if_ural.c revision 1.18.10.2 1 /* $NetBSD: if_ural.c,v 1.18.10.2 2007/06/13 04:13:01 itohy Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.18.10.2 2007/06/13 04:13:01 itohy Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70 #include <dev/usb/usb_ethersubr.h>
71
72 #include <dev/usb/if_uralreg.h>
73 #include <dev/usb/if_uralvar.h>
74
75 #ifdef USB_DEBUG
76 #define URAL_DEBUG
77 #endif
78
79 #ifdef URAL_DEBUG
80 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
81 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
82 int ural_debug = 0;
83 #else
84 #define DPRINTF(x)
85 #define DPRINTFN(n, x)
86 #endif
87
88 /* various supported device vendors/products */
89 static const struct usb_devno ural_devs[] = {
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
91 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
92 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
108 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
109 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
110 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
111 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
112 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
113 };
114
115 #if 0
116 Static int ural_alloc_tx_list(struct ural_softc *);
117 #endif
118 Static void ural_free_tx_list(struct ural_softc *);
119 #if 0
120 Static int ural_alloc_rx_list(struct ural_softc *);
121 #endif
122 Static void ural_free_rx_list(struct ural_softc *);
123 Static int ural_media_change(struct ifnet *);
124 Static void ural_next_scan(void *);
125 Static void ural_task(void *);
126 Static int ural_newstate(struct ieee80211com *,
127 enum ieee80211_state, int);
128 Static int ural_rxrate(struct ural_rx_desc *);
129 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
130 usbd_status);
131 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
132 usbd_status);
133 Static int ural_ack_rate(struct ieee80211com *, int);
134 Static uint16_t ural_txtime(int, int, uint32_t);
135 Static uint8_t ural_plcp_signal(int);
136 Static void ural_setup_tx_desc(struct ural_softc *,
137 struct ural_tx_desc *, uint32_t, int, int);
138 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
139 struct ieee80211_node *);
140 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
141 struct ieee80211_node *);
142 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
143 struct ieee80211_node *);
144 Static void ural_start(struct ifnet *);
145 Static void ural_watchdog(struct ifnet *);
146 Static int ural_reset(struct ifnet *);
147 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
148 Static void ural_set_testmode(struct ural_softc *);
149 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
150 int);
151 Static uint16_t ural_read(struct ural_softc *, uint16_t);
152 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
153 int);
154 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
155 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
156 int);
157 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
158 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
159 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
160 Static void ural_set_chan(struct ural_softc *,
161 struct ieee80211_channel *);
162 Static void ural_disable_rf_tune(struct ural_softc *);
163 Static void ural_enable_tsf_sync(struct ural_softc *);
164 Static void ural_update_slot(struct ifnet *);
165 Static void ural_set_txpreamble(struct ural_softc *);
166 Static void ural_set_basicrates(struct ural_softc *);
167 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
168 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
169 Static void ural_update_promisc(struct ural_softc *);
170 Static const char *ural_get_rf(int);
171 Static void ural_read_eeprom(struct ural_softc *);
172 Static int ural_bbp_init(struct ural_softc *);
173 Static void ural_set_txantenna(struct ural_softc *, int);
174 Static void ural_set_rxantenna(struct ural_softc *, int);
175 Static int ural_init(struct ifnet *);
176 Static void ural_stop(struct ifnet *, int);
177 Static void ural_amrr_start(struct ural_softc *,
178 struct ieee80211_node *);
179 Static void ural_amrr_timeout(void *);
180 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
181 usbd_status status);
182
183 /*
184 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
185 */
186 static const struct ieee80211_rateset ural_rateset_11a =
187 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
188
189 static const struct ieee80211_rateset ural_rateset_11b =
190 { 4, { 2, 4, 11, 22 } };
191
192 static const struct ieee80211_rateset ural_rateset_11g =
193 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
194
195 /*
196 * Default values for MAC registers; values taken from the reference driver.
197 */
198 static const struct {
199 uint16_t reg;
200 uint16_t val;
201 } ural_def_mac[] = {
202 { RAL_TXRX_CSR5, 0x8c8d },
203 { RAL_TXRX_CSR6, 0x8b8a },
204 { RAL_TXRX_CSR7, 0x8687 },
205 { RAL_TXRX_CSR8, 0x0085 },
206 { RAL_MAC_CSR13, 0x1111 },
207 { RAL_MAC_CSR14, 0x1e11 },
208 { RAL_TXRX_CSR21, 0xe78f },
209 { RAL_MAC_CSR9, 0xff1d },
210 { RAL_MAC_CSR11, 0x0002 },
211 { RAL_MAC_CSR22, 0x0053 },
212 { RAL_MAC_CSR15, 0x0000 },
213 { RAL_MAC_CSR8, 0x0780 },
214 { RAL_TXRX_CSR19, 0x0000 },
215 { RAL_TXRX_CSR18, 0x005a },
216 { RAL_PHY_CSR2, 0x0000 },
217 { RAL_TXRX_CSR0, 0x1ec0 },
218 { RAL_PHY_CSR4, 0x000f }
219 };
220
221 /*
222 * Default values for BBP registers; values taken from the reference driver.
223 */
224 static const struct {
225 uint8_t reg;
226 uint8_t val;
227 } ural_def_bbp[] = {
228 { 3, 0x02 },
229 { 4, 0x19 },
230 { 14, 0x1c },
231 { 15, 0x30 },
232 { 16, 0xac },
233 { 17, 0x48 },
234 { 18, 0x18 },
235 { 19, 0xff },
236 { 20, 0x1e },
237 { 21, 0x08 },
238 { 22, 0x08 },
239 { 23, 0x08 },
240 { 24, 0x80 },
241 { 25, 0x50 },
242 { 26, 0x08 },
243 { 27, 0x23 },
244 { 30, 0x10 },
245 { 31, 0x2b },
246 { 32, 0xb9 },
247 { 34, 0x12 },
248 { 35, 0x50 },
249 { 39, 0xc4 },
250 { 40, 0x02 },
251 { 41, 0x60 },
252 { 53, 0x10 },
253 { 54, 0x18 },
254 { 56, 0x08 },
255 { 57, 0x10 },
256 { 58, 0x08 },
257 { 61, 0x60 },
258 { 62, 0x10 },
259 { 75, 0xff }
260 };
261
262 /*
263 * Default values for RF register R2 indexed by channel numbers.
264 */
265 static const uint32_t ural_rf2522_r2[] = {
266 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
267 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
268 };
269
270 static const uint32_t ural_rf2523_r2[] = {
271 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
272 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
273 };
274
275 static const uint32_t ural_rf2524_r2[] = {
276 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
277 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
278 };
279
280 static const uint32_t ural_rf2525_r2[] = {
281 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
282 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
283 };
284
285 static const uint32_t ural_rf2525_hi_r2[] = {
286 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
287 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
288 };
289
290 static const uint32_t ural_rf2525e_r2[] = {
291 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
292 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
293 };
294
295 static const uint32_t ural_rf2526_hi_r2[] = {
296 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
297 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
298 };
299
300 static const uint32_t ural_rf2526_r2[] = {
301 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
302 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
303 };
304
305 /*
306 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
307 * values taken from the reference driver.
