if_ural.c revision 1.14 1 /* $NetBSD: if_ural.c,v 1.14 2006/10/17 23:42:18 wiz Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.14 2006/10/17 23:42:18 wiz Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef USB_DEBUG
74 #define URAL_DEBUG
75 #endif
76
77 #ifdef URAL_DEBUG
78 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
79 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
80 int ural_debug = 0;
81 #else
82 #define DPRINTF(x)
83 #define DPRINTFN(n, x)
84 #endif
85
86 /* various supported device vendors/products */
87 static const struct usb_devno ural_devs[] = {
88 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
90 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
91 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
93 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
94 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
95 { USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
97 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
109 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
110 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
111 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
112 };
113
114 Static int ural_alloc_tx_list(struct ural_softc *);
115 Static void ural_free_tx_list(struct ural_softc *);
116 Static int ural_alloc_rx_list(struct ural_softc *);
117 Static void ural_free_rx_list(struct ural_softc *);
118 Static int ural_media_change(struct ifnet *);
119 Static void ural_next_scan(void *);
120 Static void ural_task(void *);
121 Static int ural_newstate(struct ieee80211com *,
122 enum ieee80211_state, int);
123 Static int ural_rxrate(struct ural_rx_desc *);
124 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
125 usbd_status);
126 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
127 usbd_status);
128 Static int ural_ack_rate(struct ieee80211com *, int);
129 Static uint16_t ural_txtime(int, int, uint32_t);
130 Static uint8_t ural_plcp_signal(int);
131 Static void ural_setup_tx_desc(struct ural_softc *,
132 struct ural_tx_desc *, uint32_t, int, int);
133 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static void ural_start(struct ifnet *);
140 Static void ural_watchdog(struct ifnet *);
141 Static int ural_reset(struct ifnet *);
142 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
143 Static void ural_set_testmode(struct ural_softc *);
144 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
145 int);
146 Static uint16_t ural_read(struct ural_softc *, uint16_t);
147 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
148 int);
149 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
150 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
151 int);
152 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
153 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
154 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
155 Static void ural_set_chan(struct ural_softc *,
156 struct ieee80211_channel *);
157 Static void ural_disable_rf_tune(struct ural_softc *);
158 Static void ural_enable_tsf_sync(struct ural_softc *);
159 Static void ural_update_slot(struct ifnet *);
160 Static void ural_set_txpreamble(struct ural_softc *);
161 Static void ural_set_basicrates(struct ural_softc *);
162 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
163 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
164 Static void ural_update_promisc(struct ural_softc *);
165 Static const char *ural_get_rf(int);
166 Static void ural_read_eeprom(struct ural_softc *);
167 Static int ural_bbp_init(struct ural_softc *);
168 Static void ural_set_txantenna(struct ural_softc *, int);
169 Static void ural_set_rxantenna(struct ural_softc *, int);
170 Static int ural_init(struct ifnet *);
171 Static void ural_stop(struct ifnet *, int);
172 Static void ural_amrr_start(struct ural_softc *,
173 struct ieee80211_node *);
174 Static void ural_amrr_timeout(void *);
175 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
176 usbd_status status);
177 Static void ural_ratectl(struct ural_amrr *,
178 struct ieee80211_node *);
179
180 /*
181 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
182 */
183 static const struct ieee80211_rateset ural_rateset_11a =
184 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
185
186 static const struct ieee80211_rateset ural_rateset_11b =
187 { 4, { 2, 4, 11, 22 } };
188
189 static const struct ieee80211_rateset ural_rateset_11g =
190 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
191
192 /*
193 * Default values for MAC registers; values taken from the reference driver.
194 */
195 static const struct {
196 uint16_t reg;
197 uint16_t val;
198 } ural_def_mac[] = {
199 { RAL_TXRX_CSR5, 0x8c8d },
200 { RAL_TXRX_CSR6, 0x8b8a },
201 { RAL_TXRX_CSR7, 0x8687 },
202 { RAL_TXRX_CSR8, 0x0085 },
203 { RAL_MAC_CSR13, 0x1111 },
204 { RAL_MAC_CSR14, 0x1e11 },
205 { RAL_TXRX_CSR21, 0xe78f },
206 { RAL_MAC_CSR9, 0xff1d },
207 { RAL_MAC_CSR11, 0x0002 },
208 { RAL_MAC_CSR22, 0x0053 },
209 { RAL_MAC_CSR15, 0x0000 },
210 { RAL_MAC_CSR8, 0x0780 },
211 { RAL_TXRX_CSR19, 0x0000 },
212 { RAL_TXRX_CSR18, 0x005a },
213 { RAL_PHY_CSR2, 0x0000 },
214 { RAL_TXRX_CSR0, 0x1ec0 },
215 { RAL_PHY_CSR4, 0x000f }
216 };
217
218 /*
219 * Default values for BBP registers; values taken from the reference driver.
220 */
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } ural_def_bbp[] = {
225 { 3, 0x02 },
226 { 4, 0x19 },
227 { 14, 0x1c },
228 { 15, 0x30 },
229 { 16, 0xac },
230 { 17, 0x48 },
231 { 18, 0x18 },
232 { 19, 0xff },
233 { 20, 0x1e },
234 { 21, 0x08 },
235 { 22, 0x08 },
236 { 23, 0x08 },
237 { 24, 0x80 },
238 { 25, 0x50 },
239 { 26, 0x08 },
240 { 27, 0x23 },
241 { 30, 0x10 },
242 { 31, 0x2b },
243 { 32, 0xb9 },
244 { 34, 0x12 },
245 { 35, 0x50 },
246 { 39, 0xc4 },
247 { 40, 0x02 },
248 { 41, 0x60 },
249 { 53, 0x10 },
250 { 54, 0x18 },
251 { 56, 0x08 },
252 { 57, 0x10 },
253 { 58, 0x08 },
254 { 61, 0x60 },
255 { 62, 0x10 },
256 { 75, 0xff }
257 };
258
259 /*
260 * Default values for RF register R2 indexed by channel numbers.
261 */
262 static const uint32_t ural_rf2522_r2[] = {
263 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
264 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
265 };
266
267 static const uint32_t ural_rf2523_r2[] = {
268 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
269 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
270 };
271
272 static const uint32_t ural_rf2524_r2[] = {
273 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
274 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
275 };
276
277 static const uint32_t ural_rf2525_r2[] = {
278 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
279 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
280 };
281
282 static const uint32_t ural_rf2525_hi_r2[] = {
283 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
284 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
285 };
286
287 static const uint32_t ural_rf2525e_r2[] = {
288 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
289 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
290 };
291
292 static const uint32_t ural_rf2526_hi_r2[] = {
293 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
294 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
295 };
296
297 static const uint32_t ural_rf2526_r2[] = {
298 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
299 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
300 };
301
302 /*
303 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
304 * values taken from the reference driver.
