc *, uint8_t state);
127 static int upgt_set_channel(struct upgt_softc *, unsigned);
128 static void upgt_set_led(struct upgt_softc *, int);
129 static void upgt_set_led_blink(void *);
130 static int upgt_get_stats(struct upgt_softc *);
131
132 static int upgt_alloc_tx(struct upgt_softc *);
133 static int upgt_alloc_rx(struct upgt_softc *);
134 static int upgt_alloc_cmd(struct upgt_softc *);
135 static void upgt_free_tx(struct upgt_softc *);
136 static void upgt_free_rx(struct upgt_softc *);
137 static void upgt_free_cmd(struct upgt_softc *);
138 static int upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
139 usbd_pipe_handle, uint32_t *, int);
140
141 #if 0
142 static void upgt_hexdump(void *, int);
143 #endif
144 static uint32_t upgt_crc32_le(const void *, size_t);
145 static uint32_t upgt_chksum_le(const uint32_t *, size_t);
146
147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
148 upgt_match, upgt_attach, upgt_detach, upgt_activate);
149
150 static const struct usb_devno upgt_devs_1[] = {
151 /* version 1 devices */
152 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST120G }
153 };
154
155 static const struct usb_devno upgt_devs_2[] = {
156 /* version 2 devices */
157 { USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_PRISM_GT },
158 { USB_VENDOR_ALCATELT, USB_PRODUCT_ALCATELT_ST121G },
159 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
160 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
161 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
162 { USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
163 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GTST },
164 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_1 },
165 { USB_VENDOR_DELL, USB_PRODUCT_DELL_PRISM_GT_2 },
166 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122A2 },
167 { USB_VENDOR_FSC, USB_PRODUCT_FSC_E5400 },
168 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
169 { USB_VENDOR_GLOBESPAN, USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
170 { USB_VENDOR_INTERSIL, USB_PRODUCT_INTERSIL_PRISM_GT },
171 { USB_VENDOR_PHEENET, USB_PRODUCT_PHEENET_GWU513 },
172 { USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_CPWUA054 },
173 { USB_VENDOR_SHARP, USB_PRODUCT_SHARP_RUITZ1016YCZZ },
174 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
175 { USB_VENDOR_USR, USB_PRODUCT_USR_USR5422 },
176 { USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR045G },
177 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_1 },
178 { USB_VENDOR_XYRATEX, USB_PRODUCT_XYRATEX_PRISM_GT_2 },
179 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_MD40900 },
180 { USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_XG703A }
181 };
182
183 static int
184 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
185 size_t *sizep)
186 {
187 firmware_handle_t fh;
188 int error;
189
190 if ((error = firmware_open(dname, iname, &fh)) != 0)
191 return error;
192 *sizep = firmware_get_size(fh);
193 if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
194 firmware_close(fh);
195 return ENOMEM;
196 }
197 if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
198 firmware_free(*ucodep, *sizep);
199 firmware_close(fh);
200
201 return error;
202 }
203
204 static int
205 upgt_match(device_t parent, cfdata_t match, void *aux)
206 {
207 struct usb_attach_arg *uaa = aux;
208
209 if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
210 return UMATCH_VENDOR_PRODUCT;
211
212 if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
213 return UMATCH_VENDOR_PRODUCT;
214
215 return UMATCH_NONE;
216 }
217
218 static void
219 upgt_attach(device_t parent, device_t self, void *aux)
220 {
221 struct upgt_softc *sc = device_private(self);
222 struct usb_attach_arg *uaa = aux;
223 usb_interface_descriptor_t *id;
224 usb_endpoint_descriptor_t *ed;
225 usbd_status error;
226 char *devinfop;
227 int i;
228
229 aprint_naive("\n");
230 aprint_normal("\n");
231
232 /*
233 * Attach USB device.
234 */
235 sc->sc_dev = self;
236 sc->sc_udev = uaa->device;
237
238 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
239 aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
240 usbd_devinfo_free(devinfop);
241
242 /* check device type */
243 if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
244 return;
245
246 /* set configuration number */
247 if (usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0) != 0) {
248 aprint_error_dev(sc->sc_dev,
249 "could not set configuration no\n");
250 return;
251 }
252
253 /* get the first interface handle */
254 error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
255 &sc->sc_iface);
256 if (error != 0) {
257 aprint_error_dev(sc->sc_dev,
258 "could not get interface handle\n");
259 return;
260 }
261
262 /* find endpoints */
263 id = usbd_get_interface_descriptor(sc->sc_iface);
264 sc->sc_rx_no = sc->sc_tx_no = -1;
265 for (i = 0; i < id->bNumEndpoints; i++) {
266 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
267 if (ed == NULL) {
268 aprint_error_dev(sc->sc_dev,
269 "no endpoint descriptor for iface %d\n", i);
270 return;
271 }
272
273 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
274 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
275 sc->sc_tx_no = ed->bEndpointAddress;
276 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
277 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
278 sc->sc_rx_no = ed->bEndpointAddress;
279
280 /*
281 * 0x01 TX pipe
282 * 0x81 RX pipe
283 *
284 * Deprecated scheme (not used with fw version >2.5.6.x):
285 * 0x02 TX MGMT pipe
286 * 0x82 TX MGMT pipe
287 */
288 if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
289 break;
290 }
291 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
292 aprint_error_dev(sc->sc_dev, "missing endpoint\n");
293 return;
294 }
295
296 /* setup tasks and timeouts */
297 usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc);
298 usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc);
299 callout_init(&sc->scan_to, 0);
300 callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
301 callout_init(&sc->led_to, 0);
302 callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
303
304 /*
305 * Open TX and RX USB bulk pipes.
306 */
307 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
308 &sc->sc_tx_pipeh);
309 if (error != 0) {
310 aprint_error_dev(sc->sc_dev,
311 "could not open TX pipe: %s\n", usbd_errstr(error));
312 goto fail;
313 }
314 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
315 &sc->sc_rx_pipeh);
316 if (error != 0) {
317 aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
318 usbd_errstr(error));
319 goto fail;
320 }
321
322 /*
323 * Allocate TX, RX, and CMD xfers.
324 */
325 if (upgt_alloc_tx(sc) != 0)
326 goto fail;
327 if (upgt_alloc_rx(sc) != 0)
328 goto fail;
329 if (upgt_alloc_cmd(sc) != 0)
330 goto fail;
331
332 /*
333 * We need the firmware loaded from file system to complete the attach.
334 */
335 config_mountroot(self, upgt_attach_hook);
336
337 return;
338 fail:
339 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
340 }
341
342 static void
343 upgt_attach_hook(device_t arg)
344 {
345 struct upgt_softc *sc = device_private(arg);
346 struct ieee80211com *ic = &sc->sc_ic;
347 struct ifnet *ifp = &sc->sc_if;
348 usbd_status error;
349 int i;
350
351 /*
352 * Load firmware file into memory.
353 */
354 if (upgt_fw_alloc(sc) != 0)
355 goto fail;
356
357 /*
358 * Initialize the device.
359 */
360 if (upgt_device_init(sc) != 0)
361 goto fail;
362
363 /*
364 * Verify the firmware.
365 */
366 if (upgt_fw_verify(sc) != 0)
367 goto fail;
368
369 /*
370 * Calculate device memory space.
371 */
372 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
373 aprint_error_dev(sc->sc_dev,
374 "could not find memory space addresses on FW\n");
375 goto fail;
376 }
377 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
378 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
379
380 DPRINTF(1, "%s: memory address frame start=0x%08x\n",
381 device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
382 DPRINTF(1, "%s: memory address frame end=0x%08x\n",
383 device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
384 DPRINTF(1, "%s: memory address rx start=0x%08x\n",
385 device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
386
387 upgt_mem_init(sc);
388
389 /*
390 * Load the firmware.
391 */
392 if (upgt_fw_load(sc) != 0)
393 goto fail;
394
395 /*
396 * Startup the RX pipe.