308 */
309 static const struct {
310 uint8_t chan;
311 uint32_t r1;
312 uint32_t r2;
313 uint32_t r4;
314 } ural_rf5222[] = {
315 { 1, 0x08808, 0x0044d, 0x00282 },
316 { 2, 0x08808, 0x0044e, 0x00282 },
317 { 3, 0x08808, 0x0044f, 0x00282 },
318 { 4, 0x08808, 0x00460, 0x00282 },
319 { 5, 0x08808, 0x00461, 0x00282 },
320 { 6, 0x08808, 0x00462, 0x00282 },
321 { 7, 0x08808, 0x00463, 0x00282 },
322 { 8, 0x08808, 0x00464, 0x00282 },
323 { 9, 0x08808, 0x00465, 0x00282 },
324 { 10, 0x08808, 0x00466, 0x00282 },
325 { 11, 0x08808, 0x00467, 0x00282 },
326 { 12, 0x08808, 0x00468, 0x00282 },
327 { 13, 0x08808, 0x00469, 0x00282 },
328 { 14, 0x08808, 0x0046b, 0x00286 },
329
330 { 36, 0x08804, 0x06225, 0x00287 },
331 { 40, 0x08804, 0x06226, 0x00287 },
332 { 44, 0x08804, 0x06227, 0x00287 },
333 { 48, 0x08804, 0x06228, 0x00287 },
334 { 52, 0x08804, 0x06229, 0x00287 },
335 { 56, 0x08804, 0x0622a, 0x00287 },
336 { 60, 0x08804, 0x0622b, 0x00287 },
337 { 64, 0x08804, 0x0622c, 0x00287 },
338
339 { 100, 0x08804, 0x02200, 0x00283 },
340 { 104, 0x08804, 0x02201, 0x00283 },
341 { 108, 0x08804, 0x02202, 0x00283 },
342 { 112, 0x08804, 0x02203, 0x00283 },
343 { 116, 0x08804, 0x02204, 0x00283 },
344 { 120, 0x08804, 0x02205, 0x00283 },
345 { 124, 0x08804, 0x02206, 0x00283 },
346 { 128, 0x08804, 0x02207, 0x00283 },
347 { 132, 0x08804, 0x02208, 0x00283 },
348 { 136, 0x08804, 0x02209, 0x00283 },
349 { 140, 0x08804, 0x0220a, 0x00283 },
350
351 { 149, 0x08808, 0x02429, 0x00281 },
352 { 153, 0x08808, 0x0242b, 0x00281 },
353 { 157, 0x08808, 0x0242d, 0x00281 },
354 { 161, 0x08808, 0x0242f, 0x00281 }
355 };
356
357 USB_DECLARE_DRIVER(ural);
358
359 USB_MATCH(ural)
360 {
361 USB_MATCH_START(ural, uaa);
362
363 if (uaa->iface != NULL)
364 return UMATCH_NONE;
365
366 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
367 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
368 }
369
370 USB_ATTACH(ural)
371 {
372 USB_ATTACH_START(ural, sc, uaa);
373 struct ieee80211com *ic = &sc->sc_ic;
374 struct ifnet *ifp = &sc->sc_if;
375 usb_interface_descriptor_t *id;
376 usb_endpoint_descriptor_t *ed;
377 usbd_status error;
378 char *devinfop;
379 int i;
380
381 sc->sc_udev = uaa->device;
382
383 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
384 USB_ATTACH_SETUP;
385 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
386 usbd_devinfo_free(devinfop);
387
388 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
389 printf("%s: could not set configuration no\n",
390 USBDEVNAME(sc->sc_dev));
391 USB_ATTACH_ERROR_RETURN;
392 }
393
394 /* get the first interface handle */
395 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
396 &sc->sc_iface);
397 if (error != 0) {
398 printf("%s: could not get interface handle\n",
399 USBDEVNAME(sc->sc_dev));
400 USB_ATTACH_ERROR_RETURN;
401 }
402
403 /*
404 * Find endpoints.
405 */
406 id = usbd_get_interface_descriptor(sc->sc_iface);
407
408 sc->sc_rx_no = sc->sc_tx_no = -1;
409 for (i = 0; i < id->bNumEndpoints; i++) {
410 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
411 if (ed == NULL) {
412 printf("%s: no endpoint descriptor for %d\n",
413 USBDEVNAME(sc->sc_dev), i);
414 USB_ATTACH_ERROR_RETURN;
415 }
416
417 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 sc->sc_rx_no = ed->bEndpointAddress;
420 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
421 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
422 sc->sc_tx_no = ed->bEndpointAddress;
423 }
424 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
425 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
426 USB_ATTACH_ERROR_RETURN;
427 }
428
429 usb_init_task(&sc->sc_task, ural_task, sc);
430 callout_init(&sc->scan_ch);
431 sc->amrr.amrr_min_success_threshold = 1;
432 sc->amrr.amrr_min_success_threshold = 15;
433 callout_init(&sc->amrr_ch);
434
435 /* retrieve RT2570 rev. no */
436 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
437
438 /* retrieve MAC address and various other things from EEPROM */
439 ural_read_eeprom(sc);
440
441 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
442 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
443
444 ifp->if_softc = sc;
445 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
446 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
447 ifp->if_init = ural_init;
448 ifp->if_ioctl = ural_ioctl;
449 ifp->if_start = ural_start;
450 ifp->if_watchdog = ural_watchdog;
451 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
452 IFQ_SET_READY(&ifp->if_snd);
453
454 ic->ic_ifp = ifp;
455 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
456 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
457 ic->ic_state = IEEE80211_S_INIT;
458
459 /* set device capabilities */
460 ic->ic_caps =
461 IEEE80211_C_IBSS | /* IBSS mode supported */
462 IEEE80211_C_MONITOR | /* monitor mode supported */
463 IEEE80211_C_HOSTAP | /* HostAp mode supported */
464 IEEE80211_C_TXPMGT | /* tx power management */
465 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
466 IEEE80211_C_SHSLOT | /* short slot time supported */
467 IEEE80211_C_WPA; /* 802.11i */
468
469 if (sc->rf_rev == RAL_RF_5222) {
470 /* set supported .11a rates */
471 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
472
473 /* set supported .11a channels */
474 for (i = 36; i <= 64; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 for (i = 100; i <= 140; i += 4) {
480 ic->ic_channels[i].ic_freq =
481 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
482 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
483 }
484 for (i = 149; i <= 161; i += 4) {
485 ic->ic_channels[i].ic_freq =
486 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
487 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
488 }
489 }
490
491 /* set supported .11b and .11g rates */
492 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
493 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
494
495 /* set supported .11b and .11g channels (1 through 14) */
496 for (i = 1; i <= 14; i++) {
497 ic->ic_channels[i].ic_freq =
498 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
499 ic->ic_channels[i].ic_flags =
500 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
501 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
502 }
503
504 if_attach(ifp);
505 ieee80211_ifattach(ic);
506 ic->ic_reset = ural_reset;
507
508 /* override state transition machine */
509 sc->sc_newstate = ic->ic_newstate;
510 ic->ic_newstate = ural_newstate;
511 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
512
513 #if NBPFILTER > 0
514 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
515 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
516
517 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
518 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
519 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
520
521 sc->sc_txtap_len = sizeof sc->sc_txtapu;
522 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
523 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
524 #endif
525
526 ieee80211_announce(ic);
527
528 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
529 USBDEV(sc->sc_dev));
530
531 USB_ATTACH_SUCCESS_RETURN;
532 }
533
534 USB_DETACH(ural)
535 {
536 USB_DETACH_START(ural, sc);
537 struct ieee80211com *ic = &sc->sc_ic;
538 struct ifnet *ifp = &sc->sc_if;
539 int s;
540
541 s = splusb();
542
543 ural_stop(ifp, 1);
544 usb_rem_task(sc->sc_udev, &sc->sc_task);
545 callout_stop(&sc->scan_ch);
546 callout_stop(&sc->amrr_ch);
547
548 if (sc->sc_rx_pipeh != NULL)
549 usbd_abort_pipe(sc->sc_rx_pipeh);
550
551 if (sc->sc_tx_pipeh != NULL)
552 usbd_abort_pipe(sc->sc_tx_pipeh);
553
554 ural_free_rx_list(sc);
555 ural_free_tx_list(sc);
556
557 if (sc->amrr_xfer != NULL) {
558 usbd_free_xfer(sc->amrr_xfer);
559 sc->amrr_xfer = NULL;
560 }
561
562 if (sc->sc_rx_pipeh != NULL)
563 usbd_close_pipe(sc->sc_rx_pipeh);
564
565 if (sc->sc_tx_pipeh != NULL)
566 usbd_close_pipe(sc->sc_tx_pipeh);
567
568 #if NBPFILTER > 0
569 bpfdetach(ifp);
570 #endif
571 ieee80211_ifdetach(ic);
572 if_detach(ifp);
573
574 splx(s);
575
576 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
577 USBDEV(sc->sc_dev));
578
579 return 0;
580 }
581
582 Static void
583 ural_free_tx_list(struct ural_softc *sc)
584 {
585 int i;
586
587 usb_ether_tx_list_free(sc->tx_data, RAL_TX_LIST_COUNT);
588
589 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
590 if (sc->tx_ni[i] != NULL) {
591 ieee80211_free_node(sc->tx_ni[i]);
592 sc->tx_ni[i] = NULL;
593 }
594 }
595 }
596
597 Static void
598 ural_free_rx_list(struct ural_softc *sc)
599 {
600
601 usb_ether_rx_list_free(sc->rx_data, RAL_RX_LIST_COUNT);
602 }
603
604 Static int
605 ural_media_change(struct ifnet *ifp)
606 {
607 int error;
608
609 error = ieee80211_media_change(ifp);
610 if (error != ENETRESET)
611 return error;
612
613 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
614 ural_init(ifp);
615
616 return 0;
617 }
618
619 /*
620 * This function is called periodically (every 200ms) during scanning to
621 * switch from one channel to another.