305 */
306 static const struct {
307 uint8_t chan;
308 uint32_t r1;
309 uint32_t r2;
310 uint32_t r4;
311 } ural_rf5222[] = {
312 { 1, 0x08808, 0x0044d, 0x00282 },
313 { 2, 0x08808, 0x0044e, 0x00282 },
314 { 3, 0x08808, 0x0044f, 0x00282 },
315 { 4, 0x08808, 0x00460, 0x00282 },
316 { 5, 0x08808, 0x00461, 0x00282 },
317 { 6, 0x08808, 0x00462, 0x00282 },
318 { 7, 0x08808, 0x00463, 0x00282 },
319 { 8, 0x08808, 0x00464, 0x00282 },
320 { 9, 0x08808, 0x00465, 0x00282 },
321 { 10, 0x08808, 0x00466, 0x00282 },
322 { 11, 0x08808, 0x00467, 0x00282 },
323 { 12, 0x08808, 0x00468, 0x00282 },
324 { 13, 0x08808, 0x00469, 0x00282 },
325 { 14, 0x08808, 0x0046b, 0x00286 },
326
327 { 36, 0x08804, 0x06225, 0x00287 },
328 { 40, 0x08804, 0x06226, 0x00287 },
329 { 44, 0x08804, 0x06227, 0x00287 },
330 { 48, 0x08804, 0x06228, 0x00287 },
331 { 52, 0x08804, 0x06229, 0x00287 },
332 { 56, 0x08804, 0x0622a, 0x00287 },
333 { 60, 0x08804, 0x0622b, 0x00287 },
334 { 64, 0x08804, 0x0622c, 0x00287 },
335
336 { 100, 0x08804, 0x02200, 0x00283 },
337 { 104, 0x08804, 0x02201, 0x00283 },
338 { 108, 0x08804, 0x02202, 0x00283 },
339 { 112, 0x08804, 0x02203, 0x00283 },
340 { 116, 0x08804, 0x02204, 0x00283 },
341 { 120, 0x08804, 0x02205, 0x00283 },
342 { 124, 0x08804, 0x02206, 0x00283 },
343 { 128, 0x08804, 0x02207, 0x00283 },
344 { 132, 0x08804, 0x02208, 0x00283 },
345 { 136, 0x08804, 0x02209, 0x00283 },
346 { 140, 0x08804, 0x0220a, 0x00283 },
347
348 { 149, 0x08808, 0x02429, 0x00281 },
349 { 153, 0x08808, 0x0242b, 0x00281 },
350 { 157, 0x08808, 0x0242d, 0x00281 },
351 { 161, 0x08808, 0x0242f, 0x00281 }
352 };
353
354 USB_DECLARE_DRIVER(ural);
355
356 USB_MATCH(ural)
357 {
358 USB_MATCH_START(ural, uaa);
359
360 if (uaa->iface != NULL)
361 return UMATCH_NONE;
362
363 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
364 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
365 }
366
367 USB_ATTACH(ural)
368 {
369 USB_ATTACH_START(ural, sc, uaa);
370 struct ieee80211com *ic = &sc->sc_ic;
371 struct ifnet *ifp = &sc->sc_if;
372 usb_interface_descriptor_t *id;
373 usb_endpoint_descriptor_t *ed;
374 usbd_status error;
375 char *devinfop;
376 int i;
377
378 sc->sc_udev = uaa->device;
379
380 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
381 USB_ATTACH_SETUP;
382 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
383 usbd_devinfo_free(devinfop);
384
385 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
386 printf("%s: could not set configuration no\n",
387 USBDEVNAME(sc->sc_dev));
388 USB_ATTACH_ERROR_RETURN;
389 }
390
391 /* get the first interface handle */
392 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
393 &sc->sc_iface);
394 if (error != 0) {
395 printf("%s: could not get interface handle\n",
396 USBDEVNAME(sc->sc_dev));
397 USB_ATTACH_ERROR_RETURN;
398 }
399
400 /*
401 * Find endpoints.
402 */
403 id = usbd_get_interface_descriptor(sc->sc_iface);
404
405 sc->sc_rx_no = sc->sc_tx_no = -1;
406 for (i = 0; i < id->bNumEndpoints; i++) {
407 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 if (ed == NULL) {
409 printf("%s: no endpoint descriptor for %d\n",
410 USBDEVNAME(sc->sc_dev), i);
411 USB_ATTACH_ERROR_RETURN;
412 }
413
414 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 sc->sc_rx_no = ed->bEndpointAddress;
417 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 sc->sc_tx_no = ed->bEndpointAddress;
420 }
421 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
423 USB_ATTACH_ERROR_RETURN;
424 }
425
426 usb_init_task(&sc->sc_task, ural_task, sc);
427 callout_init(&sc->scan_ch);
428 callout_init(&sc->amrr_ch);
429
430 /* retrieve RT2570 rev. no */
431 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
432
433 /* retrieve MAC address and various other things from EEPROM */
434 ural_read_eeprom(sc);
435
436 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
437 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
438
439 ifp->if_softc = sc;
440 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
441 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 ifp->if_init = ural_init;
443 ifp->if_ioctl = ural_ioctl;
444 ifp->if_start = ural_start;
445 ifp->if_watchdog = ural_watchdog;
446 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 IFQ_SET_READY(&ifp->if_snd);
448
449 ic->ic_ifp = ifp;
450 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
451 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
452 ic->ic_state = IEEE80211_S_INIT;
453
454 /* set device capabilities */
455 ic->ic_caps =
456 IEEE80211_C_IBSS | /* IBSS mode supported */
457 IEEE80211_C_MONITOR | /* monitor mode supported */
458 IEEE80211_C_HOSTAP | /* HostAp mode supported */
459 IEEE80211_C_TXPMGT | /* tx power management */
460 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
461 IEEE80211_C_SHSLOT | /* short slot time supported */
462 IEEE80211_C_WPA; /* 802.11i */
463
464 if (sc->rf_rev == RAL_RF_5222) {
465 /* set supported .11a rates */
466 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
467
468 /* set supported .11a channels */
469 for (i = 36; i <= 64; i += 4) {
470 ic->ic_channels[i].ic_freq =
471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 }
474 for (i = 100; i <= 140; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 for (i = 149; i <= 161; i += 4) {
480 ic->ic_channels[i].ic_freq =
481 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
482 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
483 }
484 }
485
486 /* set supported .11b and .11g rates */
487 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
488 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
489
490 /* set supported .11b and .11g channels (1 through 14) */
491 for (i = 1; i <= 14; i++) {
492 ic->ic_channels[i].ic_freq =
493 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
494 ic->ic_channels[i].ic_flags =
495 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
496 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
497 }
498
499 if_attach(ifp);
500 ieee80211_ifattach(ic);
501 ic->ic_reset = ural_reset;
502
503 /* override state transition machine */
504 sc->sc_newstate = ic->ic_newstate;
505 ic->ic_newstate = ural_newstate;
506 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
507
508 #if NBPFILTER > 0
509 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
510 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
511
512 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
513 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
514 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
515
516 sc->sc_txtap_len = sizeof sc->sc_txtapu;
517 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
518 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
519 #endif
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 USBDEV(sc->sc_dev));
525
526 USB_ATTACH_SUCCESS_RETURN;
527 }
528
529 USB_DETACH(ural)
530 {
531 USB_DETACH_START(ural, sc);
532 struct ieee80211com *ic = &sc->sc_ic;
533 struct ifnet *ifp = &sc->sc_if;
534 int s;
535
536 s = splusb();
537
538 ural_stop(ifp, 1);
539 usb_rem_task(sc->sc_udev, &sc->sc_task);
540 callout_stop(&sc->scan_ch);
541 callout_stop(&sc->amrr_ch);
542
543 if (sc->amrr_xfer != NULL) {
544 usbd_free_xfer(sc->amrr_xfer);
545 sc->amrr_xfer = NULL;
546 }
547
548 if (sc->sc_rx_pipeh != NULL) {
549 usbd_abort_pipe(sc->sc_rx_pipeh);
550 usbd_close_pipe(sc->sc_rx_pipeh);
551 }
552
553 if (sc->sc_tx_pipeh != NULL) {
554 usbd_abort_pipe(sc->sc_tx_pipeh);
555 usbd_close_pipe(sc->sc_tx_pipeh);
556 }
557
558 ural_free_rx_list(sc);
559 ural_free_tx_list(sc);
560
561 #if NBPFILTER > 0
562 bpfdetach(ifp);
563 #endif
564 ieee80211_ifdetach(ic);
565 if_detach(ifp);
566
567 splx(s);
568
569 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
570 USBDEV(sc->sc_dev));
571
572 return 0;
573 }
574
575 Static int
576 ural_alloc_tx_list(struct ural_softc *sc)
577 {
578 struct ural_tx_data *data;
579 int i, error;
580
581 sc->tx_queued = 0;
582
583 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
584 data = &sc->tx_data[i];
585
586 data->sc = sc;
587
588 data->xfer = usbd_alloc_xfer(sc->sc_udev);
589 if (data->xfer == NULL) {
590 printf("%s: could not allocate tx xfer\n",
591 USBDEVNAME(sc->sc_dev));
592 error = ENOMEM;
593 goto fail;
594 }
595
596 data->buf = usbd_alloc_buffer(data->xfer,
597 RAL_TX_DESC_SIZE + MCLBYTES);
598 if (data->buf == NULL) {
599 printf("%s: could not allocate tx buffer\n",
600 USBDEVNAME(sc->sc_dev));
601 error = ENOMEM;
602 goto fail;
603 }
604 }
605
606 return 0;
607
608 fail: ural_free_tx_list(sc);
609 return error;
610 }
611
612 Static void
613 ural_free_tx_list(struct ural_softc *sc)
614 {
615 struct ural_tx_data *data;
616 int i;
617
618 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
619 data = &sc->tx_data[i];
620
621 if (data->xfer != NULL) {
622 usbd_free_xfer(data->xfer);
623 data->xfer = NULL;
624 }
625
626 if (data->ni != NULL) {
627 ieee80211_free_node(data->ni);
628 data->ni = NULL;
629 }
630 }
631 }
632
633 Static int
634 ural_alloc_rx_list(struct ural_softc *sc)
635 {
636 struct ural_rx_data *data;
637 int i, error;
638
639 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
640 data = &sc->rx_data[i];
641
642 data->sc = sc;
643
644 data->xfer = usbd_alloc_xfer(sc->sc_udev);
645 if (data->xfer == NULL) {
646 printf("%s: could not allocate rx xfer\n",
647 USBDEVNAME(sc->sc_dev));
648 error = ENOMEM;
649 goto fail;
650 }
651
652 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
653 printf("%s: could not allocate rx buffer\n",
654 USBDEVNAME(sc->sc_dev));
655 error = ENOMEM;
656 goto fail;
657 }
658
659 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
660 if (data->m == NULL) {
661 printf("%s: could not allocate rx mbuf\n",
662 USBDEVNAME(sc->sc_dev));
663 error = ENOMEM;
664 goto fail;
665 }
666
667 MCLGET(data->m, M_DONTWAIT);
668 if (!(data->m->m_flags & M_EXT)) {
669 printf("%s: could not allocate rx mbuf cluster\n",
670 USBDEVNAME(sc->sc_dev));
671 error = ENOMEM;
672 goto fail;
673 }
674
675 data->buf = mtod(data->m, uint8_t *);
676 }
677
678 return 0;
679
680 fail: ural_free_tx_list(sc);
681 return error;
682 }
683
684 Static void
685 ural_free_rx_list(struct ural_softc *sc)
686 {
687 struct ural_rx_data *data;
688 int i;
689
690 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
691 data = &sc->rx_data[i];
692
693 if (data->xfer != NULL) {
694 usbd_free_xfer(data->xfer);
695 data->xfer = NULL;
696 }
697
698 if (data->m != NULL) {
699 m_freem(data->m);
700 data->m = NULL;
701 }
702 }
703 }
704
705 Static int
706 ural_media_change(struct ifnet *ifp)
707 {
708 int error;
709
710 error = ieee80211_media_change(ifp);
711 if (error != ENETRESET)
712 return error;
713
714 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
715 ural_init(ifp);
716
717 return 0;
718 }
719
720 /*
721 * This function is called periodically (every 200ms) during scanning to
722 * switch from one channel to another.
