Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.31
      1 /*	$NetBSD: if_upgt.c,v 1.31 2020/03/15 23:04:51 thorpej Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.31 2020/03/15 23:04:51 thorpej Exp $");
     22 
     23 #ifdef _KERNEL_OPT
     24 #include "opt_usb.h"
     25 #endif
     26 
     27 #include <sys/param.h>
     28 #include <sys/callout.h>
     29 #include <sys/device.h>
     30 #include <sys/errno.h>
     31 #include <sys/kernel.h>
     32 #include <sys/kthread.h>
     33 #include <sys/mbuf.h>
     34 #include <sys/proc.h>
     35 #include <sys/sockio.h>
     36 #include <sys/systm.h>
     37 #include <sys/vnode.h>
     38 #include <sys/bus.h>
     39 #include <sys/endian.h>
     40 #include <sys/intr.h>
     41 
     42 #include <net/bpf.h>
     43 #include <net/if.h>
     44 #include <net/if_arp.h>
     45 #include <net/if_dl.h>
     46 #include <net/if_ether.h>
     47 #include <net/if_media.h>
     48 #include <net/if_types.h>
     49 
     50 #include <net80211/ieee80211_var.h>
     51 #include <net80211/ieee80211_radiotap.h>
     52 
     53 #include <dev/firmload.h>
     54 
     55 #include <dev/usb/usb.h>
     56 #include <dev/usb/usbdi.h>
     57 #include <dev/usb/usbdi_util.h>
     58 #include <dev/usb/usbdivar.h>
     59 #include <dev/usb/usbdevs.h>
     60 
     61 #include <dev/usb/if_upgtvar.h>
     62 
     63 /*
     64  * Driver for the USB PrismGT devices.
     65  *
     66  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     67  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     68  *
     69  * TODO's:
     70  * - Fix MONITOR mode (MAC filter).
     71  * - Add HOSTAP mode.
     72  * - Add IBSS mode.
     73  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     74  *
     75  * Parts of this driver has been influenced by reading the p54u driver
     76  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     77  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     78  */
     79 
     80 #ifdef UPGT_DEBUG
     81 int upgt_debug = 2;
     82 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     83 #else
     84 #define DPRINTF(l, x...)
     85 #endif
     86 
     87 /*
     88  * Prototypes.
     89  */
     90 static int	upgt_match(device_t, cfdata_t, void *);
     91 static void	upgt_attach(device_t, device_t, void *);
     92 static int	upgt_detach(device_t, int);
     93 static int	upgt_activate(device_t, devact_t);
     94 
     95 static void	upgt_attach_hook(device_t);
     96 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     97 static int	upgt_device_init(struct upgt_softc *);
     98 static int	upgt_mem_init(struct upgt_softc *);
     99 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
    100 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
    101 static int	upgt_fw_alloc(struct upgt_softc *);
    102 static void	upgt_fw_free(struct upgt_softc *);
    103 static int	upgt_fw_verify(struct upgt_softc *);
    104 static int	upgt_fw_load(struct upgt_softc *);
    105 static int	upgt_fw_copy(char *, char *, int);
    106 static int	upgt_eeprom_read(struct upgt_softc *);
    107 static int	upgt_eeprom_parse(struct upgt_softc *);
    108 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    109 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    110 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    111 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    112 
    113 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    114 static int	upgt_init(struct ifnet *);
    115 static void	upgt_stop(struct upgt_softc *);
    116 static int	upgt_media_change(struct ifnet *);
    117 static void	upgt_newassoc(struct ieee80211_node *, int);
    118 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    119 		    int);
    120 static void	upgt_newstate_task(void *);
    121 static void	upgt_next_scan(void *);
    122 static void	upgt_start(struct ifnet *);
    123 static void	upgt_watchdog(struct ifnet *);
    124 static void	upgt_tx_task(void *);
    125 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    126 static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
    127 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    128 static void	upgt_setup_rates(struct upgt_softc *);
    129 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    130 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
    131 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    132 static void	upgt_set_led(struct upgt_softc *, int);
    133 static void	upgt_set_led_blink(void *);
    134 static int	upgt_get_stats(struct upgt_softc *);
    135 
    136 static int	upgt_alloc_tx(struct upgt_softc *);
    137 static int	upgt_alloc_rx(struct upgt_softc *);
    138 static int	upgt_alloc_cmd(struct upgt_softc *);
    139 static void	upgt_free_tx(struct upgt_softc *);
    140 static void	upgt_free_rx(struct upgt_softc *);
    141 static void	upgt_free_cmd(struct upgt_softc *);
    142 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    143 		    struct usbd_pipe *, uint32_t *, int);
    144 
    145 #if 0
    146 static void	upgt_hexdump(void *, int);
    147 #endif
    148 static uint32_t	upgt_crc32_le(const void *, size_t);
    149 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    150 
    151 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    152 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    153 
    154 static const struct usb_devno upgt_devs_1[] = {
    155 	/* version 1 devices */
    156 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    157 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    158 };
    159 
    160 static const struct usb_devno upgt_devs_2[] = {
    161 	/* version 2 devices */
    162 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    163 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    164 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    165 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    166 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    167 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    168 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    169 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    170 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    171 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    172 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    173 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    174 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    175 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    176 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    177 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    178 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    179 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    180 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    181 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    182 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    183 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    184 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    185 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    186 };
    187 
    188 static int
    189 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    190     size_t *sizep)
    191 {
    192 	firmware_handle_t fh;
    193 	int error;
    194 
    195 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    196 		return error;
    197 	*sizep = firmware_get_size(fh);
    198 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    199 		firmware_close(fh);
    200 		return ENOMEM;
    201 	}
    202 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    203 		firmware_free(*ucodep, *sizep);
    204 	firmware_close(fh);
    205 
    206 	return error;
    207 }
    208 
    209 static int
    210 upgt_match(device_t parent, cfdata_t match, void *aux)
    211 {
    212 	struct usb_attach_arg *uaa = aux;
    213 
    214 	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    215 		return UMATCH_VENDOR_PRODUCT;
    216 
    217 	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
    218 		return UMATCH_VENDOR_PRODUCT;
    219 
    220 	return UMATCH_NONE;
    221 }
    222 
    223 static void
    224 upgt_attach(device_t parent, device_t self, void *aux)
    225 {
    226 	struct upgt_softc *sc = device_private(self);
    227 	struct usb_attach_arg *uaa = aux;
    228 	usb_interface_descriptor_t *id;
    229 	usb_endpoint_descriptor_t *ed;
    230 	usbd_status error;
    231 	char *devinfop;
    232 	int i;
    233 
    234 	aprint_naive("\n");
    235 	aprint_normal("\n");
    236 
    237 	/*
    238 	 * Attach USB device.
    239 	 */
    240 	sc->sc_dev = self;
    241 	sc->sc_udev = uaa->uaa_device;
    242 	sc->sc_init_state = UPGT_INIT_NONE;
    243 
    244 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    245 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    246 	usbd_devinfo_free(devinfop);
    247 
    248 	/* check device type */
    249 	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
    250 		return;
    251 
    252 	/* set configuration number */
    253 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    254 	if (error != 0) {
    255 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    256 		    ", err=%s\n", usbd_errstr(error));
    257 		return;
    258 	}
    259 
    260 	/* get the first interface handle */
    261 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    262 	    &sc->sc_iface);
    263 	if (error != 0) {
    264 		aprint_error_dev(sc->sc_dev,
    265 		    "could not get interface handle\n");
    266 		return;
    267 	}
    268 
    269 	/* find endpoints */
    270 	id = usbd_get_interface_descriptor(sc->sc_iface);
    271 	sc->sc_rx_no = sc->sc_tx_no = -1;
    272 	for (i = 0; i < id->bNumEndpoints; i++) {
    273 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    274 		if (ed == NULL) {
    275 			aprint_error_dev(sc->sc_dev,
    276 			    "no endpoint descriptor for iface %d\n", i);
    277 			return;
    278 		}
    279 
    280 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    281 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    282 			sc->sc_tx_no = ed->bEndpointAddress;
    283 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    284 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    285 			sc->sc_rx_no = ed->bEndpointAddress;
    286 
    287 		/*
    288 		 * 0x01 TX pipe
    289 		 * 0x81 RX pipe
    290 		 *
    291 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    292 		 * 0x02 TX MGMT pipe
    293 		 * 0x82 TX MGMT pipe
    294 		 */
    295 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    296 			break;
    297 	}
    298 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    299 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    300 		return;
    301 	}
    302 
    303 	/* setup tasks and timeouts */
    304 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    305 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    306 	callout_init(&sc->scan_to, 0);
    307 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    308 	callout_init(&sc->led_to, 0);
    309 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    310 	sc->sc_init_state = UPGT_INIT_INITED;
    311 
    312 	/*
    313 	 * Open TX and RX USB bulk pipes.
