if_ural.c revision 1.17 1 /* $NetBSD: if_ural.c,v 1.17 2006/10/31 21:53:41 joerg Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.17 2006/10/31 21:53:41 joerg Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
95 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
97 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
109 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
110 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
111 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
112 };
113
114 Static int ural_alloc_tx_list(struct ural_softc *);
115 Static void ural_free_tx_list(struct ural_softc *);
116 Static int ural_alloc_rx_list(struct ural_softc *);
117 Static void ural_free_rx_list(struct ural_softc *);
118 Static int ural_media_change(struct ifnet *);
119 Static void ural_next_scan(void *);
120 Static void ural_task(void *);
121 Static int ural_newstate(struct ieee80211com *,
122 enum ieee80211_state, int);
123 Static int ural_rxrate(struct ural_rx_desc *);
124 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
125 usbd_status);
126 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
127 usbd_status);
128 Static int ural_ack_rate(struct ieee80211com *, int);
129 Static uint16_t ural_txtime(int, int, uint32_t);
130 Static uint8_t ural_plcp_signal(int);
131 Static void ural_setup_tx_desc(struct ural_softc *,
132 struct ural_tx_desc *, uint32_t, int, int);
133 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static void ural_start(struct ifnet *);
140 Static void ural_watchdog(struct ifnet *);
141 Static int ural_reset(struct ifnet *);
142 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
143 Static void ural_set_testmode(struct ural_softc *);
144 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
145 int);
146 Static uint16_t ural_read(struct ural_softc *, uint16_t);
147 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
148 int);
149 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
150 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
151 int);
152 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
153 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
154 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
155 Static void ural_set_chan(struct ural_softc *,
156 struct ieee80211_channel *);
157 Static void ural_disable_rf_tune(struct ural_softc *);
158 Static void ural_enable_tsf_sync(struct ural_softc *);
159 Static void ural_update_slot(struct ifnet *);
160 Static void ural_set_txpreamble(struct ural_softc *);
161 Static void ural_set_basicrates(struct ural_softc *);
162 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
163 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
164 Static void ural_update_promisc(struct ural_softc *);
165 Static const char *ural_get_rf(int);
166 Static void ural_read_eeprom(struct ural_softc *);
167 Static int ural_bbp_init(struct ural_softc *);
168 Static void ural_set_txantenna(struct ural_softc *, int);
169 Static void ural_set_rxantenna(struct ural_softc *, int);
170 Static int ural_init(struct ifnet *);
171 Static void ural_stop(struct ifnet *, int);
172 Static void ural_amrr_start(struct ural_softc *,
173 struct ieee80211_node *);
174 Static void ural_amrr_timeout(void *);
175 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
176 usbd_status status);
177
178 /*
179 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
180 */
181 static const struct ieee80211_rateset ural_rateset_11a =
182 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 static const struct ieee80211_rateset ural_rateset_11b =
185 { 4, { 2, 4, 11, 22 } };
186
187 static const struct ieee80211_rateset ural_rateset_11g =
188 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
189
190 /*
191 * Default values for MAC registers; values taken from the reference driver.
192 */
193 static const struct {
194 uint16_t reg;
195 uint16_t val;
196 } ural_def_mac[] = {
197 { RAL_TXRX_CSR5, 0x8c8d },
198 { RAL_TXRX_CSR6, 0x8b8a },
199 { RAL_TXRX_CSR7, 0x8687 },
200 { RAL_TXRX_CSR8, 0x0085 },
201 { RAL_MAC_CSR13, 0x1111 },
202 { RAL_MAC_CSR14, 0x1e11 },
203 { RAL_TXRX_CSR21, 0xe78f },
204 { RAL_MAC_CSR9, 0xff1d },
205 { RAL_MAC_CSR11, 0x0002 },
206 { RAL_MAC_CSR22, 0x0053 },
207 { RAL_MAC_CSR15, 0x0000 },
208 { RAL_MAC_CSR8, 0x0780 },
209 { RAL_TXRX_CSR19, 0x0000 },
210 { RAL_TXRX_CSR18, 0x005a },
211 { RAL_PHY_CSR2, 0x0000 },
212 { RAL_TXRX_CSR0, 0x1ec0 },
213 { RAL_PHY_CSR4, 0x000f }
214 };
215
216 /*
217 * Default values for BBP registers; values taken from the reference driver.
218 */
219 static const struct {
220 uint8_t reg;
221 uint8_t val;
222 } ural_def_bbp[] = {
223 { 3, 0x02 },
224 { 4, 0x19 },
225 { 14, 0x1c },
226 { 15, 0x30 },
227 { 16, 0xac },
228 { 17, 0x48 },
229 { 18, 0x18 },
230 { 19, 0xff },
231 { 20, 0x1e },
232 { 21, 0x08 },
233 { 22, 0x08 },
234 { 23, 0x08 },
235 { 24, 0x80 },
236 { 25, 0x50 },
237 { 26, 0x08 },
238 { 27, 0x23 },
239 { 30, 0x10 },
240 { 31, 0x2b },
241 { 32, 0xb9 },
242 { 34, 0x12 },
243 { 35, 0x50 },
244 { 39, 0xc4 },
245 { 40, 0x02 },
246 { 41, 0x60 },
247 { 53, 0x10 },
248 { 54, 0x18 },
249 { 56, 0x08 },
250 { 57, 0x10 },
251 { 58, 0x08 },
252 { 61, 0x60 },
253 { 62, 0x10 },
254 { 75, 0xff }
255 };
256
257 /*
258 * Default values for RF register R2 indexed by channel numbers.
259 */
260 static const uint32_t ural_rf2522_r2[] = {
261 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
262 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
263 };
264
265 static const uint32_t ural_rf2523_r2[] = {
266 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
267 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
268 };
269
270 static const uint32_t ural_rf2524_r2[] = {
271 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
272 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
273 };
274
275 static const uint32_t ural_rf2525_r2[] = {
276 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
277 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
278 };
279
280 static const uint32_t ural_rf2525_hi_r2[] = {
281 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
282 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
283 };
284
285 static const uint32_t ural_rf2525e_r2[] = {
286 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
287 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
288 };
289
290 static const uint32_t ural_rf2526_hi_r2[] = {
291 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
292 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
293 };
294
295 static const uint32_t ural_rf2526_r2[] = {
296 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
297 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
298 };
299
300 /*
301 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
302 * values taken from the reference driver.