397 */
398 struct upgt_data *data_rx = &sc->rx_data;
399
400 usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
401 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
402 error = usbd_transfer(data_rx->xfer);
403 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
404 aprint_error_dev(sc->sc_dev,
405 "could not queue RX transfer\n");
406 goto fail;
407 }
408 usbd_delay_ms(sc->sc_udev, 100);
409
410 /*
411 * Read the whole EEPROM content and parse it.
412 */
413 if (upgt_eeprom_read(sc) != 0)
414 goto fail;
415 if (upgt_eeprom_parse(sc) != 0)
416 goto fail;
417
418 /*
419 * Setup the 802.11 device.
420 */
421 ic->ic_ifp = ifp;
422 ic->ic_phytype = IEEE80211_T_OFDM;
423 ic->ic_opmode = IEEE80211_M_STA;
424 ic->ic_state = IEEE80211_S_INIT;
425 ic->ic_caps =
426 IEEE80211_C_MONITOR |
427 IEEE80211_C_SHPREAMBLE |
428 IEEE80211_C_SHSLOT;
429
430 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
431 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
432
433 for (i = 1; i <= 14; i++) {
434 ic->ic_channels[i].ic_freq =
435 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
436 ic->ic_channels[i].ic_flags =
437 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
438 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
439 }
440
441 ifp->if_softc = sc;
442 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 ifp->if_init = upgt_init;
444 ifp->if_ioctl = upgt_ioctl;
445 ifp->if_start = upgt_start;
446 ifp->if_watchdog = upgt_watchdog;
447 IFQ_SET_READY(&ifp->if_snd);
448 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
449
450 if_attach(ifp);
451 ieee80211_ifattach(ic);
452 ic->ic_newassoc = upgt_newassoc;
453
454 sc->sc_newstate = ic->ic_newstate;
455 ic->ic_newstate = upgt_newstate;
456 ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
457
458 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
459 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
460 &sc->sc_drvbpf);
461
462 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
463 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
465
466 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
467 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
469
470 aprint_normal_dev(sc->sc_dev, "address %s\n",
471 ether_sprintf(ic->ic_myaddr));
472
473 ieee80211_announce(ic);
474
475 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
476
477 /* device attached */
478 sc->sc_flags |= UPGT_DEVICE_ATTACHED;
479
480 return;
481 fail:
482 aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
483 }
484
485 static int
486 upgt_detach(device_t self, int flags)
487 {
488 struct upgt_softc *sc = device_private(self);
489 struct ifnet *ifp = &sc->sc_if;
490 struct ieee80211com *ic = &sc->sc_ic;
491 int s;
492
493 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
494
495 s = splnet();
496
497 if (ifp->if_flags & IFF_RUNNING)
498 upgt_stop(sc);
499
500 /* remove tasks and timeouts */
501 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
502 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
503 callout_destroy(&sc->scan_to);
504 callout_destroy(&sc->led_to);
505
506 /* abort and close TX / RX pipes */
507 if (sc->sc_tx_pipeh != NULL) {
508 usbd_abort_pipe(sc->sc_tx_pipeh);
509 usbd_close_pipe(sc->sc_tx_pipeh);
510 }
511 if (sc->sc_rx_pipeh != NULL) {
512 usbd_abort_pipe(sc->sc_rx_pipeh);
513 usbd_close_pipe(sc->sc_rx_pipeh);
514 }
515
516 /* free xfers */
517 upgt_free_tx(sc);
518 upgt_free_rx(sc);
519 upgt_free_cmd(sc);
520
521 /* free firmware */
522 upgt_fw_free(sc);
523
524 if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
525 /* detach interface */
526 bpf_detach(ifp);
527 ieee80211_ifdetach(ic);
528 if_detach(ifp);
529 }
530
531 splx(s);
532
533 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
534
535 return 0;
536 }
537
538 static int
539 upgt_activate(device_t self, devact_t act)
540 {
541 struct upgt_softc *sc = device_private(self);
542
543 switch (act) {
544 case DVACT_DEACTIVATE:
545 if_deactivate(&sc->sc_if);
546 return 0;
547 default:
548 return EOPNOTSUPP;
549 }
550 }
551
552 static int
553 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
554 {
555
556 if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
557 sc->sc_device_type = 1;
558 /* XXX */
559 aprint_error_dev(sc->sc_dev,
560 "version 1 devices not supported yet\n");
561 return 1;
562 } else
563 sc->sc_device_type = 2;
564
565 return 0;
566 }
567
568 static int
569 upgt_device_init(struct upgt_softc *sc)
570 {
571 struct upgt_data *data_cmd = &sc->cmd_data;
572 const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
573 int len;
574
575 len = sizeof(init_cmd);
576 memcpy(data_cmd->buf, init_cmd, len);
577 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
578 aprint_error_dev(sc->sc_dev,
579 "could not send device init string\n");
580 return EIO;
581 }
582 usbd_delay_ms(sc->sc_udev, 100);
583
584 DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
585
586 return 0;
587 }
588
589 static int
590 upgt_mem_init(struct upgt_softc *sc)
591 {
592 int i;
593
594 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
595 sc->sc_memory.page[i].used = 0;
596
597 if (i == 0) {
598 /*
599 * The first memory page is always reserved for
600 * command data.
601 */
602 sc->sc_memory.page[i].addr =
603 sc->sc_memaddr_frame_start + MCLBYTES;
604 } else {
605 sc->sc_memory.page[i].addr =
606 sc->sc_memory.page[i - 1].addr + MCLBYTES;
607 }
608
609 if (sc->sc_memory.page[i].addr + MCLBYTES >=
610 sc->sc_memaddr_frame_end)
611 break;
612
613 DPRINTF(2, "%s: memory address page %d=0x%08x\n",
614 device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
615 }
616
617 sc->sc_memory.pages = i;
618
619 DPRINTF(2, "%s: memory pages=%d\n",
620 device_xname(sc->sc_dev), sc->sc_memory.pages);
621
622 return 0;
623 }
624
625 static uint32_t
626 upgt_mem_alloc(struct upgt_softc *sc)
627 {
628 int i;
629
630 for (i = 0; i < sc->sc_memory.pages; i++) {
631 if (sc->sc_memory.page[i].used == 0) {
632 sc->sc_memory.page[i].used = 1;
633 return sc->sc_memory.page[i].addr;
634 }
635 }
636
637 return 0;
638 }
639
640 static void
641 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
642 {
643 int i;
644
645 for (i = 0; i < sc->sc_memory.pages; i++) {
646 if (sc->sc_memory.page[i].addr == addr) {
647 sc->sc_memory.page[i].used = 0;
648 return;
649 }
650 }
651
652 aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
653 addr);
654 }
655
656
657 static int
658 upgt_fw_alloc(struct upgt_softc *sc)
659 {
660 const char *name = "upgt-gw3887";
661 int error;
662
663 if (sc->sc_fw == NULL) {
664 error = firmware_load("upgt", name, &sc->sc_fw,
665 &sc->sc_fw_size);
666 if (error != 0) {
667 if (error == ENOENT) {
668 /*
669 * The firmware file for upgt(4) is not in
670 * the default distribution due to its lisence
671 * so explicitly notify it if the firmware file
672 * is not found.
673 */
674 aprint_error_dev(sc->sc_dev,
675 "firmware file %s is not installed\n",
676 name);
677 aprint_error_dev(sc->sc_dev,
678 "(it is not included in the default"
679 " distribution)\n");
680 aprint_error_dev(sc->sc_dev,
681 "see upgt(4) man page for details about "
682 "firmware installation\n");
683 } else {
684 aprint_error_dev(sc->sc_dev,
685 "could not read firmware %s\n", name);
686 }
687 return EIO;
688 }
689 }
690
691 DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
692 name);
693
694 return 0;
695 }
696
697 static void
698 upgt_fw_free(struct upgt_softc *sc)
699 {
700
701 if (sc->sc_fw != NULL) {
702 firmware_free(sc->sc_fw, sc->sc_fw_size);
703 sc->sc_fw = NULL;
704 DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
705 }
706 }
707
708 static int
709 upgt_fw_verify(struct upgt_softc *sc)
710 {
711 struct upgt_fw_bra_option *bra_option;
712 uint32_t bra_option_type, bra_option_len;
713 uint32_t *uc;
714 int offset, bra_end = 0;
715
716 /*
717 * Seek to beginning of Boot Record Area (BRA).
