if_ural.c revision 1.10.4.1 1 /* $NetBSD: if_ural.c,v 1.10.4.1 2006/09/09 02:55:33 rpaulo Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.10.4.1 2006/09/09 02:55:33 rpaulo Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef USB_DEBUG
74 #define URAL_DEBUG
75 #endif
76
77 #ifdef URAL_DEBUG
78 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
79 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
80 int ural_debug = 0;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85
86 /* various supported device vendors/products */
87 static const struct usb_devno ural_devs[] = {
88 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
90 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
91 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
93 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
94 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
95 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
96 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
106 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
107 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
108 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
109 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
110 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
111 };
112
113 Static int ural_alloc_tx_list(struct ural_softc *);
114 Static void ural_free_tx_list(struct ural_softc *);
115 Static int ural_alloc_rx_list(struct ural_softc *);
116 Static void ural_free_rx_list(struct ural_softc *);
117 Static int ural_media_change(struct ifnet *);
118 Static void ural_next_scan(void *);
119 Static void ural_task(void *);
120 Static int ural_newstate(struct ieee80211com *,
121 enum ieee80211_state, int);
122 Static int ural_rxrate(struct ural_rx_desc *);
123 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
124 usbd_status);
125 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
126 usbd_status);
127 Static int ural_ack_rate(struct ieee80211com *, int);
128 Static uint16_t ural_txtime(int, int, uint32_t);
129 Static uint8_t ural_plcp_signal(int);
130 Static void ural_setup_tx_desc(struct ural_softc *,
131 struct ural_tx_desc *, uint32_t, int, int);
132 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
133 struct ieee80211_node *);
134 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
135 struct ieee80211_node *);
136 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
137 struct ieee80211_node *);
138 Static void ural_start(struct ifnet *);
139 Static void ural_watchdog(struct ifnet *);
140 Static int ural_reset(struct ifnet *);
141 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
142 Static void ural_set_testmode(struct ural_softc *);
143 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
144 int);
145 Static uint16_t ural_read(struct ural_softc *, uint16_t);
146 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
147 int);
148 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
149 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
150 int);
151 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
152 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
153 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
154 Static void ural_set_chan(struct ural_softc *,
155 struct ieee80211_channel *);
156 Static void ural_disable_rf_tune(struct ural_softc *);
157 Static void ural_enable_tsf_sync(struct ural_softc *);
158 Static void ural_update_slot(struct ifnet *);
159 Static void ural_set_txpreamble(struct ural_softc *);
160 Static void ural_set_basicrates(struct ural_softc *);
161 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
162 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
163 Static void ural_update_promisc(struct ural_softc *);
164 Static const char *ural_get_rf(int);
165 Static void ural_read_eeprom(struct ural_softc *);
166 Static int ural_bbp_init(struct ural_softc *);
167 Static void ural_set_txantenna(struct ural_softc *, int);
168 Static void ural_set_rxantenna(struct ural_softc *, int);
169 Static int ural_init(struct ifnet *);
170 Static void ural_stop(struct ifnet *, int);
171 Static void ural_amrr_start(struct ural_softc *,
172 struct ieee80211_node *);
173 Static void ural_amrr_timeout(void *);
174 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
175 usbd_status status);
176 Static void ural_ratectl(struct ural_amrr *,
177 struct ieee80211_node *);
178
179 /*
180 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181 */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184
185 static const struct ieee80211_rateset ural_rateset_11b =
186 { 4, { 2, 4, 11, 22 } };
187
188 static const struct ieee80211_rateset ural_rateset_11g =
189 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190
191 /*
192 * Default values for MAC registers; values taken from the reference driver.
193 */
194 static const struct {
195 uint16_t reg;
196 uint16_t val;
197 } ural_def_mac[] = {
198 { RAL_TXRX_CSR5, 0x8c8d },
199 { RAL_TXRX_CSR6, 0x8b8a },
200 { RAL_TXRX_CSR7, 0x8687 },
201 { RAL_TXRX_CSR8, 0x0085 },
202 { RAL_MAC_CSR13, 0x1111 },
203 { RAL_MAC_CSR14, 0x1e11 },
204 { RAL_TXRX_CSR21, 0xe78f },
205 { RAL_MAC_CSR9, 0xff1d },
206 { RAL_MAC_CSR11, 0x0002 },
207 { RAL_MAC_CSR22, 0x0053 },
208 { RAL_MAC_CSR15, 0x0000 },
209 { RAL_MAC_CSR8, 0x0780 },
210 { RAL_TXRX_CSR19, 0x0000 },
211 { RAL_TXRX_CSR18, 0x005a },
212 { RAL_PHY_CSR2, 0x0000 },
213 { RAL_TXRX_CSR0, 0x1ec0 },
214 { RAL_PHY_CSR4, 0x000f }
215 };
216
217 /*
218 * Default values for BBP registers; values taken from the reference driver.
219 */
220 static const struct {
221 uint8_t reg;
222 uint8_t val;
223 } ural_def_bbp[] = {
224 { 3, 0x02 },
225 { 4, 0x19 },
226 { 14, 0x1c },
227 { 15, 0x30 },
228 { 16, 0xac },
229 { 17, 0x48 },
230 { 18, 0x18 },
231 { 19, 0xff },
232 { 20, 0x1e },
233 { 21, 0x08 },
234 { 22, 0x08 },
235 { 23, 0x08 },
236 { 24, 0x80 },
237 { 25, 0x50 },
238 { 26, 0x08 },
239 { 27, 0x23 },
240 { 30, 0x10 },
241 { 31, 0x2b },
242 { 32, 0xb9 },
243 { 34, 0x12 },
244 { 35, 0x50 },
245 { 39, 0xc4 },
246 { 40, 0x02 },
247 { 41, 0x60 },
248 { 53, 0x10 },
249 { 54, 0x18 },
250 { 56, 0x08 },
251 { 57, 0x10 },
252 { 58, 0x08 },
253 { 61, 0x60 },
254 { 62, 0x10 },
255 { 75, 0xff }
256 };
257
258 /*
259 * Default values for RF register R2 indexed by channel numbers.
260 */
261 static const uint32_t ural_rf2522_r2[] = {
262 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265
266 static const uint32_t ural_rf2523_r2[] = {
267 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270
271 static const uint32_t ural_rf2524_r2[] = {
272 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275
276 static const uint32_t ural_rf2525_r2[] = {
277 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285
286 static const uint32_t ural_rf2525e_r2[] = {
287 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295
296 static const uint32_t ural_rf2526_r2[] = {
297 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300
301 /*
302 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303 * values taken from the reference driver.