303 */
304 static const struct {
305 uint8_t chan;
306 uint32_t r1;
307 uint32_t r2;
308 uint32_t r4;
309 } ural_rf5222[] = {
310 { 1, 0x08808, 0x0044d, 0x00282 },
311 { 2, 0x08808, 0x0044e, 0x00282 },
312 { 3, 0x08808, 0x0044f, 0x00282 },
313 { 4, 0x08808, 0x00460, 0x00282 },
314 { 5, 0x08808, 0x00461, 0x00282 },
315 { 6, 0x08808, 0x00462, 0x00282 },
316 { 7, 0x08808, 0x00463, 0x00282 },
317 { 8, 0x08808, 0x00464, 0x00282 },
318 { 9, 0x08808, 0x00465, 0x00282 },
319 { 10, 0x08808, 0x00466, 0x00282 },
320 { 11, 0x08808, 0x00467, 0x00282 },
321 { 12, 0x08808, 0x00468, 0x00282 },
322 { 13, 0x08808, 0x00469, 0x00282 },
323 { 14, 0x08808, 0x0046b, 0x00286 },
324
325 { 36, 0x08804, 0x06225, 0x00287 },
326 { 40, 0x08804, 0x06226, 0x00287 },
327 { 44, 0x08804, 0x06227, 0x00287 },
328 { 48, 0x08804, 0x06228, 0x00287 },
329 { 52, 0x08804, 0x06229, 0x00287 },
330 { 56, 0x08804, 0x0622a, 0x00287 },
331 { 60, 0x08804, 0x0622b, 0x00287 },
332 { 64, 0x08804, 0x0622c, 0x00287 },
333
334 { 100, 0x08804, 0x02200, 0x00283 },
335 { 104, 0x08804, 0x02201, 0x00283 },
336 { 108, 0x08804, 0x02202, 0x00283 },
337 { 112, 0x08804, 0x02203, 0x00283 },
338 { 116, 0x08804, 0x02204, 0x00283 },
339 { 120, 0x08804, 0x02205, 0x00283 },
340 { 124, 0x08804, 0x02206, 0x00283 },
341 { 128, 0x08804, 0x02207, 0x00283 },
342 { 132, 0x08804, 0x02208, 0x00283 },
343 { 136, 0x08804, 0x02209, 0x00283 },
344 { 140, 0x08804, 0x0220a, 0x00283 },
345
346 { 149, 0x08808, 0x02429, 0x00281 },
347 { 153, 0x08808, 0x0242b, 0x00281 },
348 { 157, 0x08808, 0x0242d, 0x00281 },
349 { 161, 0x08808, 0x0242f, 0x00281 }
350 };
351
352 USB_DECLARE_DRIVER(ural);
353
354 USB_MATCH(ural)
355 {
356 USB_MATCH_START(ural, uaa);
357
358 if (uaa->iface != NULL)
359 return UMATCH_NONE;
360
361 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
362 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
363 }
364
365 USB_ATTACH(ural)
366 {
367 USB_ATTACH_START(ural, sc, uaa);
368 struct ieee80211com *ic = &sc->sc_ic;
369 struct ifnet *ifp = &sc->sc_if;
370 usb_interface_descriptor_t *id;
371 usb_endpoint_descriptor_t *ed;
372 usbd_status error;
373 char *devinfop;
374 int i;
375
376 sc->sc_udev = uaa->device;
377
378 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
379 USB_ATTACH_SETUP;
380 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
381 usbd_devinfo_free(devinfop);
382
383 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
384 printf("%s: could not set configuration no\n",
385 USBDEVNAME(sc->sc_dev));
386 USB_ATTACH_ERROR_RETURN;
387 }
388
389 /* get the first interface handle */
390 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
391 &sc->sc_iface);
392 if (error != 0) {
393 printf("%s: could not get interface handle\n",
394 USBDEVNAME(sc->sc_dev));
395 USB_ATTACH_ERROR_RETURN;
396 }
397
398 /*
399 * Find endpoints.
400 */
401 id = usbd_get_interface_descriptor(sc->sc_iface);
402
403 sc->sc_rx_no = sc->sc_tx_no = -1;
404 for (i = 0; i < id->bNumEndpoints; i++) {
405 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
406 if (ed == NULL) {
407 printf("%s: no endpoint descriptor for %d\n",
408 USBDEVNAME(sc->sc_dev), i);
409 USB_ATTACH_ERROR_RETURN;
410 }
411
412 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
413 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
414 sc->sc_rx_no = ed->bEndpointAddress;
415 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
416 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 sc->sc_tx_no = ed->bEndpointAddress;
418 }
419 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
420 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
421 USB_ATTACH_ERROR_RETURN;
422 }
423
424 usb_init_task(&sc->sc_task, ural_task, sc);
425 callout_init(&sc->scan_ch);
426 sc->amrr.amrr_min_success_threshold = 1;
427 sc->amrr.amrr_min_success_threshold = 15;
428 callout_init(&sc->amrr_ch);
429
430 /* retrieve RT2570 rev. no */
431 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
432
433 /* retrieve MAC address and various other things from EEPROM */
434 ural_read_eeprom(sc);
435
436 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
437 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
438
439 ifp->if_softc = sc;
440 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
441 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 ifp->if_init = ural_init;
443 ifp->if_ioctl = ural_ioctl;
444 ifp->if_start = ural_start;
445 ifp->if_watchdog = ural_watchdog;
446 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 IFQ_SET_READY(&ifp->if_snd);
448
449 ic->ic_ifp = ifp;
450 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
451 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
452 ic->ic_state = IEEE80211_S_INIT;
453
454 /* set device capabilities */
455 ic->ic_caps =
456 IEEE80211_C_IBSS | /* IBSS mode supported */
457 IEEE80211_C_MONITOR | /* monitor mode supported */
458 IEEE80211_C_HOSTAP | /* HostAp mode supported */
459 IEEE80211_C_TXPMGT | /* tx power management */
460 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
461 IEEE80211_C_SHSLOT | /* short slot time supported */
462 IEEE80211_C_WPA; /* 802.11i */
463
464 if (sc->rf_rev == RAL_RF_5222) {
465 /* set supported .11a rates */
466 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
467
468 /* set supported .11a channels */
469 for (i = 36; i <= 64; i += 4) {
470 ic->ic_channels[i].ic_freq =
471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 }
474 for (i = 100; i <= 140; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 for (i = 149; i <= 161; i += 4) {
480 ic->ic_channels[i].ic_freq =
481 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
482 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
483 }
484 }
485
486 /* set supported .11b and .11g rates */
487 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
488 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
489
490 /* set supported .11b and .11g channels (1 through 14) */
491 for (i = 1; i <= 14; i++) {
492 ic->ic_channels[i].ic_freq =
493 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
494 ic->ic_channels[i].ic_flags =
495 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
496 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
497 }
498
499 if_attach(ifp);
500 ieee80211_ifattach(ic);
501 ic->ic_reset = ural_reset;
502
503 /* override state transition machine */
504 sc->sc_newstate = ic->ic_newstate;
505 ic->ic_newstate = ural_newstate;
506 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
507
508 #if NBPFILTER > 0
509 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
510 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
511
512 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
513 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
514 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
515
516 sc->sc_txtap_len = sizeof sc->sc_txtapu;
517 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
518 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
519 #endif
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 USBDEV(sc->sc_dev));
525
526 USB_ATTACH_SUCCESS_RETURN;
527 }
528
529 USB_DETACH(ural)
530 {
531 USB_DETACH_START(ural, sc);
532 struct ieee80211com *ic = &sc->sc_ic;
533 struct ifnet *ifp = &sc->sc_if;
534 int s;
535
536 s = splusb();
537
538 ural_stop(ifp, 1);
539 usb_rem_task(sc->sc_udev, &sc->sc_task);
540 callout_stop(&sc->scan_ch);
541 callout_stop(&sc->amrr_ch);
542
543 if (sc->amrr_xfer != NULL) {
544 usbd_free_xfer(sc->amrr_xfer);
545 sc->amrr_xfer = NULL;
546 }
547
548 if (sc->sc_rx_pipeh != NULL) {
549 usbd_abort_pipe(sc->sc_rx_pipeh);
550 usbd_close_pipe(sc->sc_rx_pipeh);
551 }
552
553 if (sc->sc_tx_pipeh != NULL) {
554 usbd_abort_pipe(sc->sc_tx_pipeh);
555 usbd_close_pipe(sc->sc_tx_pipeh);
556 }
557
558 ural_free_rx_list(sc);
559 ural_free_tx_list(sc);
560
561 #if NBPFILTER > 0
562 bpfdetach(ifp);
563 #endif
564 ieee80211_ifdetach(ic);
565 if_detach(ifp);
566
567 splx(s);
568
569 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
570 USBDEV(sc->sc_dev));
571
572 return 0;
573 }
574
575 Static int
576 ural_alloc_tx_list(struct ural_softc *sc)
577 {
578 struct ural_tx_data *data;
579 int i, error;
580
581 sc->tx_queued = 0;
582
583 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
584 data = &sc->tx_data[i];
585
586 data->sc = sc;
587
588 data->xfer = usbd_alloc_xfer(sc->sc_udev);
589 if (data->xfer == NULL) {
590 printf("%s: could not allocate tx xfer\n",
591 USBDEVNAME(sc->sc_dev));
592 error = ENOMEM;
593 goto fail;