    314 	 */
    315 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    316 	    &sc->sc_tx_pipeh);
    317 	if (error != 0) {
    318 		aprint_error_dev(sc->sc_dev,
    319 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    320 		goto fail;
    321 	}
    322 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    323 	    &sc->sc_rx_pipeh);
    324 	if (error != 0) {
    325 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    326 		    usbd_errstr(error));
    327 		goto fail;
    328 	}
    329 
    330 	/*
    331 	 * Allocate TX, RX, and CMD xfers.
    332 	 */
    333 	if (upgt_alloc_tx(sc) != 0)
    334 		goto fail;
    335 	if (upgt_alloc_rx(sc) != 0)
    336 		goto fail;
    337 	if (upgt_alloc_cmd(sc) != 0)
    338 		goto fail;
    339 
    340 	/*
    341 	 * We need the firmware loaded from file system to complete the attach.
    342 	 */
    343 	config_mountroot(self, upgt_attach_hook);
    344 
    345 	return;
    346 fail:
    347 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    348 }
    349 
    350 static void
    351 upgt_attach_hook(device_t arg)
    352 {
    353 	struct upgt_softc *sc = device_private(arg);
    354 	struct ieee80211com *ic = &sc->sc_ic;
    355 	struct ifnet *ifp = &sc->sc_if;
    356 	usbd_status error;
    357 	int i;
    358 
    359 	/*
    360 	 * Load firmware file into memory.
    361 	 */
    362 	if (upgt_fw_alloc(sc) != 0)
    363 		goto fail;
    364 
    365 	/*
    366 	 * Initialize the device.
    367 	 */
    368 	if (upgt_device_init(sc) != 0)
    369 		goto fail;
    370 
    371 	/*
    372 	 * Verify the firmware.
    373 	 */
    374 	if (upgt_fw_verify(sc) != 0)
    375 		goto fail;
    376 
    377 	/*
    378 	 * Calculate device memory space.
    379 	 */
    380 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    381 		aprint_error_dev(sc->sc_dev,
    382 		    "could not find memory space addresses on FW\n");
    383 		goto fail;
    384 	}
    385 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    386 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    387 
    388 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    389 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    390 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    391 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    392 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    393 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    394 
    395 	upgt_mem_init(sc);
    396 
    397 	/*
    398 	 * Load the firmware.
    399 	 */
    400 	if (upgt_fw_load(sc) != 0)
    401 		goto fail;
    402 
    403 	/*
    404 	 * Startup the RX pipe.
    405 	 */
    406 	struct upgt_data *data_rx = &sc->rx_data;
    407 
    408 	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
    409 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    410 	error = usbd_transfer(data_rx->xfer);
    411 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    412 		aprint_error_dev(sc->sc_dev,
    413 		    "could not queue RX transfer\n");
    414 		goto fail;
    415 	}
    416 	usbd_delay_ms(sc->sc_udev, 100);
    417 
    418 	/*
    419 	 * Read the whole EEPROM content and parse it.
    420 	 */
    421 	if (upgt_eeprom_read(sc) != 0)
    422 		goto fail;
    423 	if (upgt_eeprom_parse(sc) != 0)
    424 		goto fail;
    425 
    426 	/*
    427 	 * Setup the 802.11 device.
    428 	 */
    429 	ic->ic_ifp = ifp;
    430 	ic->ic_phytype = IEEE80211_T_OFDM;
    431 	ic->ic_opmode = IEEE80211_M_STA;
    432 	ic->ic_state = IEEE80211_S_INIT;
    433 	ic->ic_caps =
    434 	    IEEE80211_C_MONITOR |
    435 	    IEEE80211_C_SHPREAMBLE |
    436 	    IEEE80211_C_SHSLOT;
    437 
    438 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    439 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    440 
    441 	for (i = 1; i <= 14; i++) {
    442 		ic->ic_channels[i].ic_freq =
    443 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    444 		ic->ic_channels[i].ic_flags =
    445 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    446 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    447 	}
    448 
    449 	ifp->if_softc = sc;
    450 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    451 	ifp->if_init = upgt_init;
    452 	ifp->if_ioctl = upgt_ioctl;
    453 	ifp->if_start = upgt_start;
    454 	ifp->if_watchdog = upgt_watchdog;
    455 	IFQ_SET_READY(&ifp->if_snd);
    456 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    457 
    458 	if_attach(ifp);
    459 	ieee80211_ifattach(ic);
    460 	ic->ic_newassoc = upgt_newassoc;
    461 
    462 	sc->sc_newstate = ic->ic_newstate;
    463 	ic->ic_newstate = upgt_newstate;
    464 
    465 	/* XXX media locking needs revisiting */
    466 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
    467 	ieee80211_media_init_with_lock(ic,
    468 	    upgt_media_change, ieee80211_media_status, &sc->sc_media_mtx);
    469 
    470 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    471 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    472 	    &sc->sc_drvbpf);
    473 
    474 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    475 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    476 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    477 
    478 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    479 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    480 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    481 
    482 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    483 	    ether_sprintf(ic->ic_myaddr));
    484 
    485 	ieee80211_announce(ic);
    486 
    487 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    488 
    489 	/* device attached */
    490 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    491 
    492 	return;
    493 fail:
    494 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    495 }
    496 
    497 static int
    498 upgt_detach(device_t self, int flags)
    499 {
    500 	struct upgt_softc *sc = device_private(self);
    501 	struct ifnet *ifp = &sc->sc_if;
    502 	struct ieee80211com *ic = &sc->sc_ic;
    503 	int s;
    504 
    505 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    506 
    507 	if (sc->sc_init_state < UPGT_INIT_INITED)
    508 		return 0;
    509 
    510 	s = splnet();
    511 
    512 	if (ifp->if_flags & IFF_RUNNING)
    513 		upgt_stop(sc);
    514 
    515 	/* remove tasks and timeouts */
    516 	callout_halt(&sc->scan_to, NULL);
    517 	callout_halt(&sc->led_to, NULL);
    518 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
    519 	    NULL);
    520 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
    521 	    NULL);
    522 	callout_destroy(&sc->scan_to);
    523 	callout_destroy(&sc->led_to);
    524 
    525 	/* abort and close TX / RX pipes */
    526 	if (sc->sc_tx_pipeh != NULL) {
    527 		usbd_abort_pipe(sc->sc_tx_pipeh);
    528 	}
    529 	if (sc->sc_rx_pipeh != NULL) {
    530 		usbd_abort_pipe(sc->sc_rx_pipeh);
    531 	}
    532 
    533 	/* free xfers */
    534 	upgt_free_tx(sc);
    535 	upgt_free_rx(sc);
    536 	upgt_free_cmd(sc);
    537 
    538 	/* Close TX / RX pipes */
    539 	if (sc->sc_tx_pipeh != NULL) {
    540 		usbd_close_pipe(sc->sc_tx_pipeh);
    541 	}
    542 	if (sc->sc_rx_pipeh != NULL) {
    543 		usbd_close_pipe(sc->sc_rx_pipeh);
    544 	}
    545 
    546 	/* free firmware */
    547 	upgt_fw_free(sc);
    548 
    549 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    550 		/* detach interface */
    551 		bpf_detach(ifp);
    552 		ieee80211_ifdetach(ic);
    553 		if_detach(ifp);
    554 	}
    555 
    556 	splx(s);
    557 
    558 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    559 
    560 	return 0;
    561 }
    562 
    563 static int
    564 upgt_activate(device_t self, devact_t act)
    565 {
    566 	struct upgt_softc *sc = device_private(self);
    567 
    568 	switch (act) {
    569 	case DVACT_DEACTIVATE:
    570 		if_deactivate(&sc->sc_if);
    571 		return 0;
    572 	default:
    573 		return EOPNOTSUPP;
    574 	}
    575 }
    576 
    577 static int
    578 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    579 {
    580 
    581 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    582 		sc->sc_device_type = 1;
    583 		/* XXX */
    584 		aprint_error_dev(sc->sc_dev,
    585 		    "version 1 devices not supported yet\n");
    586 		return 1;
    587 	} else
    588 		sc->sc_device_type = 2;
    589 
    590 	return 0;
    591 }
    592 
    593 static int
    594 upgt_device_init(struct upgt_softc *sc)
    595 {
    596 	struct upgt_data *data_cmd = &sc->cmd_data;
    597 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    598 	int len;
    599 
    600 	len = sizeof(init_cmd);
    601 	memcpy(data_cmd->buf, init_cmd, len);
    602 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    603 		aprint_error_dev(sc->sc_dev,
    604 		    "could not send device init string\n");
    605 		return EIO;
    606 	}
    607 	usbd_delay_ms(sc->sc_udev, 100);
    608 
    609 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    610 
    611 	return 0;
    612 }
    613 
    614 static int
    615 upgt_mem_init(struct upgt_softc *sc)
    616 {
    617 	int i;
    618 
    619 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    620 		sc->sc_memory.page[i].used = 0;
    621 
    622 		if (i == 0) {
    623 			/*
    624 			 * The first memory page is always reserved for
    625 			 * command data.
