Home | History | Annotate | Line # | Download | only in usb
if_upgt.c revision 1.6.2.3
      1 /*	$NetBSD: if_upgt.c,v 1.6.2.3 2014/08/20 00:03:51 tls Exp $	*/
      2 /*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2007 Marcus Glocker <mglocker (at) openbsd.org>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.6.2.3 2014/08/20 00:03:51 tls Exp $");
     22 
     23 #include <sys/param.h>
     24 #include <sys/callout.h>
     25 #include <sys/device.h>
     26 #include <sys/errno.h>
     27 #include <sys/kernel.h>
     28 #include <sys/kthread.h>
     29 #include <sys/mbuf.h>
     30 #include <sys/proc.h>
     31 #include <sys/sockio.h>
     32 #include <sys/systm.h>
     33 #include <sys/vnode.h>
     34 #include <sys/bus.h>
     35 #include <sys/endian.h>
     36 #include <sys/intr.h>
     37 
     38 #include <net/bpf.h>
     39 #include <net/if.h>
     40 #include <net/if_arp.h>
     41 #include <net/if_dl.h>
     42 #include <net/if_ether.h>
     43 #include <net/if_media.h>
     44 #include <net/if_types.h>
     45 
     46 #include <net80211/ieee80211_var.h>
     47 #include <net80211/ieee80211_radiotap.h>
     48 
     49 #include <dev/firmload.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 #include <dev/usb/usbdivar.h>
     55 #include <dev/usb/usbdevs.h>
     56 
     57 #include <dev/usb/if_upgtvar.h>
     58 
     59 /*
     60  * Driver for the USB PrismGT devices.
     61  *
     62  * For now just USB 2.0 devices with the GW3887 chipset are supported.
     63  * The driver has been written based on the firmware version 2.13.1.0_LM87.
     64  *
     65  * TODO's:
     66  * - Fix MONITOR mode (MAC filter).
     67  * - Add HOSTAP mode.
     68  * - Add IBSS mode.
     69  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
     70  *
     71  * Parts of this driver has been influenced by reading the p54u driver
     72  * written by Jean-Baptiste Note <jean-baptiste.note (at) m4x.org> and
     73  * Sebastien Bourdeauducq <lekernel (at) prism54.org>.
     74  */
     75 
     76 #ifdef UPGT_DEBUG
     77 int upgt_debug = 2;
     78 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
     79 #else
     80 #define DPRINTF(l, x...)
     81 #endif
     82 
     83 /*
     84  * Prototypes.
     85  */
     86 static int	upgt_match(device_t, cfdata_t, void *);
     87 static void	upgt_attach(device_t, device_t, void *);
     88 static int	upgt_detach(device_t, int);
     89 static int	upgt_activate(device_t, devact_t);
     90 
     91 static void	upgt_attach_hook(device_t);
     92 static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
     93 static int	upgt_device_init(struct upgt_softc *);
     94 static int	upgt_mem_init(struct upgt_softc *);
     95 static uint32_t	upgt_mem_alloc(struct upgt_softc *);
     96 static void	upgt_mem_free(struct upgt_softc *, uint32_t);
     97 static int	upgt_fw_alloc(struct upgt_softc *);
     98 static void	upgt_fw_free(struct upgt_softc *);
     99 static int	upgt_fw_verify(struct upgt_softc *);
    100 static int	upgt_fw_load(struct upgt_softc *);
    101 static int	upgt_fw_copy(char *, char *, int);
    102 static int	upgt_eeprom_read(struct upgt_softc *);
    103 static int	upgt_eeprom_parse(struct upgt_softc *);
    104 static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
    105 static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
    106 static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
    107 static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
    108 
    109 static int	upgt_ioctl(struct ifnet *, u_long, void *);
    110 static int	upgt_init(struct ifnet *);
    111 static void	upgt_stop(struct upgt_softc *);
    112 static int	upgt_media_change(struct ifnet *);
    113 static void	upgt_newassoc(struct ieee80211_node *, int);
    114 static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
    115 		    int);
    116 static void	upgt_newstate_task(void *);
    117 static void	upgt_next_scan(void *);
    118 static void	upgt_start(struct ifnet *);
    119 static void	upgt_watchdog(struct ifnet *);
    120 static void	upgt_tx_task(void *);
    121 static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
    122 static void	upgt_rx_cb(usbd_xfer_handle, usbd_private_handle, usbd_status);
    123 static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
    124 static void	upgt_setup_rates(struct upgt_softc *);
    125 static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
    126 static int	upgt_set_macfilter(struct upgt_softc *, uint8_t state);
    127 static int	upgt_set_channel(struct upgt_softc *, unsigned);
    128 static void	upgt_set_led(struct upgt_softc *, int);
    129 static void	upgt_set_led_blink(void *);
    130 static int	upgt_get_stats(struct upgt_softc *);
    131 
    132 static int	upgt_alloc_tx(struct upgt_softc *);
    133 static int	upgt_alloc_rx(struct upgt_softc *);
    134 static int	upgt_alloc_cmd(struct upgt_softc *);
    135 static void	upgt_free_tx(struct upgt_softc *);
    136 static void	upgt_free_rx(struct upgt_softc *);
    137 static void	upgt_free_cmd(struct upgt_softc *);
    138 static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
    139 		    usbd_pipe_handle, uint32_t *, int);
    140 
    141 #if 0
    142 static void	upgt_hexdump(void *, int);
    143 #endif
    144 static uint32_t	upgt_crc32_le(const void *, size_t);
    145 static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
    146 
    147 CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
    148 	upgt_match, upgt_attach, upgt_detach, upgt_activate);
    149 
    150 static const struct usb_devno upgt_devs_1[] = {
    151 	/* version 1 devices */
    152 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
    153 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
    154 };
    155 
    156 static const struct usb_devno upgt_devs_2[] = {
    157 	/* version 2 devices */
    158 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
    159 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
    160 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
    161 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
    162 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
    163 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
    164 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
    165 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
    166 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
    167 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
    168 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
    169 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
    170 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
    171 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
    172 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
    173 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
    174 	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
    175 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
    176 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
    177 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
    178 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
    179 	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
    180 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
    181 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
    182 };
    183 
    184 static int
    185 firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
    186     size_t *sizep)
    187 {
    188 	firmware_handle_t fh;
    189 	int error;
    190 
    191 	if ((error = firmware_open(dname, iname, &fh)) != 0)
    192 		return error;
    193 	*sizep = firmware_get_size(fh);
    194 	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
    195 		firmware_close(fh);
    196 		return ENOMEM;
    197 	}
    198 	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
    199 		firmware_free(*ucodep, *sizep);
    200 	firmware_close(fh);
    201 
    202 	return error;
    203 }
    204 
    205 static int
    206 upgt_match(device_t parent, cfdata_t match, void *aux)
    207 {
    208 	struct usb_attach_arg *uaa = aux;
    209 
    210 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
    211 		return UMATCH_VENDOR_PRODUCT;
    212 
    213 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
    214 		return UMATCH_VENDOR_PRODUCT;
    215 
    216 	return UMATCH_NONE;
    217 }
    218 
    219 static void
    220 upgt_attach(device_t parent, device_t self, void *aux)
    221 {
    222 	struct upgt_softc *sc = device_private(self);
    223 	struct usb_attach_arg *uaa = aux;
    224 	usb_interface_descriptor_t *id;
    225 	usb_endpoint_descriptor_t *ed;
    226 	usbd_status error;
    227 	char *devinfop;
    228 	int i;
    229 
    230 	aprint_naive("\n");
    231 	aprint_normal("\n");
    232 
    233 	/*
    234 	 * Attach USB device.
    235 	 */
    236 	sc->sc_dev = self;
    237 	sc->sc_udev = uaa->device;
    238 
    239 	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
    240 	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
    241 	usbd_devinfo_free(devinfop);
    242 
    243 	/* check device type */
    244 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
    245 		return;
    246 
    247 	/* set configuration number */
    248 	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
    249 	if (error != 0) {
    250 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
    251 		    ", err=%s\n", usbd_errstr(error));
    252 		return;
    253 	}
    254 
    255 	/* get the first interface handle */
    256 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
    257 	    &sc->sc_iface);
    258 	if (error != 0) {
    259 		aprint_error_dev(sc->sc_dev,
    260 		    "could not get interface handle\n");
    261 		return;
    262 	}
    263 
    264 	/* find endpoints */
    265 	id = usbd_get_interface_descriptor(sc->sc_iface);
    266 	sc->sc_rx_no = sc->sc_tx_no = -1;
    267 	for (i = 0; i < id->bNumEndpoints; i++) {
    268 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    269 		if (ed == NULL) {
    270 			aprint_error_dev(sc->sc_dev,
    271 			    "no endpoint descriptor for iface %d\n", i);
    272 			return;
    273 		}
    274 
    275 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
    276 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    277 			sc->sc_tx_no = ed->bEndpointAddress;
    278 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
    279 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
    280 			sc->sc_rx_no = ed->bEndpointAddress;
    281 
    282 		/*
    283 		 * 0x01 TX pipe
    284 		 * 0x81 RX pipe
    285 		 *
    286 		 * Deprecated scheme (not used with fw version >2.5.6.x):
    287 		 * 0x02 TX MGMT pipe
    288 		 * 0x82 TX MGMT pipe
    289 		 */
    290 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
    291 			break;
    292 	}
    293 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
    294 		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
    295 		return;
    296 	}
    297 
    298 	/* setup tasks and timeouts */
    299 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
    300 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
    301 	callout_init(&sc->scan_to, 0);
    302 	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
    303 	callout_init(&sc->led_to, 0);
    304 	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
    305 
    306 	/*
    307 	 * Open TX and RX USB bulk pipes.