594 }
595
596 data->buf = usbd_alloc_buffer(data->xfer,
597 RAL_TX_DESC_SIZE + MCLBYTES);
598 if (data->buf == NULL) {
599 printf("%s: could not allocate tx buffer\n",
600 USBDEVNAME(sc->sc_dev));
601 error = ENOMEM;
602 goto fail;
603 }
604 }
605
606 return 0;
607
608 fail: ural_free_tx_list(sc);
609 return error;
610 }
611
612 Static void
613 ural_free_tx_list(struct ural_softc *sc)
614 {
615 struct ural_tx_data *data;
616 int i;
617
618 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
619 data = &sc->tx_data[i];
620
621 if (data->xfer != NULL) {
622 usbd_free_xfer(data->xfer);
623 data->xfer = NULL;
624 }
625
626 if (data->ni != NULL) {
627 ieee80211_free_node(data->ni);
628 data->ni = NULL;
629 }
630 }
631 }
632
633 Static int
634 ural_alloc_rx_list(struct ural_softc *sc)
635 {
636 struct ural_rx_data *data;
637 int i, error;
638
639 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
640 data = &sc->rx_data[i];
641
642 data->sc = sc;
643
644 data->xfer = usbd_alloc_xfer(sc->sc_udev);
645 if (data->xfer == NULL) {
646 printf("%s: could not allocate rx xfer\n",
647 USBDEVNAME(sc->sc_dev));
648 error = ENOMEM;
649 goto fail;
650 }
651
652 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
653 printf("%s: could not allocate rx buffer\n",
654 USBDEVNAME(sc->sc_dev));
655 error = ENOMEM;
656 goto fail;
657 }
658
659 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
660 if (data->m == NULL) {
661 printf("%s: could not allocate rx mbuf\n",
662 USBDEVNAME(sc->sc_dev));
663 error = ENOMEM;
664 goto fail;
665 }
666
667 MCLGET(data->m, M_DONTWAIT);
668 if (!(data->m->m_flags & M_EXT)) {
669 printf("%s: could not allocate rx mbuf cluster\n",
670 USBDEVNAME(sc->sc_dev));
671 error = ENOMEM;
672 goto fail;
673 }
674
675 data->buf = mtod(data->m, uint8_t *);
676 }
677
678 return 0;
679
680 fail: ural_free_tx_list(sc);
681 return error;
682 }
683
684 Static void
685 ural_free_rx_list(struct ural_softc *sc)
686 {
687 struct ural_rx_data *data;
688 int i;
689
690 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
691 data = &sc->rx_data[i];
692
693 if (data->xfer != NULL) {
694 usbd_free_xfer(data->xfer);
695 data->xfer = NULL;
696 }
697
698 if (data->m != NULL) {
699 m_freem(data->m);
700 data->m = NULL;
701 }
702 }
703 }
704
705 Static int
706 ural_media_change(struct ifnet *ifp)
707 {
708 int error;
709
710 error = ieee80211_media_change(ifp);
711 if (error != ENETRESET)
712 return error;
713
714 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
715 ural_init(ifp);
716
717 return 0;
718 }
719
720 /*
721 * This function is called periodically (every 200ms) during scanning to
722 * switch from one channel to another.
723 */
724 Static void
725 ural_next_scan(void *arg)
726 {
727 struct ural_softc *sc = arg;
728 struct ieee80211com *ic = &sc->sc_ic;
729
730 if (ic->ic_state == IEEE80211_S_SCAN)
731 ieee80211_next_scan(ic);
732 }
733
734 Static void
735 ural_task(void *arg)
736 {
737 struct ural_softc *sc = arg;
738 struct ieee80211com *ic = &sc->sc_ic;
739 enum ieee80211_state ostate;
740 struct ieee80211_node *ni;
741 struct mbuf *m;
742
743 ostate = ic->ic_state;
744
745 switch (sc->sc_state) {
746 case IEEE80211_S_INIT:
747 if (ostate == IEEE80211_S_RUN) {
748 /* abort TSF synchronization */
749 ural_write(sc, RAL_TXRX_CSR19, 0);
750
751 /* force tx led to stop blinking */
752 ural_write(sc, RAL_MAC_CSR20, 0);
753 }
754 break;
755
756 case IEEE80211_S_SCAN:
757 ural_set_chan(sc, ic->ic_curchan);
758 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
759 break;
760
761 case IEEE80211_S_AUTH:
762 ural_set_chan(sc, ic->ic_curchan);
763 break;
764
765 case IEEE80211_S_ASSOC:
766 ural_set_chan(sc, ic->ic_curchan);
767 break;
768
769 case IEEE80211_S_RUN:
770 ural_set_chan(sc, ic->ic_curchan);
771
772 ni = ic->ic_bss;
773
774 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
775 ural_update_slot(ic->ic_ifp);
776 ural_set_txpreamble(sc);
777 ural_set_basicrates(sc);
778 ural_set_bssid(sc, ni->ni_bssid);
779 }
780
781 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
782 ic->ic_opmode == IEEE80211_M_IBSS) {
783 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
784 if (m == NULL) {
785 printf("%s: could not allocate beacon\n",
786 USBDEVNAME(sc->sc_dev));
787 return;
788 }
789
790 if (ural_tx_bcn(sc, m, ni) != 0) {
791 m_freem(m);
792 printf("%s: could not send beacon\n",
793 USBDEVNAME(sc->sc_dev));
794 return;
795 }
796
797 /* beacon is no longer needed */
798 m_freem(m);
799 }
800
801 /* make tx led blink on tx (controlled by ASIC) */
802 ural_write(sc, RAL_MAC_CSR20, 1);
803
804 if (ic->ic_opmode != IEEE80211_M_MONITOR)
805 ural_enable_tsf_sync(sc);
806
807 /* enable automatic rate adaptation in STA mode */
808 if (ic->ic_opmode == IEEE80211_M_STA &&
809 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
810 ural_amrr_start(sc, ni);
811
812 break;
813 }
814
815 sc->sc_newstate(ic, sc->sc_state, -1);
816 }
817
818 Static int
819 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
820 int arg __unused)
821 {
822 struct ural_softc *sc = ic->ic_ifp->if_softc;
823
824 usb_rem_task(sc->sc_udev, &sc->sc_task);
825 callout_stop(&sc->scan_ch);
826 callout_stop(&sc->amrr_ch);
827
828 /* do it in a process context */
829 sc->sc_state = nstate;
830 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
831
832 return 0;
833 }
834
835 /* quickly determine if a given rate is CCK or OFDM */
836 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
837
838 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
839 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
840
841 #define RAL_SIFS 10 /* us */
842
843 #define RAL_RXTX_TURNAROUND 5 /* us */
844
845 /*
846 * This function is only used by the Rx radiotap code.
847 */
848 Static int
849 ural_rxrate(struct ural_rx_desc *desc)
850 {
851 if (le32toh(desc->flags) & RAL_RX_OFDM) {
852 /* reverse function of ural_plcp_signal */
853 switch (desc->rate) {
854 case 0xb: return 12;
855 case 0xf: return 18;
856 case 0xa: return 24;
857 case 0xe: return 36;
858 case 0x9: return 48;
859 case 0xd: return 72;
860 case 0x8: return 96;
861 case 0xc: return 108;
862 }
863 } else {
864 if (desc->rate == 10)
865 return 2;
866 if (desc->rate == 20)
867 return 4;
868 if (desc->rate == 55)
869 return 11;
870 if (desc->rate == 110)
871 return 22;
872 }
873 return 2; /* should not get there */
874 }
875
876 Static void
877 ural_txeof(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
878 usbd_status status)
879 {
880 struct ural_tx_data *data = priv;
881 struct ural_softc *sc = data->sc;
882 struct ifnet *ifp = &sc->sc_if;
883 int s;
884
885 if (status != USBD_NORMAL_COMPLETION) {
886 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
887 return;
888
889 printf("%s: could not transmit buffer: %s\n",
890 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
891
892 if (status == USBD_STALLED)
893 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
894
895 ifp->if_oerrors++;
896 return;
897 }
898
899 s = splnet();
900
901 m_freem(data->m);
902 data->m = NULL;
903 ieee80211_free_node(data->ni);
904 data->ni = NULL;
905
906 sc->tx_queued--;
907 ifp->if_opackets++;
908
909 DPRINTFN(10, ("tx done\n"));
910
911 sc->sc_tx_timer = 0;
912 ifp->if_flags &= ~IFF_OACTIVE;
913 ural_start(ifp);
914
915 splx(s);
916 }
917
918 Static void
919 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
920 {
921 struct ural_rx_data *data = priv;
922 struct ural_softc *sc = data->sc;
923 struct ieee80211com *ic = &sc->sc_ic;
924 struct ifnet *ifp = &sc->sc_if;
925 struct ural_rx_desc *desc;
926 struct ieee80211_frame *wh;
927 struct ieee80211_node *ni;
928 struct mbuf *mnew, *m;
929 int s, len;
930
931 if (status != USBD_NORMAL_COMPLETION) {
932 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
933 return;
934
935 if (status == USBD_STALLED)
936 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
937 goto skip;
938 }
939
940 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
941
942 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
943 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
944 len));
945 ifp->if_ierrors++;
946 goto skip;
947 }
948
949 /* rx descriptor is located at the end */
950 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
951
952 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
953 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
954 /*
955 * This should not happen since we did not request to receive
956 * those frames when we filled RAL_TXRX_CSR2.