723 */
724 Static void
725 ural_next_scan(void *arg)
726 {
727 struct ural_softc *sc = arg;
728 struct ieee80211com *ic = &sc->sc_ic;
729
730 if (ic->ic_state == IEEE80211_S_SCAN)
731 ieee80211_next_scan(ic);
732 }
733
734 Static void
735 ural_task(void *arg)
736 {
737 struct ural_softc *sc = arg;
738 struct ieee80211com *ic = &sc->sc_ic;
739 enum ieee80211_state ostate;
740 struct ieee80211_node *ni;
741 struct mbuf *m;
742
743 ostate = ic->ic_state;
744
745 switch (sc->sc_state) {
746 case IEEE80211_S_INIT:
747 if (ostate == IEEE80211_S_RUN) {
748 /* abort TSF synchronization */
749 ural_write(sc, RAL_TXRX_CSR19, 0);
750
751 /* force tx led to stop blinking */
752 ural_write(sc, RAL_MAC_CSR20, 0);
753 }
754 break;
755
756 case IEEE80211_S_SCAN:
757 ural_set_chan(sc, ic->ic_curchan);
758 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
759 break;
760
761 case IEEE80211_S_AUTH:
762 ural_set_chan(sc, ic->ic_curchan);
763 break;
764
765 case IEEE80211_S_ASSOC:
766 ural_set_chan(sc, ic->ic_curchan);
767 break;
768
769 case IEEE80211_S_RUN:
770 ural_set_chan(sc, ic->ic_curchan);
771
772 ni = ic->ic_bss;
773
774 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
775 ural_update_slot(ic->ic_ifp);
776 ural_set_txpreamble(sc);
777 ural_set_basicrates(sc);
778 ural_set_bssid(sc, ni->ni_bssid);
779 }
780
781 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
782 ic->ic_opmode == IEEE80211_M_IBSS) {
783 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
784 if (m == NULL) {
785 printf("%s: could not allocate beacon\n",
786 USBDEVNAME(sc->sc_dev));
787 return;
788 }
789
790 if (ural_tx_bcn(sc, m, ni) != 0) {
791 m_freem(m);
792 printf("%s: could not send beacon\n",
793 USBDEVNAME(sc->sc_dev));
794 return;
795 }
796
797 /* beacon is no longer needed */
798 m_freem(m);
799 }
800
801 /* make tx led blink on tx (controlled by ASIC) */
802 ural_write(sc, RAL_MAC_CSR20, 1);
803
804 if (ic->ic_opmode != IEEE80211_M_MONITOR)
805 ural_enable_tsf_sync(sc);
806
807 /* enable automatic rate adaptation in STA mode */
808 if (ic->ic_opmode == IEEE80211_M_STA &&
809 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
810 ural_amrr_start(sc, ni);
811
812 break;
813 }
814
815 sc->sc_newstate(ic, sc->sc_state, -1);
816 }
817
818 Static int
819 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
820 int arg __unused)
821 {
822 struct ural_softc *sc = ic->ic_ifp->if_softc;
823
824 usb_rem_task(sc->sc_udev, &sc->sc_task);
825 callout_stop(&sc->scan_ch);
826 callout_stop(&sc->amrr_ch);
827
828 /* do it in a process context */
829 sc->sc_state = nstate;
830 usb_add_task(sc->sc_udev, &sc->sc_task);
831
832 return 0;
833 }
834
835 /* quickly determine if a given rate is CCK or OFDM */
836 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
837
838 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
839 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
840
841 #define RAL_SIFS 10 /* us */
842
843 #define RAL_RXTX_TURNAROUND 5 /* us */
844
845 /*
846 * This function is only used by the Rx radiotap code.
847 */
848 Static int
849 ural_rxrate(struct ural_rx_desc *desc)
850 {
851 if (le32toh(desc->flags) & RAL_RX_OFDM) {
852 /* reverse function of ural_plcp_signal */
853 switch (desc->rate) {
854 case 0xb: return 12;
855 case 0xf: return 18;
856 case 0xa: return 24;
857 case 0xe: return 36;
858 case 0x9: return 48;
859 case 0xd: return 72;
860 case 0x8: return 96;
861 case 0xc: return 108;
862 }
863 } else {
864 if (desc->rate == 10)
865 return 2;
866 if (desc->rate == 20)
867 return 4;
868 if (desc->rate == 55)
869 return 11;
870 if (desc->rate == 110)
871 return 22;
872 }
873 return 2; /* should not get there */
874 }
875
876 Static void
877 ural_txeof(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
878 usbd_status status)
879 {
880 struct ural_tx_data *data = priv;
881 struct ural_softc *sc = data->sc;
882 struct ifnet *ifp = &sc->sc_if;
883 int s;
884
885 if (status != USBD_NORMAL_COMPLETION) {
886 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
887 return;
888
889 printf("%s: could not transmit buffer: %s\n",
890 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
891
892 if (status == USBD_STALLED)
893 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
894
895 ifp->if_oerrors++;
896 return;
897 }
898
899 s = splnet();
900
901 m_freem(data->m);
902 data->m = NULL;
903 ieee80211_free_node(data->ni);
904 data->ni = NULL;
905
906 sc->tx_queued--;
907 ifp->if_opackets++;
908
909 DPRINTFN(10, ("tx done\n"));
910
911 sc->sc_tx_timer = 0;
912 ifp->if_flags &= ~IFF_OACTIVE;
913 ural_start(ifp);
914
915 splx(s);
916 }
917
918 Static void
919 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
920 {
921 struct ural_rx_data *data = priv;
922 struct ural_softc *sc = data->sc;
923 struct ieee80211com *ic = &sc->sc_ic;
924 struct ifnet *ifp = &sc->sc_if;
925 struct ural_rx_desc *desc;
926 struct ieee80211_frame *wh;
927 struct ieee80211_node *ni;
928 struct mbuf *mnew, *m;
929 int s, len;
930
931 if (status != USBD_NORMAL_COMPLETION) {
932 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
933 return;
934
935 if (status == USBD_STALLED)
936 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
937 goto skip;
938 }
939
940 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
941
942 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
943 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
944 len));
945 ifp->if_ierrors++;
946 goto skip;
947 }
948
949 /* rx descriptor is located at the end */
950 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
951
952 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
953 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
954 /*
955 * This should not happen since we did not request to receive
956 * those frames when we filled RAL_TXRX_CSR2.