304 */
305 static const struct {
306 uint8_t chan;
307 uint32_t r1;
308 uint32_t r2;
309 uint32_t r4;
310 } ural_rf5222[] = {
311 { 1, 0x08808, 0x0044d, 0x00282 },
312 { 2, 0x08808, 0x0044e, 0x00282 },
313 { 3, 0x08808, 0x0044f, 0x00282 },
314 { 4, 0x08808, 0x00460, 0x00282 },
315 { 5, 0x08808, 0x00461, 0x00282 },
316 { 6, 0x08808, 0x00462, 0x00282 },
317 { 7, 0x08808, 0x00463, 0x00282 },
318 { 8, 0x08808, 0x00464, 0x00282 },
319 { 9, 0x08808, 0x00465, 0x00282 },
320 { 10, 0x08808, 0x00466, 0x00282 },
321 { 11, 0x08808, 0x00467, 0x00282 },
322 { 12, 0x08808, 0x00468, 0x00282 },
323 { 13, 0x08808, 0x00469, 0x00282 },
324 { 14, 0x08808, 0x0046b, 0x00286 },
325
326 { 36, 0x08804, 0x06225, 0x00287 },
327 { 40, 0x08804, 0x06226, 0x00287 },
328 { 44, 0x08804, 0x06227, 0x00287 },
329 { 48, 0x08804, 0x06228, 0x00287 },
330 { 52, 0x08804, 0x06229, 0x00287 },
331 { 56, 0x08804, 0x0622a, 0x00287 },
332 { 60, 0x08804, 0x0622b, 0x00287 },
333 { 64, 0x08804, 0x0622c, 0x00287 },
334
335 { 100, 0x08804, 0x02200, 0x00283 },
336 { 104, 0x08804, 0x02201, 0x00283 },
337 { 108, 0x08804, 0x02202, 0x00283 },
338 { 112, 0x08804, 0x02203, 0x00283 },
339 { 116, 0x08804, 0x02204, 0x00283 },
340 { 120, 0x08804, 0x02205, 0x00283 },
341 { 124, 0x08804, 0x02206, 0x00283 },
342 { 128, 0x08804, 0x02207, 0x00283 },
343 { 132, 0x08804, 0x02208, 0x00283 },
344 { 136, 0x08804, 0x02209, 0x00283 },
345 { 140, 0x08804, 0x0220a, 0x00283 },
346
347 { 149, 0x08808, 0x02429, 0x00281 },
348 { 153, 0x08808, 0x0242b, 0x00281 },
349 { 157, 0x08808, 0x0242d, 0x00281 },
350 { 161, 0x08808, 0x0242f, 0x00281 }
351 };
352
353 USB_DECLARE_DRIVER(ural);
354
355 USB_MATCH(ural)
356 {
357 USB_MATCH_START(ural, uaa);
358
359 if (uaa->iface != NULL)
360 return UMATCH_NONE;
361
362 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365
366 USB_ATTACH(ural)
367 {
368 USB_ATTACH_START(ural, sc, uaa);
369 struct ieee80211com *ic = &sc->sc_ic;
370 struct ifnet *ifp = &sc->sc_if;
371 usb_interface_descriptor_t *id;
372 usb_endpoint_descriptor_t *ed;
373 usbd_status error;
374 char *devinfop;
375 int i;
376
377 sc->sc_udev = uaa->device;
378
379 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
380 USB_ATTACH_SETUP;
381 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
382 usbd_devinfo_free(devinfop);
383
384 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 printf("%s: could not set configuration no\n",
386 USBDEVNAME(sc->sc_dev));
387 USB_ATTACH_ERROR_RETURN;
388 }
389
390 /* get the first interface handle */
391 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 &sc->sc_iface);
393 if (error != 0) {
394 printf("%s: could not get interface handle\n",
395 USBDEVNAME(sc->sc_dev));
396 USB_ATTACH_ERROR_RETURN;
397 }
398
399 /*
400 * Find endpoints.
401 */
402 id = usbd_get_interface_descriptor(sc->sc_iface);
403
404 sc->sc_rx_no = sc->sc_tx_no = -1;
405 for (i = 0; i < id->bNumEndpoints; i++) {
406 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
407 if (ed == NULL) {
408 printf("%s: no endpoint descriptor for %d\n",
409 USBDEVNAME(sc->sc_dev), i);
410 USB_ATTACH_ERROR_RETURN;
411 }
412
413 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
414 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
415 sc->sc_rx_no = ed->bEndpointAddress;
416 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
417 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
418 sc->sc_tx_no = ed->bEndpointAddress;
419 }
420 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
421 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
422 USB_ATTACH_ERROR_RETURN;
423 }
424
425 usb_init_task(&sc->sc_task, ural_task, sc);
426 callout_init(&sc->scan_ch);
427 callout_init(&sc->amrr_ch);
428
429 /* retrieve RT2570 rev. no */
430 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
431
432 /* retrieve MAC address and various other things from EEPROM */
433 ural_read_eeprom(sc);
434
435 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
436 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
437
438 ifp->if_softc = sc;
439 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 ifp->if_init = ural_init;
442 ifp->if_ioctl = ural_ioctl;
443 ifp->if_start = ural_start;
444 ifp->if_watchdog = ural_watchdog;
445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 IFQ_SET_READY(&ifp->if_snd);
447
448 ic->ic_ifp = ifp;
449 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
450 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
451 ic->ic_state = IEEE80211_S_INIT;
452
453 /* set device capabilities */
454 ic->ic_caps =
455 IEEE80211_C_IBSS | /* IBSS mode supported */
456 IEEE80211_C_MONITOR | /* monitor mode supported */
457 IEEE80211_C_HOSTAP | /* HostAp mode supported */
458 IEEE80211_C_TXPMGT | /* tx power management */
459 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
460 IEEE80211_C_SHSLOT | /* short slot time supported */
461 IEEE80211_C_WPA; /* 802.11i */
462
463 if (sc->rf_rev == RAL_RF_5222) {
464 /* set supported .11a rates */
465 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
466
467 /* set supported .11a channels */
468 for (i = 36; i <= 64; i += 4) {
469 ic->ic_channels[i].ic_freq =
470 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
471 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
472 }
473 for (i = 100; i <= 140; i += 4) {
474 ic->ic_channels[i].ic_freq =
475 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
476 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
477 }
478 for (i = 149; i <= 161; i += 4) {
479 ic->ic_channels[i].ic_freq =
480 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
481 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
482 }
483 }
484
485 /* set supported .11b and .11g rates */
486 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
487 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
488
489 /* set supported .11b and .11g channels (1 through 14) */
490 for (i = 1; i <= 14; i++) {
491 ic->ic_channels[i].ic_freq =
492 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
493 ic->ic_channels[i].ic_flags =
494 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
495 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
496 }
497
498 if_attach(ifp);
499 ieee80211_ifattach(ic);
500 ic->ic_reset = ural_reset;
501
502 /* override state transition machine */
503 sc->sc_newstate = ic->ic_newstate;
504 ic->ic_newstate = ural_newstate;
505 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
506
507 #if NBPFILTER > 0
508 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
509 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
510
511 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
512 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
513 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
514
515 sc->sc_txtap_len = sizeof sc->sc_txtapu;
516 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
517 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
518 #endif
519
520 ieee80211_announce(ic);
521
522 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
523 USBDEV(sc->sc_dev));
524
525 USB_ATTACH_SUCCESS_RETURN;
526 }
527
528 USB_DETACH(ural)
529 {
530 USB_DETACH_START(ural, sc);
531 struct ieee80211com *ic = &sc->sc_ic;
532 struct ifnet *ifp = &sc->sc_if;
533 int s;
534
535 s = splusb();
536
537 ural_stop(ifp, 1);
538 usb_rem_task(sc->sc_udev, &sc->sc_task);
539 callout_stop(&sc->scan_ch);
540 callout_stop(&sc->amrr_ch);
541
542 if (sc->amrr_xfer != NULL) {
543 usbd_free_xfer(sc->amrr_xfer);
544 sc->amrr_xfer = NULL;
545 }
546
547 if (sc->sc_rx_pipeh != NULL) {
548 usbd_abort_pipe(sc->sc_rx_pipeh);
549 usbd_close_pipe(sc->sc_rx_pipeh);
550 }
551
552 if (sc->sc_tx_pipeh != NULL) {
553 usbd_abort_pipe(sc->sc_tx_pipeh);
554 usbd_close_pipe(sc->sc_tx_pipeh);
555 }
556
557 ural_free_rx_list(sc);
558 ural_free_tx_list(sc);
559
560 #if NBPFILTER > 0
561 bpfdetach(ifp);
562 #endif
563 ieee80211_ifdetach(ic);
564 if_detach(ifp);
565
566 splx(s);
567
568 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
569 USBDEV(sc->sc_dev));
570
571 return 0;
572 }
573
574 Static int
575 ural_alloc_tx_list(struct ural_softc *sc)
576 {
577 struct ural_tx_data *data;
578 int i, error;
579
580 sc->tx_queued = 0;
581
582 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
583 data = &sc->tx_data[i];
584
585 data->sc = sc;
586
587 data->xfer = usbd_alloc_xfer(sc->sc_udev);
588 if (data->xfer == NULL) {
589 printf("%s: could not allocate tx xfer\n",
590 USBDEVNAME(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 data->buf = usbd_alloc_buffer(data->xfer,
596 RAL_TX_DESC_SIZE + MCLBYTES);
597 if (data->buf == NULL) {
598 printf("%s: could not allocate tx buffer\n",
599 USBDEVNAME(sc->sc_dev));
600 error = ENOMEM;
601 goto fail;
602 }
603 }
604
605 return 0;
606
607 fail: ural_free_tx_list(sc);
608 return error;
609 }
610
611 Static void
612 ural_free_tx_list(struct ural_softc *sc)
613 {
614 struct ural_tx_data *data;
615 int i;
616
617 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
618 data = &sc->tx_data[i];
619
620 if (data->xfer != NULL) {
621 usbd_free_xfer(data->xfer);
622 data->xfer = NULL;
623 }
624
625 if (data->ni != NULL) {
626 ieee80211_free_node(data->ni);
627 data->ni = NULL;
628 }
629 }
630 }
631
632 Static int
633 ural_alloc_rx_list(struct ural_softc *sc)
634 {
635 struct ural_rx_data *data;
636 int i, error;
637
638 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
639 data = &sc->rx_data[i];
640
641 data->sc = sc;
642
643 data->xfer = usbd_alloc_xfer(sc->sc_udev);
644 if (data->xfer == NULL) {
645 printf("%s: could not allocate rx xfer\n",
646 USBDEVNAME(sc->sc_dev));
647 error = ENOMEM;
648 goto fail;
649 }
650
651 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
652 printf("%s: could not allocate rx buffer\n",
653 USBDEVNAME(sc->sc_dev));
654 error = ENOMEM;
655 goto fail;
656 }
657
658 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
659 if (data->m == NULL) {
660 printf("%s: could not allocate rx mbuf\n",
661 USBDEVNAME(sc->sc_dev));
662 error = ENOMEM;
663 goto fail;
664 }
665
666 MCLGET(data->m, M_DONTWAIT);
667 if (!(data->m->m_flags & M_EXT)) {
668 printf("%s: could not allocate rx mbuf cluster\n",
669 USBDEVNAME(sc->sc_dev));
670 error = ENOMEM;
671 goto fail;
672 }
673
674 data->buf = mtod(data->m, uint8_t *);
675 }
676
677 return 0;
678
679 fail: ural_free_tx_list(sc);
680 return error;
681 }
682
683 Static void
684 ural_free_rx_list(struct ural_softc *sc)
685 {
686 struct ural_rx_data *data;
687 int i;
688
689 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
690 data = &sc->rx_data[i];
691
692 if (data->xfer != NULL) {
693 usbd_free_xfer(data->xfer);
694 data->xfer = NULL;
695 }
696
697 if (data->m != NULL) {
698 m_freem(data->m);
699 data->m = NULL;
700 }
701 }
702 }
703
704 Static int
705 ural_media_change(struct ifnet *ifp)
706 {
707 int error;
708
709 error = ieee80211_media_change(ifp);
710 if (error != ENETRESET)
711 return error;
712
713 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
714 ural_init(ifp);
715
716 return 0;
717 }
718
719 /*
720 * This function is called periodically (every 200ms) during scanning to
721 * switch from one channel to another.
