if_ural.c revision 1.22 1 /* $NetBSD: if_ural.c,v 1.22 2007/06/09 12:13:12 kiyohara Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.22 2007/06/09 12:13:12 kiyohara Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <machine/bus.h>
43 #include <machine/endian.h>
44 #include <machine/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
106 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
108 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
110 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
111 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
112 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
113 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
114 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
115 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117
118 Static int ural_alloc_tx_list(struct ural_softc *);
119 Static void ural_free_tx_list(struct ural_softc *);
120 Static int ural_alloc_rx_list(struct ural_softc *);
121 Static void ural_free_rx_list(struct ural_softc *);
122 Static int ural_media_change(struct ifnet *);
123 Static void ural_next_scan(void *);
124 Static void ural_task(void *);
125 Static int ural_newstate(struct ieee80211com *,
126 enum ieee80211_state, int);
127 Static int ural_rxrate(struct ural_rx_desc *);
128 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 usbd_status);
130 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 usbd_status);
132 Static int ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t ural_txtime(int, int, uint32_t);
134 Static uint8_t ural_plcp_signal(int);
135 Static void ural_setup_tx_desc(struct ural_softc *,
136 struct ural_tx_desc *, uint32_t, int, int);
137 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 struct ieee80211_node *);
141 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
142 struct ieee80211_node *);
143 Static void ural_start(struct ifnet *);
144 Static void ural_watchdog(struct ifnet *);
145 Static int ural_reset(struct ifnet *);
146 Static int ural_ioctl(struct ifnet *, u_long, void *);
147 Static void ural_set_testmode(struct ural_softc *);
148 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 int);
150 Static uint16_t ural_read(struct ural_softc *, uint16_t);
151 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
152 int);
153 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
155 int);
156 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void ural_set_chan(struct ural_softc *,
160 struct ieee80211_channel *);
161 Static void ural_disable_rf_tune(struct ural_softc *);
162 Static void ural_enable_tsf_sync(struct ural_softc *);
163 Static void ural_update_slot(struct ifnet *);
164 Static void ural_set_txpreamble(struct ural_softc *);
165 Static void ural_set_basicrates(struct ural_softc *);
166 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void ural_update_promisc(struct ural_softc *);
169 Static const char *ural_get_rf(int);
170 Static void ural_read_eeprom(struct ural_softc *);
171 Static int ural_bbp_init(struct ural_softc *);
172 Static void ural_set_txantenna(struct ural_softc *, int);
173 Static void ural_set_rxantenna(struct ural_softc *, int);
174 Static int ural_init(struct ifnet *);
175 Static void ural_stop(struct ifnet *, int);
176 Static void ural_amrr_start(struct ural_softc *,
177 struct ieee80211_node *);
178 Static void ural_amrr_timeout(void *);
179 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 usbd_status status);
181
182 /*
183 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184 */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187
188 static const struct ieee80211_rateset ural_rateset_11b =
189 { 4, { 2, 4, 11, 22 } };
190
191 static const struct ieee80211_rateset ural_rateset_11g =
192 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193
194 /*
195 * Default values for MAC registers; values taken from the reference driver.
196 */
197 static const struct {
198 uint16_t reg;
199 uint16_t val;
200 } ural_def_mac[] = {
201 { RAL_TXRX_CSR5, 0x8c8d },
202 { RAL_TXRX_CSR6, 0x8b8a },
203 { RAL_TXRX_CSR7, 0x8687 },
204 { RAL_TXRX_CSR8, 0x0085 },
205 { RAL_MAC_CSR13, 0x1111 },
206 { RAL_MAC_CSR14, 0x1e11 },
207 { RAL_TXRX_CSR21, 0xe78f },
208 { RAL_MAC_CSR9, 0xff1d },
209 { RAL_MAC_CSR11, 0x0002 },
210 { RAL_MAC_CSR22, 0x0053 },
211 { RAL_MAC_CSR15, 0x0000 },
212 { RAL_MAC_CSR8, 0x0780 },
213 { RAL_TXRX_CSR19, 0x0000 },
214 { RAL_TXRX_CSR18, 0x005a },
215 { RAL_PHY_CSR2, 0x0000 },
216 { RAL_TXRX_CSR0, 0x1ec0 },
217 { RAL_PHY_CSR4, 0x000f }
218 };
219
220 /*
221 * Default values for BBP registers; values taken from the reference driver.