    308 	 */
    309 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
    310 	    &sc->sc_tx_pipeh);
    311 	if (error != 0) {
    312 		aprint_error_dev(sc->sc_dev,
    313 		    "could not open TX pipe: %s\n", usbd_errstr(error));
    314 		goto fail;
    315 	}
    316 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
    317 	    &sc->sc_rx_pipeh);
    318 	if (error != 0) {
    319 		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
    320 		    usbd_errstr(error));
    321 		goto fail;
    322 	}
    323 
    324 	/*
    325 	 * Allocate TX, RX, and CMD xfers.
    326 	 */
    327 	if (upgt_alloc_tx(sc) != 0)
    328 		goto fail;
    329 	if (upgt_alloc_rx(sc) != 0)
    330 		goto fail;
    331 	if (upgt_alloc_cmd(sc) != 0)
    332 		goto fail;
    333 
    334 	/*
    335 	 * We need the firmware loaded from file system to complete the attach.
    336 	 */
    337 	config_mountroot(self, upgt_attach_hook);
    338 
    339 	return;
    340 fail:
    341 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    342 }
    343 
    344 static void
    345 upgt_attach_hook(device_t arg)
    346 {
    347 	struct upgt_softc *sc = device_private(arg);
    348 	struct ieee80211com *ic = &sc->sc_ic;
    349 	struct ifnet *ifp = &sc->sc_if;
    350 	usbd_status error;
    351 	int i;
    352 
    353 	/*
    354 	 * Load firmware file into memory.
    355 	 */
    356 	if (upgt_fw_alloc(sc) != 0)
    357 		goto fail;
    358 
    359 	/*
    360 	 * Initialize the device.
    361 	 */
    362 	if (upgt_device_init(sc) != 0)
    363 		goto fail;
    364 
    365 	/*
    366 	 * Verify the firmware.
    367 	 */
    368 	if (upgt_fw_verify(sc) != 0)
    369 		goto fail;
    370 
    371 	/*
    372 	 * Calculate device memory space.
    373 	 */
    374 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
    375 		aprint_error_dev(sc->sc_dev,
    376 		    "could not find memory space addresses on FW\n");
    377 		goto fail;
    378 	}
    379 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
    380 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
    381 
    382 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
    383 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
    384 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
    385 	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
    386 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
    387 	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
    388 
    389 	upgt_mem_init(sc);
    390 
    391 	/*
    392 	 * Load the firmware.
    393 	 */
    394 	if (upgt_fw_load(sc) != 0)
    395 		goto fail;
    396 
    397 	/*
    398 	 * Startup the RX pipe.
    399 	 */
    400 	struct upgt_data *data_rx = &sc->rx_data;
    401 
    402 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
    403 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
    404 	error = usbd_transfer(data_rx->xfer);
    405 	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
    406 		aprint_error_dev(sc->sc_dev,
    407 		    "could not queue RX transfer\n");
    408 		goto fail;
    409 	}
    410 	usbd_delay_ms(sc->sc_udev, 100);
    411 
    412 	/*
    413 	 * Read the whole EEPROM content and parse it.
    414 	 */
    415 	if (upgt_eeprom_read(sc) != 0)
    416 		goto fail;
    417 	if (upgt_eeprom_parse(sc) != 0)
    418 		goto fail;
    419 
    420 	/*
    421 	 * Setup the 802.11 device.
    422 	 */
    423 	ic->ic_ifp = ifp;
    424 	ic->ic_phytype = IEEE80211_T_OFDM;
    425 	ic->ic_opmode = IEEE80211_M_STA;
    426 	ic->ic_state = IEEE80211_S_INIT;
    427 	ic->ic_caps =
    428 	    IEEE80211_C_MONITOR |
    429 	    IEEE80211_C_SHPREAMBLE |
    430 	    IEEE80211_C_SHSLOT;
    431 
    432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    434 
    435 	for (i = 1; i <= 14; i++) {
    436 		ic->ic_channels[i].ic_freq =
    437 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    438 		ic->ic_channels[i].ic_flags =
    439 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    440 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    441 	}
    442 
    443 	ifp->if_softc = sc;
    444 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    445 	ifp->if_init = upgt_init;
    446 	ifp->if_ioctl = upgt_ioctl;
    447 	ifp->if_start = upgt_start;
    448 	ifp->if_watchdog = upgt_watchdog;
    449 	IFQ_SET_READY(&ifp->if_snd);
    450 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    451 
    452 	if_attach(ifp);
    453 	ieee80211_ifattach(ic);
    454 	ic->ic_newassoc = upgt_newassoc;
    455 
    456 	sc->sc_newstate = ic->ic_newstate;
    457 	ic->ic_newstate = upgt_newstate;
    458 	ieee80211_media_init(ic, upgt_media_change, ieee80211_media_status);
    459 
    460 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    461 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    462 	    &sc->sc_drvbpf);
    463 
    464 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
    465 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    466 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
    467 
    468 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
    469 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    470 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
    471 
    472 	aprint_normal_dev(sc->sc_dev, "address %s\n",
    473 	    ether_sprintf(ic->ic_myaddr));
    474 
    475 	ieee80211_announce(ic);
    476 
    477 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    478 
    479 	/* device attached */
    480 	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
    481 
    482 	return;
    483 fail:
    484 	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
    485 }
    486 
    487 static int
    488 upgt_detach(device_t self, int flags)
    489 {
    490 	struct upgt_softc *sc = device_private(self);
    491 	struct ifnet *ifp = &sc->sc_if;
    492 	struct ieee80211com *ic = &sc->sc_ic;
    493 	int s;
    494 
    495 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
    496 
    497 	s = splnet();
    498 
    499 	if (ifp->if_flags & IFF_RUNNING)
    500 		upgt_stop(sc);
    501 
    502 	/* remove tasks and timeouts */
    503 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
    504 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
    505 	callout_destroy(&sc->scan_to);
    506 	callout_destroy(&sc->led_to);
    507 
    508 	/* abort and close TX / RX pipes */
    509 	if (sc->sc_tx_pipeh != NULL) {
    510 		usbd_abort_pipe(sc->sc_tx_pipeh);
    511 		usbd_close_pipe(sc->sc_tx_pipeh);
    512 	}
    513 	if (sc->sc_rx_pipeh != NULL) {
    514 		usbd_abort_pipe(sc->sc_rx_pipeh);
    515 		usbd_close_pipe(sc->sc_rx_pipeh);
    516 	}
    517 
    518 	/* free xfers */
    519 	upgt_free_tx(sc);
    520 	upgt_free_rx(sc);
    521 	upgt_free_cmd(sc);
    522 
    523 	/* free firmware */
    524 	upgt_fw_free(sc);
    525 
    526 	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
    527 		/* detach interface */
    528 		bpf_detach(ifp);
    529 		ieee80211_ifdetach(ic);
    530 		if_detach(ifp);
    531 	}
    532 
    533 	splx(s);
    534 
    535 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    536 
    537 	return 0;
    538 }
    539 
    540 static int
    541 upgt_activate(device_t self, devact_t act)
    542 {
    543 	struct upgt_softc *sc = device_private(self);
    544 
    545 	switch (act) {
    546 	case DVACT_DEACTIVATE:
    547 		if_deactivate(&sc->sc_if);
    548 		return 0;
    549 	default:
    550 		return EOPNOTSUPP;
    551 	}
    552 }
    553 
    554 static int
    555 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
    556 {
    557 
    558 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
    559 		sc->sc_device_type = 1;
    560 		/* XXX */
    561 		aprint_error_dev(sc->sc_dev,
    562 		    "version 1 devices not supported yet\n");
    563 		return 1;
    564 	} else
    565 		sc->sc_device_type = 2;
    566 
    567 	return 0;
    568 }
    569 
    570 static int
    571 upgt_device_init(struct upgt_softc *sc)
    572 {
    573 	struct upgt_data *data_cmd = &sc->cmd_data;
    574 	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
    575 	int len;
    576 
    577 	len = sizeof(init_cmd);
    578 	memcpy(data_cmd->buf, init_cmd, len);
    579 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    580 		aprint_error_dev(sc->sc_dev,
    581 		    "could not send device init string\n");
    582 		return EIO;
    583 	}
    584 	usbd_delay_ms(sc->sc_udev, 100);
    585 
    586 	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
    587 
    588 	return 0;
    589 }
    590 
    591 static int
    592 upgt_mem_init(struct upgt_softc *sc)
    593 {
    594 	int i;
    595 
    596 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
    597 		sc->sc_memory.page[i].used = 0;
    598 
    599 		if (i == 0) {
    600 			/*
    601 			 * The first memory page is always reserved for
    602 			 * command data.