957 */
958 DPRINTFN(5, ("PHY or CRC error\n"));
959 ifp->if_ierrors++;
960 goto skip;
961 }
962
963 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
964 if (mnew == NULL) {
965 ifp->if_ierrors++;
966 goto skip;
967 }
968
969 MCLGET(mnew, M_DONTWAIT);
970 if (!(mnew->m_flags & M_EXT)) {
971 ifp->if_ierrors++;
972 m_freem(mnew);
973 goto skip;
974 }
975
976 m = data->m;
977 data->m = mnew;
978 data->buf = mtod(data->m, uint8_t *);
979
980 /* finalize mbuf */
981 m->m_pkthdr.rcvif = ifp;
982 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
983 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
984
985 s = splnet();
986
987 #if NBPFILTER > 0
988 if (sc->sc_drvbpf != NULL) {
989 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
990
991 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
992 tap->wr_rate = ural_rxrate(desc);
993 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
994 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
995 tap->wr_antenna = sc->rx_ant;
996 tap->wr_antsignal = desc->rssi;
997
998 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
999 }
1000 #endif
1001
1002 wh = mtod(m, struct ieee80211_frame *);
1003 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1004
1005 /* send the frame to the 802.11 layer */
1006 ieee80211_input(ic, m, ni, desc->rssi, 0);
1007
1008 /* node is no longer needed */
1009 ieee80211_free_node(ni);
1010
1011 splx(s);
1012
1013 DPRINTFN(15, ("rx done\n"));
1014
1015 skip: /* setup a new transfer */
1016 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1017 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1018 usbd_transfer(xfer);
1019 }
1020
1021 /*
1022 * Return the expected ack rate for a frame transmitted at rate `rate'.
1023 * XXX: this should depend on the destination node basic rate set.
1024 */
1025 Static int
1026 ural_ack_rate(struct ieee80211com *ic, int rate)
1027 {
1028 switch (rate) {
1029 /* CCK rates */
1030 case 2:
1031 return 2;
1032 case 4:
1033 case 11:
1034 case 22:
1035 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1036
1037 /* OFDM rates */
1038 case 12:
1039 case 18:
1040 return 12;
1041 case 24:
1042 case 36:
1043 return 24;
1044 case 48:
1045 case 72:
1046 case 96:
1047 case 108:
1048 return 48;
1049 }
1050
1051 /* default to 1Mbps */
1052 return 2;
1053 }
1054
1055 /*
1056 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1057 * The function automatically determines the operating mode depending on the
1058 * given rate. `flags' indicates whether short preamble is in use or not.
1059 */
1060 Static uint16_t
1061 ural_txtime(int len, int rate, uint32_t flags)
1062 {
1063 uint16_t txtime;
1064
1065 if (RAL_RATE_IS_OFDM(rate)) {
1066 /* IEEE Std 802.11a-1999, pp. 37 */
1067 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1068 txtime = 16 + 4 + 4 * txtime + 6;
1069 } else {
1070 /* IEEE Std 802.11b-1999, pp. 28 */
1071 txtime = (16 * len + rate - 1) / rate;
1072 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1073 txtime += 72 + 24;
1074 else
1075 txtime += 144 + 48;
1076 }
1077 return txtime;
1078 }
1079
1080 Static uint8_t
1081 ural_plcp_signal(int rate)
1082 {
1083 switch (rate) {
1084 /* CCK rates (returned values are device-dependent) */
1085 case 2: return 0x0;
1086 case 4: return 0x1;
1087 case 11: return 0x2;
1088 case 22: return 0x3;
1089
1090 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1091 case 12: return 0xb;
1092 case 18: return 0xf;
1093 case 24: return 0xa;
1094 case 36: return 0xe;
1095 case 48: return 0x9;
1096 case 72: return 0xd;
1097 case 96: return 0x8;
1098 case 108: return 0xc;
1099
1100 /* unsupported rates (should not get there) */
1101 default: return 0xff;
1102 }
1103 }
1104
1105 Static void
1106 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1107 uint32_t flags, int len, int rate)
1108 {
1109 struct ieee80211com *ic = &sc->sc_ic;
1110 uint16_t plcp_length;
1111 int remainder;
1112
1113 desc->flags = htole32(flags);
1114 desc->flags |= htole32(RAL_TX_NEWSEQ);
1115 desc->flags |= htole32(len << 16);
1116
1117 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1118 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1119
1120 /* setup PLCP fields */
1121 desc->plcp_signal = ural_plcp_signal(rate);
1122 desc->plcp_service = 4;
1123
1124 len += IEEE80211_CRC_LEN;
1125 if (RAL_RATE_IS_OFDM(rate)) {
1126 desc->flags |= htole32(RAL_TX_OFDM);
1127
1128 plcp_length = len & 0xfff;
1129 desc->plcp_length_hi = plcp_length >> 6;
1130 desc->plcp_length_lo = plcp_length & 0x3f;
1131 } else {
1132 plcp_length = (16 * len + rate - 1) / rate;
1133 if (rate == 22) {
1134 remainder = (16 * len) % 22;
1135 if (remainder != 0 && remainder < 7)
1136 desc->plcp_service |= RAL_PLCP_LENGEXT;
1137 }
1138 desc->plcp_length_hi = plcp_length >> 8;
1139 desc->plcp_length_lo = plcp_length & 0xff;
1140
1141 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1142 desc->plcp_signal |= 0x08;
1143 }
1144
1145 desc->iv = 0;
1146 desc->eiv = 0;
1147 }
1148
1149 #define RAL_TX_TIMEOUT 5000
1150
1151 Static int
1152 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1153 {
1154 struct ural_tx_desc *desc;
1155 usbd_xfer_handle xfer;
1156 uint8_t cmd = 0;
1157 usbd_status error;
1158 uint8_t *buf;
1159 int xferlen, rate;
1160
1161 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1162
1163 xfer = usbd_alloc_xfer(sc->sc_udev);
1164 if (xfer == NULL)
1165 return ENOMEM;
1166
1167 /* xfer length needs to be a multiple of two! */
1168 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1169
1170 buf = usbd_alloc_buffer(xfer, xferlen);
1171 if (buf == NULL) {
1172 usbd_free_xfer(xfer);
1173 return ENOMEM;
1174 }
1175
1176 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1177 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1178
1179 error = usbd_sync_transfer(xfer);
1180 if (error != 0) {
1181 usbd_free_xfer(xfer);
1182 return error;
1183 }
1184
1185 desc = (struct ural_tx_desc *)buf;
1186
1187 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1188 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1189 m0->m_pkthdr.len, rate);
1190
1191 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1192 m0->m_pkthdr.len, rate, xferlen));
1193
1194 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1195 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1196
1197 error = usbd_sync_transfer(xfer);
1198 usbd_free_xfer(xfer);
1199
1200 return error;
1201 }
1202
1203 Static int
1204 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1205 {
1206 struct ieee80211com *ic = &sc->sc_ic;
1207 struct ural_tx_desc *desc;
1208 struct ural_tx_data *data;
1209 struct ieee80211_frame *wh;
1210 uint32_t flags = 0;
1211 uint16_t dur;
1212 usbd_status error;
1213 int xferlen, rate;
1214
1215 data = &sc->tx_data[0];
1216 desc = (struct ural_tx_desc *)data->buf;
1217
1218 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1219
1220 data->m = m0;
1221 data->ni = ni;
1222
1223 wh = mtod(m0, struct ieee80211_frame *);
1224
1225 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1226 flags |= RAL_TX_ACK;
1227
1228 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1229 *(uint16_t *)wh->i_dur = htole16(dur);
1230
1231 /* tell hardware to add timestamp for probe responses */
1232 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1233 IEEE80211_FC0_TYPE_MGT &&
1234 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1235 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1236 flags |= RAL_TX_TIMESTAMP;
1237 }
1238
1239 #if NBPFILTER > 0
1240 if (sc->sc_drvbpf != NULL) {
1241 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1242
1243 tap->wt_flags = 0;
1244 tap->wt_rate = rate;
1245 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1246 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1247 tap->wt_antenna = sc->tx_ant;
1248
1249 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1250 }
1251 #endif
1252
1253 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1254 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1255
1256 /* align end on a 2-bytes boundary */
1257 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1258
1259 /*
1260 * No space left in the last URB to store the extra 2 bytes, force
1261 * sending of another URB.