222 */
223 static const struct {
224 uint8_t reg;
225 uint8_t val;
226 } ural_def_bbp[] = {
227 { 3, 0x02 },
228 { 4, 0x19 },
229 { 14, 0x1c },
230 { 15, 0x30 },
231 { 16, 0xac },
232 { 17, 0x48 },
233 { 18, 0x18 },
234 { 19, 0xff },
235 { 20, 0x1e },
236 { 21, 0x08 },
237 { 22, 0x08 },
238 { 23, 0x08 },
239 { 24, 0x80 },
240 { 25, 0x50 },
241 { 26, 0x08 },
242 { 27, 0x23 },
243 { 30, 0x10 },
244 { 31, 0x2b },
245 { 32, 0xb9 },
246 { 34, 0x12 },
247 { 35, 0x50 },
248 { 39, 0xc4 },
249 { 40, 0x02 },
250 { 41, 0x60 },
251 { 53, 0x10 },
252 { 54, 0x18 },
253 { 56, 0x08 },
254 { 57, 0x10 },
255 { 58, 0x08 },
256 { 61, 0x60 },
257 { 62, 0x10 },
258 { 75, 0xff }
259 };
260
261 /*
262 * Default values for RF register R2 indexed by channel numbers.
263 */
264 static const uint32_t ural_rf2522_r2[] = {
265 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268
269 static const uint32_t ural_rf2523_r2[] = {
270 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273
274 static const uint32_t ural_rf2524_r2[] = {
275 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278
279 static const uint32_t ural_rf2525_r2[] = {
280 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288
289 static const uint32_t ural_rf2525e_r2[] = {
290 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298
299 static const uint32_t ural_rf2526_r2[] = {
300 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303
304 /*
305 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306 * values taken from the reference driver.
307 */
308 static const struct {
309 uint8_t chan;
310 uint32_t r1;
311 uint32_t r2;
312 uint32_t r4;
313 } ural_rf5222[] = {
314 { 1, 0x08808, 0x0044d, 0x00282 },
315 { 2, 0x08808, 0x0044e, 0x00282 },
316 { 3, 0x08808, 0x0044f, 0x00282 },
317 { 4, 0x08808, 0x00460, 0x00282 },
318 { 5, 0x08808, 0x00461, 0x00282 },
319 { 6, 0x08808, 0x00462, 0x00282 },
320 { 7, 0x08808, 0x00463, 0x00282 },
321 { 8, 0x08808, 0x00464, 0x00282 },
322 { 9, 0x08808, 0x00465, 0x00282 },
323 { 10, 0x08808, 0x00466, 0x00282 },
324 { 11, 0x08808, 0x00467, 0x00282 },
325 { 12, 0x08808, 0x00468, 0x00282 },
326 { 13, 0x08808, 0x00469, 0x00282 },
327 { 14, 0x08808, 0x0046b, 0x00286 },
328
329 { 36, 0x08804, 0x06225, 0x00287 },
330 { 40, 0x08804, 0x06226, 0x00287 },
331 { 44, 0x08804, 0x06227, 0x00287 },
332 { 48, 0x08804, 0x06228, 0x00287 },
333 { 52, 0x08804, 0x06229, 0x00287 },
334 { 56, 0x08804, 0x0622a, 0x00287 },
335 { 60, 0x08804, 0x0622b, 0x00287 },
336 { 64, 0x08804, 0x0622c, 0x00287 },
337
338 { 100, 0x08804, 0x02200, 0x00283 },
339 { 104, 0x08804, 0x02201, 0x00283 },
340 { 108, 0x08804, 0x02202, 0x00283 },
341 { 112, 0x08804, 0x02203, 0x00283 },
342 { 116, 0x08804, 0x02204, 0x00283 },
343 { 120, 0x08804, 0x02205, 0x00283 },
344 { 124, 0x08804, 0x02206, 0x00283 },
345 { 128, 0x08804, 0x02207, 0x00283 },
346 { 132, 0x08804, 0x02208, 0x00283 },
347 { 136, 0x08804, 0x02209, 0x00283 },
348 { 140, 0x08804, 0x0220a, 0x00283 },
349
350 { 149, 0x08808, 0x02429, 0x00281 },
351 { 153, 0x08808, 0x0242b, 0x00281 },
352 { 157, 0x08808, 0x0242d, 0x00281 },
353 { 161, 0x08808, 0x0242f, 0x00281 }
354 };
355
356 USB_DECLARE_DRIVER(ural);
357
358 USB_MATCH(ural)
359 {
360 USB_MATCH_START(ural, uaa);
361
362 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365
366 USB_ATTACH(ural)
367 {
368 USB_ATTACH_START(ural, sc, uaa);
369 struct ieee80211com *ic = &sc->sc_ic;
370 struct ifnet *ifp = &sc->sc_if;
371 usb_interface_descriptor_t *id;
372 usb_endpoint_descriptor_t *ed;
373 usbd_status error;
374 char *devinfop;
375 int i;
376
377 sc->sc_udev = uaa->device;
378
379 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
380 USB_ATTACH_SETUP;