    603 			 */
    604 			sc->sc_memory.page[i].addr =
    605 			    sc->sc_memaddr_frame_start + MCLBYTES;
    606 		} else {
    607 			sc->sc_memory.page[i].addr =
    608 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
    609 		}
    610 
    611 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
    612 		    sc->sc_memaddr_frame_end)
    613 			break;
    614 
    615 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
    616 		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
    617 	}
    618 
    619 	sc->sc_memory.pages = i;
    620 
    621 	DPRINTF(2, "%s: memory pages=%d\n",
    622 	    device_xname(sc->sc_dev), sc->sc_memory.pages);
    623 
    624 	return 0;
    625 }
    626 
    627 static uint32_t
    628 upgt_mem_alloc(struct upgt_softc *sc)
    629 {
    630 	int i;
    631 
    632 	for (i = 0; i < sc->sc_memory.pages; i++) {
    633 		if (sc->sc_memory.page[i].used == 0) {
    634 			sc->sc_memory.page[i].used = 1;
    635 			return sc->sc_memory.page[i].addr;
    636 		}
    637 	}
    638 
    639 	return 0;
    640 }
    641 
    642 static void
    643 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
    644 {
    645 	int i;
    646 
    647 	for (i = 0; i < sc->sc_memory.pages; i++) {
    648 		if (sc->sc_memory.page[i].addr == addr) {
    649 			sc->sc_memory.page[i].used = 0;
    650 			return;
    651 		}
    652 	}
    653 
    654 	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
    655 	    addr);
    656 }
    657 
    658 
    659 static int
    660 upgt_fw_alloc(struct upgt_softc *sc)
    661 {
    662 	const char *name = "upgt-gw3887";
    663 	int error;
    664 
    665 	if (sc->sc_fw == NULL) {
    666 		error = firmware_load("upgt", name, &sc->sc_fw,
    667 		    &sc->sc_fw_size);
    668 		if (error != 0) {
    669 			if (error == ENOENT) {
    670 				/*
    671 				 * The firmware file for upgt(4) is not in
    672 				 * the default distribution due to its lisence
    673 				 * so explicitly notify it if the firmware file
    674 				 * is not found.
    675 				 */
    676 				aprint_error_dev(sc->sc_dev,
    677 				    "firmware file %s is not installed\n",
    678 				    name);
    679 				aprint_error_dev(sc->sc_dev,
    680 				    "(it is not included in the default"
    681 				    " distribution)\n");
    682 				aprint_error_dev(sc->sc_dev,
    683 				    "see upgt(4) man page for details about "
    684 				    "firmware installation\n");
    685 			} else {
    686 				aprint_error_dev(sc->sc_dev,
    687 				    "could not read firmware %s\n", name);
    688 			}
    689 			return EIO;
    690 		}
    691 	}
    692 
    693 	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
    694 	    name);
    695 
    696 	return 0;
    697 }
    698 
    699 static void
    700 upgt_fw_free(struct upgt_softc *sc)
    701 {
    702 
    703 	if (sc->sc_fw != NULL) {
    704 		firmware_free(sc->sc_fw, sc->sc_fw_size);
    705 		sc->sc_fw = NULL;
    706 		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
    707 	}
    708 }
    709 
    710 static int
    711 upgt_fw_verify(struct upgt_softc *sc)
    712 {
    713 	struct upgt_fw_bra_option *bra_option;
    714 	uint32_t bra_option_type, bra_option_len;
    715 	uint32_t *uc;
    716 	int offset, bra_end = 0;
    717 
    718 	/*
    719 	 * Seek to beginning of Boot Record Area (BRA).
    720 	 */
    721 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    722 		uc = (uint32_t *)(sc->sc_fw + offset);
    723 		if (*uc == 0)
    724 			break;
    725 	}
    726 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
    727 		uc = (uint32_t *)(sc->sc_fw + offset);
    728 		if (*uc != 0)
    729 			break;
    730 	}
    731 	if (offset == sc->sc_fw_size) {
    732 		aprint_error_dev(sc->sc_dev,
    733 		    "firmware Boot Record Area not found\n");
    734 		return EIO;
    735 	}
    736 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
    737 	    device_xname(sc->sc_dev), offset);
    738 
    739 	/*
    740 	 * Parse Boot Record Area (BRA) options.
    741 	 */
    742 	while (offset < sc->sc_fw_size && bra_end == 0) {
    743 		/* get current BRA option */
    744 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
    745 		bra_option_type = le32toh(bra_option->type);
    746 		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
    747 
    748 		switch (bra_option_type) {
    749 		case UPGT_BRA_TYPE_FW:
    750 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
    751 			    device_xname(sc->sc_dev), bra_option_len);
    752 
    753 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
    754 				aprint_error_dev(sc->sc_dev,
    755 				    "wrong UPGT_BRA_TYPE_FW len\n");
    756 				return EIO;
    757 			}
    758 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
    759 			    bra_option_len) == 0) {
    760 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
    761 				break;
    762 			}
    763 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
    764 			    bra_option_len) == 0) {
    765 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
    766 				break;
    767 			}
    768 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
    769 			    bra_option_len) == 0) {
    770 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
    771 				break;
    772 			}
    773 			aprint_error_dev(sc->sc_dev,
    774 			    "unsupported firmware type\n");
    775 			return EIO;
    776 		case UPGT_BRA_TYPE_VERSION:
    777 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
    778 			    device_xname(sc->sc_dev), bra_option_len);
    779 			break;
    780 		case UPGT_BRA_TYPE_DEPIF:
    781 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
    782 			    device_xname(sc->sc_dev), bra_option_len);
    783 			break;
    784 		case UPGT_BRA_TYPE_EXPIF:
    785 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
    786 			    device_xname(sc->sc_dev), bra_option_len);
    787 			break;
    788 		case UPGT_BRA_TYPE_DESCR:
    789 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
    790 			    device_xname(sc->sc_dev), bra_option_len);
    791 
    792 			struct upgt_fw_bra_descr *descr =
    793 				(struct upgt_fw_bra_descr *)bra_option->data;
    794 
    795 			sc->sc_memaddr_frame_start =
    796 			    le32toh(descr->memaddr_space_start);
    797 			sc->sc_memaddr_frame_end =
    798 			    le32toh(descr->memaddr_space_end);
    799 
    800 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
    801 			    device_xname(sc->sc_dev),
    802 			    sc->sc_memaddr_frame_start);
    803 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
    804 			    device_xname(sc->sc_dev),
    805 			    sc->sc_memaddr_frame_end);
    806 			break;
    807 		case UPGT_BRA_TYPE_END:
    808 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
    809 			    device_xname(sc->sc_dev), bra_option_len);
    810 			bra_end = 1;
    811 			break;
    812 		default:
    813 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
    814 			    device_xname(sc->sc_dev), bra_option_len);
    815 			return EIO;
    816 		}
    817 
    818 		/* jump to next BRA option */
    819 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
    820 	}
    821 
    822 	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
    823 
    824 	return 0;
    825 }
    826 
    827 static int
    828 upgt_fw_load(struct upgt_softc *sc)
    829 {
    830 	struct upgt_data *data_cmd = &sc->cmd_data;
    831 	struct upgt_data *data_rx = &sc->rx_data;
    832 	struct upgt_fw_x2_header *x2;
    833 	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
    834 	int offset, bsize, n, i, len;
    835 	uint32_t crc;
    836 
    837 	/* send firmware start load command */
    838 	len = sizeof(start_fwload_cmd);
    839 	memcpy(data_cmd->buf, start_fwload_cmd, len);
    840 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    841 		aprint_error_dev(sc->sc_dev,
    842 		    "could not send start_firmware_load command\n");
    843 		return EIO;
    844 	}
    845 
    846 	/* send X2 header */
    847 	len = sizeof(struct upgt_fw_x2_header);
    848 	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
    849 	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
    850 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
    851 	x2->len = htole32(sc->sc_fw_size);
    852 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
    853 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
    854 	    sizeof(uint32_t));
    855 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    856 		aprint_error_dev(sc->sc_dev,
    857 		    "could not send firmware X2 header\n");
    858 		return EIO;
    859 	}
    860 
    861 	/* download firmware */
    862 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
    863 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
    864 			bsize = UPGT_FW_BLOCK_SIZE;
    865 		else
    866 			bsize = sc->sc_fw_size - offset;
    867 
    868 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
    869 
    870 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
    871 		    device_xname(sc->sc_dev), offset, n, bsize);
    872 
    873 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
    874 		    != 0) {
    875 			aprint_error_dev(sc->sc_dev,
    876 			    "error while downloading firmware block\n");
    877 			return EIO;
    878 		}
    879 
    880 		bsize = n;
    881 	}
    882 	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
    883 
    884 	/* load firmware */
    885 	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
    886 	*((uint32_t *)(data_cmd->buf)    ) = crc;
    887 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
    888 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
    889 	len = 6;
    890 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
    891 		aprint_error_dev(sc->sc_dev,
    892 		    "could not send load_firmware command\n");
    893 		return EIO;
    894 	}
    895 
    896 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
    897 		len = UPGT_FW_BLOCK_SIZE;
    898 		memset(data_rx->buf, 0, 2);
    899 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
    900 		    USBD_SHORT_XFER_OK) != 0) {
    901 			aprint_error_dev(sc->sc_dev,
    902 			    "could not read firmware response\n");
    903 			return EIO;
    904 		}
    905 
    906 		if (memcmp(data_rx->buf, "OK", 2) == 0)
    907 			break;	/* firmware load was successful */
    908 	}
    909 	if (i == UPGT_FIRMWARE_TIMEOUT) {
    910 		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
    911 		return EIO;
    912 	}
    913 	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
    914 
    915 	return 0;
    916 }
    917 
    918 /*
    919  * While copying the version 2 firmware, we need to replace two characters:
    920  *
    921  * 0x7e -> 0x7d 0x5e
    922  * 0x7d -> 0x7d 0x5d
    923  */
    924 static int
    925 upgt_fw_copy(char *src, char *dst, int size)
    926 {
    927 	int i, j;
    928 
    929 	for (i = 0, j = 0; i < size && j < size; i++) {
    930 		switch (src[i]) {
    931 		case 0x7e:
    932 			dst[j] = 0x7d;
    933 			j++;
    934 			dst[j] = 0x5e;
    935 			j++;
    936 			break;
    937 		case 0x7d:
    938 			dst[j] = 0x7d;
    939 			j++;
    940 			dst[j] = 0x5d;
    941 			j++;
    942 			break;
    943 		default:
    944 			dst[j] = src[i];
    945 			j++;
    946 			break;
    947 		}
    948 	}
    949 
    950 	return i;
    951 }
    952 
    953 static int
    954 upgt_eeprom_read(struct upgt_softc *sc)
    955 {
    956 	struct upgt_data *data_cmd = &sc->cmd_data;
    957 	struct upgt_lmac_mem *mem;
    958 	struct upgt_lmac_eeprom	*eeprom;
    959 	int offset, block, len;
    960 
    961 	offset = 0;
    962 	block = UPGT_EEPROM_BLOCK_SIZE;
    963 	while (offset < UPGT_EEPROM_SIZE) {
    964 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
    965 		    device_xname(sc->sc_dev), offset, block);
    966 
    967 		/*
    968 		 * Transmit the URB containing the CMD data.