957 */
958 DPRINTFN(5, ("PHY or CRC error\n"));
959 ifp->if_ierrors++;
960 goto skip;
961 }
962
963 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
964 if (mnew == NULL) {
965 ifp->if_ierrors++;
966 goto skip;
967 }
968
969 MCLGET(mnew, M_DONTWAIT);
970 if (!(mnew->m_flags & M_EXT)) {
971 ifp->if_ierrors++;
972 m_freem(mnew);
973 goto skip;
974 }
975
976 m = data->m;
977 data->m = mnew;
978 data->buf = mtod(data->m, uint8_t *);
979
980 /* finalize mbuf */
981 m->m_pkthdr.rcvif = ifp;
982 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
983 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
984
985 s = splnet();
986
987 #if NBPFILTER > 0
988 if (sc->sc_drvbpf != NULL) {
989 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
990
991 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
992 tap->wr_rate = ural_rxrate(desc);
993 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
994 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
995 tap->wr_antenna = sc->rx_ant;
996 tap->wr_antsignal = desc->rssi;
997
998 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
999 }
1000 #endif
1001
1002 wh = mtod(m, struct ieee80211_frame *);
1003 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1004
1005 /* send the frame to the 802.11 layer */
1006 ieee80211_input(ic, m, ni, desc->rssi, 0);
1007
1008 /* node is no longer needed */
1009 ieee80211_free_node(ni);
1010
1011 splx(s);
1012
1013 DPRINTFN(15, ("rx done\n"));
1014
1015 skip: /* setup a new transfer */
1016 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1017 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1018 usbd_transfer(xfer);
1019 }
1020
1021 /*
1022 * Return the expected ack rate for a frame transmitted at rate `rate'.
1023 * XXX: this should depend on the destination node basic rate set.
1024 */
1025 Static int
1026 ural_ack_rate(struct ieee80211com *ic, int rate)
1027 {
1028 switch (rate) {
1029 /* CCK rates */
1030 case 2:
1031 return 2;
1032 case 4:
1033 case 11:
1034 case 22:
1035 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1036
1037 /* OFDM rates */
1038 case 12:
1039 case 18:
1040 return 12;
1041 case 24:
1042 case 36:
1043 return 24;
1044 case 48:
1045 case 72:
1046 case 96:
1047 case 108:
1048 return 48;
1049 }
1050
1051 /* default to 1Mbps */
1052 return 2;
1053 }
1054
1055 /*
1056 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1057 * The function automatically determines the operating mode depending on the
1058 * given rate. `flags' indicates whether short preamble is in use or not.
1059 */
1060 Static uint16_t
1061 ural_txtime(int len, int rate, uint32_t flags)
1062 {
1063 uint16_t txtime;
1064
1065 if (RAL_RATE_IS_OFDM(rate)) {
1066 /* IEEE Std 802.11g-2003, pp. 37 */
1067 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1068 txtime = 16 + 4 + 4 * txtime + 6;
1069 } else {
1070 /* IEEE Std 802.11b-1999, pp. 28 */
1071 txtime = (16 * len + rate - 1) / rate;
1072 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1073 txtime += 72 + 24;
1074 else
1075 txtime += 144 + 48;
1076 }
1077 return txtime;
1078 }
1079
1080 Static uint8_t
1081 ural_plcp_signal(int rate)
1082 {
1083 switch (rate) {
1084 /* CCK rates (returned values are device-dependent) */
1085 case 2: return 0x0;
1086 case 4: return 0x1;
1087 case 11: return 0x2;
1088 case 22: return 0x3;
1089
1090 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1091 case 12: return 0xb;
1092 case 18: return 0xf;
1093 case 24: return 0xa;
1094 case 36: return 0xe;
1095 case 48: return 0x9;
1096 case 72: return 0xd;
1097 case 96: return 0x8;
1098 case 108: return 0xc;
1099
1100 /* unsupported rates (should not get there) */
1101 default: return 0xff;
1102 }
1103 }
1104
1105 Static void
1106 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1107 uint32_t flags, int len, int rate)
1108 {
1109 struct ieee80211com *ic = &sc->sc_ic;
1110 uint16_t plcp_length;
1111 int remainder;
1112
1113 desc->flags = htole32(flags);
1114 desc->flags |= htole32(RAL_TX_NEWSEQ);
1115 desc->flags |= htole32(len << 16);
1116
1117 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1118 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1119
1120 /* setup PLCP fields */
1121 desc->plcp_signal = ural_plcp_signal(rate);
1122 desc->plcp_service = 4;
1123
1124 len += IEEE80211_CRC_LEN;
1125 if (RAL_RATE_IS_OFDM(rate)) {
1126 desc->flags |= htole32(RAL_TX_OFDM);
1127
1128 plcp_length = len & 0xfff;
1129 desc->plcp_length_hi = plcp_length >> 6;
1130 desc->plcp_length_lo = plcp_length & 0x3f;
1131 } else {
1132 plcp_length = (16 * len + rate - 1) / rate;
1133 if (rate == 22) {
1134 remainder = (16 * len) % 22;
1135 if (remainder != 0 && remainder < 7)
1136 desc->plcp_service |= RAL_PLCP_LENGEXT;
1137 }
1138 desc->plcp_length_hi = plcp_length >> 8;
1139 desc->plcp_length_lo = plcp_length & 0xff;
1140
1141 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1142 desc->plcp_signal |= 0x08;
1143 }
1144
1145 desc->iv = 0;
1146 desc->eiv = 0;
1147 }
1148
1149 #define RAL_TX_TIMEOUT 5000
1150
1151 Static int
1152 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1153 {
1154 struct ural_tx_desc *desc;
1155 usbd_xfer_handle xfer;
1156 uint8_t cmd = 0;
1157 usbd_status error;
1158 uint8_t *buf;
1159 int xferlen, rate;
1160
1161 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1162
1163 xfer = usbd_alloc_xfer(sc->sc_udev);
1164 if (xfer == NULL)
1165 return ENOMEM;
1166
1167 /* xfer length needs to be a multiple of two! */
1168 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1169
1170 buf = usbd_alloc_buffer(xfer, xferlen);
1171 if (buf == NULL) {
1172 usbd_free_xfer(xfer);
1173 return ENOMEM;
1174 }
1175
1176 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1177 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1178
1179 error = usbd_sync_transfer(xfer);
1180 if (error != 0) {
1181 usbd_free_xfer(xfer);
1182 return error;
1183 }
1184
1185 desc = (struct ural_tx_desc *)buf;
1186
1187 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1188 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1189 m0->m_pkthdr.len, rate);
1190
1191 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1192 m0->m_pkthdr.len, rate, xferlen));
1193
1194 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1195 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1196
1197 error = usbd_sync_transfer(xfer);
1198 usbd_free_xfer(xfer);
1199
1200 return error;
1201 }
1202
1203 Static int
1204 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1205 {
1206 struct ieee80211com *ic = &sc->sc_ic;
1207 struct ural_tx_desc *desc;
1208 struct ural_tx_data *data;
1209 struct ieee80211_frame *wh;
1210 uint32_t flags = 0;
1211 uint16_t dur;
1212 usbd_status error;
1213 int xferlen, rate;
1214
1215 data = &sc->tx_data[0];
1216 desc = (struct ural_tx_desc *)data->buf;
1217
1218 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1219
1220 data->m = m0;
1221 data->ni = ni;
1222
1223 wh = mtod(m0, struct ieee80211_frame *);
1224
1225 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1226 flags |= RAL_TX_ACK;
1227
1228 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1229 *(uint16_t *)wh->i_dur = htole16(dur);
1230
1231 /* tell hardware to add timestamp for probe responses */
1232 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1233 IEEE80211_FC0_TYPE_MGT &&
1234 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1235 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1236 flags |= RAL_TX_TIMESTAMP;
1237 }
1238
1239 #if NBPFILTER > 0
1240 if (sc->sc_drvbpf != NULL) {
1241 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1242
1243 tap->wt_flags = 0;
1244 tap->wt_rate = rate;
1245 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1246 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1247 tap->wt_antenna = sc->tx_ant;
1248
1249 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1250 }
1251 #endif
1252
1253 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1254 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1255
1256 /* align end on a 2-bytes boundary */
1257 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1258
1259 /*
1260 * No space left in the last URB to store the extra 2 bytes, force
1261 * sending of another URB.