381 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
382 usbd_devinfo_free(devinfop);
383
384 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 printf("%s: could not set configuration no\n",
386 USBDEVNAME(sc->sc_dev));
387 USB_ATTACH_ERROR_RETURN;
388 }
389
390 /* get the first interface handle */
391 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 &sc->sc_iface);
393 if (error != 0) {
394 printf("%s: could not get interface handle\n",
395 USBDEVNAME(sc->sc_dev));
396 USB_ATTACH_ERROR_RETURN;
397 }
398
399 /*
400 * Find endpoints.
401 */
402 id = usbd_get_interface_descriptor(sc->sc_iface);
403
404 sc->sc_rx_no = sc->sc_tx_no = -1;
405 for (i = 0; i < id->bNumEndpoints; i++) {
406 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
407 if (ed == NULL) {
408 printf("%s: no endpoint descriptor for %d\n",
409 USBDEVNAME(sc->sc_dev), i);
410 USB_ATTACH_ERROR_RETURN;
411 }
412
413 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
414 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
415 sc->sc_rx_no = ed->bEndpointAddress;
416 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
417 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
418 sc->sc_tx_no = ed->bEndpointAddress;
419 }
420 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
421 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
422 USB_ATTACH_ERROR_RETURN;
423 }
424
425 usb_init_task(&sc->sc_task, ural_task, sc);
426 usb_callout_init(sc->sc_scan_ch);
427 sc->amrr.amrr_min_success_threshold = 1;
428 sc->amrr.amrr_min_success_threshold = 15;
429 usb_callout_init(sc->sc_amrr_ch);
430
431 /* retrieve RT2570 rev. no */
432 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
433
434 /* retrieve MAC address and various other things from EEPROM */
435 ural_read_eeprom(sc);
436
437 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
438 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
439
440 ifp->if_softc = sc;
441 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
442 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 ifp->if_init = ural_init;
444 ifp->if_ioctl = ural_ioctl;
445 ifp->if_start = ural_start;
446 ifp->if_watchdog = ural_watchdog;
447 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
448 IFQ_SET_READY(&ifp->if_snd);
449
450 ic->ic_ifp = ifp;
451 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
452 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
453 ic->ic_state = IEEE80211_S_INIT;
454
455 /* set device capabilities */
456 ic->ic_caps =
457 IEEE80211_C_IBSS | /* IBSS mode supported */
458 IEEE80211_C_MONITOR | /* monitor mode supported */
459 IEEE80211_C_HOSTAP | /* HostAp mode supported */
460 IEEE80211_C_TXPMGT | /* tx power management */
461 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
462 IEEE80211_C_SHSLOT | /* short slot time supported */
463 IEEE80211_C_WPA; /* 802.11i */
464
465 if (sc->rf_rev == RAL_RF_5222) {
466 /* set supported .11a rates */
467 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
468
469 /* set supported .11a channels */
470 for (i = 36; i <= 64; i += 4) {
471 ic->ic_channels[i].ic_freq =
472 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 }
475 for (i = 100; i <= 140; i += 4) {
476 ic->ic_channels[i].ic_freq =
477 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 }
480 for (i = 149; i <= 161; i += 4) {
481 ic->ic_channels[i].ic_freq =
482 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
483 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
484 }
485 }
486
487 /* set supported .11b and .11g rates */
488 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
489 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
490