    969 		 */
    970 		len = sizeof(*mem) + sizeof(*eeprom) + block;
    971 
    972 		memset(data_cmd->buf, 0, len);
    973 
    974 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
    975 		mem->addr = htole32(sc->sc_memaddr_frame_start +
    976 		    UPGT_MEMSIZE_FRAME_HEAD);
    977 
    978 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
    979 		eeprom->header1.flags = 0;
    980 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
    981 		eeprom->header1.len = htole16((
    982 		    sizeof(struct upgt_lmac_eeprom) -
    983 		    sizeof(struct upgt_lmac_header)) + block);
    984 
    985 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
    986 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
    987 		eeprom->header2.flags = 0;
    988 
    989 		eeprom->offset = htole16(offset);
    990 		eeprom->len = htole16(block);
    991 
    992 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
    993 		    len - sizeof(*mem));
    994 
    995 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
    996 		    USBD_FORCE_SHORT_XFER) != 0) {
    997 			aprint_error_dev(sc->sc_dev,
    998 			    "could not transmit EEPROM data URB\n");
    999 			return EIO;
   1000 		}
   1001 		if (tsleep(sc, 0, "eeprom_request", UPGT_USB_TIMEOUT)) {
   1002 			aprint_error_dev(sc->sc_dev,
   1003 			    "timeout while waiting for EEPROM data\n");
   1004 			return EIO;
   1005 		}
   1006 
   1007 		offset += block;
   1008 		if (UPGT_EEPROM_SIZE - offset < block)
   1009 			block = UPGT_EEPROM_SIZE - offset;
   1010 	}
   1011 
   1012 	return 0;
   1013 }
   1014 
   1015 static int
   1016 upgt_eeprom_parse(struct upgt_softc *sc)
   1017 {
   1018 	struct ieee80211com *ic = &sc->sc_ic;
   1019 	struct upgt_eeprom_header *eeprom_header;
   1020 	struct upgt_eeprom_option *eeprom_option;
   1021 	uint16_t option_len;
   1022 	uint16_t option_type;
   1023 	uint16_t preamble_len;
   1024 	int option_end = 0;
   1025 
   1026 	/* calculate eeprom options start offset */
   1027 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
   1028 	preamble_len = le16toh(eeprom_header->preamble_len);
   1029 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
   1030 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
   1031 
   1032 	while (!option_end) {
   1033 		/* the eeprom option length is stored in words */
   1034 		option_len =
   1035 		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
   1036 		option_type =
   1037 		    le16toh(eeprom_option->type);
   1038 
   1039 		switch (option_type) {
   1040 		case UPGT_EEPROM_TYPE_NAME:
   1041 			DPRINTF(1, "%s: EEPROM name len=%d\n",
   1042 			    device_xname(sc->sc_dev), option_len);
   1043 			break;
   1044 		case UPGT_EEPROM_TYPE_SERIAL:
   1045 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
   1046 			    device_xname(sc->sc_dev), option_len);
   1047 			break;
   1048 		case UPGT_EEPROM_TYPE_MAC:
   1049 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
   1050 			    device_xname(sc->sc_dev), option_len);
   1051 
   1052 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
   1053 			break;
   1054 		case UPGT_EEPROM_TYPE_HWRX:
   1055 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
   1056 			    device_xname(sc->sc_dev), option_len);
   1057 
   1058 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
   1059 			break;
   1060 		case UPGT_EEPROM_TYPE_CHIP:
   1061 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
   1062 			    device_xname(sc->sc_dev), option_len);
   1063 			break;
   1064 		case UPGT_EEPROM_TYPE_FREQ3:
   1065 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
   1066 			    device_xname(sc->sc_dev), option_len);
   1067 
   1068 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
   1069 			    option_len);
   1070 			break;
   1071 		case UPGT_EEPROM_TYPE_FREQ4:
   1072 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
   1073 			    device_xname(sc->sc_dev), option_len);
   1074 
   1075 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
   1076 			    option_len);
   1077 			break;
   1078 		case UPGT_EEPROM_TYPE_FREQ5:
   1079 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
   1080 			    device_xname(sc->sc_dev), option_len);
   1081 			break;
   1082 		case UPGT_EEPROM_TYPE_FREQ6:
   1083 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
   1084 			    device_xname(sc->sc_dev), option_len);
   1085 
   1086 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
   1087 			    option_len);
   1088 			break;
   1089 		case UPGT_EEPROM_TYPE_END:
   1090 			DPRINTF(1, "%s: EEPROM end len=%d\n",
   1091 			    device_xname(sc->sc_dev), option_len);
   1092 			option_end = 1;
   1093 			break;
   1094 		case UPGT_EEPROM_TYPE_OFF:
   1095 			DPRINTF(1, "%s: EEPROM off without end option\n",
   1096 			    device_xname(sc->sc_dev));
   1097 			return EIO;
   1098 		default:
   1099 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
   1100 			    device_xname(sc->sc_dev), option_type, option_len);
   1101 			break;
   1102 		}
   1103 
   1104 		/* jump to next EEPROM option */
   1105 		eeprom_option = (struct upgt_eeprom_option *)
   1106 		    (eeprom_option->data + option_len);
   1107 	}
   1108 
   1109 	return 0;
   1110 }
   1111 
   1112 static void
   1113 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
   1114 {
   1115 	struct upgt_eeprom_option_hwrx *option_hwrx;
   1116 
   1117 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
   1118 
   1119 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
   1120 
   1121 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
   1122 	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
   1123 }
   1124 
   1125 static void
   1126 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
   1127 {
   1128 	struct upgt_eeprom_freq3_header *freq3_header;
   1129 	struct upgt_lmac_freq3 *freq3;
   1130 	int i, elements, flags;
   1131 	unsigned channel;
   1132 
   1133 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
   1134 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
   1135 
   1136 	flags = freq3_header->flags;
   1137 	elements = freq3_header->elements;
   1138 
   1139 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1140 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1141 	__USE(flags);
   1142 
   1143 	for (i = 0; i < elements; i++) {
   1144 		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
   1145 
   1146 		sc->sc_eeprom_freq3[channel] = freq3[i];
   1147 
   1148 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1149 		    device_xname(sc->sc_dev),
   1150 		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
   1151 	}
   1152 }
   1153 
   1154 static void
   1155 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
   1156 {
   1157 	struct upgt_eeprom_freq4_header *freq4_header;
   1158 	struct upgt_eeprom_freq4_1 *freq4_1;
   1159 	struct upgt_eeprom_freq4_2 *freq4_2;
   1160 	int i, j, elements, settings, flags;
   1161 	unsigned channel;
   1162 
   1163 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
   1164 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
   1165 
   1166 	flags = freq4_header->flags;
   1167 	elements = freq4_header->elements;
   1168 	settings = freq4_header->settings;
   1169 
   1170 	/* we need this value later */
   1171 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
   1172 
   1173 	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
   1174 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1175 	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
   1176 	__USE(flags);
   1177 
   1178 	for (i = 0; i < elements; i++) {
   1179 		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
   1180 
   1181 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
   1182 
   1183 		for (j = 0; j < settings; j++) {
   1184 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
   1185 			sc->sc_eeprom_freq4[channel][j].pad = 0;
   1186 		}
   1187 
   1188 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1189 		    device_xname(sc->sc_dev),
   1190 		    le16toh(freq4_1[i].freq), channel);
   1191 	}
   1192 }
   1193 
   1194 static void
   1195 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
   1196 {
   1197 	struct upgt_lmac_freq6 *freq6;
   1198 	int i, elements;
   1199 	unsigned channel;
   1200 
   1201 	freq6 = (struct upgt_lmac_freq6 *)data;
   1202 
   1203 	elements = len / sizeof(struct upgt_lmac_freq6);
   1204 
   1205 	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
   1206 
   1207 	for (i = 0; i < elements; i++) {
   1208 		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
   1209 
   1210 		sc->sc_eeprom_freq6[channel] = freq6[i];
   1211 
   1212 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
   1213 		    device_xname(sc->sc_dev),
   1214 		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
   1215 	}
   1216 }
   1217 
   1218 static int
   1219 upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1220 {
   1221 	struct upgt_softc *sc = ifp->if_softc;
   1222 	struct ieee80211com *ic = &sc->sc_ic;
   1223 	int s, error = 0;
   1224 
   1225 	s = splnet();
   1226 
   1227 	switch (cmd) {
   1228 	case SIOCSIFFLAGS:
   1229 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1230 			break;
   1231 		if (ifp->if_flags & IFF_UP) {
   1232 			if ((ifp->if_flags & IFF_RUNNING) == 0)
   1233 				upgt_init(ifp);
   1234 		} else {
   1235 			if (ifp->if_flags & IFF_RUNNING)
   1236 				upgt_stop(sc);
   1237 		}
   1238 		break;
   1239 	case SIOCADDMULTI:
   1240 	case SIOCDELMULTI:
   1241 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   1242 			/* setup multicast filter, etc */
   1243 			error = 0;
   1244 		}
   1245 		break;
   1246 	default:
   1247 		error = ieee80211_ioctl(ic, cmd, data);