1262 */
1263 if ((xferlen % 64) == 0)
1264 xferlen += 2;
1265
1266 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1267 m0->m_pkthdr.len, rate, xferlen));
1268
1269 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1270 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1271 ural_txeof);
1272
1273 error = usbd_transfer(data->xfer);
1274 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1275 return error;
1276
1277 sc->tx_queued++;
1278
1279 return 0;
1280 }
1281
1282 Static int
1283 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1284 {
1285 struct ieee80211com *ic = &sc->sc_ic;
1286 struct ural_tx_desc *desc;
1287 struct ural_tx_data *data;
1288 struct ieee80211_frame *wh;
1289 struct ieee80211_key *k;
1290 uint32_t flags = 0;
1291 uint16_t dur;
1292 usbd_status error;
1293 int xferlen, rate;
1294
1295 wh = mtod(m0, struct ieee80211_frame *);
1296
1297 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1298 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1299 else
1300 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1301
1302 rate &= IEEE80211_RATE_VAL;
1303
1304 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1305 k = ieee80211_crypto_encap(ic, ni, m0);
1306 if (k == NULL) {
1307 m_freem(m0);
1308 return ENOBUFS;
1309 }
1310
1311 /* packet header may have moved, reset our local pointer */
1312 wh = mtod(m0, struct ieee80211_frame *);
1313 }
1314
1315 data = &sc->tx_data[0];
1316 desc = (struct ural_tx_desc *)data->buf;
1317
1318 data->m = m0;
1319 data->ni = ni;
1320
1321 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1322 flags |= RAL_TX_ACK;
1323 flags |= RAL_TX_RETRY(7);
1324
1325 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1326 ic->ic_flags) + RAL_SIFS;
1327 *(uint16_t *)wh->i_dur = htole16(dur);
1328 }
1329
1330 #if NBPFILTER > 0
1331 if (sc->sc_drvbpf != NULL) {
1332 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1333
1334 tap->wt_flags = 0;
1335 tap->wt_rate = rate;
1336 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1337 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1338 tap->wt_antenna = sc->tx_ant;
1339
1340 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1341 }
1342 #endif
1343
1344 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1345 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1346
1347 /* align end on a 2-bytes boundary */
1348 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1349
1350 /*
1351 * No space left in the last URB to store the extra 2 bytes, force
1352 * sending of another URB.
1353 */
1354 if ((xferlen % 64) == 0)
1355 xferlen += 2;
1356
1357 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1358 m0->m_pkthdr.len, rate, xferlen));
1359
1360 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1361 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1362 ural_txeof);
1363
1364 error = usbd_transfer(data->xfer);
1365 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1366 return error;
1367
1368 sc->tx_queued++;
1369
1370 return 0;
1371 }
1372
1373 Static void
1374 ural_start(struct ifnet *ifp)
1375 {
1376 struct ural_softc *sc = ifp->if_softc;
1377 struct ieee80211com *ic = &sc->sc_ic;
1378 struct mbuf *m0;
1379 struct ether_header *eh;
1380 struct ieee80211_node *ni;
1381
1382 for (;;) {
1383 IF_POLL(&ic->ic_mgtq, m0);
1384 if (m0 != NULL) {
1385 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1386 ifp->if_flags |= IFF_OACTIVE;
1387 break;
1388 }
1389 IF_DEQUEUE(&ic->ic_mgtq, m0);
1390
1391 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1392 m0->m_pkthdr.rcvif = NULL;
1393 #if NBPFILTER > 0
1394 if (ic->ic_rawbpf != NULL)
1395 bpf_mtap(ic->ic_rawbpf, m0);
1396 #endif
1397 if (ural_tx_mgt(sc, m0, ni) != 0)
1398 break;
1399
1400 } else {
1401 if (ic->ic_state != IEEE80211_S_RUN)
1402 break;
1403 IFQ_DEQUEUE(&ifp->if_snd, m0);
1404 if (m0 == NULL)
1405 break;
1406 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1407 IF_PREPEND(&ifp->if_snd, m0);
1408 ifp->if_flags |= IFF_OACTIVE;
1409 break;
1410 }
1411
1412 if (m0->m_len < sizeof (struct ether_header) &&
1413 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1414 continue;
1415
1416 eh = mtod(m0, struct ether_header *);
1417 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1418 if (ni == NULL) {
1419 m_freem(m0);
1420 continue;
1421 }
1422 #if NBPFILTER > 0
1423 if (ifp->if_bpf != NULL)
1424 bpf_mtap(ifp->if_bpf, m0);
1425 #endif
1426 m0 = ieee80211_encap(ic, m0, ni);
1427 if (m0 == NULL) {
1428 ieee80211_free_node(ni);
1429 continue;
1430 }
1431 #if NBPFILTER > 0
1432 if (ic->ic_rawbpf != NULL)
1433 bpf_mtap(ic->ic_rawbpf, m0);
1434 #endif
1435 if (ural_tx_data(sc, m0, ni) != 0) {
1436 ieee80211_free_node(ni);
1437 ifp->if_oerrors++;
1438 break;
1439 }
1440 }
1441
1442 sc->sc_tx_timer = 5;
1443 ifp->if_timer = 1;
1444 }
1445 }
1446
1447 Static void
1448 ural_watchdog(struct ifnet *ifp)
1449 {
1450 struct ural_softc *sc = ifp->if_softc;
1451 struct ieee80211com *ic = &sc->sc_ic;
1452
1453 ifp->if_timer = 0;
1454
1455 if (sc->sc_tx_timer > 0) {
1456 if (--sc->sc_tx_timer == 0) {
1457 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1458 /*ural_init(sc); XXX needs a process context! */
1459 ifp->if_oerrors++;
1460 return;
1461 }
1462 ifp->if_timer = 1;
1463 }
1464
1465 ieee80211_watchdog(ic);
1466 }
1467
1468 /*
1469 * This function allows for fast channel switching in monitor mode (used by
1470 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1471 * generate a new beacon frame.