718 */
719 for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
720 uc = (uint32_t *)(sc->sc_fw + offset);
721 if (*uc == 0)
722 break;
723 }
724 for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
725 uc = (uint32_t *)(sc->sc_fw + offset);
726 if (*uc != 0)
727 break;
728 }
729 if (offset == sc->sc_fw_size) {
730 aprint_error_dev(sc->sc_dev,
731 "firmware Boot Record Area not found\n");
732 return EIO;
733 }
734 DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
735 device_xname(sc->sc_dev), offset);
736
737 /*
738 * Parse Boot Record Area (BRA) options.
739 */
740 while (offset < sc->sc_fw_size && bra_end == 0) {
741 /* get current BRA option */
742 bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
743 bra_option_type = le32toh(bra_option->type);
744 bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
745
746 switch (bra_option_type) {
747 case UPGT_BRA_TYPE_FW:
748 DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
749 device_xname(sc->sc_dev), bra_option_len);
750
751 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
752 aprint_error_dev(sc->sc_dev,
753 "wrong UPGT_BRA_TYPE_FW len\n");
754 return EIO;
755 }
756 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
757 bra_option_len) == 0) {
758 sc->sc_fw_type = UPGT_FWTYPE_LM86;
759 break;
760 }
761 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
762 bra_option_len) == 0) {
763 sc->sc_fw_type = UPGT_FWTYPE_LM87;
764 break;
765 }
766 if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
767 bra_option_len) == 0) {
768 sc->sc_fw_type = UPGT_FWTYPE_FMAC;
769 break;
770 }
771 aprint_error_dev(sc->sc_dev,
772 "unsupported firmware type\n");
773 return EIO;
774 case UPGT_BRA_TYPE_VERSION:
775 DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
776 device_xname(sc->sc_dev), bra_option_len);
777 break;
778 case UPGT_BRA_TYPE_DEPIF:
779 DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
780 device_xname(sc->sc_dev), bra_option_len);
781 break;
782 case UPGT_BRA_TYPE_EXPIF:
783 DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
784 device_xname(sc->sc_dev), bra_option_len);
785 break;
786 case UPGT_BRA_TYPE_DESCR:
787 DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
788 device_xname(sc->sc_dev), bra_option_len);
789
790 struct upgt_fw_bra_descr *descr =
791 (struct upgt_fw_bra_descr *)bra_option->data;
792
793 sc->sc_memaddr_frame_start =
794 le32toh(descr->memaddr_space_start);
795 sc->sc_memaddr_frame_end =
796 le32toh(descr->memaddr_space_end);
797
798 DPRINTF(2, "%s: memory address space start=0x%08x\n",
799 device_xname(sc->sc_dev),
800 sc->sc_memaddr_frame_start);
801 DPRINTF(2, "%s: memory address space end=0x%08x\n",
802 device_xname(sc->sc_dev),
803 sc->sc_memaddr_frame_end);
804 break;
805 case UPGT_BRA_TYPE_END:
806 DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
807 device_xname(sc->sc_dev), bra_option_len);
808 bra_end = 1;
809 break;
810 default:
811 DPRINTF(1, "%s: unknown BRA option len=%d\n",
812 device_xname(sc->sc_dev), bra_option_len);
813 return EIO;
814 }
815
816 /* jump to next BRA option */
817 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
818 }
819
820 DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
821
822 return 0;
823 }
824
825 static int
826 upgt_fw_load(struct upgt_softc *sc)
827 {
828 struct upgt_data *data_cmd = &sc->cmd_data;
829 struct upgt_data *data_rx = &sc->rx_data;
830 struct upgt_fw_x2_header *x2;
831 const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
832 int offset, bsize, n, i, len;
833 uint32_t crc;
834
835 /* send firmware start load command */
836 len = sizeof(start_fwload_cmd);
837 memcpy(data_cmd->buf, start_fwload_cmd, len);
838 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
839 aprint_error_dev(sc->sc_dev,
840 "could not send start_firmware_load command\n");
841 return EIO;
842 }
843
844 /* send X2 header */
845 len = sizeof(struct upgt_fw_x2_header);
846 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
847 memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
848 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
849 x2->len = htole32(sc->sc_fw_size);
850 x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
851 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
852 sizeof(uint32_t));
853 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
854 aprint_error_dev(sc->sc_dev,
855 "could not send firmware X2 header\n");
856 return EIO;
857 }
858
859 /* download firmware */
860 for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
861 if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
862 bsize = UPGT_FW_BLOCK_SIZE;
863 else
864 bsize = sc->sc_fw_size - offset;
865
866 n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
867
868 DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
869 device_xname(sc->sc_dev), offset, n, bsize);
870
871 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
872 != 0) {
873 aprint_error_dev(sc->sc_dev,
874 "error while downloading firmware block\n");
875 return EIO;
876 }
877
878 bsize = n;
879 }
880 DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
881
882 /* load firmware */
883 crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
884 *((uint32_t *)(data_cmd->buf) ) = crc;
885 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
886 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
887 len = 6;
888 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
889 aprint_error_dev(sc->sc_dev,
890 "could not send load_firmware command\n");
891 return EIO;
892 }
893
894 for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
895 len = UPGT_FW_BLOCK_SIZE;
896 memset(data_rx->buf, 0, 2);
897 if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
898 USBD_SHORT_XFER_OK) != 0) {
899 aprint_error_dev(sc->sc_dev,
900 "could not read firmware response\n");
901 return EIO;
902 }
903
904 if (memcmp(data_rx->buf, "OK", 2) == 0)
905 break; /* firmware load was successful */
906 }
907 if (i == UPGT_FIRMWARE_TIMEOUT) {
908 aprint_error_dev(sc->sc_dev, "firmware load failed\n");
909 return EIO;
910 }
911 DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
912
913 return 0;
914 }
915
916 /*
917 * While copying the version 2 firmware, we need to replace two characters:
918 *
919 * 0x7e -> 0x7d 0x5e
920 * 0x7d -> 0x7d 0x5d
921 */
922 static int
923 upgt_fw_copy(char *src, char *dst, int size)
924 {
925 int i, j;
926
927 for (i = 0, j = 0; i < size && j < size; i++) {
928 switch (src[i]) {
929 case 0x7e:
930 dst[j] = 0x7d;
931 j++;
932 dst[j] = 0x5e;
933 j++;
934 break;
935 case 0x7d:
936 dst[j] = 0x7d;
937 j++;
938 dst[j] = 0x5d;
939 j++;
940 break;
941 default:
942 dst[j] = src[i];
943 j++;
944 break;
945 }
946 }
947
948 return i;
949 }
950
951 static int
952 upgt_eeprom_read(struct upgt_softc *sc)
953 {
954 struct upgt_data *data_cmd = &sc->cmd_data;
955 struct upgt_lmac_mem *mem;
956 struct upgt_lmac_eeprom *eeprom;
957 int offset, block, len;
958
959 offset = 0;
960 block = UPGT_EEPROM_BLOCK_SIZE;
961 while (offset < UPGT_EEPROM_SIZE) {
962 DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
963 device_xname(sc->sc_dev), offset, block);
964
965 /*
966 * Transmit the URB containing the CMD data.