    626 			 */
    627 			sc->sc_memory.page[i].addr =
    628 			    sc->sc_memaddr_frame_start + MCLBYTES;
    629 		} else {
    630 			sc->sc_memory.page[i].addr =
    631 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    632 		}
    633 
    634 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    635 		    sc->sc_memaddr_frame_end)
    636 			break;
    637 
    638 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    639 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    640 	}
    641 
    642 	sc->sc_memory.pages = i;
    643 
    644 	DPRINTF(2, "%s: memory pages=%d\n",
    645 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    646 
    647 	return 0;
    648 }
    649 
    650 static uint32_t
    651 upgt_mem_alloc(struct upgt_softc *sc)
    652 {
    653 	int i;
    654 
    655 	for (i = 0; i < sc->sc_memory.pages; i++) {
    656 		if (sc->sc_memory.page[i].used == 0) {
    657 			sc->sc_memory.page[i].used = 1;
    658 			return sc->sc_memory.page[i].addr;
    659 		}
    660 	}
    661 
    662 	return 0;
    663 }
    664 
    665 static void
    666 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    667 {
    668 	int i;
    669 
    670 	for (i = 0; i < sc->sc_memory.pages; i++) {
    671 		if (sc->sc_memory.page[i].addr == addr) {
    672 			sc->sc_memory.page[i].used = 0;
    673 			return;
    674 		}
    675 	}
    676 
    677 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    678 	    addr);
    679 }
    680 
    681 
    682 static int
    683 upgt_fw_alloc(struct upgt_softc *sc)
    684 {
    685 	const char *name = "upgt-gw3887";
    686 	int error;
    687 
    688 	if (sc->sc_fw == NULL) {
    689 		error = firmware_load("upgt", name, &sc->sc_fw,
    690 		    &sc->sc_fw_size);
    691 		if (error != 0) {
    692 			if (error == ENOENT) {
    693 				/*
    694 				 * The firmware file for upgt(4) is not in
    695 				 * the default distribution due to its lisence
    696 				 * so explicitly notify it if the firmware file
    697 				 * is not found.
    698 				 */
    699 				aprint_error_dev(sc->sc_dev,
    700 				    "firmware file %s is not installed\n",
    701 				    name);
    702 				aprint_error_dev(sc->sc_dev,
    703 				    "(it is not included in the default"
    704 				    " distribution)\n");
    705 				aprint_error_dev(sc->sc_dev,
    706 				    "see upgt(4) man page for details about "
    707 				    "firmware installation\n");
    708 			} else {
    709 				aprint_error_dev(sc->sc_dev,
    710 				    "could not read firmware %s\n", name);
    711 			}
    712 			return EIO;
    713 		}
    714 	}
    715 
    716 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    717 	    name);
    718 
    719 	return 0;
    720 }
    721 
    722 static void
    723 upgt_fw_free(struct upgt_softc *sc)
    724 {
    725 
    726 	if (sc->sc_fw != NULL) {
    727 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    728 		sc->sc_fw = NULL;
    729 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    730 	}
    731 }
    732 
    733 static int
    734 upgt_fw_verify(struct upgt_softc *sc)
    735 {
    736 	struct upgt_fw_bra_option *bra_option;
    737 	uint32_t bra_option_type, bra_option_len;
    738 	uint32_t *uc;
    739 	int offset, bra_end = 0;
    740 
    741 	/*
    742 	 * Seek to beginning of Boot Record Area (BRA).
    743 	 */
    744 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    745 		uc = (uint32_t *)(sc->sc_fw + offset);
    746 		if (*uc == 0)
    747 			break;
    748 	}
    749 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    750 		uc = (uint32_t *)(sc->sc_fw + offset);
    751 		if (*uc != 0)
    752 			break;
    753 	}
    754 	if (offset == sc->sc_fw_size) {
    755 		aprint_error_dev(sc->sc_dev,
    756 		    "firmware Boot Record Area not found\n");
    757 		return EIO;
    758 	}
    759 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    760 	    device_xname(sc->sc_dev), offset);
    761 
    762 	/*
    763 	 * Parse Boot Record Area (BRA) options.
    764 	 */
    765 	while (offset < sc->sc_fw_size && bra_end == 0) {
    766 		/* get current BRA option */
    767 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    768 		bra_option_type = le32toh(bra_option->type);
    769 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    770 
    771 		switch (bra_option_type) {
    772 		case UPGT_BRA_TYPE_FW:
    773 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    774 			    device_xname(sc->sc_dev), bra_option_len);
    775 
    776 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    777 				aprint_error_dev(sc->sc_dev,
    778 				    "wrong UPGT_BRA_TYPE_FW len\n");
    779 				return EIO;
    780 			}
    781 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    782 			    bra_option_len) == 0) {
    783 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    784 				break;
    785 			}
    786 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    787 			    bra_option_len) == 0) {
    788 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    789 				break;
    790 			}
    791 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    792 			    bra_option_len) == 0) {
    793 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    794 				break;
    795 			}
    796 			aprint_error_dev(sc->sc_dev,
    797 			    "unsupported firmware type\n");
    798 			return EIO;
    799 		case UPGT_BRA_TYPE_VERSION:
    800 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    801 			    device_xname(sc->sc_dev), bra_option_len);
    802 			break;
    803 		case UPGT_BRA_TYPE_DEPIF:
    804 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    805 			    device_xname(sc->sc_dev), bra_option_len);
    806 			break;
    807 		case UPGT_BRA_TYPE_EXPIF:
    808 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    809 			    device_xname(sc->sc_dev), bra_option_len);
    810 			break;
    811 		case UPGT_BRA_TYPE_DESCR:
    812 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    813 			    device_xname(sc->sc_dev), bra_option_len);
    814 
    815 			struct upgt_fw_bra_descr *descr =
    816 				(struct upgt_fw_bra_descr *)bra_option->data;
    817 
    818 			sc->sc_memaddr_frame_start =
    819 			    le32toh(descr->memaddr_space_start);
    820 			sc->sc_memaddr_frame_end =
    821 			    le32toh(descr->memaddr_space_end);
    822 
    823 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    824 			    device_xname(sc->sc_dev),
    825 			    sc->sc_memaddr_frame_start);
    826 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    827 			    device_xname(sc->sc_dev),
    828 			    sc->sc_memaddr_frame_end);
    829 			break;
    830 		case UPGT_BRA_TYPE_END:
    831 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    832 			    device_xname(sc->sc_dev), bra_option_len);
    833 			bra_end = 1;
    834 			break;
    835 		default:
    836 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    837 			    device_xname(sc->sc_dev), bra_option_len);
    838 			return EIO;
    839 		}
    840 
    841 		/* jump to next BRA option */
    842 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    843 	}
    844 
    845 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    846 
    847 	return 0;
    848 }
    849 
    850 static int
    851 upgt_fw_load(struct upgt_softc *sc)
    852 {
    853 	struct upgt_data *data_cmd = &sc->cmd_data;
    854 	struct upgt_data *data_rx = &sc->rx_data;
    855 	struct upgt_fw_x2_header *x2;
    856 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    857 	int offset, bsize, n, i, len;
    858 	uint32_t crc;
    859 
    860 	/* send firmware start load command */
    861 	len = sizeof(start_fwload_cmd);
    862 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    863 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    864 		aprint_error_dev(sc->sc_dev,
    865 		    "could not send start_firmware_load command\n");
    866 		return EIO;
    867 	}
    868 
    869 	/* send X2 header */
    870 	len = sizeof(struct upgt_fw_x2_header);
    871 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    872 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    873 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    874 	x2->len = htole32(sc->sc_fw_size);
    875 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    876 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    877 	    sizeof(uint32_t));
    878 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    879 		aprint_error_dev(sc->sc_dev,
    880 		    "could not send firmware X2 header\n");
    881 		return EIO;
    882 	}
    883 
    884 	/* download firmware */
    885 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    886 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    887 			bsize = UPGT_FW_BLOCK_SIZE;
    888 		else
    889 			bsize = sc->sc_fw_size - offset;
    890 
    891 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    892 
    893 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    894 		    device_xname(sc->sc_dev), offset, n, bsize);
    895 
    896 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    897 		    != 0) {
    898 			aprint_error_dev(sc->sc_dev,
    899 			    "error while downloading firmware block\n");
    900 			return EIO;
    901 		}
    902 
    903 		bsize = n;
    904 	}
    905 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    906 
    907 	/* load firmware */
    908 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    909 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    910 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    911 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    912 	len = 6;
    913 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    914 		aprint_error_dev(sc->sc_dev,
    915 		    "could not send load_firmware command\n");
    916 		return EIO;
    917 	}
    918 
    919 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    920 		len = UPGT_FW_BLOCK_SIZE;
    921 		memset(data_rx->buf, 0, 2);
    922 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    923 		    USBD_SHORT_XFER_OK) != 0) {
    924 			aprint_error_dev(sc->sc_dev,
    925 			    "could not read firmware response\n");
    926 			return EIO;
    927 		}
    928 
    929 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    930 			break;	/* firmware load was successful */
    931 	}
    932 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    933 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    934 		return EIO;
    935 	}
    936 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    937 
    938 	return 0;
    939 }
    940 
    941 /*
    942  * While copying the version 2 firmware, we need to replace two characters:
    943  *
    944  * 0x7e -> 0x7d 0x5e
    945  * 0x7d -> 0x7d 0x5d
    946  */
    947 static int
    948 upgt_fw_copy(char *src, char *dst, int size)
    949 {
    950 	int i, j;
    951 
    952 	for (i = 0, j = 0; i < size && j < size; i++) {
    953 		switch (src[i]) {
    954 		case 0x7e:
    955 			dst[j] = 0x7d;
    956 			j++;
    957 			dst[j] = 0x5e;
    958 			j++;
    959 			break;
    960 		case 0x7d:
    961 			dst[j] = 0x7d;
    962 			j++;
    963 			dst[j] = 0x5d;
    964 			j++;
    965 			break;
    966 		default:
    967 			dst[j] = src[i];
    968 			j++;
    969 			break;
    970 		}
    971 	}
    972 
    973 	return i;
    974 }
    975 
    976 static int
    977 upgt_eeprom_read(struct upgt_softc *sc)
    978 {
    979 	struct upgt_data *data_cmd = &sc->cmd_data;
    980 	struct upgt_lmac_mem *mem;
    981 	struct upgt_lmac_eeprom	*eeprom;
    982 	int offset, block, len;
    983 
    984 	offset = 0;
    985 	block = UPGT_EEPROM_BLOCK_SIZE;
    986 	while (offset < UPGT_EEPROM_SIZE) {
    987 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    988 		    device_xname(sc->sc_dev), offset, block);
    989 
    990 		/*
    991 		 * Transmit the URB containing the CMD data.