491 /* set supported .11b and .11g channels (1 through 14) */
492 for (i = 1; i <= 14; i++) {
493 ic->ic_channels[i].ic_freq =
494 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
495 ic->ic_channels[i].ic_flags =
496 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
497 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
498 }
499
500 if_attach(ifp);
501 ieee80211_ifattach(ic);
502 ic->ic_reset = ural_reset;
503
504 /* override state transition machine */
505 sc->sc_newstate = ic->ic_newstate;
506 ic->ic_newstate = ural_newstate;
507 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
508
509 #if NBPFILTER > 0
510 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
511 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
514 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517 sc->sc_txtap_len = sizeof sc->sc_txtapu;
518 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520 #endif
521
522 ieee80211_announce(ic);
523
524 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 USBDEV(sc->sc_dev));
526
527 USB_ATTACH_SUCCESS_RETURN;
528 }
529
530 USB_DETACH(ural)
531 {
532 USB_DETACH_START(ural, sc);
533 struct ieee80211com *ic = &sc->sc_ic;
534 struct ifnet *ifp = &sc->sc_if;
535 int s;
536
537 s = splusb();
538
539 ural_stop(ifp, 1);
540 usb_rem_task(sc->sc_udev, &sc->sc_task);
541 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
542 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
543
544 if (sc->amrr_xfer != NULL) {
545 usbd_free_xfer(sc->amrr_xfer);
546 sc->amrr_xfer = NULL;
547 }
548
549 if (sc->sc_rx_pipeh != NULL) {
550 usbd_abort_pipe(sc->sc_rx_pipeh);
551 usbd_close_pipe(sc->sc_rx_pipeh);
552 }
553
554 if (sc->sc_tx_pipeh != NULL) {
555 usbd_abort_pipe(sc->sc_tx_pipeh);
556 usbd_close_pipe(sc->sc_tx_pipeh);
557 }
558
559 ural_free_rx_list(sc);
560 ural_free_tx_list(sc);
561
562 #if NBPFILTER > 0
563 bpfdetach(ifp);
564 #endif
565 ieee80211_ifdetach(ic);
566 if_detach(ifp);
567
568 splx(s);
569
570 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
571 USBDEV(sc->sc_dev));
572
573 return 0;
574 }
575
576 Static int
577 ural_alloc_tx_list(struct ural_softc *sc)
578 {
579 struct ural_tx_data *data;
580 int i, error;
581
582 sc->tx_queued = 0;
583
584 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
585 data = &sc->tx_data[i];
586
587 data->sc = sc;
588
589 data->xfer = usbd_alloc_xfer(sc->sc_udev);
590 if (data->xfer == NULL) {
591 printf("%s: could not allocate tx xfer\n",
592 USBDEVNAME(sc->sc_dev));
593 error = ENOMEM;
594 goto fail;
595 }
596
597 data->buf = usbd_alloc_buffer(data->xfer,
598 RAL_TX_DESC_SIZE + MCLBYTES);
599 if (data->buf == NULL) {
600 printf("%s: could not allocate tx buffer\n",
601 USBDEVNAME(sc->sc_dev));
602 error = ENOMEM;
603 goto fail;
604 }
605 }
606
607 return 0;
608
609 fail: ural_free_tx_list(sc);
610 return error;
611 }
612
613 Static void
614 ural_free_tx_list(struct ural_softc *sc)
615 {
616 struct ural_tx_data *data;
617 int i;
618
619 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
620 data = &sc->tx_data[i];
621
622 if (data->xfer != NULL) {
623 usbd_free_xfer(data->xfer);
624 data->xfer = NULL;
625 }
626
627 if (data->ni != NULL) {
628 ieee80211_free_node(data->ni);
629 data->ni = NULL;
630 }
631 }
632 }
633
634 Static int
635 ural_alloc_rx_list(struct ural_softc *sc)
636 {
637 struct ural_rx_data *data;
638 int i, error;
639
640 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
641 data = &sc->rx_data[i];
642
643 data->sc = sc;
644
645 data->xfer = usbd_alloc_xfer(sc->sc_udev);
646 if (data->xfer == NULL) {
647 printf("%s: could not allocate rx xfer\n",
648 USBDEVNAME(sc->sc_dev));
649 error = ENOMEM;
650 goto fail;
651 }
652