1472 */
1473 Static int
1474 ural_reset(struct ifnet *ifp)
1475 {
1476 struct ural_softc *sc = ifp->if_softc;
1477 struct ieee80211com *ic = &sc->sc_ic;
1478
1479 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1480 return ENETRESET;
1481
1482 ural_set_chan(sc, ic->ic_curchan);
1483
1484 return 0;
1485 }
1486
1487 Static int
1488 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1489 {
1490 struct ural_softc *sc = ifp->if_softc;
1491 struct ieee80211com *ic = &sc->sc_ic;
1492 int s, error = 0;
1493
1494 s = splnet();
1495
1496 switch (cmd) {
1497 case SIOCSIFFLAGS:
1498 if (ifp->if_flags & IFF_UP) {
1499 if (ifp->if_flags & IFF_RUNNING)
1500 ural_update_promisc(sc);
1501 else
1502 ural_init(ifp);
1503 } else {
1504 if (ifp->if_flags & IFF_RUNNING)
1505 ural_stop(ifp, 1);
1506 }
1507 break;
1508
1509 default:
1510 error = ieee80211_ioctl(ic, cmd, data);
1511 }
1512
1513 if (error == ENETRESET) {
1514 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1515 (IFF_UP | IFF_RUNNING))
1516 ural_init(ifp);
1517 error = 0;
1518 }
1519
1520 splx(s);
1521
1522 return error;
1523 }
1524
1525 Static void
1526 ural_set_testmode(struct ural_softc *sc)
1527 {
1528 usb_device_request_t req;
1529 usbd_status error;
1530
1531 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1532 req.bRequest = RAL_VENDOR_REQUEST;
1533 USETW(req.wValue, 4);
1534 USETW(req.wIndex, 1);
1535 USETW(req.wLength, 0);
1536
1537 error = usbd_do_request(sc->sc_udev, &req, NULL);
1538 if (error != 0) {
1539 printf("%s: could not set test mode: %s\n",
1540 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1541 }
1542 }
1543
1544 Static void
1545 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1546 {
1547 usb_device_request_t req;
1548 usbd_status error;
1549
1550 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1551 req.bRequest = RAL_READ_EEPROM;
1552 USETW(req.wValue, 0);
1553 USETW(req.wIndex, addr);
1554 USETW(req.wLength, len);
1555
1556 error = usbd_do_request(sc->sc_udev, &req, buf);
1557 if (error != 0) {
1558 printf("%s: could not read EEPROM: %s\n",
1559 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1560 }
1561 }
1562
1563 Static uint16_t
1564 ural_read(struct ural_softc *sc, uint16_t reg)
1565 {
1566 usb_device_request_t req;
1567 usbd_status error;
1568 uint16_t val;
1569
1570 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1571 req.bRequest = RAL_READ_MAC;
1572 USETW(req.wValue, 0);
1573 USETW(req.wIndex, reg);
1574 USETW(req.wLength, sizeof (uint16_t));
1575
1576 error = usbd_do_request(sc->sc_udev, &req, &val);
1577 if (error != 0) {
1578 printf("%s: could not read MAC register: %s\n",
1579 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1580 return 0;
1581 }
1582
1583 return le16toh(val);
1584 }
1585
1586 Static void
1587 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1588 {
1589 usb_device_request_t req;
1590 usbd_status error;
1591
1592 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1593 req.bRequest = RAL_READ_MULTI_MAC;
1594 USETW(req.wValue, 0);
1595 USETW(req.wIndex, reg);
1596 USETW(req.wLength, len);
1597
1598 error = usbd_do_request(sc->sc_udev, &req, buf);
1599 if (error != 0) {
1600 printf("%s: could not read MAC register: %s\n",
1601 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1602 }
1603 }
1604
1605 Static void
1606 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1607 {
1608 usb_device_request_t req;
1609 usbd_status error;
1610
1611 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1612 req.bRequest = RAL_WRITE_MAC;
1613 USETW(req.wValue, val);
1614 USETW(req.wIndex, reg);
1615 USETW(req.wLength, 0);
1616
1617 error = usbd_do_request(sc->sc_udev, &req, NULL);
1618 if (error != 0) {
1619 printf("%s: could not write MAC register: %s\n",
1620 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1621 }
1622 }
1623
1624 Static void
1625 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1626 {
1627 usb_device_request_t req;
1628 usbd_status error;
1629
1630 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1631 req.bRequest = RAL_WRITE_MULTI_MAC;
1632 USETW(req.wValue, 0);
1633 USETW(req.wIndex, reg);
1634 USETW(req.wLength, len);
1635
1636 error = usbd_do_request(sc->sc_udev, &req, buf);
1637 if (error != 0) {
1638 printf("%s: could not write MAC register: %s\n",
1639 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1640 }
1641 }
1642
1643 Static void
1644 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1645 {
1646 uint16_t tmp;
1647 int ntries;
1648
1649 for (ntries = 0; ntries < 5; ntries++) {
1650 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1651 break;
1652 }
1653 if (ntries == 5) {
1654 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1655 return;
1656 }
1657
1658 tmp = reg << 8 | val;
1659 ural_write(sc, RAL_PHY_CSR7, tmp);
1660 }
1661
1662 Static uint8_t
1663 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1664 {
1665 uint16_t val;
1666 int ntries;
1667
1668 val = RAL_BBP_WRITE | reg << 8;
1669 ural_write(sc, RAL_PHY_CSR7, val);
1670
1671 for (ntries = 0; ntries < 5; ntries++) {
1672 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1673 break;
1674 }
1675 if (ntries == 5) {
1676 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1677 return 0;
1678 }
1679
1680 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1681 }
1682
1683 Static void
1684 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1685 {
1686 uint32_t tmp;
1687 int ntries;
1688
1689 for (ntries = 0; ntries < 5; ntries++) {
1690 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1691 break;
1692 }
1693 if (ntries == 5) {
1694 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1695 return;
1696 }
1697
1698 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1699 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1700 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1701
1702 /* remember last written value in sc */
1703 sc->rf_regs[reg] = val;
1704
1705 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1706 }
1707
1708 Static void
1709 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1710 {
1711 struct ieee80211com *ic = &sc->sc_ic;
1712 uint8_t power, tmp;
1713 u_int i, chan;
1714
1715 chan = ieee80211_chan2ieee(ic, c);
1716 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1717 return;
1718
1719 if (IEEE80211_IS_CHAN_2GHZ(c))
1720 power = min(sc->txpow[chan - 1], 31);
1721 else
1722 power = 31;
1723
1724 /* adjust txpower using ifconfig settings */
1725 power -= (100 - ic->ic_txpowlimit) / 8;
1726
1727 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1728
1729 switch (sc->rf_rev) {
1730 case RAL_RF_2522:
1731 ural_rf_write(sc, RAL_RF1, 0x00814);
1732 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1733 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1734 break;
1735
1736 case RAL_RF_2523:
1737 ural_rf_write(sc, RAL_RF1, 0x08804);
1738 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1739 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1740 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1741 break;
1742
1743 case RAL_RF_2524:
1744 ural_rf_write(sc, RAL_RF1, 0x0c808);
1745 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1747 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1748 break;
1749
1750 case RAL_RF_2525:
1751 ural_rf_write(sc, RAL_RF1, 0x08808);
1752 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1753 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1755
1756 ural_rf_write(sc, RAL_RF1, 0x08808);
1757 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1759 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1760 break;
1761
1762 case RAL_RF_2525E:
1763 ural_rf_write(sc, RAL_RF1, 0x08808);
1764 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1765 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1766 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1767 break;
1768
1769 case RAL_RF_2526:
1770 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1771 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1772 ural_rf_write(sc, RAL_RF1, 0x08804);
1773
1774 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1775 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1776 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1777 break;
1778
1779 /* dual-band RF */
1780 case RAL_RF_5222:
1781 for (i = 0; ural_rf5222[i].chan != chan; i++);
1782
1783 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1784 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1785 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1786 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1787 break;
1788 }
1789
1790 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1791 ic->ic_state != IEEE80211_S_SCAN) {
1792 /* set Japan filter bit for channel 14 */
1793 tmp = ural_bbp_read(sc, 70);
1794
1795 tmp &= ~RAL_JAPAN_FILTER;
1796 if (chan == 14)
1797 tmp |= RAL_JAPAN_FILTER;
1798
1799 ural_bbp_write(sc, 70, tmp);
1800
1801 /* clear CRC errors */
1802 ural_read(sc, RAL_STA_CSR0);
1803
1804 DELAY(10000);
1805 ural_disable_rf_tune(sc);
1806 }
1807 }
1808
1809 /*
1810 * Disable RF auto-tuning.
1811 */
1812 Static void
1813 ural_disable_rf_tune(struct ural_softc *sc)
1814 {
1815 uint32_t tmp;
1816
1817 if (sc->rf_rev != RAL_RF_2523) {
1818 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1819 ural_rf_write(sc, RAL_RF1, tmp);
1820 }
1821
1822 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1823 ural_rf_write(sc, RAL_RF3, tmp);
1824
1825 DPRINTFN(2, ("disabling RF autotune\n"));
1826 }
1827
1828 /*
1829 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1830 * synchronization.
1831 */
1832 Static void
1833 ural_enable_tsf_sync(struct ural_softc *sc)
1834 {
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 uint16_t logcwmin, preload, tmp;
1837
1838 /* first, disable TSF synchronization */
1839 ural_write(sc, RAL_TXRX_CSR19, 0);
1840
1841 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1842 ural_write(sc, RAL_TXRX_CSR18, tmp);
1843
1844 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1845 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1846 tmp = logcwmin << 12 | preload;
1847 ural_write(sc, RAL_TXRX_CSR20, tmp);
1848
1849 /* finally, enable TSF synchronization */
1850 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1851 if (ic->ic_opmode == IEEE80211_M_STA)
1852 tmp |= RAL_ENABLE_TSF_SYNC(1);
1853 else
1854 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1855 ural_write(sc, RAL_TXRX_CSR19, tmp);
1856
1857 DPRINTF(("enabling TSF synchronization\n"));
1858 }
1859
1860 Static void
1861 ural_update_slot(struct ifnet *ifp)
1862 {
1863 struct ural_softc *sc = ifp->if_softc;
1864 struct ieee80211com *ic = &sc->sc_ic;
1865 uint16_t slottime, sifs, eifs;
1866
1867 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1868
1869 /*
1870 * These settings may sound a bit inconsistent but this is what the
1871 * reference driver does.