    992 		 */
    993 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    994 
    995 		memset(data_cmd->buf, 0, len);
    996 
    997 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    998 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    999 		    UPGT_MEMSIZE_FRAME_HEAD);
   1000 
   1001 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
   1002 		eeprom->header1.flags = 0;
   1003 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
   1004 		eeprom->header1.len = htole16((
   1005 		    sizeof(struct upgt_lmac_eeprom) -
   1006 		    sizeof(struct upgt_lmac_header)) + block);
   1007 
   1008 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   1009 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
   1010 		eeprom->header2.flags = 0;
   1011 
   1012 		eeprom->offset = htole16(offset);
   1013 		eeprom->len = htole16(block);
   1014 
   1015 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
   1016 		    len - sizeof(*mem));
   1017 
   1018 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
   1019 		    USBD_FORCE_SHORT_XFER) != 0) {
   1020 			aprint_error_dev(sc->sc_dev,
   1021 			    "could not transmit EEPROM data URB\n");
   1022 			return EIO;
   1023 		}
   1024 
   1025 		mutex_enter(&sc->sc_mtx);
   1026 		int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
   1027 		mutex_exit(&sc->sc_mtx);
   1028 		if (res) {
   1029 			aprint_error_dev(sc->sc_dev,
   1030 			    "timeout while waiting for EEPROM data\n");
   1031 			return EIO;
   1032 		}
   1033 
   1034 		offset += block;
   1035 		if (UPGT_EEPROM_SIZE - offset < block)
   1036 			block = UPGT_EEPROM_SIZE - offset;
   1037 	}
   1038 
   1039 	return 0;
   1040 }
   1041 
   1042 static int
   1043 upgt_eeprom_parse(struct upgt_softc *sc)
   1044 {
   1045 	struct ieee80211com *ic = &sc->sc_ic;
   1046 	struct upgt_eeprom_header *eeprom_header;
   1047 	struct upgt_eeprom_option *eeprom_option;
   1048 	uint16_t option_len;
   1049 	uint16_t option_type;
   1050 	uint16_t preamble_len;
   1051 	int option_end = 0;
   1052 
   1053 	/* calculate eeprom options start offset */
   1054 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1055 	preamble_len = le16toh(eeprom_header->preamble_len);
   1056 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1057 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1058 
   1059 	while (!option_end) {
   1060 		/* the eeprom option length is stored in words */
   1061 		option_len =
   1062 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1063 		option_type =
   1064 		    le16toh(eeprom_option->type);
   1065 
   1066 		switch (option_type) {
   1067 		case UPGT_EEPROM_TYPE_NAME:
   1068 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1069 			    device_xname(sc->sc_dev), option_len);
   1070 			break;
   1071 		case UPGT_EEPROM_TYPE_SERIAL:
   1072 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1073 			    device_xname(sc->sc_dev), option_len);
   1074 			break;
   1075 		case UPGT_EEPROM_TYPE_MAC:
   1076 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1077 			    device_xname(sc->sc_dev), option_len);
   1078 
   1079 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1080 			break;
   1081 		case UPGT_EEPROM_TYPE_HWRX:
   1082 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1083 			    device_xname(sc->sc_dev), option_len);
   1084 
   1085 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1086 			break;
   1087 		case UPGT_EEPROM_TYPE_CHIP:
   1088 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1089 			    device_xname(sc->sc_dev), option_len);
   1090 			break;
   1091 		case UPGT_EEPROM_TYPE_FREQ3:
   1092 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1093 			    device_xname(sc->sc_dev), option_len);
   1094 
   1095 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1096 			    option_len);
   1097 			break;
   1098 		case UPGT_EEPROM_TYPE_FREQ4:
   1099 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1100 			    device_xname(sc->sc_dev), option_len);
   1101 
   1102 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1103 			    option_len);
   1104 			break;
   1105 		case UPGT_EEPROM_TYPE_FREQ5:
   1106 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1107 			    device_xname(sc->sc_dev), option_len);
   1108 			break;
   1109 		case UPGT_EEPROM_TYPE_FREQ6:
   1110 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1111 			    device_xname(sc->sc_dev), option_len);
   1112 
   1113 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1114 			    option_len);
   1115 			break;
   1116 		case UPGT_EEPROM_TYPE_END:
   1117 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1118 			    device_xname(sc->sc_dev), option_len);
   1119 			option_end = 1;
   1120 			break;
   1121 		case UPGT_EEPROM_TYPE_OFF:
   1122 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1123 			    device_xname(sc->sc_dev));
   1124 			return EIO;
   1125 		default:
   1126 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1127 			    device_xname(sc->sc_dev), option_type, option_len);
   1128 			break;
   1129 		}
   1130 
   1131 		/* jump to next EEPROM option */
   1132 		eeprom_option = (struct upgt_eeprom_option *)
   1133 		    (eeprom_option->data + option_len);
   1134 	}
   1135 
   1136 	return 0;
   1137 }
   1138 
   1139 static void
   1140 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1141 {
   1142 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1143 
   1144 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1145 
   1146 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1147 
   1148 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1149 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1150 }
   1151 
   1152 static void
   1153 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1154 {
   1155 	struct upgt_eeprom_freq3_header *freq3_header;
   1156 	struct upgt_lmac_freq3 *freq3;
   1157 	int i, elements, flags;
   1158 	unsigned channel;
   1159 
   1160 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1161 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1162 
   1163 	flags = freq3_header->flags;
   1164 	elements = freq3_header->elements;
   1165 
   1166 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1167 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1168 	__USE(flags);
   1169 
   1170 	for (i = 0; i < elements; i++) {
   1171 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1172 
   1173 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1174 
   1175 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1176 		    device_xname(sc->sc_dev),
   1177 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1178 	}
   1179 }
   1180 
   1181 static void
   1182 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1183 {
   1184 	struct upgt_eeprom_freq4_header *freq4_header;
   1185 	struct upgt_eeprom_freq4_1 *freq4_1;
   1186 	struct upgt_eeprom_freq4_2 *freq4_2;
   1187 	int i, j, elements, settings, flags;
   1188 	unsigned channel;
   1189 
   1190 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1191 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1192 
   1193 	flags = freq4_header->flags;
   1194 	elements = freq4_header->elements;
   1195 	settings = freq4_header->settings;
   1196 
   1197 	/* we need this value later */
   1198 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1199 
   1200 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1201 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1202 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1203 	__USE(flags);
   1204 
   1205 	for (i = 0; i < elements; i++) {
   1206 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1207 
   1208 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1209 
   1210 		for (j = 0; j < settings; j++) {
   1211 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1212 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1213 		}
   1214 
   1215 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1216 		    device_xname(sc->sc_dev),
   1217 		    le16toh(freq4_1[i].freq), channel);
   1218 	}
   1219 }
   1220 
   1221 static void
   1222 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1223 {
   1224 	struct upgt_lmac_freq6 *freq6;
   1225 	int i, elements;
   1226 	unsigned channel;
   1227 
   1228 	freq6 = (struct upgt_lmac_freq6 *)data;
   1229 
   1230 	elements = len / sizeof(struct upgt_lmac_freq6);
   1231 
   1232 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1233 
   1234 	for (i = 0; i < elements; i++) {
   1235 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1236 
   1237 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1238 
   1239 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1240 		    device_xname(sc->sc_dev),
   1241 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1242 	}
   1243 }
   1244 
   1245 static int
   1246 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1247 {
   1248 	struct upgt_softc *sc = ifp->if_softc;
   1249 	struct ieee80211com *ic = &sc->sc_ic;
   1250 	int s, error = 0;
   1251 
   1252 	s = splnet();
   1253 
   1254 	switch (cmd) {
   1255 	case SIOCSIFFLAGS:
   1256 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1257 			break;
   1258 		if (ifp->if_flags & IFF_UP) {
   1259 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1260 				upgt_init(ifp);
   1261 		} else {
   1262 			if (ifp->if_flags & IFF_RUNNING)
   1263 				upgt_stop(sc);
   1264 		}
   1265 		break;
   1266 	case SIOCADDMULTI:
   1267 	case SIOCDELMULTI:
   1268 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1269 			/* setup multicast filter, etc */
   1270 			error = 0;
   1271 		}
   1272 		break;
   1273 	default:
   1274 		error = ieee80211_ioctl(ic, cmd, data);
   1275 		break;
   1276 	}
   1277 
   1278 	if (error == ENETRESET) {