   1248 		break;
   1249 	}
   1250 
   1251 	if (error == ENETRESET) {
   1252 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1253 		    (IFF_UP | IFF_RUNNING))
   1254 			upgt_init(ifp);
   1255 		error = 0;
   1256 	}
   1257 
   1258 	splx(s);
   1259 
   1260 	return error;
   1261 }
   1262 
   1263 static int
   1264 upgt_init(struct ifnet *ifp)
   1265 {
   1266 	struct upgt_softc *sc = ifp->if_softc;
   1267 	struct ieee80211com *ic = &sc->sc_ic;
   1268 
   1269 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1270 
   1271 	if (ifp->if_flags & IFF_RUNNING)
   1272 		upgt_stop(sc);
   1273 
   1274 	ifp->if_flags |= IFF_RUNNING;
   1275 	ifp->if_flags &= ~IFF_OACTIVE;
   1276 
   1277 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   1278 
   1279 	/* setup device rates */
   1280 	upgt_setup_rates(sc);
   1281 
   1282 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
   1283 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1284 	else
   1285 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1286 
   1287 	return 0;
   1288 }
   1289 
   1290 static void
   1291 upgt_stop(struct upgt_softc *sc)
   1292 {
   1293 	struct ieee80211com *ic = &sc->sc_ic;
   1294 	struct ifnet *ifp = &sc->sc_if;
   1295 
   1296 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1297 
   1298 	/* device down */
   1299 	ifp->if_timer = 0;
   1300 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1301 
   1302 	/* change device back to initial state */
   1303 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1304 }
   1305 
   1306 static int
   1307 upgt_media_change(struct ifnet *ifp)
   1308 {
   1309 	struct upgt_softc *sc = ifp->if_softc;
   1310 	int error;
   1311 
   1312 	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1313 
   1314 	if ((error = ieee80211_media_change(ifp) != ENETRESET))
   1315 		return error;
   1316 
   1317 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1318 	    (IFF_UP | IFF_RUNNING)) {
   1319 		/* give pending USB transfers a chance to finish */
   1320 		usbd_delay_ms(sc->sc_udev, 100);
   1321 		upgt_init(ifp);
   1322 	}
   1323 
   1324 	return 0;
   1325 }
   1326 
   1327 static void
   1328 upgt_newassoc(struct ieee80211_node *ni, int isnew)
   1329 {
   1330 
   1331 	ni->ni_txrate = 0;
   1332 }
   1333 
   1334 static int
   1335 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   1336 {
   1337 	struct upgt_softc *sc = ic->ic_ifp->if_softc;
   1338 
   1339 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
   1340 	callout_stop(&sc->scan_to);
   1341 
   1342 	/* do it in a process context */
   1343 	sc->sc_state = nstate;
   1344 	sc->sc_arg = arg;
   1345 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
   1346 
   1347 	return 0;
   1348 }
   1349 
   1350 static void
   1351 upgt_newstate_task(void *arg)
   1352 {
   1353 	struct upgt_softc *sc = arg;
   1354 	struct ieee80211com *ic = &sc->sc_ic;
   1355 	struct ieee80211_node *ni;
   1356 	unsigned channel;
   1357 
   1358 	mutex_enter(&sc->sc_mtx);
   1359 
   1360 	switch (sc->sc_state) {
   1361 	case IEEE80211_S_INIT:
   1362 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
   1363 		    device_xname(sc->sc_dev));
   1364 
   1365 		/* do not accept any frames if the device is down */
   1366 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
   1367 		upgt_set_led(sc, UPGT_LED_OFF);
   1368 		break;
   1369 	case IEEE80211_S_SCAN:
   1370 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
   1371 		    device_xname(sc->sc_dev));
   1372 
   1373 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1374 		upgt_set_channel(sc, channel);
   1375 		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
   1376 		callout_schedule(&sc->scan_to, hz / 5);
   1377 		break;
   1378 	case IEEE80211_S_AUTH:
   1379 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
   1380 		    device_xname(sc->sc_dev));
   1381 
   1382 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1383 		upgt_set_channel(sc, channel);
   1384 		break;
   1385 	case IEEE80211_S_ASSOC:
   1386 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
   1387 		    device_xname(sc->sc_dev));
   1388 
   1389 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1390 		upgt_set_channel(sc, channel);
   1391 		break;
   1392 	case IEEE80211_S_RUN:
   1393 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
   1394 		    device_xname(sc->sc_dev));
   1395 
   1396 		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1397 		upgt_set_channel(sc, channel);
   1398 
   1399 		ni = ic->ic_bss;
   1400 
   1401 		/*
   1402 		 * TX rate control is done by the firmware.
   1403 		 * Report the maximum rate which is available therefore.
   1404 		 */
   1405 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   1406 
   1407 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1408 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
   1409 		upgt_set_led(sc, UPGT_LED_ON);
   1410 		break;
   1411 	}
   1412 
   1413 	mutex_exit(&sc->sc_mtx);
   1414 
   1415 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
   1416 }
   1417 
   1418 static void
   1419 upgt_next_scan(void *arg)
   1420 {
   1421 	struct upgt_softc *sc = arg;
   1422 	struct ieee80211com *ic = &sc->sc_ic;
   1423 
   1424 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1425 
   1426 	if (ic->ic_state == IEEE80211_S_SCAN)
   1427 		ieee80211_next_scan(ic);
   1428 }
   1429 
   1430 static void
   1431 upgt_start(struct ifnet *ifp)
   1432 {
   1433 	struct upgt_softc *sc = ifp->if_softc;
   1434 	struct ieee80211com *ic = &sc->sc_ic;
   1435 	struct ether_header *eh;
   1436 	struct ieee80211_node *ni;
   1437 	struct mbuf *m;
   1438 	int i;
   1439 
   1440 	/* don't transmit packets if interface is busy or down */
   1441 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1442 		return;
   1443 
   1444 	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1445 
   1446 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1447 		struct upgt_data *data_tx = &sc->tx_data[i];
   1448 
   1449 		if (data_tx->m != NULL)
   1450 			continue;
   1451 
   1452 		IF_POLL(&ic->ic_mgtq, m);
   1453 		if (m != NULL) {
   1454 			/* management frame */
   1455 			IF_DEQUEUE(&ic->ic_mgtq, m);
   1456 
   1457 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
   1458 			m->m_pkthdr.rcvif = NULL;
   1459 
   1460 			bpf_mtap3(ic->ic_rawbpf, m);
   1461 
   1462 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1463 				aprint_error_dev(sc->sc_dev,
   1464 				    "no free prism memory\n");
   1465 				m_freem(m);
   1466 				ifp->if_oerrors++;
   1467 				break;
   1468 			}
   1469 			data_tx->ni = ni;
   1470 			data_tx->m = m;
   1471 			sc->tx_queued++;
   1472 		} else {
   1473 			/* data frame */
   1474 			if (ic->ic_state != IEEE80211_S_RUN)
   1475 				break;
   1476 
   1477 			IFQ_POLL(&ifp->if_snd, m);
   1478 			if (m == NULL)
   1479 				break;
   1480 
   1481 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1482 			if (m->m_len < sizeof(struct ether_header) &&
   1483 			    !(m = m_pullup(m, sizeof(struct ether_header))))
   1484 				continue;
   1485 
   1486 			eh = mtod(m, struct ether_header *);
   1487 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1488 			if (ni == NULL) {
   1489 				m_freem(m);
   1490 				continue;
   1491 			}
   1492 
   1493 			bpf_mtap(ifp, m);
   1494 
   1495 			m = ieee80211_encap(ic, m, ni);
   1496 			if (m == NULL) {
   1497 				ieee80211_free_node(ni);
   1498 				continue;
   1499 			}
   1500 
   1501 			bpf_mtap3(ic->ic_rawbpf, m);
   1502 
   1503 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
   1504 				aprint_error_dev(sc->sc_dev,
   1505 				    "no free prism memory\n");
   1506 				m_freem(m);
   1507 				ieee80211_free_node(ni);
   1508 				ifp->if_oerrors++;
   1509 				break;
   1510 			}
   1511 			data_tx->ni = ni;
   1512 			data_tx->m = m;
   1513 			sc->tx_queued++;
   1514 		}
   1515 	}
   1516 
   1517 	if (sc->tx_queued > 0) {
   1518 		DPRINTF(2, "%s: tx_queued=%d\n",
   1519 		    device_xname(sc->sc_dev), sc->tx_queued);
   1520 		/* process the TX queue in process context */
   1521 		ifp->if_timer = 5;
   1522 		ifp->if_flags |= IFF_OACTIVE;
   1523 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
   1524 		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
   1525 	}
   1526 }
   1527 
   1528 static void
   1529 upgt_watchdog(struct ifnet *ifp)
   1530 {
   1531 	struct upgt_softc *sc = ifp->if_softc;
   1532 	struct ieee80211com *ic = &sc->sc_ic;
   1533 
   1534 	if (ic->ic_state == IEEE80211_S_INIT)
   1535 		return;
   1536 
   1537 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1538 
   1539 	/* TODO: what shall we do on TX timeout? */
   1540 
   1541 	ieee80211_watchdog(ic);
   1542 }
   1543 
   1544 static void
   1545 upgt_tx_task(void *arg)
   1546 {
   1547 	struct upgt_softc *sc = arg;
   1548 	struct ieee80211com *ic = &sc->sc_ic;
   1549 	struct ieee80211_frame *wh;
   1550 	struct ieee80211_key *k;
   1551 	struct ifnet *ifp = &sc->sc_if;
   1552 	struct upgt_lmac_mem *mem;
   1553 	struct upgt_lmac_tx_desc *txdesc;
   1554 	struct mbuf *m;
   1555 	uint32_t addr;
   1556 	int i, len, pad, s;
   1557 	usbd_status error;
   1558 
   1559 	mutex_enter(&sc->sc_mtx);
   1560 	upgt_set_led(sc, UPGT_LED_BLINK);
   1561 	mutex_exit(&sc->sc_mtx);
   1562 
   1563 	s = splnet();
   1564 
   1565 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1566 		struct upgt_data *data_tx = &sc->tx_data[i];
   1567 
   1568 		if (data_tx->m == NULL)
   1569 			continue;
   1570 
   1571 		m = data_tx->m;
   1572 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
   1573 
   1574 		/*
   1575 		 * Software crypto.