622 */
623 Static void
624 ural_next_scan(void *arg)
625 {
626 struct ural_softc *sc = arg;
627 struct ieee80211com *ic = &sc->sc_ic;
628
629 if (ic->ic_state == IEEE80211_S_SCAN)
630 ieee80211_next_scan(ic);
631 }
632
633 Static void
634 ural_task(void *arg)
635 {
636 struct ural_softc *sc = arg;
637 struct ieee80211com *ic = &sc->sc_ic;
638 enum ieee80211_state ostate;
639 struct ieee80211_node *ni;
640 struct mbuf *m;
641
642 ostate = ic->ic_state;
643
644 switch (sc->sc_state) {
645 case IEEE80211_S_INIT:
646 if (ostate == IEEE80211_S_RUN) {
647 /* abort TSF synchronization */
648 ural_write(sc, RAL_TXRX_CSR19, 0);
649
650 /* force tx led to stop blinking */
651 ural_write(sc, RAL_MAC_CSR20, 0);
652 }
653 break;
654
655 case IEEE80211_S_SCAN:
656 ural_set_chan(sc, ic->ic_curchan);
657 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
658 break;
659
660 case IEEE80211_S_AUTH:
661 ural_set_chan(sc, ic->ic_curchan);
662 break;
663
664 case IEEE80211_S_ASSOC:
665 ural_set_chan(sc, ic->ic_curchan);
666 break;
667
668 case IEEE80211_S_RUN:
669 ural_set_chan(sc, ic->ic_curchan);
670
671 ni = ic->ic_bss;
672
673 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
674 ural_update_slot(ic->ic_ifp);
675 ural_set_txpreamble(sc);
676 ural_set_basicrates(sc);
677 ural_set_bssid(sc, ni->ni_bssid);
678 }
679
680 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
681 ic->ic_opmode == IEEE80211_M_IBSS) {
682 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
683 if (m == NULL) {
684 printf("%s: could not allocate beacon\n",
685 USBDEVNAME(sc->sc_dev));
686 return;
687 }
688
689 if (ural_tx_bcn(sc, m, ni) != 0) {
690 printf("%s: could not send beacon\n",
691 USBDEVNAME(sc->sc_dev));
692 return;
693 }
694 }
695
696 /* make tx led blink on tx (controlled by ASIC) */
697 ural_write(sc, RAL_MAC_CSR20, 1);
698
699 if (ic->ic_opmode != IEEE80211_M_MONITOR)
700 ural_enable_tsf_sync(sc);
701
702 /* enable automatic rate adaptation in STA mode */
703 if (ic->ic_opmode == IEEE80211_M_STA &&
704 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
705 ural_amrr_start(sc, ni);
706
707 break;
708 }
709
710 sc->sc_newstate(ic, sc->sc_state, -1);
711 }
712
713 Static int
714 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
715 int arg)
716 {
717 struct ural_softc *sc = ic->ic_ifp->if_softc;
718
719 usb_rem_task(sc->sc_udev, &sc->sc_task);
720 callout_stop(&sc->scan_ch);
721 callout_stop(&sc->amrr_ch);
722
723 /* do it in a process context */
724 sc->sc_state = nstate;
725 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
726
727 return 0;
728 }
729
730 /* quickly determine if a given rate is CCK or OFDM */
731 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
732
733 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
734 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
735
736 #define RAL_SIFS 10 /* us */
737
738 #define RAL_RXTX_TURNAROUND 5 /* us */
739
740 /*
741 * This function is only used by the Rx radiotap code.
742 */
743 Static int
744 ural_rxrate(struct ural_rx_desc *desc)
745 {
746 if (le32toh(desc->flags) & RAL_RX_OFDM) {
747 /* reverse function of ural_plcp_signal */
748 switch (desc->rate) {
749 case 0xb: return 12;
750 case 0xf: return 18;
751 case 0xa: return 24;
752 case 0xe: return 36;
753 case 0x9: return 48;
754 case 0xd: return 72;
755 case 0x8: return 96;
756 case 0xc: return 108;
757 }
758 } else {
759 if (desc->rate == 10)
760 return 2;
761 if (desc->rate == 20)
762 return 4;
763 if (desc->rate == 55)
764 return 11;
765 if (desc->rate == 110)
766 return 22;
767 }
768 return 2; /* should not get there */
769 }
770
771 Static void
772 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
773 usbd_status status)
774 {
775 struct ue_chain *data = priv;
776 struct ural_softc *sc = (void *)data->ue_dev;
777 struct ifnet *ifp = &sc->sc_if;
778 int s;
779
780 usbd_unmap_buffer(xfer);
781
782 if (status != USBD_NORMAL_COMPLETION) {
783 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
784 return;
785
786 printf("%s: could not transmit buffer: %s\n",
787 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
788
789 if (status == USBD_STALLED)
790 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
791
792 ifp->if_oerrors++;
793 return;
794 }
795
796 s = splnet();
797
798 m_freem(data->ue_mbuf);
799 data->ue_mbuf = NULL;
800 ieee80211_free_node(sc->tx_ni[data->ue_idx]);
801 sc->tx_ni[data->ue_idx] = NULL;
802
803 sc->tx_queued--;
804 ifp->if_opackets++;
805
806 DPRINTFN(10, ("tx done\n"));
807
808 sc->sc_tx_timer = 0;
809 ifp->if_flags &= ~IFF_OACTIVE;
810 ural_start(ifp);
811
812 splx(s);
813 }
814
815 Static void
816 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
817 {
818 struct ue_chain *data = priv;
819 struct ural_softc *sc = (void *)data->ue_dev;
820 struct ieee80211com *ic = &sc->sc_ic;
821 struct ifnet *ifp = &sc->sc_if;
822 struct ural_rx_desc *desc;
823 struct ieee80211_frame *wh;
824 struct ieee80211_node *ni;
825 struct mbuf *m;
826 int s, len;
827 u_int32_t rxflags;
828
829 usbd_unmap_buffer(xfer);
830
831 if (status != USBD_NORMAL_COMPLETION) {
832 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
833 return;
834
835 if (status == USBD_STALLED)
836 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
837 goto skip;
838 }
839
840 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
841
842 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
843 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
844 len));
845 ifp->if_ierrors++;
846 goto skip;
847 }
848
849 m = data->ue_mbuf;
850
851 /* rx descriptor is located at the end */
852 desc = (void *)(mtod(m, char *) + len - RAL_RX_DESC_SIZE);
853 rxflags = UGETDW((u_int8_t *)&desc->flags);
854
855 if ((rxflags & RAL_RX_PHY_ERROR) ||
856 (rxflags & RAL_RX_CRC_ERROR)) {
857 /*
858 * This should not happen since we did not request to receive
859 * those frames when we filled RAL_TXRX_CSR2.
860 */
861 DPRINTFN(5, ("PHY or CRC error\n"));
862 ifp->if_ierrors++;
863 goto skip;
864 }
865
866 /*
867 * Allocate new mbuf cluster for the next transfer.
868 * If that failed, discard current packet and recycle the mbuf.
869 */
870 if ((data->ue_mbuf = usb_ether_newbuf(NULL)) == NULL) {
871 printf("%s: no memory for rx list -- packet dropped!\n",
872 USBDEVNAME(sc->sc_dev));
873 ifp->if_ierrors++;
874 data->ue_mbuf = usb_ether_newbuf(m);
875 goto skip;
876 }
877
878 /* finalize mbuf */
879 m->m_pkthdr.rcvif = ifp;
880 m->m_pkthdr.len = m->m_len = (rxflags >> 16) & 0xfff;
881 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
882
883 s = splnet();
884
885 #if NBPFILTER > 0
886 if (sc->sc_drvbpf != NULL) {
887 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
888
889 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
890 tap->wr_rate = ural_rxrate(desc);
891 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
892 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
893 tap->wr_antenna = sc->rx_ant;
894 tap->wr_antsignal = desc->rssi;
895
896 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
897 }
898 #endif
899
900 wh = mtod(m, struct ieee80211_frame *);
901 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
902
903 /* send the frame to the 802.11 layer */
904 ieee80211_input(ic, m, ni, desc->rssi, 0);
905
906 /* node is no longer needed */
907 ieee80211_free_node(ni);
908
909 splx(s);
910
911 DPRINTFN(15, ("rx done\n"));
912
913 skip: /* setup a new transfer */
914 (void)usbd_map_buffer_mbuf(xfer, data->ue_mbuf);
915 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */, MCLBYTES,
916 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
917 usbd_transfer(xfer);
918 }
919
920 /*
921 * Return the expected ack rate for a frame transmitted at rate `rate'.