   1279 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1280 		    (IFF_UP | IFF_RUNNING))
   1281 			upgt_init(ifp);
   1282 		error = 0;
   1283 	}
   1284 
   1285 	splx(s);
   1286 
   1287 	return error;
   1288 }
   1289 
   1290 static int
   1291 upgt_init(struct ifnet *ifp)
   1292 {
   1293 	struct upgt_softc *sc = ifp->if_softc;
   1294 	struct ieee80211com *ic = &sc->sc_ic;
   1295 
   1296 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1297 
   1298 	if (ifp->if_flags & IFF_RUNNING)
   1299 		upgt_stop(sc);
   1300 
   1301 	ifp->if_flags |= IFF_RUNNING;
   1302 	ifp->if_flags &= ~IFF_OACTIVE;
   1303 
   1304 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1305 
   1306 	/* setup device rates */
   1307 	upgt_setup_rates(sc);
   1308 
   1309 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1310 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1311 	else
   1312 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1313 
   1314 	return 0;
   1315 }
   1316 
   1317 static void
   1318 upgt_stop(struct upgt_softc *sc)
   1319 {
   1320 	struct ieee80211com *ic = &sc->sc_ic;
   1321 	struct ifnet *ifp = &sc->sc_if;
   1322 
   1323 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1324 
   1325 	/* device down */
   1326 	ifp->if_timer = 0;
   1327 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1328 
   1329 	/* change device back to initial state */
   1330 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1331 }
   1332 
   1333 static int
   1334 upgt_media_change(struct ifnet *ifp)
   1335 {
   1336 	struct upgt_softc *sc = ifp->if_softc;
   1337 	int error;
   1338 
   1339 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1340 
   1341 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
   1342 		return error;
   1343 
   1344 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1345 	    (IFF_UP | IFF_RUNNING)) {
   1346 		/* give pending USB transfers a chance to finish */
   1347 		usbd_delay_ms(sc->sc_udev, 100);
   1348 		upgt_init(ifp);
   1349 	}
   1350 
   1351 	return 0;
   1352 }
   1353 
   1354 static void
   1355 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1356 {
   1357 
   1358 	ni->ni_txrate = 0;
   1359 }
   1360 
   1361 static int
   1362 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1363 {
   1364 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1365 
   1366 	/*
   1367 	 * XXXSMP: This does not wait for the task, if it is in flight,
   1368 	 * to complete.  If this code works at all, it must rely on the
   1369 	 * kernel lock to serialize with the USB task thread.
   1370 	 */
   1371 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1372 	callout_stop(&sc->scan_to);
   1373 
   1374 	/* do it in a process context */
   1375 	sc->sc_state = nstate;
   1376 	sc->sc_arg = arg;
   1377 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 static void
   1383 upgt_newstate_task(void *arg)
   1384 {
   1385 	struct upgt_softc *sc = arg;
   1386 	struct ieee80211com *ic = &sc->sc_ic;
   1387 	struct ieee80211_node *ni;
   1388 	unsigned channel;
   1389 
   1390 	mutex_enter(&sc->sc_mtx);
   1391 
   1392 	switch (sc->sc_state) {
   1393 	case IEEE80211_S_INIT:
   1394 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1395 		    device_xname(sc->sc_dev));
   1396 
   1397 		/* do not accept any frames if the device is down */
   1398 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1399 		upgt_set_led(sc, UPGT_LED_OFF);
   1400 		break;
   1401 	case IEEE80211_S_SCAN:
   1402 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1403 		    device_xname(sc->sc_dev));
   1404 
   1405 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1406 		upgt_set_channel(sc, channel);
   1407 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1408 		callout_schedule(&sc->scan_to, hz / 5);
   1409 		break;
   1410 	case IEEE80211_S_AUTH:
   1411 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1412 		    device_xname(sc->sc_dev));
   1413 
   1414 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1415 		upgt_set_channel(sc, channel);
   1416 		break;
   1417 	case IEEE80211_S_ASSOC:
   1418 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1419 		    device_xname(sc->sc_dev));
   1420 
   1421 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1422 		upgt_set_channel(sc, channel);
   1423 		break;
   1424 	case IEEE80211_S_RUN:
   1425 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1426 		    device_xname(sc->sc_dev));
   1427 
   1428 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1429 		upgt_set_channel(sc, channel);
   1430 
   1431 		ni = ic->ic_bss;
   1432 
   1433 		/*
   1434 		 * TX rate control is done by the firmware.
   1435 		 * Report the maximum rate which is available therefore.
   1436 		 */
   1437 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1438 
   1439 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1440 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1441 		upgt_set_led(sc, UPGT_LED_ON);
   1442 		break;
   1443 	}
   1444 
   1445 	mutex_exit(&sc->sc_mtx);
   1446 
   1447 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1448 }
   1449 
   1450 static void
   1451 upgt_next_scan(void *arg)
   1452 {
   1453 	struct upgt_softc *sc = arg;
   1454 	struct ieee80211com *ic = &sc->sc_ic;
   1455 
   1456 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1457 
   1458 	if (ic->ic_state == IEEE80211_S_SCAN)
   1459 		ieee80211_next_scan(ic);
   1460 }
   1461 
   1462 static void
   1463 upgt_start(struct ifnet *ifp)
   1464 {
   1465 	struct upgt_softc *sc = ifp->if_softc;
   1466 	struct ieee80211com *ic = &sc->sc_ic;
   1467 	struct ether_header *eh;
   1468 	struct ieee80211_node *ni;
   1469 	struct mbuf *m;
   1470 	int i;
   1471 
   1472 	/* don't transmit packets if interface is busy or down */
   1473 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1474 		return;
   1475 
   1476 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1477 
   1478 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1479 		struct upgt_data *data_tx = &sc->tx_data[i];
   1480 
   1481 		if (data_tx->m != NULL)
   1482 			continue;
   1483 
   1484 		IF_POLL(&ic->ic_mgtq, m);
   1485 		if (m != NULL) {
   1486 			/* management frame */
   1487 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1488 
   1489 			ni = M_GETCTX(m, struct ieee80211_node *);
   1490 			M_CLEARCTX(m);
   1491 
   1492 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   1493 
   1494 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1495 				aprint_error_dev(sc->sc_dev,
   1496 				    "no free prism memory\n");
   1497 				m_freem(m);
   1498 				if_statinc(ifp, if_oerrors);
   1499 				break;
   1500 			}
   1501 			data_tx->ni = ni;
   1502 			data_tx->m = m;
   1503 			sc->tx_queued++;
   1504 		} else {
   1505 			/* data frame */
   1506 			if (ic->ic_state != IEEE80211_S_RUN)
   1507 				break;
   1508 
   1509 			IFQ_POLL(&ifp->if_snd, m);
   1510 			if (m == NULL)
   1511 				break;
   1512 
   1513 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1514 			if (m->m_len < sizeof(struct ether_header) &&
   1515 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1516 				continue;
   1517 
   1518 			eh = mtod(m, struct ether_header *);
   1519 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1520 			if (ni == NULL) {
   1521 				m_freem(m);
   1522 				continue;
   1523 			}
   1524 
   1525 			bpf_mtap(ifp, m, BPF_D_OUT);
   1526 
   1527 			m = ieee80211_encap(ic, m, ni);
   1528 			if (m == NULL) {
   1529 				ieee80211_free_node(ni);
   1530 				continue;
   1531 			}
   1532 
   1533 			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
   1534 
   1535 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1536 				aprint_error_dev(sc->sc_dev,
   1537 				    "no free prism memory\n");
   1538 				m_freem(m);
   1539 				ieee80211_free_node(ni);
   1540 				if_statinc(ifp, if_oerrors);
   1541 				break;
   1542 			}
   1543 			data_tx->ni = ni;
   1544 			data_tx->m = m;
   1545 			sc->tx_queued++;
   1546 		}
   1547 	}
   1548 
   1549 	if (sc->tx_queued > 0) {
   1550 		DPRINTF(2, "%s: tx_queued=%d\n",
   1551 		    device_xname(sc->sc_dev), sc->tx_queued);
   1552 		/* process the TX queue in process context */
   1553 		ifp->if_timer = 5;
   1554 		ifp->if_flags |= IFF_OACTIVE;
   1555 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1556 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1557 	}
   1558 }
   1559 
   1560 static void
   1561 upgt_watchdog(struct ifnet *ifp)
   1562 {
   1563 	struct upgt_softc *sc = ifp->if_softc;
   1564 	struct ieee80211com *ic = &sc->sc_ic;
   1565 
   1566 	if (ic->ic_state == IEEE80211_S_INIT)
   1567 		return;
   1568 
   1569 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1570 
   1571 	/* TODO: what shall we do on TX timeout? */
   1572 
   1573 	ieee80211_watchdog(ic);
   1574 }
   1575 
   1576 static void
   1577 upgt_tx_task(void *arg)
   1578 {
   1579 	struct upgt_softc *sc = arg;
   1580 	struct ieee80211com *ic = &sc->sc_ic;
   1581 	struct ieee80211_frame *wh;
   1582 	struct ieee80211_key *k;
   1583 	struct ifnet *ifp = &sc->sc_if;
   1584 	struct upgt_lmac_mem *mem;
   1585 	struct upgt_lmac_tx_desc *txdesc;
   1586 	struct mbuf *m;
   1587 	uint32_t addr;
   1588 	int i, len, pad, s;
   1589 	usbd_status error;
   1590 
   1591 	mutex_enter(&sc->sc_mtx);
   1592 	upgt_set_led(sc, UPGT_LED_BLINK);
   1593 	mutex_exit(&sc->sc_mtx);
   1594 
   1595 	s = splnet();
   1596 
   1597 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1598 		struct upgt_data *data_tx = &sc->tx_data[i];
   1599 
   1600 		if (data_tx->m == NULL)
   1601 			continue;
   1602 
   1603 		m = data_tx->m;
   1604 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1605 
   1606 		/*
   1607 		 * Software crypto.