653 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
654 printf("%s: could not allocate rx buffer\n",
655 USBDEVNAME(sc->sc_dev));
656 error = ENOMEM;
657 goto fail;
658 }
659
660 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
661 if (data->m == NULL) {
662 printf("%s: could not allocate rx mbuf\n",
663 USBDEVNAME(sc->sc_dev));
664 error = ENOMEM;
665 goto fail;
666 }
667
668 MCLGET(data->m, M_DONTWAIT);
669 if (!(data->m->m_flags & M_EXT)) {
670 printf("%s: could not allocate rx mbuf cluster\n",
671 USBDEVNAME(sc->sc_dev));
672 error = ENOMEM;
673 goto fail;
674 }
675
676 data->buf = mtod(data->m, uint8_t *);
677 }
678
679 return 0;
680
681 fail: ural_free_tx_list(sc);
682 return error;
683 }
684
685 Static void
686 ural_free_rx_list(struct ural_softc *sc)
687 {
688 struct ural_rx_data *data;
689 int i;
690
691 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
692 data = &sc->rx_data[i];
693
694 if (data->xfer != NULL) {
695 usbd_free_xfer(data->xfer);
696 data->xfer = NULL;
697 }
698
699 if (data->m != NULL) {
700 m_freem(data->m);
701 data->m = NULL;
702 }
703 }
704 }
705
706 Static int
707 ural_media_change(struct ifnet *ifp)
708 {
709 int error;
710
711 error = ieee80211_media_change(ifp);
712 if (error != ENETRESET)
713 return error;
714
715 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
716 ural_init(ifp);
717
718 return 0;
719 }
720
721 /*
722 * This function is called periodically (every 200ms) during scanning to
723 * switch from one channel to another.
724 */
725 Static void
726 ural_next_scan(void *arg)
727 {
728 struct ural_softc *sc = arg;
729 struct ieee80211com *ic = &sc->sc_ic;
730
731 if (ic->ic_state == IEEE80211_S_SCAN)
732 ieee80211_next_scan(ic);
733 }
734
735 Static void
736 ural_task(void *arg)
737 {
738 struct ural_softc *sc = arg;
739 struct ieee80211com *ic = &sc->sc_ic;
740 enum ieee80211_state ostate;
741 struct ieee80211_node *ni;
742 struct mbuf *m;
743
744 ostate = ic->ic_state;
745
746 switch (sc->sc_state) {
747 case IEEE80211_S_INIT:
748 if (ostate == IEEE80211_S_RUN) {
749 /* abort TSF synchronization */
750 ural_write(sc, RAL_TXRX_CSR19, 0);
751
752 /* force tx led to stop blinking */
753 ural_write(sc, RAL_MAC_CSR20, 0);
754 }
755 break;
756
757 case IEEE80211_S_SCAN:
758 ural_set_chan(sc, ic->ic_curchan);
759 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
760 break;
761
762 case IEEE80211_S_AUTH:
763 ural_set_chan(sc, ic->ic_curchan);
764 break;
765
766 case IEEE80211_S_ASSOC:
767 ural_set_chan(sc, ic->ic_curchan);
768 break;
769
770 case IEEE80211_S_RUN:
771 ural_set_chan(sc, ic->ic_curchan);
772
773 ni = ic->ic_bss;
774
775 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
776 ural_update_slot(ic->ic_ifp);
777 ural_set_txpreamble(sc);
778 ural_set_basicrates(sc);
779 ural_set_bssid(sc, ni->ni_bssid);
780 }
781
782 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
783 ic->ic_opmode == IEEE80211_M_IBSS) {
784 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
785 if (m == NULL) {
786 printf("%s: could not allocate beacon\n",
787 USBDEVNAME(sc->sc_dev));
788 return;
789 }
790
791 if (ural_tx_bcn(sc, m, ni) != 0) {
792 m_freem(m);
793 printf("%s: could not send beacon\n",
794 USBDEVNAME(sc->sc_dev));
795 return;
796 }
797
798 /* beacon is no longer needed */
799 m_freem(m);
800 }
801
802 /* make tx led blink on tx (controlled by ASIC) */
803 ural_write(sc, RAL_MAC_CSR20, 1);
804
805 if (ic->ic_opmode != IEEE80211_M_MONITOR)
806 ural_enable_tsf_sync(sc);
807
808 /* enable automatic rate adaptation in STA mode */
809 if (ic->ic_opmode == IEEE80211_M_STA &&
810 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
811 ural_amrr_start(sc, ni);