722 */
723 Static void
724 ural_next_scan(void *arg)
725 {
726 struct ural_softc *sc = arg;
727 struct ieee80211com *ic = &sc->sc_ic;
728
729 if (ic->ic_state == IEEE80211_S_SCAN)
730 ieee80211_next_scan(ic);
731 }
732
733 Static void
734 ural_task(void *arg)
735 {
736 struct ural_softc *sc = arg;
737 struct ieee80211com *ic = &sc->sc_ic;
738 enum ieee80211_state ostate;
739 struct ieee80211_node *ni;
740 struct mbuf *m;
741
742 ostate = ic->ic_state;
743
744 switch (sc->sc_state) {
745 case IEEE80211_S_INIT:
746 if (ostate == IEEE80211_S_RUN) {
747 /* abort TSF synchronization */
748 ural_write(sc, RAL_TXRX_CSR19, 0);
749
750 /* force tx led to stop blinking */
751 ural_write(sc, RAL_MAC_CSR20, 0);
752 }
753 break;
754
755 case IEEE80211_S_SCAN:
756 ural_set_chan(sc, ic->ic_curchan);
757 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
758 break;
759
760 case IEEE80211_S_AUTH:
761 ural_set_chan(sc, ic->ic_curchan);
762 break;
763
764 case IEEE80211_S_ASSOC:
765 ural_set_chan(sc, ic->ic_curchan);
766 break;
767
768 case IEEE80211_S_RUN:
769 ural_set_chan(sc, ic->ic_curchan);
770
771 ni = ic->ic_bss;
772
773 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
774 ural_update_slot(ic->ic_ifp);
775 ural_set_txpreamble(sc);
776 ural_set_basicrates(sc);
777 ural_set_bssid(sc, ni->ni_bssid);
778 }
779
780 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
781 ic->ic_opmode == IEEE80211_M_IBSS) {
782 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
783 if (m == NULL) {
784 printf("%s: could not allocate beacon\n",
785 USBDEVNAME(sc->sc_dev));
786 return;
787 }
788
789 if (ural_tx_bcn(sc, m, ni) != 0) {
790 m_freem(m);
791 printf("%s: could not send beacon\n",
792 USBDEVNAME(sc->sc_dev));
793 return;
794 }
795
796 /* beacon is no longer needed */
797 m_freem(m);
798 }
799
800 /* make tx led blink on tx (controlled by ASIC) */
801 ural_write(sc, RAL_MAC_CSR20, 1);
802
803 if (ic->ic_opmode != IEEE80211_M_MONITOR)
804 ural_enable_tsf_sync(sc);
805
806 /* enable automatic rate adaptation in STA mode */
807 if (ic->ic_opmode == IEEE80211_M_STA &&
808 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
809 ural_amrr_start(sc, ni);
810
811 break;
812 }
813
814 sc->sc_newstate(ic, sc->sc_state, -1);
815 }
816
817 Static int
818 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
819 {
820 struct ural_softc *sc = ic->ic_ifp->if_softc;
821
822 usb_rem_task(sc->sc_udev, &sc->sc_task);
823 callout_stop(&sc->scan_ch);
824 callout_stop(&sc->amrr_ch);
825
826 /* do it in a process context */
827 sc->sc_state = nstate;
828 usb_add_task(sc->sc_udev, &sc->sc_task);
829
830 return 0;
831 }
832
833 /* quickly determine if a given rate is CCK or OFDM */
834 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
835
836 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
837 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
838
839 #define RAL_SIFS 10 /* us */
840
841 #define RAL_RXTX_TURNAROUND 5 /* us */
842
843 /*
844 * This function is only used by the Rx radiotap code.
845 */
846 Static int
847 ural_rxrate(struct ural_rx_desc *desc)
848 {
849 if (le32toh(desc->flags) & RAL_RX_OFDM) {
850 /* reverse function of ural_plcp_signal */
851 switch (desc->rate) {
852 case 0xb: return 12;
853 case 0xf: return 18;
854 case 0xa: return 24;
855 case 0xe: return 36;
856 case 0x9: return 48;
857 case 0xd: return 72;
858 case 0x8: return 96;
859 case 0xc: return 108;
860 }
861 } else {
862 if (desc->rate == 10)
863 return 2;
864 if (desc->rate == 20)
865 return 4;
866 if (desc->rate == 55)
867 return 11;
868 if (desc->rate == 110)
869 return 22;
870 }
871 return 2; /* should not get there */
872 }
873
874 Static void
875 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
876 {
877 struct ural_tx_data *data = priv;
878 struct ural_softc *sc = data->sc;
879 struct ifnet *ifp = &sc->sc_if;
880 int s;
881
882 if (status != USBD_NORMAL_COMPLETION) {
883 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
884 return;
885
886 printf("%s: could not transmit buffer: %s\n",
887 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
888
889 if (status == USBD_STALLED)
890 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
891
892 ifp->if_oerrors++;
893 return;
894 }
895
896 s = splnet();
897
898 m_freem(data->m);
899 data->m = NULL;
900 ieee80211_free_node(data->ni);
901 data->ni = NULL;
902
903 sc->tx_queued--;
904 ifp->if_opackets++;
905
906 DPRINTFN(10, ("tx done\n"));
907
908 sc->sc_tx_timer = 0;
909 ifp->if_flags &= ~IFF_OACTIVE;
910 ural_start(ifp);
911
912 splx(s);
913 }
914
915 Static void
916 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
917 {
918 struct ural_rx_data *data = priv;
919 struct ural_softc *sc = data->sc;
920 struct ieee80211com *ic = &sc->sc_ic;
921 struct ifnet *ifp = &sc->sc_if;
922 struct ural_rx_desc *desc;
923 struct ieee80211_frame *wh;
924 struct ieee80211_node *ni;
925 struct mbuf *mnew, *m;
926 int s, len;
927
928 if (status != USBD_NORMAL_COMPLETION) {
929 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
930 return;
931
932 if (status == USBD_STALLED)
933 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
934 goto skip;
935 }
936
937 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
938
939 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
940 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
941 len));
942 ifp->if_ierrors++;
943 goto skip;
944 }
945
946 /* rx descriptor is located at the end */
947 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
948
949 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
950 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
951 /*
952 * This should not happen since we did not request to receive
953 * those frames when we filled RAL_TXRX_CSR2.