   1608 		 */
   1609 		wh = mtod(m, struct ieee80211_frame *);
   1610 
   1611 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1612 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1613 			if (k == NULL) {
   1614 				m_freem(m);
   1615 				data_tx->m = NULL;
   1616 				ieee80211_free_node(data_tx->ni);
   1617 				data_tx->ni = NULL;
   1618 				if_statinc(ifp, if_oerrors);
   1619 				break;
   1620 			}
   1621 
   1622 			/* in case packet header moved, reset pointer */
   1623 			wh = mtod(m, struct ieee80211_frame *);
   1624 		}
   1625 
   1626 		/*
   1627 		 * Transmit the URB containing the TX data.
   1628 		 */
   1629 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1630 
   1631 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1632 		mem->addr = htole32(addr);
   1633 
   1634 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1635 
   1636 		/* XXX differ between data and mgmt frames? */
   1637 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1638 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1639 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1640 
   1641 		txdesc->header2.reqid = htole32(data_tx->addr);
   1642 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1643 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1644 
   1645 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1646 		    IEEE80211_FC0_TYPE_MGT) {
   1647 			/* always send mgmt frames at lowest rate (DS1) */
   1648 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1649 		} else {
   1650 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1651 			    sizeof(txdesc->rates));
   1652 		}
   1653 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1654 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1655 
   1656 		if (sc->sc_drvbpf != NULL) {
   1657 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1658 
   1659 			tap->wt_flags = 0;
   1660 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1661 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1662 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1663 
   1664 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
   1665 			    BPF_D_OUT);
   1666 		}
   1667 
   1668 		/* copy frame below our TX descriptor header */
   1669 		m_copydata(m, 0, m->m_pkthdr.len,
   1670 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1671 
   1672 		/* calculate frame size */
   1673 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1674 
   1675 		if (len & 3) {
   1676 			/* we need to align the frame to a 4 byte boundary */
   1677 			pad = 4 - (len & 3);
   1678 			memset(data_tx->buf + len, 0, pad);
   1679 			len += pad;
   1680 		}
   1681 
   1682 		/* calculate frame checksum */
   1683 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1684 		    len - sizeof(*mem));
   1685 
   1686 		/* we do not need the mbuf anymore */
   1687 		m_freem(m);
   1688 		data_tx->m = NULL;
   1689 
   1690 		ieee80211_free_node(data_tx->ni);
   1691 		data_tx->ni = NULL;
   1692 
   1693 		DPRINTF(2, "%s: TX start data sending\n",
   1694 		    device_xname(sc->sc_dev));
   1695 
   1696 		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
   1697 		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
   1698 		error = usbd_transfer(data_tx->xfer);
   1699 		if (error != USBD_NORMAL_COMPLETION &&
   1700 		    error != USBD_IN_PROGRESS) {
   1701 			aprint_error_dev(sc->sc_dev,
   1702 			    "could not transmit TX data URB\n");
   1703 			if_statinc(ifp, if_oerrors);
   1704 			break;
   1705 		}
   1706 
   1707 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1708 		    device_xname(sc->sc_dev), len);
   1709 	}
   1710 
   1711 	splx(s);
   1712 
   1713 	/*
   1714 	 * If we don't regulary read the device statistics, the RX queue
   1715 	 * will stall.  It's strange, but it works, so we keep reading
   1716 	 * the statistics here.  *shrug*
   1717 	 */
   1718 	mutex_enter(&sc->sc_mtx);
   1719 	upgt_get_stats(sc);
   1720 	mutex_exit(&sc->sc_mtx);
   1721 }
   1722 
   1723 static void
   1724 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1725 {
   1726 	struct ifnet *ifp = &sc->sc_if;
   1727 	struct upgt_lmac_tx_done_desc *desc;
   1728 	int i, s;
   1729 
   1730 	s = splnet();
   1731 
   1732 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1733 
   1734 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1735 		struct upgt_data *data_tx = &sc->tx_data[i];
   1736 
   1737 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1738 			upgt_mem_free(sc, data_tx->addr);
   1739 			data_tx->addr = 0;
   1740 
   1741 			sc->tx_queued--;
   1742 			if_statinc(ifp, if_opackets);
   1743 
   1744 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1745 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1746 			    le32toh(desc->header2.reqid),
   1747 			    le16toh(desc->status),
   1748 			    le16toh(desc->rssi));
   1749 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1750 			break;
   1751 		}
   1752 	}
   1753 
   1754 	if (sc->tx_queued == 0) {
   1755 		/* TX queued was processed, continue */
   1756 		ifp->if_timer = 0;
   1757 		ifp->if_flags &= ~IFF_OACTIVE;
   1758 		upgt_start(ifp);
   1759 	}
   1760 
   1761 	splx(s);
   1762 }
   1763 
   1764 static void
   1765 upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
   1766 {
   1767 	struct upgt_data *data_rx = priv;
   1768 	struct upgt_softc *sc = data_rx->sc;
   1769 	int len;
   1770 	struct upgt_lmac_header *header;
   1771 	struct upgt_lmac_eeprom *eeprom;
   1772 	uint8_t h1_type;
   1773 	uint16_t h2_type;
   1774 
   1775 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1776 
   1777 	if (status != USBD_NORMAL_COMPLETION) {
   1778 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1779 			return;
   1780 		if (status == USBD_STALLED)
   1781 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1782 		goto skip;
   1783 	}
   1784 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1785 
   1786 	/*
   1787 	 * Check what type of frame came in.