1262 */
1263 if ((xferlen % 64) == 0)
1264 xferlen += 2;
1265
1266 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1267 m0->m_pkthdr.len, rate, xferlen));
1268
1269 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1270 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1271 ural_txeof);
1272
1273 error = usbd_transfer(data->xfer);
1274 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1275 m_freem(m0);
1276 return error;
1277 }
1278
1279 sc->tx_queued++;
1280
1281 return 0;
1282 }
1283
1284 Static int
1285 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1286 {
1287 struct ieee80211com *ic = &sc->sc_ic;
1288 struct ural_tx_desc *desc;
1289 struct ural_tx_data *data;
1290 struct ieee80211_frame *wh;
1291 struct ieee80211_key *k;
1292 uint32_t flags = 0;
1293 uint16_t dur;
1294 usbd_status error;
1295 int xferlen, rate;
1296
1297 wh = mtod(m0, struct ieee80211_frame *);
1298
1299 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1300 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1301 else
1302 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1303
1304 rate &= IEEE80211_RATE_VAL;
1305
1306 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1307 k = ieee80211_crypto_encap(ic, ni, m0);
1308 if (k == NULL) {
1309 m_freem(m0);
1310 return ENOBUFS;
1311 }
1312
1313 /* packet header may have moved, reset our local pointer */
1314 wh = mtod(m0, struct ieee80211_frame *);
1315 }
1316
1317 data = &sc->tx_data[0];
1318 desc = (struct ural_tx_desc *)data->buf;
1319
1320 data->m = m0;
1321 data->ni = ni;
1322
1323 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1324 flags |= RAL_TX_ACK;
1325 flags |= RAL_TX_RETRY(7);
1326
1327 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1328 ic->ic_flags) + RAL_SIFS;
1329 *(uint16_t *)wh->i_dur = htole16(dur);
1330 }
1331
1332 #if NBPFILTER > 0
1333 if (sc->sc_drvbpf != NULL) {
1334 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1335
1336 tap->wt_flags = 0;
1337 tap->wt_rate = rate;
1338 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1339 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1340 tap->wt_antenna = sc->tx_ant;
1341
1342 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1343 }
1344 #endif
1345
1346 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1347 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1348
1349 /* align end on a 2-bytes boundary */
1350 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1351
1352 /*
1353 * No space left in the last URB to store the extra 2 bytes, force
1354 * sending of another URB.
1355 */
1356 if ((xferlen % 64) == 0)
1357 xferlen += 2;
1358
1359 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1360 m0->m_pkthdr.len, rate, xferlen));
1361
1362 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1363 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1364 ural_txeof);
1365
1366 error = usbd_transfer(data->xfer);
1367 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1368 return error;
1369
1370 sc->tx_queued++;
1371
1372 return 0;
1373 }
1374
1375 Static void
1376 ural_start(struct ifnet *ifp)
1377 {
1378 struct ural_softc *sc = ifp->if_softc;
1379 struct ieee80211com *ic = &sc->sc_ic;
1380 struct mbuf *m0;
1381 struct ether_header *eh;
1382 struct ieee80211_node *ni;
1383
1384 for (;;) {
1385 IF_POLL(&ic->ic_mgtq, m0);
1386 if (m0 != NULL) {
1387 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1388 ifp->if_flags |= IFF_OACTIVE;
1389 break;
1390 }
1391 IF_DEQUEUE(&ic->ic_mgtq, m0);
1392
1393 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1394 m0->m_pkthdr.rcvif = NULL;
1395 #if NBPFILTER > 0
1396 if (ic->ic_rawbpf != NULL)
1397 bpf_mtap(ic->ic_rawbpf, m0);
1398 #endif
1399 if (ural_tx_mgt(sc, m0, ni) != 0)
1400 break;
1401
1402 } else {
1403 if (ic->ic_state != IEEE80211_S_RUN)
1404 break;
1405 IFQ_DEQUEUE(&ifp->if_snd, m0);
1406 if (m0 == NULL)
1407 break;
1408 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1409 IF_PREPEND(&ifp->if_snd, m0);
1410 ifp->if_flags |= IFF_OACTIVE;
1411 break;
1412 }
1413
1414 if (m0->m_len < sizeof (struct ether_header) &&
1415 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1416 continue;
1417
1418 eh = mtod(m0, struct ether_header *);
1419 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1420 if (ni == NULL) {
1421 m_freem(m0);
1422 continue;
1423 }
1424 #if NBPFILTER > 0
1425 if (ifp->if_bpf != NULL)
1426 bpf_mtap(ifp->if_bpf, m0);
1427 #endif
1428 m0 = ieee80211_encap(ic, m0, ni);
1429 if (m0 == NULL) {
1430 ieee80211_free_node(ni);
1431 continue;
1432 }
1433 #if NBPFILTER > 0
1434 if (ic->ic_rawbpf != NULL)
1435 bpf_mtap(ic->ic_rawbpf, m0);
1436 #endif
1437 if (ural_tx_data(sc, m0, ni) != 0) {
1438 ieee80211_free_node(ni);
1439 ifp->if_oerrors++;
1440 break;
1441 }
1442 }
1443
1444 sc->sc_tx_timer = 5;
1445 ifp->if_timer = 1;
1446 }
1447 }
1448
1449 Static void
1450 ural_watchdog(struct ifnet *ifp)
1451 {
1452 struct ural_softc *sc = ifp->if_softc;
1453 struct ieee80211com *ic = &sc->sc_ic;
1454
1455 ifp->if_timer = 0;
1456
1457 if (sc->sc_tx_timer > 0) {
1458 if (--sc->sc_tx_timer == 0) {
1459 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1460 /*ural_init(sc); XXX needs a process context! */
1461 ifp->if_oerrors++;
1462 return;
1463 }
1464 ifp->if_timer = 1;
1465 }
1466
1467 ieee80211_watchdog(ic);
1468 }
1469
1470 /*
1471 * This function allows for fast channel switching in monitor mode (used by
1472 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1473 * generate a new beacon frame.