812
813 break;
814 }
815
816 sc->sc_newstate(ic, sc->sc_state, -1);
817 }
818
819 Static int
820 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
821 int arg)
822 {
823 struct ural_softc *sc = ic->ic_ifp->if_softc;
824
825 usb_rem_task(sc->sc_udev, &sc->sc_task);
826 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
827 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
828
829 /* do it in a process context */
830 sc->sc_state = nstate;
831 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
832
833 return 0;
834 }
835
836 /* quickly determine if a given rate is CCK or OFDM */
837 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
838
839 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
840 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
841
842 #define RAL_SIFS 10 /* us */
843
844 #define RAL_RXTX_TURNAROUND 5 /* us */
845
846 /*
847 * This function is only used by the Rx radiotap code.
848 */
849 Static int
850 ural_rxrate(struct ural_rx_desc *desc)
851 {
852 if (le32toh(desc->flags) & RAL_RX_OFDM) {
853 /* reverse function of ural_plcp_signal */
854 switch (desc->rate) {
855 case 0xb: return 12;
856 case 0xf: return 18;
857 case 0xa: return 24;
858 case 0xe: return 36;
859 case 0x9: return 48;
860 case 0xd: return 72;
861 case 0x8: return 96;
862 case 0xc: return 108;
863 }
864 } else {
865 if (desc->rate == 10)
866 return 2;
867 if (desc->rate == 20)
868 return 4;
869 if (desc->rate == 55)
870 return 11;
871 if (desc->rate == 110)
872 return 22;
873 }
874 return 2; /* should not get there */
875 }
876
877 Static void
878 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
879 usbd_status status)
880 {
881 struct ural_tx_data *data = priv;
882 struct ural_softc *sc = data->sc;
883 struct ifnet *ifp = &sc->sc_if;
884 int s;
885
886 if (status != USBD_NORMAL_COMPLETION) {
887 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
888 return;
889
890 printf("%s: could not transmit buffer: %s\n",
891 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
892
893 if (status == USBD_STALLED)
894 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
895
896 ifp->if_oerrors++;
897 return;
898 }
899
900 s = splnet();
901
902 m_freem(data->m);
903 data->m = NULL;
904 ieee80211_free_node(data->ni);
905 data->ni = NULL;
906
907 sc->tx_queued--;
908 ifp->if_opackets++;
909
910 DPRINTFN(10, ("tx done\n"));
911
912 sc->sc_tx_timer = 0;
913 ifp->if_flags &= ~IFF_OACTIVE;
914 ural_start(ifp);
915
916 splx(s);
917 }
918
919 Static void
920 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
921 {
922 struct ural_rx_data *data = priv;
923 struct ural_softc *sc = data->sc;
924 struct ieee80211com *ic = &sc->sc_ic;
925 struct ifnet *ifp = &sc->sc_if;
926 struct ural_rx_desc *desc;
927 struct ieee80211_frame *wh;
928 struct ieee80211_node *ni;
929 struct mbuf *mnew, *m;
930 int s, len;
931
932 if (status != USBD_NORMAL_COMPLETION) {
933 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
934 return;
935
936 if (status == USBD_STALLED)
937 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
938 goto skip;
939 }
940
941 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
942
943 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
944 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
945 len));
946 ifp->if_ierrors++;
947 goto skip;
948 }
949
950 /* rx descriptor is located at the end */
951 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
952
953 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
954 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
955 /*
956 * This should not happen since we did not request to receive
957 * those frames when we filled RAL_TXRX_CSR2.