   1788 	 */
   1789 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1790 
   1791 	h1_type = header->header1.type;
   1792 	h2_type = le16toh(header->header2.type);
   1793 
   1794 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1795 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1796 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1797 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1798 		uint16_t eeprom_len = le16toh(eeprom->len);
   1799 
   1800 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1801 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1802 
   1803 		mutex_enter(&sc->sc_mtx);
   1804 		memcpy(sc->sc_eeprom + eeprom_offset,
   1805 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1806 		    eeprom_len);
   1807 
   1808 		/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
   1809 		/* Note eeprom data arrived */
   1810 		cv_broadcast(&sc->sc_cv);
   1811 		mutex_exit(&sc->sc_mtx);
   1812 	} else
   1813 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1814 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1815 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1816 		    device_xname(sc->sc_dev));
   1817 
   1818 		upgt_tx_done(sc, data_rx->buf + 4);
   1819 	} else
   1820 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1821 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1822 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1823 		    device_xname(sc->sc_dev));
   1824 
   1825 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1826 	} else
   1827 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1828 	    h2_type == UPGT_H2_TYPE_STATS) {
   1829 		DPRINTF(2, "%s: received statistic data\n",
   1830 		    device_xname(sc->sc_dev));
   1831 
   1832 		/* TODO: what could we do with the statistic data? */
   1833 	} else {
   1834 		/* ignore unknown frame types */
   1835 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1836 		    device_xname(sc->sc_dev), header->header1.type);
   1837 	}
   1838 
   1839 skip:	/* setup new transfer */
   1840 	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
   1841 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1842 	(void)usbd_transfer(xfer);
   1843 }
   1844 
   1845 static void
   1846 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1847 {
   1848 	struct ieee80211com *ic = &sc->sc_ic;
   1849 	struct ifnet *ifp = &sc->sc_if;
   1850 	struct upgt_lmac_rx_desc *rxdesc;
   1851 	struct ieee80211_frame *wh;
   1852 	struct ieee80211_node *ni;
   1853 	struct mbuf *m;
   1854 	int s;
   1855 
   1856 	/* access RX packet descriptor */
   1857 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1858 
   1859 	/* create mbuf which is suitable for strict alignment archs */
   1860 	m = m_devget(rxdesc->data, pkglen, 0, ifp);
   1861 	if (m == NULL) {
   1862 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1863 		   device_xname(sc->sc_dev));
   1864 		if_statinc(ifp, if_ierrors);
   1865 		return;
   1866 	}
   1867 
   1868 	s = splnet();
   1869 
   1870 	if (sc->sc_drvbpf != NULL) {
   1871 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1872 
   1873 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1874 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1875 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1876 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1877 		tap->wr_antsignal = rxdesc->rssi;
   1878 
   1879 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   1880 	}
   1881 
   1882 	/* trim FCS */
   1883 	m_adj(m, -IEEE80211_CRC_LEN);
   1884 
   1885 	wh = mtod(m, struct ieee80211_frame *);
   1886 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1887 
   1888 	/* push the frame up to the 802.11 stack */
   1889 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1890 
   1891 	/* node is no longer needed */
   1892 	ieee80211_free_node(ni);
   1893 
   1894 	splx(s);
   1895 
   1896 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1897 }
   1898 
   1899 static void
   1900 upgt_setup_rates(struct upgt_softc *sc)
   1901 {
   1902 	struct ieee80211com *ic = &sc->sc_ic;
   1903 
   1904 	/*
   1905 	 * 0x01 = OFMD6   0x10 = DS1
   1906 	 * 0x04 = OFDM9   0x11 = DS2
   1907 	 * 0x06 = OFDM12  0x12 = DS5
   1908 	 * 0x07 = OFDM18  0x13 = DS11
   1909 	 * 0x08 = OFDM24
   1910 	 * 0x09 = OFDM36
   1911 	 * 0x0a = OFDM48
   1912 	 * 0x0b = OFDM54
   1913 	 */
   1914 	const uint8_t rateset_auto_11b[] =
   1915 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1916 	const uint8_t rateset_auto_11g[] =
   1917 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1918 	const uint8_t rateset_fix_11bg[] =
   1919 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1920 	      0x08, 0x09, 0x0a, 0x0b };
   1921 
   1922 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1923 		/*
   1924 		 * Automatic rate control is done by the device.
   1925 		 * We just pass the rateset from which the device
   1926 		 * will pickup a rate.
   1927 		 */
   1928 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1929 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1930 			    sizeof(sc->sc_cur_rateset));
   1931 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1932 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1933 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1934 			    sizeof(sc->sc_cur_rateset));
   1935 	} else {
   1936 		/* set a fixed rate */
   1937 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1938 		    sizeof(sc->sc_cur_rateset));
   1939 	}
   1940 }
   1941 
   1942 static uint8_t
   1943 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1944 {
   1945 	struct ieee80211com *ic = &sc->sc_ic;
   1946 
   1947 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1948 		if (rate < 0 || rate > 3)
   1949 			/* invalid rate */
   1950 			return 0;
   1951 
   1952 		switch (rate) {
   1953 		case 0:
   1954 			return 2;
   1955 		case 1:
   1956 			return 4;
   1957 		case 2:
   1958 			return 11;
   1959 		case 3:
   1960 			return 22;
   1961 		default:
   1962 			return 0;
   1963 		}
   1964 	}
   1965 
   1966 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1967 		if (rate < 0 || rate > 11)
   1968 			/* invalid rate */
   1969 			return 0;
   1970 
   1971 		switch (rate) {
   1972 		case 0:
   1973 			return 2;
   1974 		case 1:
   1975 			return 4;
   1976 		case 2:
   1977 			return 11;
   1978 		case 3:
   1979 			return 22;
   1980 		case 4:
   1981 			return 12;
   1982 		case 5:
   1983 			return 18;
   1984 		case 6:
   1985 			return 24;
   1986 		case 7:
   1987 			return 36;
   1988 		case 8:
   1989 			return 48;
   1990 		case 9:
   1991 			return 72;
   1992 		case 10:
   1993 			return 96;
   1994 		case 11:
   1995 			return 108;
   1996 		default:
   1997 			return 0;
   1998 		}
   1999 	}
   2000 
   2001 	return 0;
   2002 }
   2003 
   2004 static int
   2005 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   2006 {
   2007 	struct ieee80211com *ic = &sc->sc_ic;
   2008 	struct ieee80211_node *ni = ic->ic_bss;
   2009 	struct upgt_data *data_cmd = &sc->cmd_data;
   2010 	struct upgt_lmac_mem *mem;
   2011 	struct upgt_lmac_filter *filter;
   2012 	int len;
   2013 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   2014 
   2015 	/*
   2016 	 * Transmit the URB containing the CMD data.
   2017 	 */
   2018 	len = sizeof(*mem) + sizeof(*filter);
   2019 
   2020 	memset(data_cmd->buf, 0, len);
   2021 
   2022 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2023 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2024 	    UPGT_MEMSIZE_FRAME_HEAD);
   2025 
   2026 	filter = (struct upgt_lmac_filter *)(mem + 1);
   2027 
   2028 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2029 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   2030 	filter->header1.len = htole16(
   2031 	    sizeof(struct upgt_lmac_filter) -
   2032 	    sizeof(struct upgt_lmac_header));
   2033 
   2034 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2035 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2036 	filter->header2.flags = 0;
   2037 
   2038 	switch (state) {
   2039 	case IEEE80211_S_INIT:
   2040 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2041 		    device_xname(sc->sc_dev));
   2042 
   2043 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2044 		break;
   2045 	case IEEE80211_S_SCAN:
   2046 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2047 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2048 
   2049 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2050 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2051 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2052 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2053 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2054 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2055 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2056 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2057 		break;
   2058 	case IEEE80211_S_RUN:
   2059 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2060 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2061 
   2062 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2063 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2064 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2065 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2066 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2067 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2068 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2069 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2070 		break;
   2071 	default:
   2072 		aprint_error_dev(sc->sc_dev,
   2073 		    "MAC filter does not know that state\n");
   2074 		break;
   2075 	}
   2076 
   2077 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2078 
   2079 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2080 		aprint_error_dev(sc->sc_dev,
   2081 		    "could not transmit macfilter CMD data URB\n");
   2082 		return EIO;
   2083 	}
   2084 
   2085 	return 0;
   2086 }
   2087 
   2088 static int
   2089 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2090 {
   2091 	struct upgt_data *data_cmd = &sc->cmd_data;
   2092 	struct upgt_lmac_mem *mem;
   2093 	struct upgt_lmac_channel *chan;
   2094 	int len;
   2095 
   2096 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2097 	    channel);
   2098 
   2099 	/*
   2100 	 * Transmit the URB containing the CMD data.
   2101 	 */
   2102 	len = sizeof(*mem) + sizeof(*chan);
   2103 
   2104 	memset(data_cmd->buf, 0, len);
   2105 
   2106 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2107 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2108 	    UPGT_MEMSIZE_FRAME_HEAD);
   2109 
   2110 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2111 
   2112 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2113 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2114 	chan->header1.len = htole16(
   2115 	    sizeof(struct upgt_lmac_channel) -
   2116 	    sizeof(struct upgt_lmac_header));
   2117 
   2118 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2119 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2120 	chan->header2.flags = 0;
   2121 
   2122 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2123 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2124 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2125 	chan->settings = sc->sc_eeprom_freq6_settings;
   2126 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2127 
   2128 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2129 	    sizeof(chan->freq3_1));
   2130 
   2131 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2132 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2133 
   2134 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2135 	    sizeof(chan->freq3_2));
   2136 
   2137 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2138 
   2139 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2140 		aprint_error_dev(sc->sc_dev,
   2141 		    "could not transmit channel CMD data URB\n");
   2142 		return EIO;
   2143 	}
   2144 
   2145 	return 0;
   2146 }
   2147 
   2148 static void
   2149 upgt_set_led(struct upgt_softc *sc, int action)
   2150 {
   2151 	struct ieee80211com *ic = &sc->sc_ic;
   2152 	struct upgt_data *data_cmd = &sc->cmd_data;
   2153 	struct upgt_lmac_mem *mem;
   2154 	struct upgt_lmac_led *led;
   2155 	struct timeval t;
   2156 	int len;
   2157 
   2158 	/*
   2159 	 * Transmit the URB containing the CMD data.