967 */
968 len = sizeof(*mem) + sizeof(*eeprom) + block;
969
970 memset(data_cmd->buf, 0, len);
971
972 mem = (struct upgt_lmac_mem *)data_cmd->buf;
973 mem->addr = htole32(sc->sc_memaddr_frame_start +
974 UPGT_MEMSIZE_FRAME_HEAD);
975
976 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
977 eeprom->header1.flags = 0;
978 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
979 eeprom->header1.len = htole16((
980 sizeof(struct upgt_lmac_eeprom) -
981 sizeof(struct upgt_lmac_header)) + block);
982
983 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
984 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
985 eeprom->header2.flags = 0;
986
987 eeprom->offset = htole16(offset);
988 eeprom->len = htole16(block);
989
990 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
991 len - sizeof(*mem));
992
993 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
994 USBD_FORCE_SHORT_XFER) != 0) {
995 aprint_error_dev(sc->sc_dev,
996 "could not transmit EEPROM data URB\n");
997 return EIO;
998 }
999 if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
1000 aprint_error_dev(sc->sc_dev,
1001 "timeout while waiting for EEPROM data\n");
1002 return EIO;
1003 }
1004
1005 offset += block;
1006 if (UPGT_EEPROM_SIZE - offset < block)
1007 block = UPGT_EEPROM_SIZE - offset;
1008 }
1009
1010 return 0;
1011 }
1012
1013 static int
1014 upgt_eeprom_parse(struct upgt_softc *sc)
1015 {
1016 struct ieee80211com *ic = &sc->sc_ic;
1017 struct upgt_eeprom_header *eeprom_header;
1018 struct upgt_eeprom_option *eeprom_option;
1019 uint16_t option_len;
1020 uint16_t option_type;
1021 uint16_t preamble_len;
1022 int option_end = 0;
1023
1024 /* calculate eeprom options start offset */
1025 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1026 preamble_len = le16toh(eeprom_header->preamble_len);
1027 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1028 (sizeof(struct upgt_eeprom_header) + preamble_len));
1029
1030 while (!option_end) {
1031 /* the eeprom option length is stored in words */
1032 option_len =
1033 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1034 option_type =
1035 le16toh(eeprom_option->type);
1036
1037 switch (option_type) {
1038 case UPGT_EEPROM_TYPE_NAME:
1039 DPRINTF(1, "%s: EEPROM name len=%d\n",
1040 device_xname(sc->sc_dev), option_len);
1041 break;
1042 case UPGT_EEPROM_TYPE_SERIAL:
1043 DPRINTF(1, "%s: EEPROM serial len=%d\n",
1044 device_xname(sc->sc_dev), option_len);
1045 break;
1046 case UPGT_EEPROM_TYPE_MAC:
1047 DPRINTF(1, "%s: EEPROM mac len=%d\n",
1048 device_xname(sc->sc_dev), option_len);
1049
1050 IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1051 break;
1052 case UPGT_EEPROM_TYPE_HWRX:
1053 DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1054 device_xname(sc->sc_dev), option_len);
1055
1056 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1057 break;
1058 case UPGT_EEPROM_TYPE_CHIP:
1059 DPRINTF(1, "%s: EEPROM chip len=%d\n",
1060 device_xname(sc->sc_dev), option_len);
1061 break;
1062 case UPGT_EEPROM_TYPE_FREQ3:
1063 DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1064 device_xname(sc->sc_dev), option_len);
1065
1066 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1067 option_len);
1068 break;
1069 case UPGT_EEPROM_TYPE_FREQ4:
1070 DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1071 device_xname(sc->sc_dev), option_len);
1072
1073 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1074 option_len);
1075 break;
1076 case UPGT_EEPROM_TYPE_FREQ5:
1077 DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1078 device_xname(sc->sc_dev), option_len);
1079 break;
1080 case UPGT_EEPROM_TYPE_FREQ6:
1081 DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1082 device_xname(sc->sc_dev), option_len);
1083
1084 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1085 option_len);
1086 break;
1087 case UPGT_EEPROM_TYPE_END:
1088 DPRINTF(1, "%s: EEPROM end len=%d\n",
1089 device_xname(sc->sc_dev), option_len);
1090 option_end = 1;
1091 break;
1092 case UPGT_EEPROM_TYPE_OFF:
1093 DPRINTF(1, "%s: EEPROM off without end option\n",
1094 device_xname(sc->sc_dev));
1095 return EIO;
1096 default:
1097 DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1098 device_xname(sc->sc_dev), option_type, option_len);
1099 break;
1100 }
1101
1102 /* jump to next EEPROM option */
1103 eeprom_option = (struct upgt_eeprom_option *)
1104 (eeprom_option->data + option_len);
1105 }
1106
1107 return 0;
1108 }
1109
1110 static void
1111 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1112 {
1113 struct upgt_eeprom_option_hwrx *option_hwrx;
1114
1115 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1116
1117 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1118
1119 DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1120 device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1121 }
1122
1123 static void
1124 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1125 {
1126 struct upgt_eeprom_freq3_header *freq3_header;
1127 struct upgt_lmac_freq3 *freq3;
1128 int i, elements, flags;
1129 unsigned channel;
1130
1131 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1132 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1133
1134 flags = freq3_header->flags;
1135 elements = freq3_header->elements;
1136
1137 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1138 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1139
1140 for (i = 0; i < elements; i++) {
1141 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1142
1143 sc->sc_eeprom_freq3[channel] = freq3[i];
1144
1145 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1146 device_xname(sc->sc_dev),
1147 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1148 }
1149 }
1150
1151 static void
1152 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1153 {
1154 struct upgt_eeprom_freq4_header *freq4_header;
1155 struct upgt_eeprom_freq4_1 *freq4_1;
1156 struct upgt_eeprom_freq4_2 *freq4_2;
1157 int i, j, elements, settings, flags;
1158 unsigned channel;
1159
1160 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1161 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1162
1163 flags = freq4_header->flags;
1164 elements = freq4_header->elements;
1165 settings = freq4_header->settings;
1166
1167 /* we need this value later */
1168 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1169
1170 DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1171 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1172 DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1173
1174 for (i = 0; i < elements; i++) {
1175 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1176
1177 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1178
1179 for (j = 0; j < settings; j++) {
1180 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1181 sc->sc_eeprom_freq4[channel][j].pad = 0;
1182 }
1183
1184 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1185 device_xname(sc->sc_dev),
1186 le16toh(freq4_1[i].freq), channel);
1187 }
1188 }
1189
1190 static void
1191 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1192 {
1193 struct upgt_lmac_freq6 *freq6;
1194 int i, elements;
1195 unsigned channel;
1196
1197 freq6 = (struct upgt_lmac_freq6 *)data;
1198
1199 elements = len / sizeof(struct upgt_lmac_freq6);
1200
1201 DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1202
1203 for (i = 0; i < elements; i++) {
1204 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1205
1206 sc->sc_eeprom_freq6[channel] = freq6[i];
1207
1208 DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1209 device_xname(sc->sc_dev),
1210 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1211 }
1212 }
1213
1214 static int
1215 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1216 {
1217 struct upgt_softc *sc = ifp->if_softc;
1218 struct ieee80211com *ic = &sc->sc_ic;
1219 int s, error = 0;
1220
1221 s = splnet();
1222
1223 switch (cmd) {
1224 case SIOCSIFFLAGS:
1225 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1226 break;
1227 if (ifp->if_flags & IFF_UP) {
1228 if ((ifp->if_flags & IFF_RUNNING) == 0)
1229 upgt_init(ifp);
1230 } else {
1231 if (ifp->if_flags & IFF_RUNNING)
1232 upgt_stop(sc);
1233 }
1234 break;
1235 case SIOCADDMULTI:
1236 case SIOCDELMULTI:
1237 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1238 /* setup multicast filter, etc */
1239 error = 0;
1240 }
1241 break;
1242 default:
1243 error = ieee80211_ioctl(ic, cmd, data);