922 * XXX: this should depend on the destination node basic rate set.
923 */
924 Static int
925 ural_ack_rate(struct ieee80211com *ic, int rate)
926 {
927 switch (rate) {
928 /* CCK rates */
929 case 2:
930 return 2;
931 case 4:
932 case 11:
933 case 22:
934 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
935
936 /* OFDM rates */
937 case 12:
938 case 18:
939 return 12;
940 case 24:
941 case 36:
942 return 24;
943 case 48:
944 case 72:
945 case 96:
946 case 108:
947 return 48;
948 }
949
950 /* default to 1Mbps */
951 return 2;
952 }
953
954 /*
955 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
956 * The function automatically determines the operating mode depending on the
957 * given rate. `flags' indicates whether short preamble is in use or not.
958 */
959 Static uint16_t
960 ural_txtime(int len, int rate, uint32_t flags)
961 {
962 uint16_t txtime;
963
964 if (RAL_RATE_IS_OFDM(rate)) {
965 /* IEEE Std 802.11g-2003, pp. 37 */
966 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
967 txtime = 16 + 4 + 4 * txtime + 6;
968 } else {
969 /* IEEE Std 802.11b-1999, pp. 28 */
970 txtime = (16 * len + rate - 1) / rate;
971 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
972 txtime += 72 + 24;
973 else
974 txtime += 144 + 48;
975 }
976 return txtime;
977 }
978
979 Static uint8_t
980 ural_plcp_signal(int rate)
981 {
982 switch (rate) {
983 /* CCK rates (returned values are device-dependent) */
984 case 2: return 0x0;
985 case 4: return 0x1;
986 case 11: return 0x2;
987 case 22: return 0x3;
988
989 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
990 case 12: return 0xb;
991 case 18: return 0xf;
992 case 24: return 0xa;
993 case 36: return 0xe;
994 case 48: return 0x9;
995 case 72: return 0xd;
996 case 96: return 0x8;
997 case 108: return 0xc;
998
999 /* unsupported rates (should not get there) */
1000 default: return 0xff;
1001 }
1002 }
1003
1004 Static void
1005 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1006 uint32_t flags, int len, int rate)
1007 {
1008 struct ieee80211com *ic = &sc->sc_ic;
1009 uint16_t plcp_length;
1010 int remainder;
1011
1012 desc->flags = htole32(flags);
1013 desc->flags |= htole32(RAL_TX_NEWSEQ);
1014 desc->flags |= htole32(len << 16);
1015
1016 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1017 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1018
1019 /* setup PLCP fields */
1020 desc->plcp_signal = ural_plcp_signal(rate);
1021 desc->plcp_service = 4;
1022
1023 len += IEEE80211_CRC_LEN;
1024 if (RAL_RATE_IS_OFDM(rate)) {
1025 desc->flags |= htole32(RAL_TX_OFDM);
1026
1027 plcp_length = len & 0xfff;
1028 desc->plcp_length_hi = plcp_length >> 6;
1029 desc->plcp_length_lo = plcp_length & 0x3f;
1030 } else {
1031 plcp_length = (16 * len + rate - 1) / rate;
1032 if (rate == 22) {
1033 remainder = (16 * len) % 22;
1034 if (remainder != 0 && remainder < 7)
1035 desc->plcp_service |= RAL_PLCP_LENGEXT;
1036 }
1037 desc->plcp_length_hi = plcp_length >> 8;
1038 desc->plcp_length_lo = plcp_length & 0xff;
1039
1040 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1041 desc->plcp_signal |= 0x08;
1042 }
1043
1044 desc->iv = 0;
1045 desc->eiv = 0;
1046 }
1047
1048 #define RAL_TX_TIMEOUT 5000
1049
1050 Static int
1051 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1052 {
1053 struct ural_tx_desc *desc;
1054 usbd_xfer_handle xfer;
1055 uint8_t cmd = 0;
1056 usbd_status error;
1057 int xferlen, rate;
1058
1059 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1060
1061 xfer = usbd_alloc_xfer(sc->sc_udev, sc->sc_tx_pipeh);
1062 if (xfer == NULL) {
1063 m_freem(m0);
1064 return ENOMEM;
1065 }
1066
1067 if (usbd_map_alloc(xfer)) {
1068 usbd_free_xfer(xfer);
1069 m_freem(m0);
1070 return ENOMEM;
1071 }
1072
1073 /* Prepend Tx descriptor */
1074 M_PREPEND(m0, RAL_TX_DESC_SIZE, M_WAIT);
1075 if (m0 != NULL)
1076 m0 = m_pullup(m0, RAL_TX_DESC_SIZE); /* just in case */
1077 if (m0 == NULL)
1078 return ENOBUFS;
1079 desc = mtod(m0, struct ural_tx_desc *);
1080
1081 /* xfer length needs to be a multiple of two! */
1082 xferlen = (m0->m_pkthdr.len + 1) & ~1;
1083 if (m0->m_pkthdr.len != xferlen) {
1084 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1085 if (m0->m_pkthdr.len != xferlen) {
1086 m_freem(m0);
1087 return ENOBUFS;
1088 }
1089 }
1090
1091 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1092 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1093
1094 error = usbd_sync_transfer(xfer);
1095 if (error != 0) {
1096 usbd_free_xfer(xfer);
1097 m_freem(m0);
1098 return error;
1099 }
1100
1101 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1102 m0->m_pkthdr.len, rate);
1103
1104 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1105 m0->m_pkthdr.len, rate, xferlen));
1106
1107 error = usbd_map_buffer_mbuf(xfer, m0);
1108 if (error != 0) {
1109 usbd_free_xfer(xfer);
1110 m_freem(m0);
1111 return error;
1112 }
1113
1114 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, NULL /* XXX buf */, xferlen,
1115 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1116
1117 error = usbd_sync_transfer(xfer);
1118 usbd_free_xfer(xfer);
1119
1120 m_freem(m0);
1121 return error;
1122 }
1123
1124 Static int
1125 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1126 {
1127 struct ieee80211com *ic = &sc->sc_ic;
1128 struct ural_tx_desc *desc;
1129 struct ue_chain *data;
1130 struct ieee80211_frame *wh;
1131 uint32_t flags = 0;
1132 uint16_t dur;
1133 usbd_status error;
1134 int xferlen, rate;
1135 int ret;
1136
1137 data = &sc->tx_data[0];
1138
1139 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1140
1141 data->ue_mbuf = m0;
1142 sc->tx_ni[data->ue_idx] = ni;
1143
1144 wh = mtod(m0, struct ieee80211_frame *);
1145
1146 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1147 flags |= RAL_TX_ACK;
1148
1149 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1150 *(uint16_t *)wh->i_dur = htole16(dur);
1151
1152 /* tell hardware to add timestamp for probe responses */
1153 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1154 IEEE80211_FC0_TYPE_MGT &&
1155 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1156 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1157 flags |= RAL_TX_TIMESTAMP;
1158 }
1159
1160 #if NBPFILTER > 0
1161 if (sc->sc_drvbpf != NULL) {
1162 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1163
1164 tap->wt_flags = 0;
1165 tap->wt_rate = rate;
1166 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1167 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1168 tap->wt_antenna = sc->tx_ant;
1169
1170 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1171 }
1172 #endif
1173
1174 /* Prepend Tx descriptor */
1175 M_PREPEND(m0, RAL_TX_DESC_SIZE, M_DONTWAIT);
1176 if (m0 != NULL)
1177 m0 = m_pullup(m0, RAL_TX_DESC_SIZE); /* just in case */
1178 if (m0 == NULL) {
1179 return ENOBUFS;
1180 }
1181 desc = mtod(m0, struct ural_tx_desc *);
1182
1183 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1184
1185 /* align end on a 2-bytes boundary */
1186 xferlen = (m0->m_pkthdr.len + 1) & ~1;
1187
1188 /*
1189 * No space left in the last URB to store the extra 2 bytes, force
1190 * sending of another URB.