954 */
955 DPRINTFN(5, ("PHY or CRC error\n"));
956 ifp->if_ierrors++;
957 goto skip;
958 }
959
960 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
961 if (mnew == NULL) {
962 ifp->if_ierrors++;
963 goto skip;
964 }
965
966 MCLGET(mnew, M_DONTWAIT);
967 if (!(mnew->m_flags & M_EXT)) {
968 ifp->if_ierrors++;
969 m_freem(mnew);
970 goto skip;
971 }
972
973 m = data->m;
974 data->m = mnew;
975 data->buf = mtod(data->m, uint8_t *);
976
977 /* finalize mbuf */
978 m->m_pkthdr.rcvif = ifp;
979 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
980 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
981
982 s = splnet();
983
984 #if NBPFILTER > 0
985 if (sc->sc_drvbpf != NULL) {
986 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
987
988 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
989 tap->wr_rate = ural_rxrate(desc);
990 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
991 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
992 tap->wr_antenna = sc->rx_ant;
993 tap->wr_antsignal = desc->rssi;
994
995 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
996 }
997 #endif
998
999 wh = mtod(m, struct ieee80211_frame *);
1000 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1001
1002 /* send the frame to the 802.11 layer */
1003 ieee80211_input(ic, m, ni, desc->rssi, 0);
1004
1005 /* node is no longer needed */
1006 ieee80211_free_node(ni);
1007
1008 splx(s);
1009
1010 DPRINTFN(15, ("rx done\n"));
1011
1012 skip: /* setup a new transfer */
1013 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1014 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1015 usbd_transfer(xfer);
1016 }
1017
1018 /*
1019 * Return the expected ack rate for a frame transmitted at rate `rate'.
1020 * XXX: this should depend on the destination node basic rate set.
1021 */
1022 Static int
1023 ural_ack_rate(struct ieee80211com *ic, int rate)
1024 {
1025 switch (rate) {
1026 /* CCK rates */
1027 case 2:
1028 return 2;
1029 case 4:
1030 case 11:
1031 case 22:
1032 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1033
1034 /* OFDM rates */
1035 case 12:
1036 case 18:
1037 return 12;
1038 case 24:
1039 case 36:
1040 return 24;
1041 case 48:
1042 case 72:
1043 case 96:
1044 case 108:
1045 return 48;
1046 }
1047
1048 /* default to 1Mbps */
1049 return 2;
1050 }
1051
1052 /*
1053 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1054 * The function automatically determines the operating mode depending on the
1055 * given rate. `flags' indicates whether short preamble is in use or not.
1056 */
1057 Static uint16_t
1058 ural_txtime(int len, int rate, uint32_t flags)
1059 {
1060 uint16_t txtime;
1061
1062 if (RAL_RATE_IS_OFDM(rate)) {
1063 /* IEEE Std 802.11a-1999, pp. 37 */
1064 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1065 txtime = 16 + 4 + 4 * txtime + 6;
1066 } else {
1067 /* IEEE Std 802.11b-1999, pp. 28 */
1068 txtime = (16 * len + rate - 1) / rate;
1069 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1070 txtime += 72 + 24;
1071 else
1072 txtime += 144 + 48;
1073 }
1074 return txtime;
1075 }
1076
1077 Static uint8_t
1078 ural_plcp_signal(int rate)
1079 {
1080 switch (rate) {
1081 /* CCK rates (returned values are device-dependent) */
1082 case 2: return 0x0;
1083 case 4: return 0x1;
1084 case 11: return 0x2;
1085 case 22: return 0x3;
1086
1087 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1088 case 12: return 0xb;
1089 case 18: return 0xf;
1090 case 24: return 0xa;
1091 case 36: return 0xe;
1092 case 48: return 0x9;
1093 case 72: return 0xd;
1094 case 96: return 0x8;
1095 case 108: return 0xc;
1096
1097 /* unsupported rates (should not get there) */
1098 default: return 0xff;
1099 }
1100 }
1101
1102 Static void
1103 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1104 uint32_t flags, int len, int rate)
1105 {
1106 struct ieee80211com *ic = &sc->sc_ic;
1107 uint16_t plcp_length;
1108 int remainder;
1109
1110 desc->flags = htole32(flags);
1111 desc->flags |= htole32(RAL_TX_NEWSEQ);
1112 desc->flags |= htole32(len << 16);
1113
1114 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1115 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1116
1117 /* setup PLCP fields */
1118 desc->plcp_signal = ural_plcp_signal(rate);
1119 desc->plcp_service = 4;
1120
1121 len += IEEE80211_CRC_LEN;
1122 if (RAL_RATE_IS_OFDM(rate)) {
1123 desc->flags |= htole32(RAL_TX_OFDM);
1124
1125 plcp_length = len & 0xfff;
1126 desc->plcp_length_hi = plcp_length >> 6;
1127 desc->plcp_length_lo = plcp_length & 0x3f;
1128 } else {
1129 plcp_length = (16 * len + rate - 1) / rate;
1130 if (rate == 22) {
1131 remainder = (16 * len) % 22;
1132 if (remainder != 0 && remainder < 7)
1133 desc->plcp_service |= RAL_PLCP_LENGEXT;
1134 }
1135 desc->plcp_length_hi = plcp_length >> 8;
1136 desc->plcp_length_lo = plcp_length & 0xff;
1137
1138 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1139 desc->plcp_signal |= 0x08;
1140 }
1141
1142 desc->iv = 0;
1143 desc->eiv = 0;
1144 }
1145
1146 #define RAL_TX_TIMEOUT 5000
1147
1148 Static int
1149 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1150 {
1151 struct ural_tx_desc *desc;
1152 usbd_xfer_handle xfer;
1153 uint8_t cmd = 0;
1154 usbd_status error;
1155 uint8_t *buf;
1156 int xferlen, rate;
1157
1158 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1159
1160 xfer = usbd_alloc_xfer(sc->sc_udev);
1161 if (xfer == NULL)
1162 return ENOMEM;
1163
1164 /* xfer length needs to be a multiple of two! */
1165 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1166
1167 buf = usbd_alloc_buffer(xfer, xferlen);
1168 if (buf == NULL) {
1169 usbd_free_xfer(xfer);
1170 return ENOMEM;
1171 }
1172
1173 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1174 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1175
1176 error = usbd_sync_transfer(xfer);
1177 if (error != 0) {
1178 usbd_free_xfer(xfer);
1179 return error;
1180 }
1181
1182 desc = (struct ural_tx_desc *)buf;
1183
1184 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1185 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1186 m0->m_pkthdr.len, rate);
1187
1188 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1189 m0->m_pkthdr.len, rate, xferlen));
1190
1191 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1192 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1193
1194 error = usbd_sync_transfer(xfer);
1195 usbd_free_xfer(xfer);
1196
1197 return error;
1198 }
1199
1200 Static int
1201 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1202 {
1203 struct ieee80211com *ic = &sc->sc_ic;
1204 struct ural_tx_desc *desc;
1205 struct ural_tx_data *data;
1206 struct ieee80211_frame *wh;
1207 uint32_t flags = 0;
1208 uint16_t dur;
1209 usbd_status error;
1210 int xferlen, rate;
1211
1212 data = &sc->tx_data[0];
1213 desc = (struct ural_tx_desc *)data->buf;
1214
1215 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1216
1217 data->m = m0;
1218 data->ni = ni;
1219
1220 wh = mtod(m0, struct ieee80211_frame *);
1221
1222 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1223 flags |= RAL_TX_ACK;
1224
1225 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1226 *(uint16_t *)wh->i_dur = htole16(dur);
1227
1228 /* tell hardware to add timestamp for probe responses */
1229 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1230 IEEE80211_FC0_TYPE_MGT &&
1231 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1232 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1233 flags |= RAL_TX_TIMESTAMP;
1234 }
1235
1236 #if NBPFILTER > 0
1237 if (sc->sc_drvbpf != NULL) {
1238 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1239
1240 tap->wt_flags = 0;
1241 tap->wt_rate = rate;
1242 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1243 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1244 tap->wt_antenna = sc->tx_ant;
1245
1246 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1247 }
1248 #endif
1249
1250 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1251 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1252
1253 /* align end on a 2-bytes boundary */
1254 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1255
1256 /*
1257 * No space left in the last URB to store the extra 2 bytes, force
1258 * sending of another URB.