   1576 		 */
   1577 		wh = mtod(m, struct ieee80211_frame *);
   1578 
   1579 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1580 			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
   1581 			if (k == NULL) {
   1582 				m_freem(m);
   1583 				data_tx->m = NULL;
   1584 				ieee80211_free_node(data_tx->ni);
   1585 				data_tx->ni = NULL;
   1586 				ifp->if_oerrors++;
   1587 				break;
   1588 			}
   1589 
   1590 			/* in case packet header moved, reset pointer */
   1591 			wh = mtod(m, struct ieee80211_frame *);
   1592 		}
   1593 
   1594 		/*
   1595 		 * Transmit the URB containing the TX data.
   1596 		 */
   1597 		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
   1598 
   1599 		mem = (struct upgt_lmac_mem *)data_tx->buf;
   1600 		mem->addr = htole32(addr);
   1601 
   1602 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
   1603 
   1604 		/* XXX differ between data and mgmt frames? */
   1605 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
   1606 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
   1607 		txdesc->header1.len = htole16(m->m_pkthdr.len);
   1608 
   1609 		txdesc->header2.reqid = htole32(data_tx->addr);
   1610 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
   1611 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
   1612 
   1613 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1614 		    IEEE80211_FC0_TYPE_MGT) {
   1615 			/* always send mgmt frames at lowest rate (DS1) */
   1616 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
   1617 		} else {
   1618 			memcpy(txdesc->rates, sc->sc_cur_rateset,
   1619 			    sizeof(txdesc->rates));
   1620 		}
   1621 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
   1622 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
   1623 
   1624 		if (sc->sc_drvbpf != NULL) {
   1625 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
   1626 
   1627 			tap->wt_flags = 0;
   1628 			tap->wt_rate = 0;	/* TODO: where to get from? */
   1629 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1630 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1631 
   1632 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1633 		}
   1634 
   1635 		/* copy frame below our TX descriptor header */
   1636 		m_copydata(m, 0, m->m_pkthdr.len,
   1637 		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
   1638 
   1639 		/* calculate frame size */
   1640 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
   1641 
   1642 		if (len & 3) {
   1643 			/* we need to align the frame to a 4 byte boundary */
   1644 			pad = 4 - (len & 3);
   1645 			memset(data_tx->buf + len, 0, pad);
   1646 			len += pad;
   1647 		}
   1648 
   1649 		/* calculate frame checksum */
   1650 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
   1651 		    len - sizeof(*mem));
   1652 
   1653 		/* we do not need the mbuf anymore */
   1654 		m_freem(m);
   1655 		data_tx->m = NULL;
   1656 
   1657 		ieee80211_free_node(data_tx->ni);
   1658 		data_tx->ni = NULL;
   1659 
   1660 		DPRINTF(2, "%s: TX start data sending\n",
   1661 		    device_xname(sc->sc_dev));
   1662 
   1663 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
   1664 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
   1665 		    UPGT_USB_TIMEOUT, NULL);
   1666 		error = usbd_transfer(data_tx->xfer);
   1667 		if (error != USBD_NORMAL_COMPLETION &&
   1668 		    error != USBD_IN_PROGRESS) {
   1669 			aprint_error_dev(sc->sc_dev,
   1670 			    "could not transmit TX data URB\n");
   1671 			ifp->if_oerrors++;
   1672 			break;
   1673 		}
   1674 
   1675 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
   1676 		    device_xname(sc->sc_dev), len);
   1677 	}
   1678 
   1679 	splx(s);
   1680 
   1681 	/*
   1682 	 * If we don't regulary read the device statistics, the RX queue
   1683 	 * will stall.  It's strange, but it works, so we keep reading
   1684 	 * the statistics here.  *shrug*
   1685 	 */
   1686 	mutex_enter(&sc->sc_mtx);
   1687 	upgt_get_stats(sc);
   1688 	mutex_exit(&sc->sc_mtx);
   1689 }
   1690 
   1691 static void
   1692 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
   1693 {
   1694 	struct ifnet *ifp = &sc->sc_if;
   1695 	struct upgt_lmac_tx_done_desc *desc;
   1696 	int i, s;
   1697 
   1698 	s = splnet();
   1699 
   1700 	desc = (struct upgt_lmac_tx_done_desc *)data;
   1701 
   1702 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   1703 		struct upgt_data *data_tx = &sc->tx_data[i];
   1704 
   1705 		if (data_tx->addr == le32toh(desc->header2.reqid)) {
   1706 			upgt_mem_free(sc, data_tx->addr);
   1707 			data_tx->addr = 0;
   1708 
   1709 			sc->tx_queued--;
   1710 			ifp->if_opackets++;
   1711 
   1712 			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
   1713 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
   1714 			    le32toh(desc->header2.reqid),
   1715 			    le16toh(desc->status),
   1716 			    le16toh(desc->rssi));
   1717 			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
   1718 			break;
   1719 		}
   1720 	}
   1721 
   1722 	if (sc->tx_queued == 0) {
   1723 		/* TX queued was processed, continue */
   1724 		ifp->if_timer = 0;
   1725 		ifp->if_flags &= ~IFF_OACTIVE;
   1726 		upgt_start(ifp);
   1727 	}
   1728 
   1729 	splx(s);
   1730 }
   1731 
   1732 static void
   1733 upgt_rx_cb(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
   1734 {
   1735 	struct upgt_data *data_rx = priv;
   1736 	struct upgt_softc *sc = data_rx->sc;
   1737 	int len;
   1738 	struct upgt_lmac_header *header;
   1739 	struct upgt_lmac_eeprom *eeprom;
   1740 	uint8_t h1_type;
   1741 	uint16_t h2_type;
   1742 
   1743 	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
   1744 
   1745 	if (status != USBD_NORMAL_COMPLETION) {
   1746 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
   1747 			return;
   1748 		if (status == USBD_STALLED)
   1749 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
   1750 		goto skip;
   1751 	}
   1752 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
   1753 
   1754 	/*
   1755 	 * Check what type of frame came in.
   1756 	 */
   1757 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
   1758 
   1759 	h1_type = header->header1.type;
   1760 	h2_type = le16toh(header->header2.type);
   1761 
   1762 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1763 	    h2_type == UPGT_H2_TYPE_EEPROM) {
   1764 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
   1765 		uint16_t eeprom_offset = le16toh(eeprom->offset);
   1766 		uint16_t eeprom_len = le16toh(eeprom->len);
   1767 
   1768 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
   1769 			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
   1770 
   1771 		memcpy(sc->sc_eeprom + eeprom_offset,
   1772 		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
   1773 		    eeprom_len);
   1774 
   1775 		/* EEPROM data has arrived in time, wakeup tsleep() */
   1776 		wakeup(sc);
   1777 	} else
   1778 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1779 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
   1780 		DPRINTF(2, "%s: received 802.11 TX done\n",
   1781 		    device_xname(sc->sc_dev));
   1782 
   1783 		upgt_tx_done(sc, data_rx->buf + 4);
   1784 	} else
   1785 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
   1786 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
   1787 		DPRINTF(3, "%s: received 802.11 RX data\n",
   1788 		    device_xname(sc->sc_dev));
   1789 
   1790 		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
   1791 	} else
   1792 	if (h1_type == UPGT_H1_TYPE_CTRL &&
   1793 	    h2_type == UPGT_H2_TYPE_STATS) {
   1794 		DPRINTF(2, "%s: received statistic data\n",
   1795 		    device_xname(sc->sc_dev));
   1796 
   1797 		/* TODO: what could we do with the statistic data? */
   1798 	} else {
   1799 		/* ignore unknown frame types */
   1800 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
   1801 		    device_xname(sc->sc_dev), header->header1.type);
   1802 	}
   1803 
   1804 skip:	/* setup new transfer */
   1805 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
   1806 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
   1807 	(void)usbd_transfer(xfer);
   1808 }
   1809 
   1810 static void
   1811 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
   1812 {
   1813 	struct ieee80211com *ic = &sc->sc_ic;
   1814 	struct ifnet *ifp = &sc->sc_if;
   1815 	struct upgt_lmac_rx_desc *rxdesc;
   1816 	struct ieee80211_frame *wh;
   1817 	struct ieee80211_node *ni;
   1818 	struct mbuf *m;
   1819 	int s;
   1820 
   1821 	/* access RX packet descriptor */
   1822 	rxdesc = (struct upgt_lmac_rx_desc *)data;
   1823 
   1824 	/* create mbuf which is suitable for strict alignment archs */
   1825 #define ETHER_ALIGN	0
   1826 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN, ifp, NULL);
   1827 	if (m == NULL) {
   1828 		DPRINTF(1, "%s: could not create RX mbuf\n",
   1829 		   device_xname(sc->sc_dev));
   1830 		ifp->if_ierrors++;
   1831 		return;
   1832 	}
   1833 
   1834 	s = splnet();
   1835 
   1836 	if (sc->sc_drvbpf != NULL) {
   1837 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
   1838 
   1839 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
   1840 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
   1841 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1842 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1843 		tap->wr_antsignal = rxdesc->rssi;
   1844 
   1845 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1846 	}
   1847 
   1848 	/* trim FCS */
   1849 	m_adj(m, -IEEE80211_CRC_LEN);
   1850 
   1851 	wh = mtod(m, struct ieee80211_frame *);
   1852 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1853 
   1854 	/* push the frame up to the 802.11 stack */
   1855 	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
   1856 
   1857 	/* node is no longer needed */
   1858 	ieee80211_free_node(ni);
   1859 
   1860 	splx(s);
   1861 
   1862 	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
   1863 }
   1864 
   1865 static void
   1866 upgt_setup_rates(struct upgt_softc *sc)
   1867 {
   1868 	struct ieee80211com *ic = &sc->sc_ic;
   1869 
   1870 	/*
   1871 	 * 0x01 = OFMD6   0x10 = DS1
   1872 	 * 0x04 = OFDM9   0x11 = DS2
   1873 	 * 0x06 = OFDM12  0x12 = DS5
   1874 	 * 0x07 = OFDM18  0x13 = DS11
   1875 	 * 0x08 = OFDM24
   1876 	 * 0x09 = OFDM36
   1877 	 * 0x0a = OFDM48
   1878 	 * 0x0b = OFDM54
   1879 	 */
   1880 	const uint8_t rateset_auto_11b[] =
   1881 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
   1882 	const uint8_t rateset_auto_11g[] =
   1883 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
   1884 	const uint8_t rateset_fix_11bg[] =
   1885 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
   1886 	      0x08, 0x09, 0x0a, 0x0b };
   1887 
   1888 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
   1889 		/*
   1890 		 * Automatic rate control is done by the device.