1191 */
1192 if ((xferlen % 64) == 0)
1193 xferlen += 2;
1194
1195 if (m0->m_pkthdr.len != xferlen) {
1196 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1197 if (m0->m_pkthdr.len != xferlen) {
1198 m_freem(m0);
1199 return ENOBUFS;
1200 }
1201 }
1202
1203 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1204 if (ret) {
1205 m_freem(m0);
1206 return ret;
1207 }
1208
1209 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1210 m0->m_pkthdr.len, rate, xferlen));
1211
1212 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */,
1213 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1214 ural_txeof);
1215
1216 error = usbd_transfer(data->ue_xfer);
1217 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1218 data->ue_mbuf = NULL;
1219 m_freem(m0);
1220 return error;
1221 }
1222
1223 sc->tx_queued++;
1224
1225 return 0;
1226 }
1227
1228 Static int
1229 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1230 {
1231 struct ieee80211com *ic = &sc->sc_ic;
1232 struct ural_tx_desc *desc;
1233 struct ue_chain *data;
1234 struct ieee80211_frame *wh;
1235 struct ieee80211_key *k;
1236 uint32_t flags = 0;
1237 uint16_t dur;
1238 usbd_status error;
1239 int xferlen, rate;
1240 int ret;
1241
1242 wh = mtod(m0, struct ieee80211_frame *);
1243
1244 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1245 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1246 else
1247 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1248
1249 rate &= IEEE80211_RATE_VAL;
1250
1251 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1252 k = ieee80211_crypto_encap(ic, ni, m0);
1253 if (k == NULL) {
1254 m_freem(m0);
1255 return ENOBUFS;
1256 }
1257
1258 /* packet header may have moved, reset our local pointer */
1259 wh = mtod(m0, struct ieee80211_frame *);
1260 }
1261
1262 data = &sc->tx_data[0];
1263
1264 data->ue_mbuf = m0;
1265 sc->tx_ni[data->ue_idx] = ni;
1266
1267 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1268 flags |= RAL_TX_ACK;
1269 flags |= RAL_TX_RETRY(7);
1270
1271 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1272 ic->ic_flags) + RAL_SIFS;
1273 *(uint16_t *)wh->i_dur = htole16(dur);
1274 }
1275
1276 #if NBPFILTER > 0
1277 if (sc->sc_drvbpf != NULL) {
1278 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1279
1280 tap->wt_flags = 0;
1281 tap->wt_rate = rate;
1282 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1283 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1284 tap->wt_antenna = sc->tx_ant;
1285
1286 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1287 }
1288 #endif
1289
1290 /* Prepend Tx descriptor */
1291 M_PREPEND(m0, RAL_TX_DESC_SIZE, M_DONTWAIT);
1292 if (m0 != NULL)
1293 m0 = m_pullup(m0, RAL_TX_DESC_SIZE); /* just in case */
1294 if (m0 == NULL) {
1295 return ENOBUFS;
1296 }
1297 desc = mtod(m0, struct ural_tx_desc *);
1298
1299 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1300
1301 /* align end on a 2-bytes boundary */
1302 xferlen = (m0->m_pkthdr.len + 1) & ~1;
1303
1304 /*
1305 * No space left in the last URB to store the extra 2 bytes, force
1306 * sending of another URB.
1307 */
1308 if ((xferlen % 64) == 0)
1309 xferlen += 2;
1310
1311 if (m0->m_pkthdr.len != xferlen) {
1312 m_copyback(m0, xferlen - 1, 1, ""); /* expand mbuf chain */
1313 if (m0->m_pkthdr.len != xferlen) {
1314 m_freem(m0);
1315 return ENOBUFS;
1316 }
1317 }
1318
1319 ret = usb_ether_map_tx_buffer_mbuf(data, m0);
1320 if (ret) {
1321 m_freem(m0);
1322 return ret;
1323 }
1324
1325 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1326 m0->m_pkthdr.len, rate, xferlen));
1327
1328 usbd_setup_xfer(data->ue_xfer, sc->sc_tx_pipeh, data, NULL /* XXX buf */,
1329 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1330 ural_txeof);
1331
1332 error = usbd_transfer(data->ue_xfer);
1333 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1334 data->ue_mbuf = NULL;
1335 m_freem(m0);
1336 return error;
1337 }
1338
1339 sc->tx_queued++;
1340
1341 return 0;
1342 }
1343
1344 Static void
1345 ural_start(struct ifnet *ifp)
1346 {
1347 struct ural_softc *sc = ifp->if_softc;
1348 struct ieee80211com *ic = &sc->sc_ic;
1349 struct mbuf *m0;
1350 struct ether_header *eh;
1351 struct ieee80211_node *ni;
1352
1353 for (;;) {
1354 IF_POLL(&ic->ic_mgtq, m0);
1355 if (m0 != NULL) {
1356 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1357 ifp->if_flags |= IFF_OACTIVE;
1358 break;
1359 }
1360 IF_DEQUEUE(&ic->ic_mgtq, m0);
1361
1362 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1363 m0->m_pkthdr.rcvif = NULL;
1364 #if NBPFILTER > 0
1365 if (ic->ic_rawbpf != NULL)
1366 bpf_mtap(ic->ic_rawbpf, m0);
1367 #endif
1368 if (ural_tx_mgt(sc, m0, ni) != 0)
1369 break;
1370
1371 } else {
1372 if (ic->ic_state != IEEE80211_S_RUN)
1373 break;
1374 IFQ_DEQUEUE(&ifp->if_snd, m0);
1375 if (m0 == NULL)
1376 break;
1377 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1378 IF_PREPEND(&ifp->if_snd, m0);
1379 ifp->if_flags |= IFF_OACTIVE;
1380 break;
1381 }
1382
1383 if (m0->m_len < sizeof (struct ether_header) &&
1384 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1385 continue;
1386
1387 eh = mtod(m0, struct ether_header *);
1388 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1389 if (ni == NULL) {
1390 m_freem(m0);
1391 continue;
1392 }
1393 #if NBPFILTER > 0
1394 if (ifp->if_bpf != NULL)
1395 bpf_mtap(ifp->if_bpf, m0);
1396 #endif
1397 m0 = ieee80211_encap(ic, m0, ni);
1398 if (m0 == NULL) {
1399 ieee80211_free_node(ni);
1400 continue;
1401 }
1402 #if NBPFILTER > 0
1403 if (ic->ic_rawbpf != NULL)
1404 bpf_mtap(ic->ic_rawbpf, m0);
1405 #endif
1406 if (ural_tx_data(sc, m0, ni) != 0) {
1407 ieee80211_free_node(ni);
1408 ifp->if_oerrors++;
1409 break;
1410 }
1411 }
1412
1413 sc->sc_tx_timer = 5;
1414 ifp->if_timer = 1;
1415 }
1416 }
1417
1418 Static void
1419 ural_watchdog(struct ifnet *ifp)
1420 {
1421 struct ural_softc *sc = ifp->if_softc;
1422 struct ieee80211com *ic = &sc->sc_ic;
1423
1424 ifp->if_timer = 0;
1425
1426 if (sc->sc_tx_timer > 0) {
1427 if (--sc->sc_tx_timer == 0) {
1428 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1429 /*ural_init(sc); XXX needs a process context! */
1430 ifp->if_oerrors++;
1431 return;
1432 }
1433 ifp->if_timer = 1;
1434 }
1435
1436 ieee80211_watchdog(ic);
1437 }
1438
1439 /*
1440 * This function allows for fast channel switching in monitor mode (used by
1441 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1442 * generate a new beacon frame.