1259 */
1260 if ((xferlen % 64) == 0)
1261 xferlen += 2;
1262
1263 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1264 m0->m_pkthdr.len, rate, xferlen));
1265
1266 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1267 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1268 ural_txeof);
1269
1270 error = usbd_transfer(data->xfer);
1271 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1272 return error;
1273
1274 sc->tx_queued++;
1275
1276 return 0;
1277 }
1278
1279 Static int
1280 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1281 {
1282 struct ieee80211com *ic = &sc->sc_ic;
1283 struct ural_tx_desc *desc;
1284 struct ural_tx_data *data;
1285 struct ieee80211_frame *wh;
1286 struct ieee80211_key *k;
1287 uint32_t flags = 0;
1288 uint16_t dur;
1289 usbd_status error;
1290 int xferlen, rate;
1291
1292 wh = mtod(m0, struct ieee80211_frame *);
1293
1294 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1295 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1296 else
1297 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1298
1299 rate &= IEEE80211_RATE_VAL;
1300
1301 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1302 k = ieee80211_crypto_encap(ic, ni, m0);
1303 if (k == NULL) {
1304 m_freem(m0);
1305 return ENOBUFS;
1306 }
1307
1308 /* packet header may have moved, reset our local pointer */
1309 wh = mtod(m0, struct ieee80211_frame *);
1310 }
1311
1312 data = &sc->tx_data[0];
1313 desc = (struct ural_tx_desc *)data->buf;
1314
1315 data->m = m0;
1316 data->ni = ni;
1317
1318 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1319 flags |= RAL_TX_ACK;
1320 flags |= RAL_TX_RETRY(7);
1321
1322 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1323 ic->ic_flags) + RAL_SIFS;
1324 *(uint16_t *)wh->i_dur = htole16(dur);
1325 }
1326
1327 #if NBPFILTER > 0
1328 if (sc->sc_drvbpf != NULL) {
1329 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1330
1331 tap->wt_flags = 0;
1332 tap->wt_rate = rate;
1333 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1334 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1335 tap->wt_antenna = sc->tx_ant;
1336
1337 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1338 }
1339 #endif
1340
1341 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1342 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1343
1344 /* align end on a 2-bytes boundary */
1345 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1346
1347 /*
1348 * No space left in the last URB to store the extra 2 bytes, force
1349 * sending of another URB.
1350 */
1351 if ((xferlen % 64) == 0)
1352 xferlen += 2;
1353
1354 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1355 m0->m_pkthdr.len, rate, xferlen));
1356
1357 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1358 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1359 ural_txeof);
1360
1361 error = usbd_transfer(data->xfer);
1362 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1363 return error;
1364
1365 sc->tx_queued++;
1366
1367 return 0;
1368 }
1369
1370 Static void
1371 ural_start(struct ifnet *ifp)
1372 {
1373 struct ural_softc *sc = ifp->if_softc;
1374 struct ieee80211com *ic = &sc->sc_ic;
1375 struct mbuf *m0;
1376 struct ether_header *eh;
1377 struct ieee80211_node *ni;
1378
1379 for (;;) {
1380 IF_POLL(&ic->ic_mgtq, m0);
1381 if (m0 != NULL) {
1382 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1383 ifp->if_flags |= IFF_OACTIVE;
1384 break;
1385 }
1386 IF_DEQUEUE(&ic->ic_mgtq, m0);
1387
1388 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1389 m0->m_pkthdr.rcvif = NULL;
1390 #if NBPFILTER > 0
1391 if (ic->ic_rawbpf != NULL)
1392 bpf_mtap(ic->ic_rawbpf, m0);
1393 #endif
1394 if (ural_tx_mgt(sc, m0, ni) != 0)
1395 break;
1396
1397 } else {
1398 if (ic->ic_state != IEEE80211_S_RUN)
1399 break;
1400 IFQ_DEQUEUE(&ifp->if_snd, m0);
1401 if (m0 == NULL)
1402 break;
1403 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1404 IF_PREPEND(&ifp->if_snd, m0);
1405 ifp->if_flags |= IFF_OACTIVE;
1406 break;
1407 }
1408
1409 if (m0->m_len < sizeof (struct ether_header) &&
1410 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1411 continue;
1412
1413 eh = mtod(m0, struct ether_header *);
1414 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1415 if (ni == NULL) {
1416 m_freem(m0);
1417 continue;
1418 }
1419 #if NBPFILTER > 0
1420 if (ifp->if_bpf != NULL)
1421 bpf_mtap(ifp->if_bpf, m0);
1422 #endif
1423 m0 = ieee80211_encap(ic, m0, ni);
1424 if (m0 == NULL) {
1425 ieee80211_free_node(ni);
1426 continue;
1427 }
1428 #if NBPFILTER > 0
1429 if (ic->ic_rawbpf != NULL)
1430 bpf_mtap(ic->ic_rawbpf, m0);
1431 #endif
1432 if (ural_tx_data(sc, m0, ni) != 0) {
1433 ieee80211_free_node(ni);
1434 ifp->if_oerrors++;
1435 break;
1436 }
1437 }
1438
1439 sc->sc_tx_timer = 5;
1440 ifp->if_timer = 1;
1441 }
1442 }
1443
1444 Static void
1445 ural_watchdog(struct ifnet *ifp)
1446 {
1447 struct ural_softc *sc = ifp->if_softc;
1448 struct ieee80211com *ic = &sc->sc_ic;
1449
1450 ifp->if_timer = 0;
1451
1452 if (sc->sc_tx_timer > 0) {
1453 if (--sc->sc_tx_timer == 0) {
1454 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1455 /*ural_init(sc); XXX needs a process context! */
1456 ifp->if_oerrors++;
1457 return;
1458 }
1459 ifp->if_timer = 1;
1460 }
1461
1462 ieee80211_watchdog(ic);
1463 }
1464
1465 /*
1466 * This function allows for fast channel switching in monitor mode (used by
1467 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1468 * generate a new beacon frame.