1244 break;
1245 }
1246
1247 if (error == ENETRESET) {
1248 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1249 (IFF_UP | IFF_RUNNING))
1250 upgt_init(ifp);
1251 error = 0;
1252 }
1253
1254 splx(s);
1255
1256 return error;
1257 }
1258
1259 static int
1260 upgt_init(struct ifnet *ifp)
1261 {
1262 struct upgt_softc *sc = ifp->if_softc;
1263 struct ieee80211com *ic = &sc->sc_ic;
1264
1265 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1266
1267 if (ifp->if_flags & IFF_RUNNING)
1268 upgt_stop(sc);
1269
1270 ifp->if_flags |= IFF_RUNNING;
1271 ifp->if_flags &= ~IFF_OACTIVE;
1272
1273 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1274
1275 /* setup device rates */
1276 upgt_setup_rates(sc);
1277
1278 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1279 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1280 else
1281 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1282
1283 return 0;
1284 }
1285
1286 static void
1287 upgt_stop(struct upgt_softc *sc)
1288 {
1289 struct ieee80211com *ic = &sc->sc_ic;
1290 struct ifnet *ifp = &sc->sc_if;
1291
1292 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1293
1294 /* device down */
1295 ifp->if_timer = 0;
1296 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1297
1298 /* change device back to initial state */
1299 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1300 }
1301
1302 static int
1303 upgt_media_change(struct ifnet *ifp)
1304 {
1305 struct upgt_softc *sc = ifp->if_softc;
1306 int error;
1307
1308 DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1309
1310 if ((error = ieee80211_media_change(ifp) != ENETRESET))
1311 return error;
1312
1313 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1314 (IFF_UP | IFF_RUNNING)) {
1315 /* give pending USB transfers a chance to finish */
1316 usbd_delay_ms(sc->sc_udev, 100);
1317 upgt_init(ifp);
1318 }
1319
1320 return 0;
1321 }
1322
1323 static void
1324 upgt_newassoc(struct ieee80211_node *ni, int isnew)
1325 {
1326
1327 ni->ni_txrate = 0;
1328 }
1329
1330 static int
1331 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1332 {
1333 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1334
1335 usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1336 callout_stop(&sc->scan_to);
1337
1338 /* do it in a process context */
1339 sc->sc_state = nstate;
1340 sc->sc_arg = arg;
1341 usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1342
1343 return 0;
1344 }
1345
1346 static void
1347 upgt_newstate_task(void *arg)
1348 {
1349 struct upgt_softc *sc = arg;
1350 struct ieee80211com *ic = &sc->sc_ic;
1351 struct ieee80211_node *ni;
1352 unsigned channel;
1353
1354 mutex_enter(&sc->sc_mtx);
1355
1356 switch (sc->sc_state) {
1357 case IEEE80211_S_INIT:
1358 DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1359 device_xname(sc->sc_dev));
1360
1361 /* do not accept any frames if the device is down */
1362 upgt_set_macfilter(sc, IEEE80211_S_INIT);
1363 upgt_set_led(sc, UPGT_LED_OFF);
1364 break;
1365 case IEEE80211_S_SCAN:
1366 DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1367 device_xname(sc->sc_dev));
1368
1369 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1370 upgt_set_channel(sc, channel);
1371 upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1372 callout_schedule(&sc->scan_to, hz / 5);
1373 break;
1374 case IEEE80211_S_AUTH:
1375 DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1376 device_xname(sc->sc_dev));
1377
1378 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1379 upgt_set_channel(sc, channel);
1380 break;
1381 case IEEE80211_S_ASSOC:
1382 DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1383 device_xname(sc->sc_dev));
1384
1385 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1386 upgt_set_channel(sc, channel);
1387 break;
1388 case IEEE80211_S_RUN:
1389 DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1390 device_xname(sc->sc_dev));
1391
1392 channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1393 upgt_set_channel(sc, channel);
1394
1395 ni = ic->ic_bss;
1396
1397 /*
1398 * TX rate control is done by the firmware.
1399 * Report the maximum rate which is available therefore.
1400 */
1401 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1402
1403 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1404 upgt_set_macfilter(sc, IEEE80211_S_RUN);
1405 upgt_set_led(sc, UPGT_LED_ON);
1406 break;
1407 }
1408
1409 mutex_exit(&sc->sc_mtx);
1410
1411 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1412 }
1413
1414 static void
1415 upgt_next_scan(void *arg)
1416 {
1417 struct upgt_softc *sc = arg;
1418 struct ieee80211com *ic = &sc->sc_ic;
1419
1420 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1421
1422 if (ic->ic_state == IEEE80211_S_SCAN)
1423 ieee80211_next_scan(ic);
1424 }
1425
1426 static void
1427 upgt_start(struct ifnet *ifp)
1428 {
1429 struct upgt_softc *sc = ifp->if_softc;
1430 struct ieee80211com *ic = &sc->sc_ic;
1431 struct ether_header *eh;
1432 struct ieee80211_node *ni;
1433 struct mbuf *m;
1434 int i;
1435
1436 /* don't transmit packets if interface is busy or down */
1437 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1438 return;
1439
1440 DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1441
1442 for (i = 0; i < UPGT_TX_COUNT; i++) {
1443 struct upgt_data *data_tx = &sc->tx_data[i];
1444
1445 if (data_tx->m != NULL)
1446 continue;
1447
1448 IF_POLL(&ic->ic_mgtq, m);
1449 if (m != NULL) {
1450 /* management frame */
1451 IF_DEQUEUE(&ic->ic_mgtq, m);
1452
1453 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1454 m->m_pkthdr.rcvif = NULL;
1455
1456 bpf_mtap3(ic->ic_rawbpf, m);
1457
1458 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1459 aprint_error_dev(sc->sc_dev,
1460 "no free prism memory\n");
1461 m_freem(m);
1462 ifp->if_oerrors++;
1463 break;
1464 }
1465 data_tx->ni = ni;
1466 data_tx->m = m;
1467 sc->tx_queued++;
1468 } else {
1469 /* data frame */
1470 if (ic->ic_state != IEEE80211_S_RUN)
1471 break;
1472
1473 IFQ_POLL(&ifp->if_snd, m);
1474 if (m == NULL)
1475 break;
1476
1477 IFQ_DEQUEUE(&ifp->if_snd, m);
1478 if (m->m_len < sizeof(struct ether_header) &&
1479 !(m = m_pullup(m, sizeof(struct ether_header))))
1480 continue;
1481
1482 eh = mtod(m, struct ether_header *);
1483 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1484 if (ni == NULL) {
1485 m_freem(m);
1486 continue;
1487 }
1488
1489 bpf_mtap(ifp, m);
1490
1491 m = ieee80211_encap(ic, m, ni);
1492 if (m == NULL) {
1493 ieee80211_free_node(ni);
1494 continue;
1495 }
1496
1497 bpf_mtap3(ic->ic_rawbpf, m);
1498
1499 if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1500 aprint_error_dev(sc->sc_dev,
1501 "no free prism memory\n");
1502 m_freem(m);
1503 ieee80211_free_node(ni);
1504 ifp->if_oerrors++;
1505 break;
1506 }
1507 data_tx->ni = ni;
1508 data_tx->m = m;
1509 sc->tx_queued++;
1510 }
1511 }
1512
1513 if (sc->tx_queued > 0) {
1514 DPRINTF(2, "%s: tx_queued=%d\n",
1515 device_xname(sc->sc_dev), sc->tx_queued);
1516 /* process the TX queue in process context */
1517 ifp->if_timer = 5;
1518 ifp->if_flags |= IFF_OACTIVE;
1519 usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1520 usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1521 }
1522 }
1523
1524 static void
1525 upgt_watchdog(struct ifnet *ifp)
1526 {
1527 struct upgt_softc *sc = ifp->if_softc;
1528 struct ieee80211com *ic = &sc->sc_ic;
1529
1530 if (ic->ic_state == IEEE80211_S_INIT)
1531 return;
1532
1533 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1534
1535 /* TODO: what shall we do on TX timeout? */
1536
1537 ieee80211_watchdog(ic);
1538 }
1539
1540 static void
1541 upgt_tx_task(void *arg)
1542 {
1543 struct upgt_softc *sc = arg;
1544 struct ieee80211com *ic = &sc->sc_ic;
1545 struct ieee80211_frame *wh;
1546 struct ieee80211_key *k;
1547 struct ifnet *ifp = &sc->sc_if;
1548 struct upgt_lmac_mem *mem;
1549 struct upgt_lmac_tx_desc *txdesc;
1550 struct mbuf *m;
1551 uint32_t addr;
1552 int i, len, pad, s;
1553 usbd_status error;
1554
1555 mutex_enter(&sc->sc_mtx);
1556 upgt_set_led(sc, UPGT_LED_BLINK);
1557 mutex_exit(&sc->sc_mtx);
1558
1559 s = splnet();
1560
1561 for (i = 0; i < UPGT_TX_COUNT; i++) {
1562 struct upgt_data *data_tx = &sc->tx_data[i];
1563
1564 if (data_tx->m == NULL)
1565 continue;
1566
1567 m = data_tx->m;
1568 addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1569
1570 /*
1571 * Software crypto.