   1891 		 * We just pass the rateset from which the device
   1892 		 * will pickup a rate.
   1893 		 */
   1894 		if (ic->ic_curmode == IEEE80211_MODE_11B)
   1895 			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
   1896 			    sizeof(sc->sc_cur_rateset));
   1897 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
   1898 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
   1899 			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
   1900 			    sizeof(sc->sc_cur_rateset));
   1901 	} else {
   1902 		/* set a fixed rate */
   1903 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
   1904 		    sizeof(sc->sc_cur_rateset));
   1905 	}
   1906 }
   1907 
   1908 static uint8_t
   1909 upgt_rx_rate(struct upgt_softc *sc, const int rate)
   1910 {
   1911 	struct ieee80211com *ic = &sc->sc_ic;
   1912 
   1913 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
   1914 		if (rate < 0 || rate > 3)
   1915 			/* invalid rate */
   1916 			return 0;
   1917 
   1918 		switch (rate) {
   1919 		case 0:
   1920 			return 2;
   1921 		case 1:
   1922 			return 4;
   1923 		case 2:
   1924 			return 11;
   1925 		case 3:
   1926 			return 22;
   1927 		default:
   1928 			return 0;
   1929 		}
   1930 	}
   1931 
   1932 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1933 		if (rate < 0 || rate > 11)
   1934 			/* invalid rate */
   1935 			return 0;
   1936 
   1937 		switch (rate) {
   1938 		case 0:
   1939 			return 2;
   1940 		case 1:
   1941 			return 4;
   1942 		case 2:
   1943 			return 11;
   1944 		case 3:
   1945 			return 22;
   1946 		case 4:
   1947 			return 12;
   1948 		case 5:
   1949 			return 18;
   1950 		case 6:
   1951 			return 24;
   1952 		case 7:
   1953 			return 36;
   1954 		case 8:
   1955 			return 48;
   1956 		case 9:
   1957 			return 72;
   1958 		case 10:
   1959 			return 96;
   1960 		case 11:
   1961 			return 108;
   1962 		default:
   1963 			return 0;
   1964 		}
   1965 	}
   1966 
   1967 	return 0;
   1968 }
   1969 
   1970 static int
   1971 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
   1972 {
   1973 	struct ieee80211com *ic = &sc->sc_ic;
   1974 	struct ieee80211_node *ni = ic->ic_bss;
   1975 	struct upgt_data *data_cmd = &sc->cmd_data;
   1976 	struct upgt_lmac_mem *mem;
   1977 	struct upgt_lmac_filter *filter;
   1978 	int len;
   1979 	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
   1980 
   1981 	/*
   1982 	 * Transmit the URB containing the CMD data.
   1983 	 */
   1984 	len = sizeof(*mem) + sizeof(*filter);
   1985 
   1986 	memset(data_cmd->buf, 0, len);
   1987 
   1988 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   1989 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   1990 	    UPGT_MEMSIZE_FRAME_HEAD);
   1991 
   1992 	filter = (struct upgt_lmac_filter *)(mem + 1);
   1993 
   1994 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   1995 	filter->header1.type = UPGT_H1_TYPE_CTRL;
   1996 	filter->header1.len = htole16(
   1997 	    sizeof(struct upgt_lmac_filter) -
   1998 	    sizeof(struct upgt_lmac_header));
   1999 
   2000 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2001 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
   2002 	filter->header2.flags = 0;
   2003 
   2004 	switch (state) {
   2005 	case IEEE80211_S_INIT:
   2006 		DPRINTF(1, "%s: set MAC filter to INIT\n",
   2007 		    device_xname(sc->sc_dev));
   2008 
   2009 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
   2010 		break;
   2011 	case IEEE80211_S_SCAN:
   2012 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
   2013 		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
   2014 
   2015 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
   2016 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2017 		IEEE80211_ADDR_COPY(filter->src, broadcast);
   2018 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2019 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2020 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2021 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2022 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2023 		break;
   2024 	case IEEE80211_S_RUN:
   2025 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
   2026 		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
   2027 
   2028 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
   2029 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
   2030 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
   2031 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
   2032 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
   2033 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
   2034 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
   2035 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
   2036 		break;
   2037 	default:
   2038 		aprint_error_dev(sc->sc_dev,
   2039 		    "MAC filter does not know that state\n");
   2040 		break;
   2041 	}
   2042 
   2043 	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
   2044 
   2045 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2046 		aprint_error_dev(sc->sc_dev,
   2047 		    "could not transmit macfilter CMD data URB\n");
   2048 		return EIO;
   2049 	}
   2050 
   2051 	return 0;
   2052 }
   2053 
   2054 static int
   2055 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
   2056 {
   2057 	struct upgt_data *data_cmd = &sc->cmd_data;
   2058 	struct upgt_lmac_mem *mem;
   2059 	struct upgt_lmac_channel *chan;
   2060 	int len;
   2061 
   2062 	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
   2063 	    channel);
   2064 
   2065 	/*
   2066 	 * Transmit the URB containing the CMD data.
   2067 	 */
   2068 	len = sizeof(*mem) + sizeof(*chan);
   2069 
   2070 	memset(data_cmd->buf, 0, len);
   2071 
   2072 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2073 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2074 	    UPGT_MEMSIZE_FRAME_HEAD);
   2075 
   2076 	chan = (struct upgt_lmac_channel *)(mem + 1);
   2077 
   2078 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2079 	chan->header1.type = UPGT_H1_TYPE_CTRL;
   2080 	chan->header1.len = htole16(
   2081 	    sizeof(struct upgt_lmac_channel) -
   2082 	    sizeof(struct upgt_lmac_header));
   2083 
   2084 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2085 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
   2086 	chan->header2.flags = 0;
   2087 
   2088 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
   2089 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
   2090 	chan->freq6 = sc->sc_eeprom_freq6[channel];
   2091 	chan->settings = sc->sc_eeprom_freq6_settings;
   2092 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
   2093 
   2094 	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
   2095 	    sizeof(chan->freq3_1));
   2096 
   2097 	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
   2098 	    sizeof(sc->sc_eeprom_freq4[channel]));
   2099 
   2100 	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
   2101 	    sizeof(chan->freq3_2));
   2102 
   2103 	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
   2104 
   2105 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2106 		aprint_error_dev(sc->sc_dev,
   2107 		    "could not transmit channel CMD data URB\n");
   2108 		return EIO;
   2109 	}
   2110 
   2111 	return 0;
   2112 }
   2113 
   2114 static void
   2115 upgt_set_led(struct upgt_softc *sc, int action)
   2116 {
   2117 	struct ieee80211com *ic = &sc->sc_ic;
   2118 	struct upgt_data *data_cmd = &sc->cmd_data;
   2119 	struct upgt_lmac_mem *mem;
   2120 	struct upgt_lmac_led *led;
   2121 	struct timeval t;
   2122 	int len;
   2123 
   2124 	/*
   2125 	 * Transmit the URB containing the CMD data.