1469 */
1470 Static int
1471 ural_reset(struct ifnet *ifp)
1472 {
1473 struct ural_softc *sc = ifp->if_softc;
1474 struct ieee80211com *ic = &sc->sc_ic;
1475
1476 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1477 return ENETRESET;
1478
1479 ural_set_chan(sc, ic->ic_curchan);
1480
1481 return 0;
1482 }
1483
1484 Static int
1485 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1486 {
1487 struct ural_softc *sc = ifp->if_softc;
1488 struct ieee80211com *ic = &sc->sc_ic;
1489 int s, error = 0;
1490
1491 s = splnet();
1492
1493 switch (cmd) {
1494 case SIOCSIFFLAGS:
1495 if (ifp->if_flags & IFF_UP) {
1496 if (ifp->if_flags & IFF_RUNNING)
1497 ural_update_promisc(sc);
1498 else
1499 ural_init(ifp);
1500 } else {
1501 if (ifp->if_flags & IFF_RUNNING)
1502 ural_stop(ifp, 1);
1503 }
1504 break;
1505
1506 default:
1507 error = ieee80211_ioctl(ic, cmd, data);
1508 }
1509
1510 if (error == ENETRESET) {
1511 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1512 (IFF_UP | IFF_RUNNING))
1513 ural_init(ifp);
1514 error = 0;
1515 }
1516
1517 splx(s);
1518
1519 return error;
1520 }
1521
1522 Static void
1523 ural_set_testmode(struct ural_softc *sc)
1524 {
1525 usb_device_request_t req;
1526 usbd_status error;
1527
1528 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1529 req.bRequest = RAL_VENDOR_REQUEST;
1530 USETW(req.wValue, 4);
1531 USETW(req.wIndex, 1);
1532 USETW(req.wLength, 0);
1533
1534 error = usbd_do_request(sc->sc_udev, &req, NULL);
1535 if (error != 0) {
1536 printf("%s: could not set test mode: %s\n",
1537 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1538 }
1539 }
1540
1541 Static void
1542 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1543 {
1544 usb_device_request_t req;
1545 usbd_status error;
1546
1547 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1548 req.bRequest = RAL_READ_EEPROM;
1549 USETW(req.wValue, 0);
1550 USETW(req.wIndex, addr);
1551 USETW(req.wLength, len);
1552
1553 error = usbd_do_request(sc->sc_udev, &req, buf);
1554 if (error != 0) {
1555 printf("%s: could not read EEPROM: %s\n",
1556 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1557 }
1558 }
1559
1560 Static uint16_t
1561 ural_read(struct ural_softc *sc, uint16_t reg)
1562 {
1563 usb_device_request_t req;
1564 usbd_status error;
1565 uint16_t val;
1566
1567 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1568 req.bRequest = RAL_READ_MAC;
1569 USETW(req.wValue, 0);
1570 USETW(req.wIndex, reg);
1571 USETW(req.wLength, sizeof (uint16_t));
1572
1573 error = usbd_do_request(sc->sc_udev, &req, &val);
1574 if (error != 0) {
1575 printf("%s: could not read MAC register: %s\n",
1576 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1577 return 0;
1578 }
1579
1580 return le16toh(val);
1581 }
1582
1583 Static void
1584 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1585 {
1586 usb_device_request_t req;
1587 usbd_status error;
1588
1589 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1590 req.bRequest = RAL_READ_MULTI_MAC;
1591 USETW(req.wValue, 0);
1592 USETW(req.wIndex, reg);
1593 USETW(req.wLength, len);
1594
1595 error = usbd_do_request(sc->sc_udev, &req, buf);
1596 if (error != 0) {
1597 printf("%s: could not read MAC register: %s\n",
1598 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1599 }
1600 }
1601
1602 Static void
1603 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1604 {
1605 usb_device_request_t req;
1606 usbd_status error;
1607
1608 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 req.bRequest = RAL_WRITE_MAC;
1610 USETW(req.wValue, val);
1611 USETW(req.wIndex, reg);
1612 USETW(req.wLength, 0);
1613
1614 error = usbd_do_request(sc->sc_udev, &req, NULL);
1615 if (error != 0) {
1616 printf("%s: could not write MAC register: %s\n",
1617 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1618 }
1619 }
1620
1621 Static void
1622 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1623 {
1624 usb_device_request_t req;
1625 usbd_status error;
1626
1627 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1628 req.bRequest = RAL_WRITE_MULTI_MAC;
1629 USETW(req.wValue, 0);
1630 USETW(req.wIndex, reg);
1631 USETW(req.wLength, len);
1632
1633 error = usbd_do_request(sc->sc_udev, &req, buf);
1634 if (error != 0) {
1635 printf("%s: could not write MAC register: %s\n",
1636 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1637 }
1638 }
1639
1640 Static void
1641 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1642 {
1643 uint16_t tmp;
1644 int ntries;
1645
1646 for (ntries = 0; ntries < 5; ntries++) {
1647 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1648 break;
1649 }
1650 if (ntries == 5) {
1651 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1652 return;
1653 }
1654
1655 tmp = reg << 8 | val;
1656 ural_write(sc, RAL_PHY_CSR7, tmp);
1657 }
1658
1659 Static uint8_t
1660 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1661 {
1662 uint16_t val;
1663 int ntries;
1664
1665 val = RAL_BBP_WRITE | reg << 8;
1666 ural_write(sc, RAL_PHY_CSR7, val);
1667
1668 for (ntries = 0; ntries < 5; ntries++) {
1669 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1670 break;
1671 }
1672 if (ntries == 5) {
1673 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1674 return 0;
1675 }
1676
1677 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1678 }
1679
1680 Static void
1681 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1682 {
1683 uint32_t tmp;
1684 int ntries;
1685
1686 for (ntries = 0; ntries < 5; ntries++) {
1687 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1688 break;
1689 }
1690 if (ntries == 5) {
1691 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1692 return;
1693 }
1694
1695 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1696 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1697 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1698
1699 /* remember last written value in sc */
1700 sc->rf_regs[reg] = val;
1701
1702 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1703 }
1704
1705 Static void
1706 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1707 {
1708 struct ieee80211com *ic = &sc->sc_ic;
1709 uint8_t power, tmp;
1710 u_int i, chan;
1711
1712 chan = ieee80211_chan2ieee(ic, c);
1713 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1714 return;
1715
1716 if (IEEE80211_IS_CHAN_2GHZ(c))
1717 power = min(sc->txpow[chan - 1], 31);
1718 else
1719 power = 31;
1720
1721 /* adjust txpower using ifconfig settings */
1722 power -= (100 - ic->ic_txpowlimit) / 8;
1723
1724 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1725
1726 switch (sc->rf_rev) {
1727 case RAL_RF_2522:
1728 ural_rf_write(sc, RAL_RF1, 0x00814);
1729 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1730 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 break;
1732
1733 case RAL_RF_2523:
1734 ural_rf_write(sc, RAL_RF1, 0x08804);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1737 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 break;
1739
1740 case RAL_RF_2524:
1741 ural_rf_write(sc, RAL_RF1, 0x0c808);
1742 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1743 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1744 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 break;
1746
1747 case RAL_RF_2525:
1748 ural_rf_write(sc, RAL_RF1, 0x08808);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752
1753 ural_rf_write(sc, RAL_RF1, 0x08808);
1754 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1755 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1756 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757 break;
1758
1759 case RAL_RF_2525E:
1760 ural_rf_write(sc, RAL_RF1, 0x08808);
1761 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1762 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1763 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1764 break;
1765
1766 case RAL_RF_2526:
1767 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1768 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1769 ural_rf_write(sc, RAL_RF1, 0x08804);
1770
1771 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1772 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1773 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1774 break;
1775
1776 /* dual-band RF */
1777 case RAL_RF_5222:
1778 for (i = 0; ural_rf5222[i].chan != chan; i++);
1779
1780 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1781 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1782 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1783 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1784 break;
1785 }
1786
1787 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1788 ic->ic_state != IEEE80211_S_SCAN) {
1789 /* set Japan filter bit for channel 14 */
1790 tmp = ural_bbp_read(sc, 70);
1791
1792 tmp &= ~RAL_JAPAN_FILTER;
1793 if (chan == 14)
1794 tmp |= RAL_JAPAN_FILTER;
1795
1796 ural_bbp_write(sc, 70, tmp);
1797
1798 /* clear CRC errors */
1799 ural_read(sc, RAL_STA_CSR0);
1800
1801 DELAY(10000);
1802 ural_disable_rf_tune(sc);
1803 }
1804 }
1805
1806 /*
1807 * Disable RF auto-tuning.
1808 */
1809 Static void
1810 ural_disable_rf_tune(struct ural_softc *sc)
1811 {
1812 uint32_t tmp;
1813
1814 if (sc->rf_rev != RAL_RF_2523) {
1815 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1816 ural_rf_write(sc, RAL_RF1, tmp);
1817 }
1818
1819 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1820 ural_rf_write(sc, RAL_RF3, tmp);
1821
1822 DPRINTFN(2, ("disabling RF autotune\n"));
1823 }
1824
1825 /*
1826 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1827 * synchronization.
1828 */
1829 Static void
1830 ural_enable_tsf_sync(struct ural_softc *sc)
1831 {
1832 struct ieee80211com *ic = &sc->sc_ic;
1833 uint16_t logcwmin, preload, tmp;
1834
1835 /* first, disable TSF synchronization */
1836 ural_write(sc, RAL_TXRX_CSR19, 0);
1837
1838 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1839 ural_write(sc, RAL_TXRX_CSR18, tmp);
1840
1841 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1842 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1843 tmp = logcwmin << 12 | preload;
1844 ural_write(sc, RAL_TXRX_CSR20, tmp);
1845
1846 /* finally, enable TSF synchronization */
1847 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1848 if (ic->ic_opmode == IEEE80211_M_STA)
1849 tmp |= RAL_ENABLE_TSF_SYNC(1);
1850 else
1851 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1852 ural_write(sc, RAL_TXRX_CSR19, tmp);
1853
1854 DPRINTF(("enabling TSF synchronization\n"));
1855 }
1856
1857 Static void
1858 ural_update_slot(struct ifnet *ifp)
1859 {
1860 struct ural_softc *sc = ifp->if_softc;
1861 struct ieee80211com *ic = &sc->sc_ic;
1862 uint16_t slottime, sifs, eifs;
1863
1864 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1865
1866 /*
1867 * These settings may sound a bit inconsistent but this is what the
1868 * reference driver does.