   2160 	 */
   2161 	len = sizeof(*mem) + sizeof(*led);
   2162 
   2163 	memset(data_cmd->buf, 0, len);
   2164 
   2165 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2166 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2167 	    UPGT_MEMSIZE_FRAME_HEAD);
   2168 
   2169 	led = (struct upgt_lmac_led *)(mem + 1);
   2170 
   2171 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2172 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2173 	led->header1.len = htole16(
   2174 	    sizeof(struct upgt_lmac_led) -
   2175 	    sizeof(struct upgt_lmac_header));
   2176 
   2177 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2178 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2179 	led->header2.flags = 0;
   2180 
   2181 	switch (action) {
   2182 	case UPGT_LED_OFF:
   2183 		led->mode = htole16(UPGT_LED_MODE_SET);
   2184 		led->action_fix = 0;
   2185 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2186 		led->action_tmp_dur = 0;
   2187 		break;
   2188 	case UPGT_LED_ON:
   2189 		led->mode = htole16(UPGT_LED_MODE_SET);
   2190 		led->action_fix = 0;
   2191 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2192 		led->action_tmp_dur = 0;
   2193 		break;
   2194 	case UPGT_LED_BLINK:
   2195 		if (ic->ic_state != IEEE80211_S_RUN)
   2196 			return;
   2197 		if (sc->sc_led_blink)
   2198 			/* previous blink was not finished */
   2199 			return;
   2200 		led->mode = htole16(UPGT_LED_MODE_SET);
   2201 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2202 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2203 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2204 		/* lock blink */
   2205 		sc->sc_led_blink = 1;
   2206 		t.tv_sec = 0;
   2207 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2208 		callout_schedule(&sc->led_to, tvtohz(&t));
   2209 		break;
   2210 	default:
   2211 		return;
   2212 	}
   2213 
   2214 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2215 
   2216 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2217 		aprint_error_dev(sc->sc_dev,
   2218 		    "could not transmit led CMD URB\n");
   2219 	}
   2220 }
   2221 
   2222 static void
   2223 upgt_set_led_blink(void *arg)
   2224 {
   2225 	struct upgt_softc *sc = arg;
   2226 
   2227 	/* blink finished, we are ready for a next one */
   2228 	sc->sc_led_blink = 0;
   2229 	callout_stop(&sc->led_to);
   2230 }
   2231 
   2232 static int
   2233 upgt_get_stats(struct upgt_softc *sc)
   2234 {
   2235 	struct upgt_data *data_cmd = &sc->cmd_data;
   2236 	struct upgt_lmac_mem *mem;
   2237 	struct upgt_lmac_stats *stats;
   2238 	int len;
   2239 
   2240 	/*
   2241 	 * Transmit the URB containing the CMD data.
   2242 	 */
   2243 	len = sizeof(*mem) + sizeof(*stats);
   2244 
   2245 	memset(data_cmd->buf, 0, len);
   2246 
   2247 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2248 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2249 	    UPGT_MEMSIZE_FRAME_HEAD);
   2250 
   2251 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2252 
   2253 	stats->header1.flags = 0;
   2254 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2255 	stats->header1.len = htole16(
   2256 	    sizeof(struct upgt_lmac_stats) -
   2257 	    sizeof(struct upgt_lmac_header));
   2258 
   2259 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2260 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2261 	stats->header2.flags = 0;
   2262 
   2263 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2264 
   2265 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2266 		aprint_error_dev(sc->sc_dev,
   2267 		    "could not transmit statistics CMD data URB\n");
   2268 		return EIO;
   2269 	}
   2270 
   2271 	return 0;
   2272 
   2273 }
   2274 
   2275 static int
   2276 upgt_alloc_tx(struct upgt_softc *sc)
   2277 {
   2278 	int i;
   2279 
   2280 	sc->tx_queued = 0;
   2281 
   2282 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2283 		struct upgt_data *data_tx = &sc->tx_data[i];
   2284 
   2285 		data_tx->sc = sc;
   2286 
   2287 		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2288 		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
   2289 		if (err) {
   2290 			aprint_error_dev(sc->sc_dev,
   2291 			    "could not allocate TX xfer\n");
   2292 			return err;
   2293 		}
   2294 
   2295 		data_tx->buf = usbd_get_buffer(data_tx->xfer);
   2296 	}
   2297 
   2298 	return 0;
   2299 }
   2300 
   2301 static int
   2302 upgt_alloc_rx(struct upgt_softc *sc)
   2303 {
   2304 	struct upgt_data *data_rx = &sc->rx_data;
   2305 
   2306 	data_rx->sc = sc;
   2307 
   2308 	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
   2309 	    0, 0, &data_rx->xfer);
   2310 	if (err) {
   2311 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2312 		return err;
   2313 	}
   2314 
   2315 	data_rx->buf = usbd_get_buffer(data_rx->xfer);
   2316 
   2317 	return 0;
   2318 }
   2319 
   2320 static int
   2321 upgt_alloc_cmd(struct upgt_softc *sc)
   2322 {
   2323 	struct upgt_data *data_cmd = &sc->cmd_data;
   2324 
   2325 	data_cmd->sc = sc;
   2326 
   2327 	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
   2328 	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
   2329 	if (err) {
   2330 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2331 		return err;
   2332 	}
   2333 
   2334 	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
   2335 
   2336 	cv_init(&sc->sc_cv, "upgteeprom");
   2337 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
   2338 
   2339 	return 0;
   2340 }
   2341 
   2342 static void
   2343 upgt_free_tx(struct upgt_softc *sc)
   2344 {
   2345 	int i;
   2346 
   2347 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2348 		struct upgt_data *data_tx = &sc->tx_data[i];
   2349 
   2350 		if (data_tx->xfer != NULL) {
   2351 			usbd_destroy_xfer(data_tx->xfer);
   2352 			data_tx->xfer = NULL;
   2353 		}
   2354 
   2355 		data_tx->ni = NULL;
   2356 	}
   2357 }
   2358 
   2359 static void
   2360 upgt_free_rx(struct upgt_softc *sc)
   2361 {
   2362 	struct upgt_data *data_rx = &sc->rx_data;
   2363 
   2364 	if (data_rx->xfer != NULL) {
   2365 		usbd_destroy_xfer(data_rx->xfer);
   2366 		data_rx->xfer = NULL;
   2367 	}
   2368 
   2369 	data_rx->ni = NULL;
   2370 }
   2371 
   2372 static void
   2373 upgt_free_cmd(struct upgt_softc *sc)
   2374 {
   2375 	struct upgt_data *data_cmd = &sc->cmd_data;
   2376 
   2377 	if (data_cmd->xfer != NULL) {
   2378 		usbd_destroy_xfer(data_cmd->xfer);
   2379 		data_cmd->xfer = NULL;
   2380 	}
   2381 
   2382 	mutex_destroy(&sc->sc_mtx);
   2383 	cv_destroy(&sc->sc_cv);
   2384 }
   2385 
   2386 static int
   2387 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2388     struct usbd_pipe *pipeh, uint32_t *size, int flags)
   2389 {
   2390         usbd_status status;
   2391 
   2392 	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
   2393 	    data->buf, size);
   2394 	if (status != USBD_NORMAL_COMPLETION) {
   2395 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2396 		    usbd_errstr(status));
   2397 		return EIO;
   2398 	}
   2399 
   2400 	return 0;
   2401 }
   2402 
   2403 #if 0
   2404 static void
   2405 upgt_hexdump(void *buf, int len)
   2406 {
   2407 	int i;
   2408 
   2409 	for (i = 0; i < len; i++) {
   2410 		if (i % 16 == 0)
   2411 			printf("%s%5i:", i ? "\n" : "", i);
   2412 		if (i % 4 == 0)
   2413 			printf(" ");
   2414 		printf("%02x", (int)*((uint8_t *)buf + i));
   2415 	}
   2416 	printf("\n");
   2417 }
   2418 #endif
   2419 
   2420 static uint32_t
   2421 upgt_crc32_le(const void *buf, size_t size)
   2422 {
   2423 	uint32_t crc;
   2424 
   2425 	crc = ether_crc32_le(buf, size);
   2426 
   2427 	/* apply final XOR value as common for CRC-32 */
   2428 	crc = htole32(crc ^ 0xffffffffU);
   2429 
   2430 	return crc;
   2431 }
   2432 
   2433 /*
   2434  * The firmware awaits a checksum for each frame we send to it.
   2435  * The algorithm used is uncommon but somehow similar to CRC32.
   2436  */
   2437 static uint32_t
   2438 upgt_chksum_le(const uint32_t *buf, size_t size)
   2439 {
   2440 	int i;
   2441 	uint32_t crc = 0;
   2442 
   2443 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2444 		crc = htole32(crc ^ *buf++);
   2445 		crc = htole32((crc >> 5) ^ (crc << 3));
   2446 	}
   2447 
   2448 	return crc;
   2449 }
   2450