1443 */
1444 Static int
1445 ural_reset(struct ifnet *ifp)
1446 {
1447 struct ural_softc *sc = ifp->if_softc;
1448 struct ieee80211com *ic = &sc->sc_ic;
1449
1450 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1451 return ENETRESET;
1452
1453 ural_set_chan(sc, ic->ic_curchan);
1454
1455 return 0;
1456 }
1457
1458 Static int
1459 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1460 {
1461 struct ural_softc *sc = ifp->if_softc;
1462 struct ieee80211com *ic = &sc->sc_ic;
1463 int s, error = 0;
1464
1465 s = splnet();
1466
1467 switch (cmd) {
1468 case SIOCSIFFLAGS:
1469 if (ifp->if_flags & IFF_UP) {
1470 if (ifp->if_flags & IFF_RUNNING)
1471 ural_update_promisc(sc);
1472 else
1473 ural_init(ifp);
1474 } else {
1475 if (ifp->if_flags & IFF_RUNNING)
1476 ural_stop(ifp, 1);
1477 }
1478 break;
1479
1480 default:
1481 error = ieee80211_ioctl(ic, cmd, data);
1482 }
1483
1484 if (error == ENETRESET) {
1485 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1486 (IFF_UP | IFF_RUNNING))
1487 ural_init(ifp);
1488 error = 0;
1489 }
1490
1491 splx(s);
1492
1493 return error;
1494 }
1495
1496 Static void
1497 ural_set_testmode(struct ural_softc *sc)
1498 {
1499 usb_device_request_t req;
1500 usbd_status error;
1501
1502 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1503 req.bRequest = RAL_VENDOR_REQUEST;
1504 USETW(req.wValue, 4);
1505 USETW(req.wIndex, 1);
1506 USETW(req.wLength, 0);
1507
1508 error = usbd_do_request(sc->sc_udev, &req, NULL);
1509 if (error != 0) {
1510 printf("%s: could not set test mode: %s\n",
1511 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1512 }
1513 }
1514
1515 Static void
1516 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1517 {
1518 usb_device_request_t req;
1519 usbd_status error;
1520
1521 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1522 req.bRequest = RAL_READ_EEPROM;
1523 USETW(req.wValue, 0);
1524 USETW(req.wIndex, addr);
1525 USETW(req.wLength, len);
1526
1527 error = usbd_do_request(sc->sc_udev, &req, buf);
1528 if (error != 0) {
1529 printf("%s: could not read EEPROM: %s\n",
1530 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1531 }
1532 }
1533
1534 Static uint16_t
1535 ural_read(struct ural_softc *sc, uint16_t reg)
1536 {
1537 usb_device_request_t req;
1538 usbd_status error;
1539 uint16_t val;
1540
1541 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1542 req.bRequest = RAL_READ_MAC;
1543 USETW(req.wValue, 0);
1544 USETW(req.wIndex, reg);
1545 USETW(req.wLength, sizeof (uint16_t));
1546
1547 error = usbd_do_request(sc->sc_udev, &req, &val);
1548 if (error != 0) {
1549 printf("%s: could not read MAC register: %s\n",
1550 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1551 return 0;
1552 }
1553
1554 return le16toh(val);
1555 }
1556
1557 Static void
1558 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1559 {
1560 usb_device_request_t req;
1561 usbd_status error;
1562
1563 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1564 req.bRequest = RAL_READ_MULTI_MAC;
1565 USETW(req.wValue, 0);
1566 USETW(req.wIndex, reg);
1567 USETW(req.wLength, len);
1568
1569 error = usbd_do_request(sc->sc_udev, &req, buf);
1570 if (error != 0) {
1571 printf("%s: could not read MAC register: %s\n",
1572 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1573 }
1574 }
1575
1576 Static void
1577 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1578 {
1579 usb_device_request_t req;
1580 usbd_status error;
1581
1582 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1583 req.bRequest = RAL_WRITE_MAC;
1584 USETW(req.wValue, val);
1585 USETW(req.wIndex, reg);
1586 USETW(req.wLength, 0);
1587
1588 error = usbd_do_request(sc->sc_udev, &req, NULL);
1589 if (error != 0) {
1590 printf("%s: could not write MAC register: %s\n",
1591 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1592 }
1593 }
1594
1595 Static void
1596 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1597 {
1598 usb_device_request_t req;
1599 usbd_status error;
1600
1601 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1602 req.bRequest = RAL_WRITE_MULTI_MAC;
1603 USETW(req.wValue, 0);
1604 USETW(req.wIndex, reg);
1605 USETW(req.wLength, len);
1606
1607 error = usbd_do_request(sc->sc_udev, &req, buf);
1608 if (error != 0) {
1609 printf("%s: could not write MAC register: %s\n",
1610 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1611 }
1612 }
1613
1614 Static void
1615 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1616 {
1617 uint16_t tmp;
1618 int ntries;
1619
1620 for (ntries = 0; ntries < 5; ntries++) {
1621 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1622 break;
1623 }
1624 if (ntries == 5) {
1625 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1626 return;
1627 }
1628
1629 tmp = reg << 8 | val;
1630 ural_write(sc, RAL_PHY_CSR7, tmp);
1631 }
1632
1633 Static uint8_t
1634 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1635 {
1636 uint16_t val;
1637 int ntries;
1638
1639 val = RAL_BBP_WRITE | reg << 8;
1640 ural_write(sc, RAL_PHY_CSR7, val);
1641
1642 for (ntries = 0; ntries < 5; ntries++) {
1643 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1644 break;
1645 }
1646 if (ntries == 5) {
1647 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1648 return 0;
1649 }
1650
1651 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1652 }
1653
1654 Static void
1655 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1656 {
1657 uint32_t tmp;
1658 int ntries;
1659
1660 for (ntries = 0; ntries < 5; ntries++) {
1661 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1662 break;
1663 }
1664 if (ntries == 5) {
1665 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1666 return;
1667 }
1668
1669 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1670 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1671 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1672
1673 /* remember last written value in sc */
1674 sc->rf_regs[reg] = val;
1675
1676 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1677 }
1678
1679 Static void
1680 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1681 {
1682 struct ieee80211com *ic = &sc->sc_ic;
1683 uint8_t power, tmp;
1684 u_int i, chan;
1685
1686 chan = ieee80211_chan2ieee(ic, c);
1687 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1688 return;
1689
1690 if (IEEE80211_IS_CHAN_2GHZ(c))
1691 power = min(sc->txpow[chan - 1], 31);
1692 else
1693 power = 31;
1694
1695 /* adjust txpower using ifconfig settings */
1696 power -= (100 - ic->ic_txpowlimit) / 8;
1697
1698 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1699
1700 switch (sc->rf_rev) {
1701 case RAL_RF_2522:
1702 ural_rf_write(sc, RAL_RF1, 0x00814);
1703 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1704 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1705 break;
1706
1707 case RAL_RF_2523:
1708 ural_rf_write(sc, RAL_RF1, 0x08804);
1709 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1710 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1711 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1712 break;
1713
1714 case RAL_RF_2524:
1715 ural_rf_write(sc, RAL_RF1, 0x0c808);
1716 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1717 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1718 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1719 break;
1720
1721 case RAL_RF_2525:
1722 ural_rf_write(sc, RAL_RF1, 0x08808);
1723 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1724 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1725 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1726
1727 ural_rf_write(sc, RAL_RF1, 0x08808);
1728 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1729 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1730 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1731 break;
1732
1733 case RAL_RF_2525E:
1734 ural_rf_write(sc, RAL_RF1, 0x08808);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1737 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1738 break;
1739
1740 case RAL_RF_2526:
1741 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1742 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1743 ural_rf_write(sc, RAL_RF1, 0x08804);
1744
1745 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1747 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1748 break;
1749
1750 /* dual-band RF */
1751 case RAL_RF_5222:
1752 for (i = 0; ural_rf5222[i].chan != chan; i++);
1753
1754 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1755 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1756 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1757 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1758 break;
1759 }
1760
1761 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1762 ic->ic_state != IEEE80211_S_SCAN) {
1763 /* set Japan filter bit for channel 14 */
1764 tmp = ural_bbp_read(sc, 70);
1765
1766 tmp &= ~RAL_JAPAN_FILTER;
1767 if (chan == 14)
1768 tmp |= RAL_JAPAN_FILTER;
1769
1770 ural_bbp_write(sc, 70, tmp);
1771
1772 /* clear CRC errors */
1773 ural_read(sc, RAL_STA_CSR0);
1774
1775 DELAY(10000);
1776 ural_disable_rf_tune(sc);
1777 }
1778 }
1779
1780 /*
1781 * Disable RF auto-tuning.
1782 */
1783 Static void
1784 ural_disable_rf_tune(struct ural_softc *sc)
1785 {
1786 uint32_t tmp;
1787
1788 if (sc->rf_rev != RAL_RF_2523) {
1789 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1790 ural_rf_write(sc, RAL_RF1, tmp);
1791 }
1792
1793 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1794 ural_rf_write(sc, RAL_RF3, tmp);
1795
1796 DPRINTFN(2, ("disabling RF autotune\n"));
1797 }
1798
1799 /*
1800 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1801 * synchronization.