1869 */
1870 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1871 sifs = 16 - RAL_RXTX_TURNAROUND;
1872 eifs = 364;
1873 } else {
1874 sifs = 10 - RAL_RXTX_TURNAROUND;
1875 eifs = 64;
1876 }
1877
1878 ural_write(sc, RAL_MAC_CSR10, slottime);
1879 ural_write(sc, RAL_MAC_CSR11, sifs);
1880 ural_write(sc, RAL_MAC_CSR12, eifs);
1881 }
1882
1883 Static void
1884 ural_set_txpreamble(struct ural_softc *sc)
1885 {
1886 uint16_t tmp;
1887
1888 tmp = ural_read(sc, RAL_TXRX_CSR10);
1889
1890 tmp &= ~RAL_SHORT_PREAMBLE;
1891 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1892 tmp |= RAL_SHORT_PREAMBLE;
1893
1894 ural_write(sc, RAL_TXRX_CSR10, tmp);
1895 }
1896
1897 Static void
1898 ural_set_basicrates(struct ural_softc *sc)
1899 {
1900 struct ieee80211com *ic = &sc->sc_ic;
1901
1902 /* update basic rate set */
1903 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1904 /* 11b basic rates: 1, 2Mbps */
1905 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1906 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1907 /* 11a basic rates: 6, 12, 24Mbps */
1908 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1909 } else {
1910 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1911 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1912 }
1913 }
1914
1915 Static void
1916 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1917 {
1918 uint16_t tmp;
1919
1920 tmp = bssid[0] | bssid[1] << 8;
1921 ural_write(sc, RAL_MAC_CSR5, tmp);
1922
1923 tmp = bssid[2] | bssid[3] << 8;
1924 ural_write(sc, RAL_MAC_CSR6, tmp);
1925
1926 tmp = bssid[4] | bssid[5] << 8;
1927 ural_write(sc, RAL_MAC_CSR7, tmp);
1928
1929 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1930 }
1931
1932 Static void
1933 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1934 {
1935 uint16_t tmp;
1936
1937 tmp = addr[0] | addr[1] << 8;
1938 ural_write(sc, RAL_MAC_CSR2, tmp);
1939
1940 tmp = addr[2] | addr[3] << 8;
1941 ural_write(sc, RAL_MAC_CSR3, tmp);
1942
1943 tmp = addr[4] | addr[5] << 8;
1944 ural_write(sc, RAL_MAC_CSR4, tmp);
1945
1946 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1947 }
1948
1949 Static void
1950 ural_update_promisc(struct ural_softc *sc)
1951 {
1952 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1953 uint32_t tmp;
1954
1955 tmp = ural_read(sc, RAL_TXRX_CSR2);
1956
1957 tmp &= ~RAL_DROP_NOT_TO_ME;
1958 if (!(ifp->if_flags & IFF_PROMISC))
1959 tmp |= RAL_DROP_NOT_TO_ME;
1960
1961 ural_write(sc, RAL_TXRX_CSR2, tmp);
1962
1963 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1964 "entering" : "leaving"));
1965 }
1966
1967 Static const char *
1968 ural_get_rf(int rev)
1969 {
1970 switch (rev) {
1971 case RAL_RF_2522: return "RT2522";
1972 case RAL_RF_2523: return "RT2523";
1973 case RAL_RF_2524: return "RT2524";
1974 case RAL_RF_2525: return "RT2525";
1975 case RAL_RF_2525E: return "RT2525e";
1976 case RAL_RF_2526: return "RT2526";
1977 case RAL_RF_5222: return "RT5222";
1978 default: return "unknown";
1979 }
1980 }
1981
1982 Static void
1983 ural_read_eeprom(struct ural_softc *sc)
1984 {
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 uint16_t val;
1987
1988 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1989 val = le16toh(val);
1990 sc->rf_rev = (val >> 11) & 0x7;
1991 sc->hw_radio = (val >> 10) & 0x1;
1992 sc->led_mode = (val >> 6) & 0x7;
1993 sc->rx_ant = (val >> 4) & 0x3;
1994 sc->tx_ant = (val >> 2) & 0x3;
1995 sc->nb_ant = val & 0x3;
1996
1997 /* read MAC address */
1998 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1999
2000 /* read default values for BBP registers */
2001 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2002
2003 /* read Tx power for all b/g channels */
2004 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2005 }
2006
2007 Static int
2008 ural_bbp_init(struct ural_softc *sc)
2009 {
2010 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2011 int i, ntries;
2012
2013 /* wait for BBP to be ready */
2014 for (ntries = 0; ntries < 100; ntries++) {
2015 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2016 break;
2017 DELAY(1000);
2018 }
2019 if (ntries == 100) {
2020 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2021 return EIO;
2022 }
2023
2024 /* initialize BBP registers to default values */
2025 for (i = 0; i < N(ural_def_bbp); i++)
2026 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2027
2028 #if 0
2029 /* initialize BBP registers to values stored in EEPROM */
2030 for (i = 0; i < 16; i++) {
2031 if (sc->bbp_prom[i].reg == 0xff)
2032 continue;
2033 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2034 }
2035 #endif
2036
2037 return 0;
2038 #undef N
2039 }
2040
2041 Static void
2042 ural_set_txantenna(struct ural_softc *sc, int antenna)
2043 {
2044 uint16_t tmp;
2045 uint8_t tx;
2046
2047 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2048 if (antenna == 1)
2049 tx |= RAL_BBP_ANTA;
2050 else if (antenna == 2)
2051 tx |= RAL_BBP_ANTB;
2052 else
2053 tx |= RAL_BBP_DIVERSITY;
2054
2055 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2056 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2057 sc->rf_rev == RAL_RF_5222)
2058 tx |= RAL_BBP_FLIPIQ;
2059
2060 ural_bbp_write(sc, RAL_BBP_TX, tx);
2061
2062 /* update values in PHY_CSR5 and PHY_CSR6 */
2063 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2064 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2065
2066 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2067 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2068 }
2069
2070 Static void
2071 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2072 {
2073 uint8_t rx;
2074
2075 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2076 if (antenna == 1)
2077 rx |= RAL_BBP_ANTA;
2078 else if (antenna == 2)
2079 rx |= RAL_BBP_ANTB;
2080 else
2081 rx |= RAL_BBP_DIVERSITY;
2082
2083 /* need to force no I/Q flip for RF 2525e and 2526 */
2084 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2085 rx &= ~RAL_BBP_FLIPIQ;
2086
2087 ural_bbp_write(sc, RAL_BBP_RX, rx);
2088 }
2089
2090 Static int
2091 ural_init(struct ifnet *ifp)
2092 {
2093 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2094 struct ural_softc *sc = ifp->if_softc;
2095 struct ieee80211com *ic = &sc->sc_ic;
2096 struct ieee80211_key *wk;
2097 struct ural_rx_data *data;
2098 uint16_t tmp;
2099 usbd_status error;
2100 int i, ntries;
2101
2102 ural_set_testmode(sc);
2103 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2104
2105 ural_stop(ifp, 0);
2106
2107 /* initialize MAC registers to default values */
2108 for (i = 0; i < N(ural_def_mac); i++)
2109 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2110
2111 /* wait for BBP and RF to wake up (this can take a long time!) */
2112 for (ntries = 0; ntries < 100; ntries++) {
2113 tmp = ural_read(sc, RAL_MAC_CSR17);
2114 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2115 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2116 break;
2117 DELAY(1000);
2118 }
2119 if (ntries == 100) {
2120 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2121 USBDEVNAME(sc->sc_dev));
2122 error = EIO;
2123 goto fail;
2124 }
2125
2126 /* we're ready! */
2127 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2128
2129 /* set basic rate set (will be updated later) */
2130 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2131
2132 error = ural_bbp_init(sc);
2133 if (error != 0)
2134 goto fail;
2135
2136 /* set default BSS channel */
2137 ural_set_chan(sc, ic->ic_curchan);
2138
2139 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2140 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2141
2142 ural_set_txantenna(sc, sc->tx_ant);
2143 ural_set_rxantenna(sc, sc->rx_ant);
2144
2145 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2146 ural_set_macaddr(sc, ic->ic_myaddr);
2147
2148 /*
2149 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2150 */
2151 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2152 wk = &ic->ic_crypto.cs_nw_keys[i];
2153 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2154 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2155 }
2156
2157 /*
2158 * Allocate xfer for AMRR statistics requests.
2159 */
2160 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2161 if (sc->amrr_xfer == NULL) {
2162 printf("%s: could not allocate AMRR xfer\n",
2163 USBDEVNAME(sc->sc_dev));
2164 goto fail;
2165 }
2166
2167 /*
2168 * Open Tx and Rx USB bulk pipes.