   2126 	 */
   2127 	len = sizeof(*mem) + sizeof(*led);
   2128 
   2129 	memset(data_cmd->buf, 0, len);
   2130 
   2131 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2132 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2133 	    UPGT_MEMSIZE_FRAME_HEAD);
   2134 
   2135 	led = (struct upgt_lmac_led *)(mem + 1);
   2136 
   2137 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
   2138 	led->header1.type = UPGT_H1_TYPE_CTRL;
   2139 	led->header1.len = htole16(
   2140 	    sizeof(struct upgt_lmac_led) -
   2141 	    sizeof(struct upgt_lmac_header));
   2142 
   2143 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2144 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
   2145 	led->header2.flags = 0;
   2146 
   2147 	switch (action) {
   2148 	case UPGT_LED_OFF:
   2149 		led->mode = htole16(UPGT_LED_MODE_SET);
   2150 		led->action_fix = 0;
   2151 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
   2152 		led->action_tmp_dur = 0;
   2153 		break;
   2154 	case UPGT_LED_ON:
   2155 		led->mode = htole16(UPGT_LED_MODE_SET);
   2156 		led->action_fix = 0;
   2157 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2158 		led->action_tmp_dur = 0;
   2159 		break;
   2160 	case UPGT_LED_BLINK:
   2161 		if (ic->ic_state != IEEE80211_S_RUN)
   2162 			return;
   2163 		if (sc->sc_led_blink)
   2164 			/* previous blink was not finished */
   2165 			return;
   2166 		led->mode = htole16(UPGT_LED_MODE_SET);
   2167 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
   2168 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
   2169 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
   2170 		/* lock blink */
   2171 		sc->sc_led_blink = 1;
   2172 		t.tv_sec = 0;
   2173 		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
   2174 		callout_schedule(&sc->led_to, tvtohz(&t));
   2175 		break;
   2176 	default:
   2177 		return;
   2178 	}
   2179 
   2180 	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
   2181 
   2182 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2183 		aprint_error_dev(sc->sc_dev,
   2184 		    "could not transmit led CMD URB\n");
   2185 	}
   2186 }
   2187 
   2188 static void
   2189 upgt_set_led_blink(void *arg)
   2190 {
   2191 	struct upgt_softc *sc = arg;
   2192 
   2193 	/* blink finished, we are ready for a next one */
   2194 	sc->sc_led_blink = 0;
   2195 	callout_stop(&sc->led_to);
   2196 }
   2197 
   2198 static int
   2199 upgt_get_stats(struct upgt_softc *sc)
   2200 {
   2201 	struct upgt_data *data_cmd = &sc->cmd_data;
   2202 	struct upgt_lmac_mem *mem;
   2203 	struct upgt_lmac_stats *stats;
   2204 	int len;
   2205 
   2206 	/*
   2207 	 * Transmit the URB containing the CMD data.
   2208 	 */
   2209 	len = sizeof(*mem) + sizeof(*stats);
   2210 
   2211 	memset(data_cmd->buf, 0, len);
   2212 
   2213 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
   2214 	mem->addr = htole32(sc->sc_memaddr_frame_start +
   2215 	    UPGT_MEMSIZE_FRAME_HEAD);
   2216 
   2217 	stats = (struct upgt_lmac_stats *)(mem + 1);
   2218 
   2219 	stats->header1.flags = 0;
   2220 	stats->header1.type = UPGT_H1_TYPE_CTRL;
   2221 	stats->header1.len = htole16(
   2222 	    sizeof(struct upgt_lmac_stats) -
   2223 	    sizeof(struct upgt_lmac_header));
   2224 
   2225 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
   2226 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
   2227 	stats->header2.flags = 0;
   2228 
   2229 	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
   2230 
   2231 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
   2232 		aprint_error_dev(sc->sc_dev,
   2233 		    "could not transmit statistics CMD data URB\n");
   2234 		return EIO;
   2235 	}
   2236 
   2237 	return 0;
   2238 
   2239 }
   2240 
   2241 static int
   2242 upgt_alloc_tx(struct upgt_softc *sc)
   2243 {
   2244 	int i;
   2245 
   2246 	sc->tx_queued = 0;
   2247 
   2248 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2249 		struct upgt_data *data_tx = &sc->tx_data[i];
   2250 
   2251 		data_tx->sc = sc;
   2252 
   2253 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2254 		if (data_tx->xfer == NULL) {
   2255 			aprint_error_dev(sc->sc_dev,
   2256 			    "could not allocate TX xfer\n");
   2257 			return ENOMEM;
   2258 		}
   2259 
   2260 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
   2261 		if (data_tx->buf == NULL) {
   2262 			aprint_error_dev(sc->sc_dev,
   2263 			    "could not allocate TX buffer\n");
   2264 			return ENOMEM;
   2265 		}
   2266 	}
   2267 
   2268 	return 0;
   2269 }
   2270 
   2271 static int
   2272 upgt_alloc_rx(struct upgt_softc *sc)
   2273 {
   2274 	struct upgt_data *data_rx = &sc->rx_data;
   2275 
   2276 	data_rx->sc = sc;
   2277 
   2278 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
   2279 	if (data_rx->xfer == NULL) {
   2280 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2281 		return ENOMEM;
   2282 	}
   2283 
   2284 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
   2285 	if (data_rx->buf == NULL) {
   2286 		aprint_error_dev(sc->sc_dev,
   2287 		    "could not allocate RX buffer\n");
   2288 		return ENOMEM;
   2289 	}
   2290 
   2291 	return 0;
   2292 }
   2293 
   2294 static int
   2295 upgt_alloc_cmd(struct upgt_softc *sc)
   2296 {
   2297 	struct upgt_data *data_cmd = &sc->cmd_data;
   2298 
   2299 	data_cmd->sc = sc;
   2300 
   2301 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
   2302 	if (data_cmd->xfer == NULL) {
   2303 		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
   2304 		return ENOMEM;
   2305 	}
   2306 
   2307 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
   2308 	if (data_cmd->buf == NULL) {
   2309 		aprint_error_dev(sc->sc_dev,
   2310 		    "could not allocate RX buffer\n");
   2311 		return ENOMEM;
   2312 	}
   2313 
   2314 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
   2315 
   2316 	return 0;
   2317 }
   2318 
   2319 static void
   2320 upgt_free_tx(struct upgt_softc *sc)
   2321 {
   2322 	int i;
   2323 
   2324 	for (i = 0; i < UPGT_TX_COUNT; i++) {
   2325 		struct upgt_data *data_tx = &sc->tx_data[i];
   2326 
   2327 		if (data_tx->xfer != NULL) {
   2328 			usbd_free_xfer(data_tx->xfer);
   2329 			data_tx->xfer = NULL;
   2330 		}
   2331 
   2332 		data_tx->ni = NULL;
   2333 	}
   2334 }
   2335 
   2336 static void
   2337 upgt_free_rx(struct upgt_softc *sc)
   2338 {
   2339 	struct upgt_data *data_rx = &sc->rx_data;
   2340 
   2341 	if (data_rx->xfer != NULL) {
   2342 		usbd_free_xfer(data_rx->xfer);
   2343 		data_rx->xfer = NULL;
   2344 	}
   2345 
   2346 	data_rx->ni = NULL;
   2347 }
   2348 
   2349 static void
   2350 upgt_free_cmd(struct upgt_softc *sc)
   2351 {
   2352 	struct upgt_data *data_cmd = &sc->cmd_data;
   2353 
   2354 	if (data_cmd->xfer != NULL) {
   2355 		usbd_free_xfer(data_cmd->xfer);
   2356 		data_cmd->xfer = NULL;
   2357 	}
   2358 
   2359 	mutex_destroy(&sc->sc_mtx);
   2360 }
   2361 
   2362 static int
   2363 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
   2364     usbd_pipe_handle pipeh, uint32_t *size, int flags)
   2365 {
   2366         usbd_status status;
   2367 
   2368 	status = usbd_bulk_transfer(data->xfer, pipeh,
   2369 	    USBD_NO_COPY | flags, UPGT_USB_TIMEOUT, data->buf, size,
   2370 	    "upgt_bulk_xmit");
   2371 	if (status != USBD_NORMAL_COMPLETION) {
   2372 		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
   2373 		    usbd_errstr(status));
   2374 		return EIO;
   2375 	}
   2376 
   2377 	return 0;
   2378 }
   2379 
   2380 #if 0
   2381 static void
   2382 upgt_hexdump(void *buf, int len)
   2383 {
   2384 	int i;
   2385 
   2386 	for (i = 0; i < len; i++) {
   2387 		if (i % 16 == 0)
   2388 			printf("%s%5i:", i ? "\n" : "", i);
   2389 		if (i % 4 == 0)
   2390 			printf(" ");
   2391 		printf("%02x", (int)*((uint8_t *)buf + i));
   2392 	}
   2393 	printf("\n");
   2394 }
   2395 #endif
   2396 
   2397 static uint32_t
   2398 upgt_crc32_le(const void *buf, size_t size)
   2399 {
   2400 	uint32_t crc;
   2401 
   2402 	crc = ether_crc32_le(buf, size);
   2403 
   2404 	/* apply final XOR value as common for CRC-32 */
   2405 	crc = htole32(crc ^ 0xffffffffU);
   2406 
   2407 	return crc;
   2408 }
   2409 
   2410 /*
   2411  * The firmware awaits a checksum for each frame we send to it.
   2412  * The algorithm used therefor is uncommon but somehow similar to CRC32.
   2413  */
   2414 static uint32_t
   2415 upgt_chksum_le(const uint32_t *buf, size_t size)
   2416 {
   2417 	int i;
   2418 	uint32_t crc = 0;
   2419 
   2420 	for (i = 0; i < size; i += sizeof(uint32_t)) {
   2421 		crc = htole32(crc ^ *buf++);
   2422 		crc = htole32((crc >> 5) ^ (crc << 3));
   2423 	}
   2424 
   2425 	return crc;
   2426 }
   2427