1474 */
1475 Static int
1476 ural_reset(struct ifnet *ifp)
1477 {
1478 struct ural_softc *sc = ifp->if_softc;
1479 struct ieee80211com *ic = &sc->sc_ic;
1480
1481 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1482 return ENETRESET;
1483
1484 ural_set_chan(sc, ic->ic_curchan);
1485
1486 return 0;
1487 }
1488
1489 Static int
1490 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1491 {
1492 struct ural_softc *sc = ifp->if_softc;
1493 struct ieee80211com *ic = &sc->sc_ic;
1494 int s, error = 0;
1495
1496 s = splnet();
1497
1498 switch (cmd) {
1499 case SIOCSIFFLAGS:
1500 if (ifp->if_flags & IFF_UP) {
1501 if (ifp->if_flags & IFF_RUNNING)
1502 ural_update_promisc(sc);
1503 else
1504 ural_init(ifp);
1505 } else {
1506 if (ifp->if_flags & IFF_RUNNING)
1507 ural_stop(ifp, 1);
1508 }
1509 break;
1510
1511 default:
1512 error = ieee80211_ioctl(ic, cmd, data);
1513 }
1514
1515 if (error == ENETRESET) {
1516 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1517 (IFF_UP | IFF_RUNNING))
1518 ural_init(ifp);
1519 error = 0;
1520 }
1521
1522 splx(s);
1523
1524 return error;
1525 }
1526
1527 Static void
1528 ural_set_testmode(struct ural_softc *sc)
1529 {
1530 usb_device_request_t req;
1531 usbd_status error;
1532
1533 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1534 req.bRequest = RAL_VENDOR_REQUEST;
1535 USETW(req.wValue, 4);
1536 USETW(req.wIndex, 1);
1537 USETW(req.wLength, 0);
1538
1539 error = usbd_do_request(sc->sc_udev, &req, NULL);
1540 if (error != 0) {
1541 printf("%s: could not set test mode: %s\n",
1542 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1543 }
1544 }
1545
1546 Static void
1547 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1548 {
1549 usb_device_request_t req;
1550 usbd_status error;
1551
1552 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1553 req.bRequest = RAL_READ_EEPROM;
1554 USETW(req.wValue, 0);
1555 USETW(req.wIndex, addr);
1556 USETW(req.wLength, len);
1557
1558 error = usbd_do_request(sc->sc_udev, &req, buf);
1559 if (error != 0) {
1560 printf("%s: could not read EEPROM: %s\n",
1561 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1562 }
1563 }
1564
1565 Static uint16_t
1566 ural_read(struct ural_softc *sc, uint16_t reg)
1567 {
1568 usb_device_request_t req;
1569 usbd_status error;
1570 uint16_t val;
1571
1572 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1573 req.bRequest = RAL_READ_MAC;
1574 USETW(req.wValue, 0);
1575 USETW(req.wIndex, reg);
1576 USETW(req.wLength, sizeof (uint16_t));
1577
1578 error = usbd_do_request(sc->sc_udev, &req, &val);
1579 if (error != 0) {
1580 printf("%s: could not read MAC register: %s\n",
1581 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1582 return 0;
1583 }
1584
1585 return le16toh(val);
1586 }
1587
1588 Static void
1589 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1590 {
1591 usb_device_request_t req;
1592 usbd_status error;
1593
1594 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1595 req.bRequest = RAL_READ_MULTI_MAC;
1596 USETW(req.wValue, 0);
1597 USETW(req.wIndex, reg);
1598 USETW(req.wLength, len);
1599
1600 error = usbd_do_request(sc->sc_udev, &req, buf);
1601 if (error != 0) {
1602 printf("%s: could not read MAC register: %s\n",
1603 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1604 }
1605 }
1606
1607 Static void
1608 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1609 {
1610 usb_device_request_t req;
1611 usbd_status error;
1612
1613 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1614 req.bRequest = RAL_WRITE_MAC;
1615 USETW(req.wValue, val);
1616 USETW(req.wIndex, reg);
1617 USETW(req.wLength, 0);
1618
1619 error = usbd_do_request(sc->sc_udev, &req, NULL);
1620 if (error != 0) {
1621 printf("%s: could not write MAC register: %s\n",
1622 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1623 }
1624 }
1625
1626 Static void
1627 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1628 {
1629 usb_device_request_t req;
1630 usbd_status error;
1631
1632 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1633 req.bRequest = RAL_WRITE_MULTI_MAC;
1634 USETW(req.wValue, 0);
1635 USETW(req.wIndex, reg);
1636 USETW(req.wLength, len);
1637
1638 error = usbd_do_request(sc->sc_udev, &req, buf);
1639 if (error != 0) {
1640 printf("%s: could not write MAC register: %s\n",
1641 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1642 }
1643 }
1644
1645 Static void
1646 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1647 {
1648 uint16_t tmp;
1649 int ntries;
1650
1651 for (ntries = 0; ntries < 5; ntries++) {
1652 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1653 break;
1654 }
1655 if (ntries == 5) {
1656 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1657 return;
1658 }
1659
1660 tmp = reg << 8 | val;
1661 ural_write(sc, RAL_PHY_CSR7, tmp);
1662 }
1663
1664 Static uint8_t
1665 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1666 {
1667 uint16_t val;
1668 int ntries;
1669
1670 val = RAL_BBP_WRITE | reg << 8;
1671 ural_write(sc, RAL_PHY_CSR7, val);
1672
1673 for (ntries = 0; ntries < 5; ntries++) {
1674 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1675 break;
1676 }
1677 if (ntries == 5) {
1678 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1679 return 0;
1680 }
1681
1682 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1683 }
1684
1685 Static void
1686 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1687 {
1688 uint32_t tmp;
1689 int ntries;
1690
1691 for (ntries = 0; ntries < 5; ntries++) {
1692 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1693 break;
1694 }
1695 if (ntries == 5) {
1696 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1697 return;
1698 }
1699
1700 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1701 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1702 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1703
1704 /* remember last written value in sc */
1705 sc->rf_regs[reg] = val;
1706
1707 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1708 }
1709
1710 Static void
1711 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1712 {
1713 struct ieee80211com *ic = &sc->sc_ic;
1714 uint8_t power, tmp;
1715 u_int i, chan;
1716
1717 chan = ieee80211_chan2ieee(ic, c);
1718 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1719 return;
1720
1721 if (IEEE80211_IS_CHAN_2GHZ(c))
1722 power = min(sc->txpow[chan - 1], 31);
1723 else
1724 power = 31;
1725
1726 /* adjust txpower using ifconfig settings */
1727 power -= (100 - ic->ic_txpowlimit) / 8;
1728
1729 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1730
1731 switch (sc->rf_rev) {
1732 case RAL_RF_2522:
1733 ural_rf_write(sc, RAL_RF1, 0x00814);
1734 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1735 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1736 break;
1737
1738 case RAL_RF_2523:
1739 ural_rf_write(sc, RAL_RF1, 0x08804);
1740 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1741 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1742 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1743 break;
1744
1745 case RAL_RF_2524:
1746 ural_rf_write(sc, RAL_RF1, 0x0c808);
1747 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1748 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1749 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1750 break;
1751
1752 case RAL_RF_2525:
1753 ural_rf_write(sc, RAL_RF1, 0x08808);
1754 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1755 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1756 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757
1758 ural_rf_write(sc, RAL_RF1, 0x08808);
1759 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1760 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1761 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1762 break;
1763
1764 case RAL_RF_2525E:
1765 ural_rf_write(sc, RAL_RF1, 0x08808);
1766 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1767 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1768 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1769 break;
1770
1771 case RAL_RF_2526:
1772 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1773 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1774 ural_rf_write(sc, RAL_RF1, 0x08804);
1775
1776 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1777 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1778 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1779 break;
1780
1781 /* dual-band RF */
1782 case RAL_RF_5222:
1783 for (i = 0; ural_rf5222[i].chan != chan; i++);
1784
1785 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1786 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1787 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1788 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1789 break;
1790 }
1791
1792 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1793 ic->ic_state != IEEE80211_S_SCAN) {
1794 /* set Japan filter bit for channel 14 */
1795 tmp = ural_bbp_read(sc, 70);
1796
1797 tmp &= ~RAL_JAPAN_FILTER;
1798 if (chan == 14)
1799 tmp |= RAL_JAPAN_FILTER;
1800
1801 ural_bbp_write(sc, 70, tmp);
1802
1803 /* clear CRC errors */
1804 ural_read(sc, RAL_STA_CSR0);
1805
1806 DELAY(10000);
1807 ural_disable_rf_tune(sc);
1808 }
1809 }
1810
1811 /*
1812 * Disable RF auto-tuning.
1813 */
1814 Static void
1815 ural_disable_rf_tune(struct ural_softc *sc)
1816 {
1817 uint32_t tmp;
1818
1819 if (sc->rf_rev != RAL_RF_2523) {
1820 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1821 ural_rf_write(sc, RAL_RF1, tmp);
1822 }
1823
1824 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1825 ural_rf_write(sc, RAL_RF3, tmp);
1826
1827 DPRINTFN(2, ("disabling RF autotune\n"));
1828 }
1829
1830 /*
1831 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1832 * synchronization.