1572 */
1573 wh = mtod(m, struct ieee80211_frame *);
1574
1575 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1576 k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1577 if (k == NULL) {
1578 m_freem(m);
1579 data_tx->m = NULL;
1580 ieee80211_free_node(data_tx->ni);
1581 data_tx->ni = NULL;
1582 ifp->if_oerrors++;
1583 break;
1584 }
1585
1586 /* in case packet header moved, reset pointer */
1587 wh = mtod(m, struct ieee80211_frame *);
1588 }
1589
1590 /*
1591 * Transmit the URB containing the TX data.
1592 */
1593 memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1594
1595 mem = (struct upgt_lmac_mem *)data_tx->buf;
1596 mem->addr = htole32(addr);
1597
1598 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1599
1600 /* XXX differ between data and mgmt frames? */
1601 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1602 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1603 txdesc->header1.len = htole16(m->m_pkthdr.len);
1604
1605 txdesc->header2.reqid = htole32(data_tx->addr);
1606 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1607 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1608
1609 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1610 IEEE80211_FC0_TYPE_MGT) {
1611 /* always send mgmt frames at lowest rate (DS1) */
1612 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1613 } else {
1614 memcpy(txdesc->rates, sc->sc_cur_rateset,
1615 sizeof(txdesc->rates));
1616 }
1617 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1618 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1619
1620 if (sc->sc_drvbpf != NULL) {
1621 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1622
1623 tap->wt_flags = 0;
1624 tap->wt_rate = 0; /* TODO: where to get from? */
1625 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1626 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1627
1628 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1629 }
1630
1631 /* copy frame below our TX descriptor header */
1632 m_copydata(m, 0, m->m_pkthdr.len,
1633 data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1634
1635 /* calculate frame size */
1636 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1637
1638 if (len & 3) {
1639 /* we need to align the frame to a 4 byte boundary */
1640 pad = 4 - (len & 3);
1641 memset(data_tx->buf + len, 0, pad);
1642 len += pad;
1643 }
1644
1645 /* calculate frame checksum */
1646 mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1647 len - sizeof(*mem));
1648
1649 /* we do not need the mbuf anymore */
1650 m_freem(m);
1651 data_tx->m = NULL;
1652
1653 ieee80211_free_node(data_tx->ni);
1654 data_tx->ni = NULL;
1655
1656 DPRINTF(2, "%s: TX start data sending\n",
1657 device_xname(sc->sc_dev));
1658
1659 usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1660 data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1661 UPGT_USB_TIMEOUT, NULL);
1662 error = usbd_transfer(data_tx->xfer);
1663 if (error != USBD_NORMAL_COMPLETION &&
1664 error != USBD_IN_PROGRESS) {
1665 aprint_error_dev(sc->sc_dev,
1666 "could not transmit TX data URB\n");
1667 ifp->if_oerrors++;
1668 break;
1669 }
1670
1671 DPRINTF(2, "%s: TX sent (%d bytes)\n",
1672 device_xname(sc->sc_dev), len);
1673 }
1674
1675 splx(s);
1676
1677 /*
1678 * If we don't regulary read the device statistics, the RX queue
1679 * will stall. It's strange, but it works, so we keep reading
1680 * the statistics here. *shrug*
1681 */
1682 mutex_enter(&sc->sc_mtx);
1683 upgt_get_stats(sc);
1684 mutex_exit(&sc->sc_mtx);
1685 }
1686
1687 static void
1688 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1689 {
1690 struct ifnet *ifp = &sc->sc_if;
1691 struct upgt_lmac_tx_done_desc *desc;
1692 int i, s;
1693
1694 s = splnet();
1695
1696 desc = (struct upgt_lmac_tx_done_desc *)data;
1697
1698 for (i = 0; i < UPGT_TX_COUNT; i++) {
1699 struct upgt_data *data_tx = &sc->tx_data[i];
1700
1701 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1702 upgt_mem_free(sc, data_tx->addr);
1703 data_tx->addr = 0;
1704
1705 sc->tx_queued--;
1706 ifp->if_opackets++;
1707
1708 DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1709 DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1710 le32toh(desc->header2.reqid),
1711 le16toh(desc->status),
1712 le16toh(desc->rssi));
1713 DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1714 break;
1715 }
1716 }
1717
1718 if (sc->tx_queued == 0) {
1719 /* TX queued was processed, continue */
1720 ifp->if_timer = 0;
1721 ifp->if_flags &= ~IFF_OACTIVE;
1722 upgt_start(ifp);
1723 }
1724
1725 splx(s);
1726 }
1727
1728 static void
1729 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1730 {
1731 struct upgt_data *data_rx = priv;
1732 struct upgt_softc *sc = data_rx->sc;
1733 int len;
1734 struct upgt_lmac_header *header;
1735 struct upgt_lmac_eeprom *eeprom;
1736 uint8_t h1_type;
1737 uint16_t h2_type;
1738
1739 DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1740
1741 if (status != USBD_NORMAL_COMPLETION) {
1742 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1743 return;
1744 if (status == USBD_STALLED)
1745 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1746 goto skip;
1747 }
1748 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1749
1750 /*
1751 * Check what type of frame came in.
1752 */
1753 header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1754
1755 h1_type = header->header1.type;
1756 h2_type = le16toh(header->header2.type);
1757
1758 if (h1_type == UPGT_H1_TYPE_CTRL &&
1759 h2_type == UPGT_H2_TYPE_EEPROM) {
1760 eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1761 uint16_t eeprom_offset = le16toh(eeprom->offset);
1762 uint16_t eeprom_len = le16toh(eeprom->len);
1763
1764 DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1765 device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1766
1767 memcpy(sc->sc_eeprom + eeprom_offset,
1768 data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1769 eeprom_len);
1770
1771 /* EEPROM data has arrived in time, wakeup tsleep() */
1772 wakeup(sc);
1773 } else
1774 if (h1_type == UPGT_H1_TYPE_CTRL &&
1775 h2_type == UPGT_H2_TYPE_TX_DONE) {
1776 DPRINTF(2, "%s: received 802.11 TX done\n",
1777 device_xname(sc->sc_dev));
1778
1779 upgt_tx_done(sc, data_rx->buf + 4);
1780 } else
1781 if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1782 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1783 DPRINTF(3, "%s: received 802.11 RX data\n",
1784 device_xname(sc->sc_dev));
1785
1786 upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1787 } else
1788 if (h1_type == UPGT_H1_TYPE_CTRL &&
1789 h2_type == UPGT_H2_TYPE_STATS) {
1790 DPRINTF(2, "%s: received statistic data\n",
1791 device_xname(sc->sc_dev));
1792
1793 /* TODO: what could we do with the statistic data? */
1794 } else {
1795 /* ignore unknown frame types */
1796 DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1797 device_xname(sc->sc_dev), header->header1.type);
1798 }
1799
1800 skip: /* setup new transfer */
1801 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1802 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1803 (void)usbd_transfer(xfer);
1804 }
1805
1806 static void
1807 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1808 {
1809 struct ieee80211com *ic = &sc->sc_ic;
1810 struct ifnet *ifp = &sc->sc_if;
1811 struct upgt_lmac_rx_desc *rxdesc;
1812 struct ieee80211_frame *wh;
1813 struct ieee80211_node *ni;
1814 struct mbuf *m;
1815 int s;
1816
1817 /* access RX packet descriptor */
1818 rxdesc = (struct upgt_lmac_rx_desc *)data;
1819
1820 /* create mbuf which is suitable for strict alignment archs */
1821 #define ETHER_ALIGN 0
1822 m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
1823 if (m == NULL) {
1824 DPRINTF(1, "%s: could not create RX mbuf\n",
1825 device_xname(sc->sc_dev));
1826 ifp->if_ierrors++;
1827 return;
1828 }
1829
1830 s = splnet();
1831
1832 if (sc->sc_drvbpf != NULL) {
1833 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1834
1835 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1836 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1837 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1838 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1839 tap->wr_antsignal = rxdesc->rssi;
1840
1841 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1842 }
1843
1844 /* trim FCS */
1845 m_adj(m, -IEEE80211_CRC_LEN);
1846
1847 wh = mtod(m, struct ieee80211_frame *);
1848 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1849
1850 /* push the frame up to the 802.11 stack */
1851 ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1852
1853 /* node is no longer needed */
1854 ieee80211_free_node(ni);
1855
1856 splx(s);
1857
1858 DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1859 }
1860
1861 static void
1862 upgt_setup_rates(struct upgt_softc *sc)
1863 {
1864 struct ieee80211com *ic = &sc->sc_ic;
1865
1866 /*
1867 * 0x01 = OFMD6 0x10 = DS1
1868 * 0x04 = OFDM9 0x11 = DS2
1869 * 0x06 = OFDM12 0x12 = DS5
1870 * 0x07 = OFDM18 0x13 = DS11
1871 * 0x08 = OFDM24
1872 * 0x09 = OFDM36
1873 * 0x0a = OFDM48
1874 * 0x0b = OFDM54
1875 */
1876 const uint8_t rateset_auto_11b[] =
1877 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1878 const uint8_t rateset_auto_11g[] =
1879 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1880 const uint8_t rateset_fix_11bg[] =
1881 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1882 0x08, 0x09, 0x0a, 0x0b };
1883
1884 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1885 /*
1886 * Automatic rate control is done by the device.