1802 */
1803 Static void
1804 ural_enable_tsf_sync(struct ural_softc *sc)
1805 {
1806 struct ieee80211com *ic = &sc->sc_ic;
1807 uint16_t logcwmin, preload, tmp;
1808
1809 /* first, disable TSF synchronization */
1810 ural_write(sc, RAL_TXRX_CSR19, 0);
1811
1812 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1813 ural_write(sc, RAL_TXRX_CSR18, tmp);
1814
1815 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1816 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1817 tmp = logcwmin << 12 | preload;
1818 ural_write(sc, RAL_TXRX_CSR20, tmp);
1819
1820 /* finally, enable TSF synchronization */
1821 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1822 if (ic->ic_opmode == IEEE80211_M_STA)
1823 tmp |= RAL_ENABLE_TSF_SYNC(1);
1824 else
1825 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1826 ural_write(sc, RAL_TXRX_CSR19, tmp);
1827
1828 DPRINTF(("enabling TSF synchronization\n"));
1829 }
1830
1831 Static void
1832 ural_update_slot(struct ifnet *ifp)
1833 {
1834 struct ural_softc *sc = ifp->if_softc;
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 uint16_t slottime, sifs, eifs;
1837
1838 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1839
1840 /*
1841 * These settings may sound a bit inconsistent but this is what the
1842 * reference driver does.
1843 */
1844 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1845 sifs = 16 - RAL_RXTX_TURNAROUND;
1846 eifs = 364;
1847 } else {
1848 sifs = 10 - RAL_RXTX_TURNAROUND;
1849 eifs = 64;
1850 }
1851
1852 ural_write(sc, RAL_MAC_CSR10, slottime);
1853 ural_write(sc, RAL_MAC_CSR11, sifs);
1854 ural_write(sc, RAL_MAC_CSR12, eifs);
1855 }
1856
1857 Static void
1858 ural_set_txpreamble(struct ural_softc *sc)
1859 {
1860 uint16_t tmp;
1861
1862 tmp = ural_read(sc, RAL_TXRX_CSR10);
1863
1864 tmp &= ~RAL_SHORT_PREAMBLE;
1865 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1866 tmp |= RAL_SHORT_PREAMBLE;
1867
1868 ural_write(sc, RAL_TXRX_CSR10, tmp);
1869 }
1870
1871 Static void
1872 ural_set_basicrates(struct ural_softc *sc)
1873 {
1874 struct ieee80211com *ic = &sc->sc_ic;
1875
1876 /* update basic rate set */
1877 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1878 /* 11b basic rates: 1, 2Mbps */
1879 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1880 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1881 /* 11a basic rates: 6, 12, 24Mbps */
1882 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1883 } else {
1884 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1885 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1886 }
1887 }
1888
1889 Static void
1890 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1891 {
1892 uint16_t tmp;
1893
1894 tmp = bssid[0] | bssid[1] << 8;
1895 ural_write(sc, RAL_MAC_CSR5, tmp);
1896
1897 tmp = bssid[2] | bssid[3] << 8;
1898 ural_write(sc, RAL_MAC_CSR6, tmp);
1899
1900 tmp = bssid[4] | bssid[5] << 8;
1901 ural_write(sc, RAL_MAC_CSR7, tmp);
1902
1903 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1904 }
1905
1906 Static void
1907 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1908 {
1909 uint16_t tmp;
1910
1911 tmp = addr[0] | addr[1] << 8;
1912 ural_write(sc, RAL_MAC_CSR2, tmp);
1913
1914 tmp = addr[2] | addr[3] << 8;
1915 ural_write(sc, RAL_MAC_CSR3, tmp);
1916
1917 tmp = addr[4] | addr[5] << 8;
1918 ural_write(sc, RAL_MAC_CSR4, tmp);
1919
1920 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1921 }
1922
1923 Static void
1924 ural_update_promisc(struct ural_softc *sc)
1925 {
1926 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1927 uint32_t tmp;
1928
1929 tmp = ural_read(sc, RAL_TXRX_CSR2);
1930
1931 tmp &= ~RAL_DROP_NOT_TO_ME;
1932 if (!(ifp->if_flags & IFF_PROMISC))
1933 tmp |= RAL_DROP_NOT_TO_ME;
1934
1935 ural_write(sc, RAL_TXRX_CSR2, tmp);
1936
1937 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1938 "entering" : "leaving"));
1939 }
1940
1941 Static const char *
1942 ural_get_rf(int rev)
1943 {
1944 switch (rev) {
1945 case RAL_RF_2522: return "RT2522";
1946 case RAL_RF_2523: return "RT2523";
1947 case RAL_RF_2524: return "RT2524";
1948 case RAL_RF_2525: return "RT2525";
1949 case RAL_RF_2525E: return "RT2525e";
1950 case RAL_RF_2526: return "RT2526";
1951 case RAL_RF_5222: return "RT5222";
1952 default: return "unknown";
1953 }
1954 }
1955
1956 Static void
1957 ural_read_eeprom(struct ural_softc *sc)
1958 {
1959 struct ieee80211com *ic = &sc->sc_ic;
1960 uint16_t val;
1961
1962 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1963 val = le16toh(val);
1964 sc->rf_rev = (val >> 11) & 0x7;
1965 sc->hw_radio = (val >> 10) & 0x1;
1966 sc->led_mode = (val >> 6) & 0x7;
1967 sc->rx_ant = (val >> 4) & 0x3;
1968 sc->tx_ant = (val >> 2) & 0x3;
1969 sc->nb_ant = val & 0x3;
1970
1971 /* read MAC address */
1972 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1973
1974 /* read default values for BBP registers */
1975 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1976
1977 /* read Tx power for all b/g channels */
1978 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1979 }
1980
1981 Static int
1982 ural_bbp_init(struct ural_softc *sc)
1983 {
1984 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1985 int i, ntries;
1986
1987 /* wait for BBP to be ready */
1988 for (ntries = 0; ntries < 100; ntries++) {
1989 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1990 break;
1991 DELAY(1000);
1992 }
1993 if (ntries == 100) {
1994 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
1995 return EIO;
1996 }
1997
1998 /* initialize BBP registers to default values */
1999 for (i = 0; i < N(ural_def_bbp); i++)
2000 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2001
2002 #if 0
2003 /* initialize BBP registers to values stored in EEPROM */
2004 for (i = 0; i < 16; i++) {
2005 if (sc->bbp_prom[i].reg == 0xff)
2006 continue;
2007 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2008 }
2009 #endif
2010
2011 return 0;
2012 #undef N
2013 }
2014
2015 Static void
2016 ural_set_txantenna(struct ural_softc *sc, int antenna)
2017 {
2018 uint16_t tmp;
2019 uint8_t tx;
2020
2021 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2022 if (antenna == 1)
2023 tx |= RAL_BBP_ANTA;
2024 else if (antenna == 2)
2025 tx |= RAL_BBP_ANTB;
2026 else
2027 tx |= RAL_BBP_DIVERSITY;
2028
2029 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2030 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2031 sc->rf_rev == RAL_RF_5222)
2032 tx |= RAL_BBP_FLIPIQ;
2033
2034 ural_bbp_write(sc, RAL_BBP_TX, tx);
2035
2036 /* update values in PHY_CSR5 and PHY_CSR6 */
2037 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2038 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2039
2040 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2041 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2042 }
2043
2044 Static void
2045 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2046 {
2047 uint8_t rx;
2048
2049 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2050 if (antenna == 1)
2051 rx |= RAL_BBP_ANTA;
2052 else if (antenna == 2)
2053 rx |= RAL_BBP_ANTB;
2054 else
2055 rx |= RAL_BBP_DIVERSITY;
2056
2057 /* need to force no I/Q flip for RF 2525e and 2526 */
2058 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2059 rx &= ~RAL_BBP_FLIPIQ;
2060
2061 ural_bbp_write(sc, RAL_BBP_RX, rx);
2062 }
2063
2064 Static int
2065 ural_init(struct ifnet *ifp)
2066 {
2067 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2068 struct ural_softc *sc = ifp->if_softc;
2069 struct ieee80211com *ic = &sc->sc_ic;
2070 struct ieee80211_key *wk;
2071 struct ue_chain *data;
2072 uint16_t tmp;
2073 usbd_status uerror;
2074 int error;
2075 int i, ntries;
2076
2077 ural_set_testmode(sc);
2078 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2079
2080 ural_stop(ifp, 0);
2081
2082 /* initialize MAC registers to default values */
2083 for (i = 0; i < N(ural_def_mac); i++)
2084 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2085
2086 /* wait for BBP and RF to wake up (this can take a long time!) */
2087 for (ntries = 0; ntries < 100; ntries++) {
2088 tmp = ural_read(sc, RAL_MAC_CSR17);
2089 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2090 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2091 break;
2092 DELAY(1000);
2093 }
2094 if (ntries == 100) {
2095 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2096 USBDEVNAME(sc->sc_dev));
2097 error = EIO;
2098 goto fail;
2099 }
2100
2101 /* we're ready! */
2102 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2103
2104 /* set basic rate set (will be updated later) */
2105 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2106
2107 error = ural_bbp_init(sc);
2108 if (error != 0)
2109 goto fail;
2110
2111 /* set default BSS channel */
2112 ural_set_chan(sc, ic->ic_curchan);
2113
2114 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2115 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2116
2117 ural_set_txantenna(sc, sc->tx_ant);
2118 ural_set_rxantenna(sc, sc->rx_ant);
2119
2120 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2121 ural_set_macaddr(sc, ic->ic_myaddr);
2122
2123 /*
2124 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2125 */
2126 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2127 wk = &ic->ic_crypto.cs_nw_keys[i];
2128 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2129 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2130 }
2131
2132 /*
2133 * Allocate xfer for AMRR statistics requests.