1872 */
1873 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1874 sifs = 16 - RAL_RXTX_TURNAROUND;
1875 eifs = 364;
1876 } else {
1877 sifs = 10 - RAL_RXTX_TURNAROUND;
1878 eifs = 64;
1879 }
1880
1881 ural_write(sc, RAL_MAC_CSR10, slottime);
1882 ural_write(sc, RAL_MAC_CSR11, sifs);
1883 ural_write(sc, RAL_MAC_CSR12, eifs);
1884 }
1885
1886 Static void
1887 ural_set_txpreamble(struct ural_softc *sc)
1888 {
1889 uint16_t tmp;
1890
1891 tmp = ural_read(sc, RAL_TXRX_CSR10);
1892
1893 tmp &= ~RAL_SHORT_PREAMBLE;
1894 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1895 tmp |= RAL_SHORT_PREAMBLE;
1896
1897 ural_write(sc, RAL_TXRX_CSR10, tmp);
1898 }
1899
1900 Static void
1901 ural_set_basicrates(struct ural_softc *sc)
1902 {
1903 struct ieee80211com *ic = &sc->sc_ic;
1904
1905 /* update basic rate set */
1906 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1907 /* 11b basic rates: 1, 2Mbps */
1908 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1909 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1910 /* 11a basic rates: 6, 12, 24Mbps */
1911 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1912 } else {
1913 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1914 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1915 }
1916 }
1917
1918 Static void
1919 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1920 {
1921 uint16_t tmp;
1922
1923 tmp = bssid[0] | bssid[1] << 8;
1924 ural_write(sc, RAL_MAC_CSR5, tmp);
1925
1926 tmp = bssid[2] | bssid[3] << 8;
1927 ural_write(sc, RAL_MAC_CSR6, tmp);
1928
1929 tmp = bssid[4] | bssid[5] << 8;
1930 ural_write(sc, RAL_MAC_CSR7, tmp);
1931
1932 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1933 }
1934
1935 Static void
1936 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1937 {
1938 uint16_t tmp;
1939
1940 tmp = addr[0] | addr[1] << 8;
1941 ural_write(sc, RAL_MAC_CSR2, tmp);
1942
1943 tmp = addr[2] | addr[3] << 8;
1944 ural_write(sc, RAL_MAC_CSR3, tmp);
1945
1946 tmp = addr[4] | addr[5] << 8;
1947 ural_write(sc, RAL_MAC_CSR4, tmp);
1948
1949 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1950 }
1951
1952 Static void
1953 ural_update_promisc(struct ural_softc *sc)
1954 {
1955 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1956 uint32_t tmp;
1957
1958 tmp = ural_read(sc, RAL_TXRX_CSR2);
1959
1960 tmp &= ~RAL_DROP_NOT_TO_ME;
1961 if (!(ifp->if_flags & IFF_PROMISC))
1962 tmp |= RAL_DROP_NOT_TO_ME;
1963
1964 ural_write(sc, RAL_TXRX_CSR2, tmp);
1965
1966 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1967 "entering" : "leaving"));
1968 }
1969
1970 Static const char *
1971 ural_get_rf(int rev)
1972 {
1973 switch (rev) {
1974 case RAL_RF_2522: return "RT2522";
1975 case RAL_RF_2523: return "RT2523";
1976 case RAL_RF_2524: return "RT2524";
1977 case RAL_RF_2525: return "RT2525";
1978 case RAL_RF_2525E: return "RT2525e";
1979 case RAL_RF_2526: return "RT2526";
1980 case RAL_RF_5222: return "RT5222";
1981 default: return "unknown";
1982 }
1983 }
1984
1985 Static void
1986 ural_read_eeprom(struct ural_softc *sc)
1987 {
1988 struct ieee80211com *ic = &sc->sc_ic;
1989 uint16_t val;
1990
1991 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1992 val = le16toh(val);
1993 sc->rf_rev = (val >> 11) & 0x7;
1994 sc->hw_radio = (val >> 10) & 0x1;
1995 sc->led_mode = (val >> 6) & 0x7;
1996 sc->rx_ant = (val >> 4) & 0x3;
1997 sc->tx_ant = (val >> 2) & 0x3;
1998 sc->nb_ant = val & 0x3;
1999
2000 /* read MAC address */
2001 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2002
2003 /* read default values for BBP registers */
2004 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2005
2006 /* read Tx power for all b/g channels */
2007 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2008 }
2009
2010 Static int
2011 ural_bbp_init(struct ural_softc *sc)
2012 {
2013 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2014 int i, ntries;
2015
2016 /* wait for BBP to be ready */
2017 for (ntries = 0; ntries < 100; ntries++) {
2018 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2019 break;
2020 DELAY(1000);
2021 }
2022 if (ntries == 100) {
2023 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2024 return EIO;
2025 }
2026
2027 /* initialize BBP registers to default values */
2028 for (i = 0; i < N(ural_def_bbp); i++)
2029 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2030
2031 #if 0
2032 /* initialize BBP registers to values stored in EEPROM */
2033 for (i = 0; i < 16; i++) {
2034 if (sc->bbp_prom[i].reg == 0xff)
2035 continue;
2036 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2037 }
2038 #endif
2039
2040 return 0;
2041 #undef N
2042 }
2043
2044 Static void
2045 ural_set_txantenna(struct ural_softc *sc, int antenna)
2046 {
2047 uint16_t tmp;
2048 uint8_t tx;
2049
2050 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2051 if (antenna == 1)
2052 tx |= RAL_BBP_ANTA;
2053 else if (antenna == 2)
2054 tx |= RAL_BBP_ANTB;
2055 else
2056 tx |= RAL_BBP_DIVERSITY;
2057
2058 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2059 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2060 sc->rf_rev == RAL_RF_5222)
2061 tx |= RAL_BBP_FLIPIQ;
2062
2063 ural_bbp_write(sc, RAL_BBP_TX, tx);
2064
2065 /* update values in PHY_CSR5 and PHY_CSR6 */
2066 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2067 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2068
2069 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2070 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2071 }
2072
2073 Static void
2074 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2075 {
2076 uint8_t rx;
2077
2078 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2079 if (antenna == 1)
2080 rx |= RAL_BBP_ANTA;
2081 else if (antenna == 2)
2082 rx |= RAL_BBP_ANTB;
2083 else
2084 rx |= RAL_BBP_DIVERSITY;
2085
2086 /* need to force no I/Q flip for RF 2525e and 2526 */
2087 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2088 rx &= ~RAL_BBP_FLIPIQ;
2089
2090 ural_bbp_write(sc, RAL_BBP_RX, rx);
2091 }
2092
2093 Static int
2094 ural_init(struct ifnet *ifp)
2095 {
2096 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2097 struct ural_softc *sc = ifp->if_softc;
2098 struct ieee80211com *ic = &sc->sc_ic;
2099 struct ieee80211_key *wk;
2100 struct ural_rx_data *data;
2101 uint16_t tmp;
2102 usbd_status error;
2103 int i, ntries;
2104
2105 ural_set_testmode(sc);
2106 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2107
2108 ural_stop(ifp, 0);
2109
2110 /* initialize MAC registers to default values */
2111 for (i = 0; i < N(ural_def_mac); i++)
2112 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2113
2114 /* wait for BBP and RF to wake up (this can take a long time!) */
2115 for (ntries = 0; ntries < 100; ntries++) {
2116 tmp = ural_read(sc, RAL_MAC_CSR17);
2117 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2118 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2119 break;
2120 DELAY(1000);
2121 }
2122 if (ntries == 100) {
2123 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2124 USBDEVNAME(sc->sc_dev));
2125 error = EIO;
2126 goto fail;
2127 }
2128
2129 /* we're ready! */
2130 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2131
2132 /* set basic rate set (will be updated later) */
2133 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2134
2135 error = ural_bbp_init(sc);
2136 if (error != 0)
2137 goto fail;
2138
2139 /* set default BSS channel */
2140 ural_set_chan(sc, ic->ic_curchan);
2141
2142 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2143 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2144
2145 ural_set_txantenna(sc, sc->tx_ant);
2146 ural_set_rxantenna(sc, sc->rx_ant);
2147
2148 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2149 ural_set_macaddr(sc, ic->ic_myaddr);
2150
2151 /*
2152 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2153 */
2154 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2155 wk = &ic->ic_crypto.cs_nw_keys[i];
2156 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2157 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2158 }
2159
2160 /*
2161 * Allocate xfer for AMRR statistics requests.
2162 */
2163 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2164 if (sc->amrr_xfer == NULL) {
2165 printf("%s: could not allocate AMRR xfer\n",
2166 USBDEVNAME(sc->sc_dev));
2167 goto fail;
2168 }
2169
2170 /*
2171 * Open Tx and Rx USB bulk pipes.