2169 */
2170 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2171 &sc->sc_tx_pipeh);
2172 if (error != 0) {
2173 printf("%s: could not open Tx pipe: %s\n",
2174 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2175 goto fail;
2176 }
2177
2178 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2179 &sc->sc_rx_pipeh);
2180 if (error != 0) {
2181 printf("%s: could not open Rx pipe: %s\n",
2182 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2183 goto fail;
2184 }
2185
2186 /*
2187 * Allocate Tx and Rx xfer queues.
2188 */
2189 error = ural_alloc_tx_list(sc);
2190 if (error != 0) {
2191 printf("%s: could not allocate Tx list\n",
2192 USBDEVNAME(sc->sc_dev));
2193 goto fail;
2194 }
2195
2196 error = ural_alloc_rx_list(sc);
2197 if (error != 0) {
2198 printf("%s: could not allocate Rx list\n",
2199 USBDEVNAME(sc->sc_dev));
2200 goto fail;
2201 }
2202
2203 /*
2204 * Start up the receive pipe.
2205 */
2206 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2207 data = &sc->rx_data[i];
2208
2209 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2210 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2211 usbd_transfer(data->xfer);
2212 }
2213
2214 /* kick Rx */
2215 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2216 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2218 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2219 tmp |= RAL_DROP_TODS;
2220 if (!(ifp->if_flags & IFF_PROMISC))
2221 tmp |= RAL_DROP_NOT_TO_ME;
2222 }
2223 ural_write(sc, RAL_TXRX_CSR2, tmp);
2224
2225 ifp->if_flags &= ~IFF_OACTIVE;
2226 ifp->if_flags |= IFF_RUNNING;
2227
2228 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2229 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2230 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2231 } else
2232 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2233
2234 return 0;
2235
2236 fail: ural_stop(ifp, 1);
2237 return error;
2238 #undef N
2239 }
2240
2241 Static void
2242 ural_stop(struct ifnet *ifp, int disable)
2243 {
2244 struct ural_softc *sc = ifp->if_softc;
2245 struct ieee80211com *ic = &sc->sc_ic;
2246
2247 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2248
2249 sc->sc_tx_timer = 0;
2250 ifp->if_timer = 0;
2251 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2252
2253 /* disable Rx */
2254 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2255
2256 /* reset ASIC and BBP (but won't reset MAC registers!) */
2257 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2258 ural_write(sc, RAL_MAC_CSR1, 0);
2259
2260 if (sc->amrr_xfer != NULL) {
2261 usbd_free_xfer(sc->amrr_xfer);
2262 sc->amrr_xfer = NULL;
2263 }
2264
2265 if (sc->sc_rx_pipeh != NULL) {
2266 usbd_abort_pipe(sc->sc_rx_pipeh);
2267 usbd_close_pipe(sc->sc_rx_pipeh);
2268 sc->sc_rx_pipeh = NULL;
2269 }
2270
2271 if (sc->sc_tx_pipeh != NULL) {
2272 usbd_abort_pipe(sc->sc_tx_pipeh);
2273 usbd_close_pipe(sc->sc_tx_pipeh);
2274 sc->sc_tx_pipeh = NULL;
2275 }
2276
2277 ural_free_rx_list(sc);
2278 ural_free_tx_list(sc);
2279 }
2280
2281 int
2282 ural_activate(device_ptr_t self, enum devact act)
2283 {
2284 struct ural_softc *sc = (struct ural_softc *)self;
2285
2286 switch (act) {
2287 case DVACT_ACTIVATE:
2288 return EOPNOTSUPP;
2289 break;
2290
2291 case DVACT_DEACTIVATE:
2292 if_deactivate(&sc->sc_if);
2293 break;
2294 }
2295
2296 return 0;
2297 }
2298
2299 #define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1
2300 #define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10
2301
2302 Static void
2303 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2304 {
2305 struct ural_amrr *amrr = &sc->amrr;
2306 int i;
2307
2308 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2309 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2310
2311 amrr->success = 0;
2312 amrr->recovery = 0;
2313 amrr->txcnt = amrr->retrycnt = 0;
2314 amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2315
2316 /* set rate to some reasonable initial value */
2317 for (i = ni->ni_rates.rs_nrates - 1;
2318 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2319 i--);
2320
2321 ni->ni_txrate = i;
2322
2323 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2324 }
2325
2326 Static void
2327 ural_amrr_timeout(void *arg)
2328 {
2329 struct ural_softc *sc = (struct ural_softc *)arg;
2330 usb_device_request_t req;
2331 int s;
2332
2333 s = splusb();
2334
2335 /*
2336 * Asynchronously read statistic registers (cleared by read).
2337 */
2338 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2339 req.bRequest = RAL_READ_MULTI_MAC;
2340 USETW(req.wValue, 0);
2341 USETW(req.wIndex, RAL_STA_CSR0);
2342 USETW(req.wLength, sizeof sc->sta);
2343
2344 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2345 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2346 ural_amrr_update);
2347 (void)usbd_transfer(sc->amrr_xfer);
2348
2349 splx(s);
2350 }
2351
2352 Static void
2353 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2354 usbd_status status)
2355 {
2356 struct ural_softc *sc = (struct ural_softc *)priv;
2357 struct ural_amrr *amrr = &sc->amrr;
2358 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2359
2360 if (status != USBD_NORMAL_COMPLETION) {
2361 printf("%s: could not retrieve Tx statistics - "
2362 "cancelling automatic rate control\n",
2363 USBDEVNAME(sc->sc_dev));
2364 return;
2365 }
2366
2367 /* count TX retry-fail as Tx errors */
2368 ifp->if_oerrors += sc->sta[9];
2369
2370 amrr->retrycnt =
2371 sc->sta[7] + /* TX one-retry ok count */
2372 sc->sta[8] + /* TX more-retry ok count */
2373 sc->sta[9]; /* TX retry-fail count */
2374
2375 amrr->txcnt =
2376 amrr->retrycnt +
2377 sc->sta[6]; /* TX no-retry ok count */
2378
2379 ural_ratectl(amrr, sc->sc_ic.ic_bss);
2380
2381 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2382 }
2383
2384 /*-
2385 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2386 * "IEEE 802.11 Rate Adaptation: A Practical Approach"
2387 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2388 * INRIA Sophia - Projet Planete
2389 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2390 *
2391 * This algorithm is particularly well suited for ural since it does not
2392 * require per-frame retry statistics. Note however that since h/w does
2393 * not provide per-frame stats, we can't do per-node rate adaptation and
2394 * thus automatic rate adaptation is only enabled in STA operating mode.
2395 */
2396 #define is_success(amrr) \
2397 ((amrr)->retrycnt < (amrr)->txcnt / 10)
2398 #define is_failure(amrr) \
2399 ((amrr)->retrycnt > (amrr)->txcnt / 3)
2400 #define is_enough(amrr) \
2401 ((amrr)->txcnt > 10)
2402 #define is_min_rate(ni) \
2403 ((ni)->ni_txrate == 0)
2404 #define is_max_rate(ni) \
2405 ((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2406 #define increase_rate(ni) \
2407 ((ni)->ni_txrate++)
2408 #define decrease_rate(ni) \
2409 ((ni)->ni_txrate--)
2410 #define reset_cnt(amrr) \
2411 do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2412 Static void
2413 ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
2414 {
2415 int need_change = 0;
2416
2417 if (is_success(amrr) && is_enough(amrr)) {
2418 amrr->success++;
2419 if (amrr->success >= amrr->success_threshold &&
2420 !is_max_rate(ni)) {
2421 amrr->recovery = 1;
2422 amrr->success = 0;
2423 increase_rate(ni);
2424 need_change = 1;
2425 } else {
2426 amrr->recovery = 0;
2427 }
2428 } else if (is_failure(amrr)) {
2429 amrr->success = 0;
2430 if (!is_min_rate(ni)) {
2431 if (amrr->recovery) {
2432 amrr->success_threshold *= 2;
2433 if (amrr->success_threshold >
2434 URAL_AMRR_MAX_SUCCESS_THRESHOLD)
2435 amrr->success_threshold =
2436 URAL_AMRR_MAX_SUCCESS_THRESHOLD;
2437 } else {
2438 amrr->success_threshold =
2439 URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2440 }
2441 decrease_rate(ni);
2442 need_change = 1;
2443 }
2444 amrr->recovery = 0; /* original paper was incorrect */
2445 }
2446
2447 if (is_enough(amrr) || need_change)
2448 reset_cnt(amrr);
2449 }
2450