2134 */
2135 sc->amrr_xfer = usbd_alloc_default_xfer(sc->sc_udev);
2136 if (sc->amrr_xfer == NULL) {
2137 printf("%s: could not allocate AMRR xfer\n",
2138 USBDEVNAME(sc->sc_dev));
2139 goto fail;
2140 }
2141
2142 /*
2143 * Open Tx and Rx USB bulk pipes.
2144 */
2145 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2146 &sc->sc_tx_pipeh);
2147 if (uerror != USBD_NORMAL_COMPLETION) {
2148 printf("%s: could not open Tx pipe: %s\n",
2149 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
2150 error = EIO;
2151 goto fail;
2152 }
2153
2154 uerror = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2155 &sc->sc_rx_pipeh);
2156 if (uerror != USBD_NORMAL_COMPLETION) {
2157 printf("%s: could not open Rx pipe: %s\n",
2158 USBDEVNAME(sc->sc_dev), usbd_errstr(uerror));
2159 error = EIO;
2160 goto fail;
2161 }
2162
2163 /*
2164 * Allocate Tx and Rx xfer queues.
2165 */
2166 sc->tx_queued = 0;
2167 error = usb_ether_tx_list_init(USBDEV(sc->sc_dev),
2168 sc->tx_data, RAL_TX_LIST_COUNT,
2169 sc->sc_udev, sc->sc_tx_pipeh, NULL);
2170 if (error != 0) {
2171 printf("%s: could not allocate Tx list\n",
2172 USBDEVNAME(sc->sc_dev));
2173 goto fail;
2174 }
2175
2176 error = usb_ether_rx_list_init(USBDEV(sc->sc_dev),
2177 sc->rx_data, RAL_RX_LIST_COUNT,
2178 sc->sc_udev, sc->sc_rx_pipeh);
2179 if (error != 0) {
2180 printf("%s: could not allocate Rx list\n",
2181 USBDEVNAME(sc->sc_dev));
2182 goto fail;
2183 }
2184
2185 /*
2186 * Start up the receive pipe.
2187 */
2188 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2189 data = &sc->rx_data[i];
2190
2191 (void)usbd_map_buffer_mbuf(data->ue_xfer, data->ue_mbuf);
2192 usbd_setup_xfer(data->ue_xfer, sc->sc_rx_pipeh, data, NULL /* XXX buf */,
2193 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2194 usbd_transfer(data->ue_xfer);
2195 }
2196
2197 /* kick Rx */
2198 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2199 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2200 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2201 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2202 tmp |= RAL_DROP_TODS;
2203 if (!(ifp->if_flags & IFF_PROMISC))
2204 tmp |= RAL_DROP_NOT_TO_ME;
2205 }
2206 ural_write(sc, RAL_TXRX_CSR2, tmp);
2207
2208 ifp->if_flags &= ~IFF_OACTIVE;
2209 ifp->if_flags |= IFF_RUNNING;
2210
2211 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2212 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2213 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2214 } else
2215 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2216
2217 return 0;
2218
2219 fail: ural_stop(ifp, 1);
2220 return error;
2221 #undef N
2222 }
2223
2224 Static void
2225 ural_stop(struct ifnet *ifp, int disable)
2226 {
2227 struct ural_softc *sc = ifp->if_softc;
2228 struct ieee80211com *ic = &sc->sc_ic;
2229
2230 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2231
2232 sc->sc_tx_timer = 0;
2233 ifp->if_timer = 0;
2234 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2235
2236 /* disable Rx */
2237 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2238
2239 /* reset ASIC and BBP (but won't reset MAC registers!) */
2240 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2241 ural_write(sc, RAL_MAC_CSR1, 0);
2242
2243 /* Stop transfers. */
2244 if (sc->sc_rx_pipeh != NULL)
2245 usbd_abort_pipe(sc->sc_rx_pipeh);
2246
2247 if (sc->sc_tx_pipeh != NULL)
2248 usbd_abort_pipe(sc->sc_tx_pipeh);
2249
2250 /* Free RX/TX resources. */
2251 ural_free_rx_list(sc);
2252 ural_free_tx_list(sc);
2253
2254 /* Close pipes. */
2255 if (sc->amrr_xfer != NULL) {
2256 usbd_free_xfer(sc->amrr_xfer);
2257 sc->amrr_xfer = NULL;
2258 }
2259
2260 if (sc->sc_rx_pipeh != NULL) {
2261 usbd_close_pipe(sc->sc_rx_pipeh);
2262 sc->sc_rx_pipeh = NULL;
2263 }
2264
2265 if (sc->sc_tx_pipeh != NULL) {
2266 usbd_close_pipe(sc->sc_tx_pipeh);
2267 sc->sc_tx_pipeh = NULL;
2268 }
2269 }
2270
2271 int
2272 ural_activate(device_ptr_t self, enum devact act)
2273 {
2274 struct ural_softc *sc = (struct ural_softc *)self;
2275
2276 switch (act) {
2277 case DVACT_ACTIVATE:
2278 return EOPNOTSUPP;
2279 break;
2280
2281 case DVACT_DEACTIVATE:
2282 if_deactivate(&sc->sc_if);
2283 break;
2284 }
2285
2286 return 0;
2287 }
2288
2289 Static void
2290 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2291 {
2292 int i;
2293
2294 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2295 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2296
2297 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2298
2299 /* set rate to some reasonable initial value */
2300 for (i = ni->ni_rates.rs_nrates - 1;
2301 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2302 i--);
2303 ni->ni_txrate = i;
2304
2305 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2306 }
2307
2308 Static void
2309 ural_amrr_timeout(void *arg)
2310 {
2311 struct ural_softc *sc = (struct ural_softc *)arg;
2312 usb_device_request_t req;
2313 int s;
2314
2315 s = splusb();
2316
2317 /*
2318 * Asynchronously read statistic registers (cleared by read).
2319 */
2320 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2321 req.bRequest = RAL_READ_MULTI_MAC;
2322 USETW(req.wValue, 0);
2323 USETW(req.wIndex, RAL_STA_CSR0);
2324 USETW(req.wLength, sizeof sc->sta);
2325
2326 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2327 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2328 ural_amrr_update);
2329 (void)usbd_transfer(sc->amrr_xfer);
2330
2331 splx(s);
2332 }
2333
2334 Static void
2335 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2336 usbd_status status)
2337 {
2338 struct ural_softc *sc = (struct ural_softc *)priv;
2339 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2340
2341 if (status != USBD_NORMAL_COMPLETION) {
2342 printf("%s: could not retrieve Tx statistics - "
2343 "cancelling automatic rate control\n",
2344 USBDEVNAME(sc->sc_dev));
2345 return;
2346 }
2347
2348 /* count TX retry-fail as Tx errors */
2349 ifp->if_oerrors += sc->sta[9];
2350
2351 sc->amn.amn_retrycnt =
2352 sc->sta[7] + /* TX one-retry ok count */
2353 sc->sta[8] + /* TX more-retry ok count */
2354 sc->sta[9]; /* TX retry-fail count */
2355
2356 sc->amn.amn_txcnt =
2357 sc->amn.amn_retrycnt +
2358 sc->sta[6]; /* TX no-retry ok count */
2359
2360 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2361
2362 callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
2363 }
2364