2172 */
2173 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2174 &sc->sc_tx_pipeh);
2175 if (error != 0) {
2176 printf("%s: could not open Tx pipe: %s\n",
2177 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2178 goto fail;
2179 }
2180
2181 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2182 &sc->sc_rx_pipeh);
2183 if (error != 0) {
2184 printf("%s: could not open Rx pipe: %s\n",
2185 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2186 goto fail;
2187 }
2188
2189 /*
2190 * Allocate Tx and Rx xfer queues.
2191 */
2192 error = ural_alloc_tx_list(sc);
2193 if (error != 0) {
2194 printf("%s: could not allocate Tx list\n",
2195 USBDEVNAME(sc->sc_dev));
2196 goto fail;
2197 }
2198
2199 error = ural_alloc_rx_list(sc);
2200 if (error != 0) {
2201 printf("%s: could not allocate Rx list\n",
2202 USBDEVNAME(sc->sc_dev));
2203 goto fail;
2204 }
2205
2206 /*
2207 * Start up the receive pipe.
2208 */
2209 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2210 data = &sc->rx_data[i];
2211
2212 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2213 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2214 usbd_transfer(data->xfer);
2215 }
2216
2217 /* kick Rx */
2218 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2219 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2220 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2221 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2222 tmp |= RAL_DROP_TODS;
2223 if (!(ifp->if_flags & IFF_PROMISC))
2224 tmp |= RAL_DROP_NOT_TO_ME;
2225 }
2226 ural_write(sc, RAL_TXRX_CSR2, tmp);
2227
2228 ifp->if_flags &= ~IFF_OACTIVE;
2229 ifp->if_flags |= IFF_RUNNING;
2230
2231 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2232 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2233 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2234 } else
2235 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2236
2237 return 0;
2238
2239 fail: ural_stop(ifp, 1);
2240 return error;
2241 #undef N
2242 }
2243
2244 Static void
2245 ural_stop(struct ifnet *ifp, int disable __unused)
2246 {
2247 struct ural_softc *sc = ifp->if_softc;
2248 struct ieee80211com *ic = &sc->sc_ic;
2249
2250 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2251
2252 sc->sc_tx_timer = 0;
2253 ifp->if_timer = 0;
2254 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2255
2256 /* disable Rx */
2257 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2258
2259 /* reset ASIC and BBP (but won't reset MAC registers!) */
2260 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2261 ural_write(sc, RAL_MAC_CSR1, 0);
2262
2263 if (sc->amrr_xfer != NULL) {
2264 usbd_free_xfer(sc->amrr_xfer);
2265 sc->amrr_xfer = NULL;
2266 }
2267
2268 if (sc->sc_rx_pipeh != NULL) {
2269 usbd_abort_pipe(sc->sc_rx_pipeh);
2270 usbd_close_pipe(sc->sc_rx_pipeh);
2271 sc->sc_rx_pipeh = NULL;
2272 }
2273
2274 if (sc->sc_tx_pipeh != NULL) {
2275 usbd_abort_pipe(sc->sc_tx_pipeh);
2276 usbd_close_pipe(sc->sc_tx_pipeh);
2277 sc->sc_tx_pipeh = NULL;
2278 }
2279
2280 ural_free_rx_list(sc);
2281 ural_free_tx_list(sc);
2282 }
2283
2284 int
2285 ural_activate(device_ptr_t self, enum devact act)
2286 {
2287 struct ural_softc *sc = (struct ural_softc *)self;
2288
2289 switch (act) {
2290 case DVACT_ACTIVATE:
2291 return EOPNOTSUPP;
2292 break;
2293
2294 case DVACT_DEACTIVATE:
2295 if_deactivate(&sc->sc_if);
2296 break;
2297 }
2298
2299 return 0;
2300 }
2301
2302 #define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1
2303 #define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10
2304
2305 Static void
2306 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2307 {
2308 struct ural_amrr *amrr = &sc->amrr;
2309 int i;
2310
2311 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2312 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2313
2314 amrr->success = 0;
2315 amrr->recovery = 0;
2316 amrr->txcnt = amrr->retrycnt = 0;
2317 amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2318
2319 /* set rate to some reasonable initial value */
2320 for (i = ni->ni_rates.rs_nrates - 1;
2321 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2322 i--);
2323
2324 ni->ni_txrate = i;
2325
2326 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2327 }
2328
2329 Static void
2330 ural_amrr_timeout(void *arg)
2331 {
2332 struct ural_softc *sc = (struct ural_softc *)arg;
2333 usb_device_request_t req;
2334 int s;
2335
2336 s = splusb();
2337
2338 /*
2339 * Asynchronously read statistic registers (cleared by read).
2340 */
2341 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2342 req.bRequest = RAL_READ_MULTI_MAC;
2343 USETW(req.wValue, 0);
2344 USETW(req.wIndex, RAL_STA_CSR0);
2345 USETW(req.wLength, sizeof sc->sta);
2346
2347 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2348 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2349 ural_amrr_update);
2350 (void)usbd_transfer(sc->amrr_xfer);
2351
2352 splx(s);
2353 }
2354
2355 Static void
2356 ural_amrr_update(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
2357 usbd_status status)
2358 {
2359 struct ural_softc *sc = (struct ural_softc *)priv;
2360 struct ural_amrr *amrr = &sc->amrr;
2361 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2362
2363 if (status != USBD_NORMAL_COMPLETION) {
2364 printf("%s: could not retrieve Tx statistics - "
2365 "cancelling automatic rate control\n",
2366 USBDEVNAME(sc->sc_dev));
2367 return;
2368 }
2369
2370 /* count TX retry-fail as Tx errors */
2371 ifp->if_oerrors += sc->sta[9];
2372
2373 amrr->retrycnt =
2374 sc->sta[7] + /* TX one-retry ok count */
2375 sc->sta[8] + /* TX more-retry ok count */
2376 sc->sta[9]; /* TX retry-fail count */
2377
2378 amrr->txcnt =
2379 amrr->retrycnt +
2380 sc->sta[6]; /* TX no-retry ok count */
2381
2382 ural_ratectl(amrr, sc->sc_ic.ic_bss);
2383
2384 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2385 }
2386
2387 /*-
2388 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2389 * "IEEE 802.11 Rate Adaptation: A Practical Approach"
2390 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2391 * INRIA Sophia - Projet Planete
2392 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2393 *
2394 * This algorithm is particularly well suited for ural since it does not
2395 * require per-frame retry statistics. Note however that since h/w does
2396 * not provide per-frame stats, we can't do per-node rate adaptation and
2397 * thus automatic rate adaptation is only enabled in STA operating mode.
2398 */
2399 #define is_success(amrr) \
2400 ((amrr)->retrycnt < (amrr)->txcnt / 10)
2401 #define is_failure(amrr) \
2402 ((amrr)->retrycnt > (amrr)->txcnt / 3)
2403 #define is_enough(amrr) \
2404 ((amrr)->txcnt > 10)
2405 #define is_min_rate(ni) \
2406 ((ni)->ni_txrate == 0)
2407 #define is_max_rate(ni) \
2408 ((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2409 #define increase_rate(ni) \
2410 ((ni)->ni_txrate++)
2411 #define decrease_rate(ni) \
2412 ((ni)->ni_txrate--)
2413 #define reset_cnt(amrr) \
2414 do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2415 Static void
2416 ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
2417 {
2418 int need_change = 0;
2419
2420 if (is_success(amrr) && is_enough(amrr)) {
2421 amrr->success++;
2422 if (amrr->success >= amrr->success_threshold &&
2423 !is_max_rate(ni)) {
2424 amrr->recovery = 1;
2425 amrr->success = 0;
2426 increase_rate(ni);
2427 need_change = 1;
2428 } else {
2429 amrr->recovery = 0;
2430 }
2431 } else if (is_failure(amrr)) {
2432 amrr->success = 0;
2433 if (!is_min_rate(ni)) {
2434 if (amrr->recovery) {
2435 amrr->success_threshold *= 2;
2436 if (amrr->success_threshold >
2437 URAL_AMRR_MAX_SUCCESS_THRESHOLD)
2438 amrr->success_threshold =
2439 URAL_AMRR_MAX_SUCCESS_THRESHOLD;
2440 } else {
2441 amrr->success_threshold =
2442 URAL_AMRR_MIN_SUCCESS_THRESHOLD;
2443 }
2444 decrease_rate(ni);
2445 need_change = 1;
2446 }
2447 amrr->recovery = 0; /* original paper was incorrect */
2448 }
2449
2450 if (is_enough(amrr) || need_change)
2451 reset_cnt(amrr);
2452 }
2453