1887 * We just pass the rateset from which the device
1888 * will pickup a rate.
1889 */
1890 if (ic->ic_curmode == IEEE80211_MODE_11B)
1891 memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1892 sizeof(sc->sc_cur_rateset));
1893 if (ic->ic_curmode == IEEE80211_MODE_11G ||
1894 ic->ic_curmode == IEEE80211_MODE_AUTO)
1895 memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1896 sizeof(sc->sc_cur_rateset));
1897 } else {
1898 /* set a fixed rate */
1899 memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1900 sizeof(sc->sc_cur_rateset));
1901 }
1902 }
1903
1904 static uint8_t
1905 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1906 {
1907 struct ieee80211com *ic = &sc->sc_ic;
1908
1909 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1910 if (rate < 0 || rate > 3)
1911 /* invalid rate */
1912 return 0;
1913
1914 switch (rate) {
1915 case 0:
1916 return 2;
1917 case 1:
1918 return 4;
1919 case 2:
1920 return 11;
1921 case 3:
1922 return 22;
1923 default:
1924 return 0;
1925 }
1926 }
1927
1928 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1929 if (rate < 0 || rate > 11)
1930 /* invalid rate */
1931 return 0;
1932
1933 switch (rate) {
1934 case 0:
1935 return 2;
1936 case 1:
1937 return 4;
1938 case 2:
1939 return 11;
1940 case 3:
1941 return 22;
1942 case 4:
1943 return 12;
1944 case 5:
1945 return 18;
1946 case 6:
1947 return 24;
1948 case 7:
1949 return 36;
1950 case 8:
1951 return 48;
1952 case 9:
1953 return 72;
1954 case 10:
1955 return 96;
1956 case 11:
1957 return 108;
1958 default:
1959 return 0;
1960 }
1961 }
1962
1963 return 0;
1964 }
1965
1966 static int
1967 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1968 {
1969 struct ieee80211com *ic = &sc->sc_ic;
1970 struct ieee80211_node *ni = ic->ic_bss;
1971 struct upgt_data *data_cmd = &sc->cmd_data;
1972 struct upgt_lmac_mem *mem;
1973 struct upgt_lmac_filter *filter;
1974 int len;
1975 const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1976
1977 /*
1978 * Transmit the URB containing the CMD data.
1979 */
1980 len = sizeof(*mem) + sizeof(*filter);
1981
1982 memset(data_cmd->buf, 0, len);
1983
1984 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1985 mem->addr = htole32(sc->sc_memaddr_frame_start +
1986 UPGT_MEMSIZE_FRAME_HEAD);
1987
1988 filter = (struct upgt_lmac_filter *)(mem + 1);
1989
1990 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1991 filter->header1.type = UPGT_H1_TYPE_CTRL;
1992 filter->header1.len = htole16(
1993 sizeof(struct upgt_lmac_filter) -
1994 sizeof(struct upgt_lmac_header));
1995
1996 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1997 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1998 filter->header2.flags = 0;
1999
2000 switch (state) {
2001 case IEEE80211_S_INIT:
2002 DPRINTF(1, "%s: set MAC filter to INIT\n",
2003 device_xname(sc->sc_dev));
2004
2005 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2006 break;
2007 case IEEE80211_S_SCAN:
2008 DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2009 device_xname(sc->sc_dev), ether_sprintf(broadcast));
2010
2011 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2012 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2013 IEEE80211_ADDR_COPY(filter->src, broadcast);
2014 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2015 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2016 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2017 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2018 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2019 break;
2020 case IEEE80211_S_RUN:
2021 DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2022 device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2023
2024 filter->type = htole16(UPGT_FILTER_TYPE_STA);
2025 IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2026 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2027 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2028 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2029 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2030 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2031 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2032 break;
2033 default:
2034 aprint_error_dev(sc->sc_dev,
2035 "MAC filter does not know that state\n");
2036 break;
2037 }
2038
2039 mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2040
2041 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2042 aprint_error_dev(sc->sc_dev,
2043 "could not transmit macfilter CMD data URB\n");
2044 return EIO;
2045 }
2046
2047 return 0;
2048 }
2049
2050 static int
2051 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2052 {
2053 struct upgt_data *data_cmd = &sc->cmd_data;
2054 struct upgt_lmac_mem *mem;
2055 struct upgt_lmac_channel *chan;
2056 int len;
2057
2058 DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2059 channel);
2060
2061 /*
2062 * Transmit the URB containing the CMD data.
2063 */
2064 len = sizeof(*mem) + sizeof(*chan);
2065
2066 memset(data_cmd->buf, 0, len);
2067
2068 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2069 mem->addr = htole32(sc->sc_memaddr_frame_start +
2070 UPGT_MEMSIZE_FRAME_HEAD);
2071
2072 chan = (struct upgt_lmac_channel *)(mem + 1);
2073
2074 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2075 chan->header1.type = UPGT_H1_TYPE_CTRL;
2076 chan->header1.len = htole16(
2077 sizeof(struct upgt_lmac_channel) -
2078 sizeof(struct upgt_lmac_header));
2079
2080 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2081 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2082 chan->header2.flags = 0;
2083
2084 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2085 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2086 chan->freq6 = sc->sc_eeprom_freq6[channel];
2087 chan->settings = sc->sc_eeprom_freq6_settings;
2088 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2089
2090 memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2091 sizeof(chan->freq3_1));
2092
2093 memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2094 sizeof(sc->sc_eeprom_freq4[channel]));
2095
2096 memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2097 sizeof(chan->freq3_2));
2098
2099 mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2100
2101 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2102 aprint_error_dev(sc->sc_dev,
2103 "could not transmit channel CMD data URB\n");
2104 return EIO;
2105 }
2106
2107 return 0;
2108 }
2109
2110 static void
2111 upgt_set_led(struct upgt_softc *sc, int action)
2112 {
2113 struct ieee80211com *ic = &sc->sc_ic;
2114 struct upgt_data *data_cmd = &sc->cmd_data;
2115 struct upgt_lmac_mem *mem;
2116 struct upgt_lmac_led *led;
2117 struct timeval t;
2118 int len;
2119
2120 /*
2121 * Transmit the URB containing the CMD data.