1833 */
1834 Static void
1835 ural_enable_tsf_sync(struct ural_softc *sc)
1836 {
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 uint16_t logcwmin, preload, tmp;
1839
1840 /* first, disable TSF synchronization */
1841 ural_write(sc, RAL_TXRX_CSR19, 0);
1842
1843 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1844 ural_write(sc, RAL_TXRX_CSR18, tmp);
1845
1846 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1847 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1848 tmp = logcwmin << 12 | preload;
1849 ural_write(sc, RAL_TXRX_CSR20, tmp);
1850
1851 /* finally, enable TSF synchronization */
1852 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1853 if (ic->ic_opmode == IEEE80211_M_STA)
1854 tmp |= RAL_ENABLE_TSF_SYNC(1);
1855 else
1856 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1857 ural_write(sc, RAL_TXRX_CSR19, tmp);
1858
1859 DPRINTF(("enabling TSF synchronization\n"));
1860 }
1861
1862 Static void
1863 ural_update_slot(struct ifnet *ifp)
1864 {
1865 struct ural_softc *sc = ifp->if_softc;
1866 struct ieee80211com *ic = &sc->sc_ic;
1867 uint16_t slottime, sifs, eifs;
1868
1869 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1870
1871 /*
1872 * These settings may sound a bit inconsistent but this is what the
1873 * reference driver does.
1874 */
1875 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1876 sifs = 16 - RAL_RXTX_TURNAROUND;
1877 eifs = 364;
1878 } else {
1879 sifs = 10 - RAL_RXTX_TURNAROUND;
1880 eifs = 64;
1881 }
1882
1883 ural_write(sc, RAL_MAC_CSR10, slottime);
1884 ural_write(sc, RAL_MAC_CSR11, sifs);
1885 ural_write(sc, RAL_MAC_CSR12, eifs);
1886 }
1887
1888 Static void
1889 ural_set_txpreamble(struct ural_softc *sc)
1890 {
1891 uint16_t tmp;
1892
1893 tmp = ural_read(sc, RAL_TXRX_CSR10);
1894
1895 tmp &= ~RAL_SHORT_PREAMBLE;
1896 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1897 tmp |= RAL_SHORT_PREAMBLE;
1898
1899 ural_write(sc, RAL_TXRX_CSR10, tmp);
1900 }
1901
1902 Static void
1903 ural_set_basicrates(struct ural_softc *sc)
1904 {
1905 struct ieee80211com *ic = &sc->sc_ic;
1906
1907 /* update basic rate set */
1908 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1909 /* 11b basic rates: 1, 2Mbps */
1910 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1911 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1912 /* 11a basic rates: 6, 12, 24Mbps */
1913 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1914 } else {
1915 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1916 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1917 }
1918 }
1919
1920 Static void
1921 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1922 {
1923 uint16_t tmp;
1924
1925 tmp = bssid[0] | bssid[1] << 8;
1926 ural_write(sc, RAL_MAC_CSR5, tmp);
1927
1928 tmp = bssid[2] | bssid[3] << 8;
1929 ural_write(sc, RAL_MAC_CSR6, tmp);
1930
1931 tmp = bssid[4] | bssid[5] << 8;
1932 ural_write(sc, RAL_MAC_CSR7, tmp);
1933
1934 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1935 }
1936
1937 Static void
1938 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1939 {
1940 uint16_t tmp;
1941
1942 tmp = addr[0] | addr[1] << 8;
1943 ural_write(sc, RAL_MAC_CSR2, tmp);
1944
1945 tmp = addr[2] | addr[3] << 8;
1946 ural_write(sc, RAL_MAC_CSR3, tmp);
1947
1948 tmp = addr[4] | addr[5] << 8;
1949 ural_write(sc, RAL_MAC_CSR4, tmp);
1950
1951 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1952 }
1953
1954 Static void
1955 ural_update_promisc(struct ural_softc *sc)
1956 {
1957 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1958 uint32_t tmp;
1959
1960 tmp = ural_read(sc, RAL_TXRX_CSR2);
1961
1962 tmp &= ~RAL_DROP_NOT_TO_ME;
1963 if (!(ifp->if_flags & IFF_PROMISC))
1964 tmp |= RAL_DROP_NOT_TO_ME;
1965
1966 ural_write(sc, RAL_TXRX_CSR2, tmp);
1967
1968 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1969 "entering" : "leaving"));
1970 }
1971
1972 Static const char *
1973 ural_get_rf(int rev)
1974 {
1975 switch (rev) {
1976 case RAL_RF_2522: return "RT2522";
1977 case RAL_RF_2523: return "RT2523";
1978 case RAL_RF_2524: return "RT2524";
1979 case RAL_RF_2525: return "RT2525";
1980 case RAL_RF_2525E: return "RT2525e";
1981 case RAL_RF_2526: return "RT2526";
1982 case RAL_RF_5222: return "RT5222";
1983 default: return "unknown";
1984 }
1985 }
1986
1987 Static void
1988 ural_read_eeprom(struct ural_softc *sc)
1989 {
1990 struct ieee80211com *ic = &sc->sc_ic;
1991 uint16_t val;
1992
1993 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1994 val = le16toh(val);
1995 sc->rf_rev = (val >> 11) & 0x7;
1996 sc->hw_radio = (val >> 10) & 0x1;
1997 sc->led_mode = (val >> 6) & 0x7;
1998 sc->rx_ant = (val >> 4) & 0x3;
1999 sc->tx_ant = (val >> 2) & 0x3;
2000 sc->nb_ant = val & 0x3;
2001
2002 /* read MAC address */
2003 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2004
2005 /* read default values for BBP registers */
2006 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2007
2008 /* read Tx power for all b/g channels */
2009 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2010 }
2011
2012 Static int
2013 ural_bbp_init(struct ural_softc *sc)
2014 {
2015 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2016 int i, ntries;
2017
2018 /* wait for BBP to be ready */
2019 for (ntries = 0; ntries < 100; ntries++) {
2020 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2021 break;
2022 DELAY(1000);
2023 }
2024 if (ntries == 100) {
2025 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2026 return EIO;
2027 }
2028
2029 /* initialize BBP registers to default values */
2030 for (i = 0; i < N(ural_def_bbp); i++)
2031 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2032
2033 #if 0
2034 /* initialize BBP registers to values stored in EEPROM */
2035 for (i = 0; i < 16; i++) {
2036 if (sc->bbp_prom[i].reg == 0xff)
2037 continue;
2038 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2039 }
2040 #endif
2041
2042 return 0;
2043 #undef N
2044 }
2045
2046 Static void
2047 ural_set_txantenna(struct ural_softc *sc, int antenna)
2048 {
2049 uint16_t tmp;
2050 uint8_t tx;
2051
2052 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2053 if (antenna == 1)
2054 tx |= RAL_BBP_ANTA;
2055 else if (antenna == 2)
2056 tx |= RAL_BBP_ANTB;
2057 else
2058 tx |= RAL_BBP_DIVERSITY;
2059
2060 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2061 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2062 sc->rf_rev == RAL_RF_5222)
2063 tx |= RAL_BBP_FLIPIQ;
2064
2065 ural_bbp_write(sc, RAL_BBP_TX, tx);
2066
2067 /* update values in PHY_CSR5 and PHY_CSR6 */
2068 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2069 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2070
2071 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2072 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2073 }
2074
2075 Static void
2076 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2077 {
2078 uint8_t rx;
2079
2080 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2081 if (antenna == 1)
2082 rx |= RAL_BBP_ANTA;
2083 else if (antenna == 2)
2084 rx |= RAL_BBP_ANTB;
2085 else
2086 rx |= RAL_BBP_DIVERSITY;
2087
2088 /* need to force no I/Q flip for RF 2525e and 2526 */
2089 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2090 rx &= ~RAL_BBP_FLIPIQ;
2091
2092 ural_bbp_write(sc, RAL_BBP_RX, rx);
2093 }
2094
2095 Static int
2096 ural_init(struct ifnet *ifp)
2097 {
2098 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2099 struct ural_softc *sc = ifp->if_softc;
2100 struct ieee80211com *ic = &sc->sc_ic;
2101 struct ieee80211_key *wk;
2102 struct ural_rx_data *data;
2103 uint16_t tmp;
2104 usbd_status error;
2105 int i, ntries;
2106
2107 ural_set_testmode(sc);
2108 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2109
2110 ural_stop(ifp, 0);
2111
2112 /* initialize MAC registers to default values */
2113 for (i = 0; i < N(ural_def_mac); i++)
2114 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2115
2116 /* wait for BBP and RF to wake up (this can take a long time!) */
2117 for (ntries = 0; ntries < 100; ntries++) {
2118 tmp = ural_read(sc, RAL_MAC_CSR17);
2119 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2120 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2121 break;
2122 DELAY(1000);
2123 }
2124 if (ntries == 100) {
2125 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2126 USBDEVNAME(sc->sc_dev));
2127 error = EIO;
2128 goto fail;
2129 }
2130
2131 /* we're ready! */
2132 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2133
2134 /* set basic rate set (will be updated later) */
2135 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2136
2137 error = ural_bbp_init(sc);
2138 if (error != 0)
2139 goto fail;
2140
2141 /* set default BSS channel */
2142 ural_set_chan(sc, ic->ic_curchan);
2143
2144 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2145 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2146
2147 ural_set_txantenna(sc, sc->tx_ant);
2148 ural_set_rxantenna(sc, sc->rx_ant);
2149
2150 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2151 ural_set_macaddr(sc, ic->ic_myaddr);
2152
2153 /*
2154 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2155 */
2156 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2157 wk = &ic->ic_crypto.cs_nw_keys[i];
2158 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2159 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2160 }
2161
2162 /*
2163 * Allocate xfer for AMRR statistics requests.