2122 */
2123 len = sizeof(*mem) + sizeof(*led);
2124
2125 memset(data_cmd->buf, 0, len);
2126
2127 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2128 mem->addr = htole32(sc->sc_memaddr_frame_start +
2129 UPGT_MEMSIZE_FRAME_HEAD);
2130
2131 led = (struct upgt_lmac_led *)(mem + 1);
2132
2133 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2134 led->header1.type = UPGT_H1_TYPE_CTRL;
2135 led->header1.len = htole16(
2136 sizeof(struct upgt_lmac_led) -
2137 sizeof(struct upgt_lmac_header));
2138
2139 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2140 led->header2.type = htole16(UPGT_H2_TYPE_LED);
2141 led->header2.flags = 0;
2142
2143 switch (action) {
2144 case UPGT_LED_OFF:
2145 led->mode = htole16(UPGT_LED_MODE_SET);
2146 led->action_fix = 0;
2147 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2148 led->action_tmp_dur = 0;
2149 break;
2150 case UPGT_LED_ON:
2151 led->mode = htole16(UPGT_LED_MODE_SET);
2152 led->action_fix = 0;
2153 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2154 led->action_tmp_dur = 0;
2155 break;
2156 case UPGT_LED_BLINK:
2157 if (ic->ic_state != IEEE80211_S_RUN)
2158 return;
2159 if (sc->sc_led_blink)
2160 /* previous blink was not finished */
2161 return;
2162 led->mode = htole16(UPGT_LED_MODE_SET);
2163 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2164 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2165 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2166 /* lock blink */
2167 sc->sc_led_blink = 1;
2168 t.tv_sec = 0;
2169 t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2170 callout_schedule(&sc->led_to, tvtohz(&t));
2171 break;
2172 default:
2173 return;
2174 }
2175
2176 mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2177
2178 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2179 aprint_error_dev(sc->sc_dev,
2180 "could not transmit led CMD URB\n");
2181 }
2182 }
2183
2184 static void
2185 upgt_set_led_blink(void *arg)
2186 {
2187 struct upgt_softc *sc = arg;
2188
2189 /* blink finished, we are ready for a next one */
2190 sc->sc_led_blink = 0;
2191 callout_stop(&sc->led_to);
2192 }
2193
2194 static int
2195 upgt_get_stats(struct upgt_softc *sc)
2196 {
2197 struct upgt_data *data_cmd = &sc->cmd_data;
2198 struct upgt_lmac_mem *mem;
2199 struct upgt_lmac_stats *stats;
2200 int len;
2201
2202 /*
2203 * Transmit the URB containing the CMD data.
2204 */
2205 len = sizeof(*mem) + sizeof(*stats);
2206
2207 memset(data_cmd->buf, 0, len);
2208
2209 mem = (struct upgt_lmac_mem *)data_cmd->buf;
2210 mem->addr = htole32(sc->sc_memaddr_frame_start +
2211 UPGT_MEMSIZE_FRAME_HEAD);
2212
2213 stats = (struct upgt_lmac_stats *)(mem + 1);
2214
2215 stats->header1.flags = 0;
2216 stats->header1.type = UPGT_H1_TYPE_CTRL;
2217 stats->header1.len = htole16(
2218 sizeof(struct upgt_lmac_stats) -
2219 sizeof(struct upgt_lmac_header));
2220
2221 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2222 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2223 stats->header2.flags = 0;
2224
2225 mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2226
2227 if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2228 aprint_error_dev(sc->sc_dev,
2229 "could not transmit statistics CMD data URB\n");
2230 return EIO;
2231 }
2232
2233 return 0;
2234
2235 }
2236
2237 static int
2238 upgt_alloc_tx(struct upgt_softc *sc)
2239 {
2240 int i;
2241
2242 sc->tx_queued = 0;
2243
2244 for (i = 0; i < UPGT_TX_COUNT; i++) {
2245 struct upgt_data *data_tx = &sc->tx_data[i];
2246
2247 data_tx->sc = sc;
2248
2249 data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2250 if (data_tx->xfer == NULL) {
2251 aprint_error_dev(sc->sc_dev,
2252 "could not allocate TX xfer\n");
2253 return ENOMEM;
2254 }
2255
2256 data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2257 if (data_tx->buf == NULL) {
2258 aprint_error_dev(sc->sc_dev,
2259 "could not allocate TX buffer\n");
2260 return ENOMEM;
2261 }
2262 }
2263
2264 return 0;
2265 }
2266
2267 static int
2268 upgt_alloc_rx(struct upgt_softc *sc)
2269 {
2270 struct upgt_data *data_rx = &sc->rx_data;
2271
2272 data_rx->sc = sc;
2273
2274 data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2275 if (data_rx->xfer == NULL) {
2276 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2277 return ENOMEM;
2278 }
2279
2280 data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2281 if (data_rx->buf == NULL) {
2282 aprint_error_dev(sc->sc_dev,
2283 "could not allocate RX buffer\n");
2284 return ENOMEM;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static int
2291 upgt_alloc_cmd(struct upgt_softc *sc)
2292 {
2293 struct upgt_data *data_cmd = &sc->cmd_data;
2294
2295 data_cmd->sc = sc;
2296
2297 data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2298 if (data_cmd->xfer == NULL) {
2299 aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2300 return ENOMEM;
2301 }
2302
2303 data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2304 if (data_cmd->buf == NULL) {
2305 aprint_error_dev(sc->sc_dev,
2306 "could not allocate RX buffer\n");
2307 return ENOMEM;
2308 }
2309
2310 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
2311
2312 return 0;
2313 }
2314
2315 static void
2316 upgt_free_tx(struct upgt_softc *sc)
2317 {
2318 int i;
2319
2320 for (i = 0; i < UPGT_TX_COUNT; i++) {
2321 struct upgt_data *data_tx = &sc->tx_data[i];
2322
2323 if (data_tx->xfer != NULL) {
2324 usbd_free_xfer(data_tx->xfer);
2325 data_tx->xfer = NULL;
2326 }
2327
2328 data_tx->ni = NULL;
2329 }
2330 }
2331
2332 static void
2333 upgt_free_rx(struct upgt_softc *sc)
2334 {
2335 struct upgt_data *data_rx = &sc->rx_data;
2336
2337 if (data_rx->xfer != NULL) {
2338 usbd_free_xfer(data_rx->xfer);
2339 data_rx->xfer = NULL;
2340 }
2341
2342 data_rx->ni = NULL;
2343 }
2344
2345 static void
2346 upgt_free_cmd(struct upgt_softc *sc)
2347 {
2348 struct upgt_data *data_cmd = &sc->cmd_data;
2349
2350 if (data_cmd->xfer != NULL) {
2351 usbd_free_xfer(data_cmd->xfer);
2352 data_cmd->xfer = NULL;
2353 }
2354
2355 mutex_destroy(&sc->sc_mtx);
2356 }
2357
2358 static int
2359 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2360 usbd_pipe_handle pipeh, uint32_t *size, int flags)
2361 {
2362 usbd_status status;
2363
2364 status = usbd_bulk_transfer(data->xfer, pipeh,
2365 USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
2366 "upgt_bulk_xmit");
2367 if (status != USBD_NORMAL_COMPLETION) {
2368 aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2369 usbd_errstr(status));
2370 return EIO;
2371 }
2372
2373 return 0;
2374 }
2375
2376 #if 0
2377 static void
2378 upgt_hexdump(void *buf, int len)
2379 {
2380 int i;
2381
2382 for (i = 0; i < len; i++) {
2383 if (i % 16 == 0)
2384 printf("%s%5i:", i ? "\n" : "", i);
2385 if (i % 4 == 0)
2386 printf(" ");
2387 printf("%02x", (int)*((uint8_t *)buf + i));
2388 }
2389 printf("\n");
2390 }
2391 #endif
2392
2393 static uint32_t
2394 upgt_crc32_le(const void *buf, size_t size)
2395 {
2396 uint32_t crc;
2397
2398 crc = ether_crc32_le(buf, size);
2399
2400 /* apply final XOR value as common for CRC-32 */
2401 crc = htole32(crc ^ 0xffffffffU);
2402
2403 return crc;
2404 }
2405
2406 /*
2407 * The firmware awaits a checksum for each frame we send to it.
2408 * The algorithm used therefor is uncommon but somehow similar to CRC32.
2409 */
2410 static uint32_t
2411 upgt_chksum_le(const uint32_t *buf, size_t size)
2412 {
2413 int i;
2414 uint32_t crc = 0;
2415
2416 for (i = 0; i < size; i += sizeof(uint32_t)) {
2417 crc = htole32(crc ^ *buf++);
2418 crc = htole32((crc >> 5) ^ (crc << 3));
2419 }
2420
2421 return crc;
2422 }
2423