2164 */
2165 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2166 if (sc->amrr_xfer == NULL) {
2167 printf("%s: could not allocate AMRR xfer\n",
2168 USBDEVNAME(sc->sc_dev));
2169 goto fail;
2170 }
2171
2172 /*
2173 * Open Tx and Rx USB bulk pipes.
2174 */
2175 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2176 &sc->sc_tx_pipeh);
2177 if (error != 0) {
2178 printf("%s: could not open Tx pipe: %s\n",
2179 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2180 goto fail;
2181 }
2182
2183 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2184 &sc->sc_rx_pipeh);
2185 if (error != 0) {
2186 printf("%s: could not open Rx pipe: %s\n",
2187 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2188 goto fail;
2189 }
2190
2191 /*
2192 * Allocate Tx and Rx xfer queues.
2193 */
2194 error = ural_alloc_tx_list(sc);
2195 if (error != 0) {
2196 printf("%s: could not allocate Tx list\n",
2197 USBDEVNAME(sc->sc_dev));
2198 goto fail;
2199 }
2200
2201 error = ural_alloc_rx_list(sc);
2202 if (error != 0) {
2203 printf("%s: could not allocate Rx list\n",
2204 USBDEVNAME(sc->sc_dev));
2205 goto fail;
2206 }
2207
2208 /*
2209 * Start up the receive pipe.
2210 */
2211 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2212 data = &sc->rx_data[i];
2213
2214 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2215 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2216 usbd_transfer(data->xfer);
2217 }
2218
2219 /* kick Rx */
2220 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2221 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2222 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2223 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2224 tmp |= RAL_DROP_TODS;
2225 if (!(ifp->if_flags & IFF_PROMISC))
2226 tmp |= RAL_DROP_NOT_TO_ME;
2227 }
2228 ural_write(sc, RAL_TXRX_CSR2, tmp);
2229
2230 ifp->if_flags &= ~IFF_OACTIVE;
2231 ifp->if_flags |= IFF_RUNNING;
2232
2233 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2234 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2235 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2236 } else
2237 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2238
2239 return 0;
2240
2241 fail: ural_stop(ifp, 1);
2242 return error;
2243 #undef N
2244 }
2245
2246 Static void
2247 ural_stop(struct ifnet *ifp, int disable __unused)
2248 {
2249 struct ural_softc *sc = ifp->if_softc;
2250 struct ieee80211com *ic = &sc->sc_ic;
2251
2252 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2253
2254 sc->sc_tx_timer = 0;
2255 ifp->if_timer = 0;
2256 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2257
2258 /* disable Rx */
2259 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2260
2261 /* reset ASIC and BBP (but won't reset MAC registers!) */
2262 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2263 ural_write(sc, RAL_MAC_CSR1, 0);
2264
2265 if (sc->amrr_xfer != NULL) {
2266 usbd_free_xfer(sc->amrr_xfer);
2267 sc->amrr_xfer = NULL;
2268 }
2269
2270 if (sc->sc_rx_pipeh != NULL) {
2271 usbd_abort_pipe(sc->sc_rx_pipeh);
2272 usbd_close_pipe(sc->sc_rx_pipeh);
2273 sc->sc_rx_pipeh = NULL;
2274 }
2275
2276 if (sc->sc_tx_pipeh != NULL) {
2277 usbd_abort_pipe(sc->sc_tx_pipeh);
2278 usbd_close_pipe(sc->sc_tx_pipeh);
2279 sc->sc_tx_pipeh = NULL;
2280 }
2281
2282 ural_free_rx_list(sc);
2283 ural_free_tx_list(sc);
2284 }
2285
2286 int
2287 ural_activate(device_ptr_t self, enum devact act)
2288 {
2289 struct ural_softc *sc = (struct ural_softc *)self;
2290
2291 switch (act) {
2292 case DVACT_ACTIVATE:
2293 return EOPNOTSUPP;
2294 break;
2295
2296 case DVACT_DEACTIVATE:
2297 if_deactivate(&sc->sc_if);
2298 break;
2299 }
2300
2301 return 0;
2302 }
2303
2304 Static void
2305 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2306 {
2307 int i;
2308
2309 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2310 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2311
2312 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2313
2314 /* set rate to some reasonable initial value */
2315 for (i = ni->ni_rates.rs_nrates - 1;
2316 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2317 i--);
2318 ni->ni_txrate = i;
2319
2320 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2321 }
2322
2323 Static void
2324 ural_amrr_timeout(void *arg)
2325 {
2326 struct ural_softc *sc = (struct ural_softc *)arg;
2327 usb_device_request_t req;
2328 int s;
2329
2330 s = splusb();
2331
2332 /*
2333 * Asynchronously read statistic registers (cleared by read).
2334 */
2335 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2336 req.bRequest = RAL_READ_MULTI_MAC;
2337 USETW(req.wValue, 0);
2338 USETW(req.wIndex, RAL_STA_CSR0);
2339 USETW(req.wLength, sizeof sc->sta);
2340
2341 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2342 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2343 ural_amrr_update);
2344 (void)usbd_transfer(sc->amrr_xfer);
2345
2346 splx(s);
2347 }
2348
2349 Static void
2350 ural_amrr_update(usbd_xfer_handle xfer __unused, usbd_private_handle priv,
2351 usbd_status status)
2352 {
2353 struct ural_softc *sc = (struct ural_softc *)priv;
2354 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2355
2356 if (status != USBD_NORMAL_COMPLETION) {
2357 printf("%s: could not retrieve Tx statistics - "
2358 "cancelling automatic rate control\n",
2359 USBDEVNAME(sc->sc_dev));
2360 return;
2361 }
2362
2363 /* count TX retry-fail as Tx errors */
2364 ifp->if_oerrors += sc->sta[9];
2365
2366 sc->amn.amn_retrycnt =
2367 sc->sta[7] + /* TX one-retry ok count */
2368 sc->sta[8] + /* TX more-retry ok count */
2369 sc->sta[9]; /* TX retry-fail count */
2370
2371 sc->amn.amn_txcnt =
2372 sc->amn.amn_retrycnt +
2373 sc->sta[6]; /* TX no-retry ok count */
2374
2375 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2376
2377 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2378 }
2379