958 */
959 DPRINTFN(5, ("PHY or CRC error\n"));
960 ifp->if_ierrors++;
961 goto skip;
962 }
963
964 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
965 if (mnew == NULL) {
966 ifp->if_ierrors++;
967 goto skip;
968 }
969
970 MCLGET(mnew, M_DONTWAIT);
971 if (!(mnew->m_flags & M_EXT)) {
972 ifp->if_ierrors++;
973 m_freem(mnew);
974 goto skip;
975 }
976
977 m = data->m;
978 data->m = mnew;
979 data->buf = mtod(data->m, uint8_t *);
980
981 /* finalize mbuf */
982 m->m_pkthdr.rcvif = ifp;
983 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
984 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
985
986 s = splnet();
987
988 #if NBPFILTER > 0
989 if (sc->sc_drvbpf != NULL) {
990 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
991
992 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
993 tap->wr_rate = ural_rxrate(desc);
994 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
995 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
996 tap->wr_antenna = sc->rx_ant;
997 tap->wr_antsignal = desc->rssi;
998
999 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1000 }
1001 #endif
1002
1003 wh = mtod(m, struct ieee80211_frame *);
1004 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1005
1006 /* send the frame to the 802.11 layer */
1007 ieee80211_input(ic, m, ni, desc->rssi, 0);
1008
1009 /* node is no longer needed */
1010 ieee80211_free_node(ni);
1011
1012 splx(s);
1013
1014 DPRINTFN(15, ("rx done\n"));
1015
1016 skip: /* setup a new transfer */
1017 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1018 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1019 usbd_transfer(xfer);
1020 }
1021
1022 /*
1023 * Return the expected ack rate for a frame transmitted at rate `rate'.
1024 * XXX: this should depend on the destination node basic rate set.
1025 */
1026 Static int
1027 ural_ack_rate(struct ieee80211com *ic, int rate)
1028 {
1029 switch (rate) {
1030 /* CCK rates */
1031 case 2:
1032 return 2;
1033 case 4:
1034 case 11:
1035 case 22:
1036 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1037
1038 /* OFDM rates */
1039 case 12:
1040 case 18:
1041 return 12;
1042 case 24:
1043 case 36:
1044 return 24;
1045 case 48:
1046 case 72:
1047 case 96:
1048 case 108:
1049 return 48;
1050 }
1051
1052 /* default to 1Mbps */
1053 return 2;
1054 }
1055
1056 /*
1057 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1058 * The function automatically determines the operating mode depending on the
1059 * given rate. `flags' indicates whether short preamble is in use or not.
1060 */
1061 Static uint16_t
1062 ural_txtime(int len, int rate, uint32_t flags)
1063 {
1064 uint16_t txtime;
1065
1066 if (RAL_RATE_IS_OFDM(rate)) {
1067 /* IEEE Std 802.11g-2003, pp. 37 */
1068 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1069 txtime = 16 + 4 + 4 * txtime + 6;
1070 } else {
1071 /* IEEE Std 802.11b-1999, pp. 28 */
1072 txtime = (16 * len + rate - 1) / rate;
1073 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1074 txtime += 72 + 24;
1075 else
1076 txtime += 144 + 48;
1077 }
1078 return txtime;
1079 }
1080
1081 Static uint8_t
1082 ural_plcp_signal(int rate)
1083 {
1084 switch (rate) {
1085 /* CCK rates (returned values are device-dependent) */
1086 case 2: return 0x0;
1087 case 4: return 0x1;
1088 case 11: return 0x2;
1089 case 22: return 0x3;
1090
1091 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1092 case 12: return 0xb;
1093 case 18: return 0xf;
1094 case 24: return 0xa;
1095 case 36: return 0xe;
1096 case 48: return 0x9;
1097 case 72: return 0xd;
1098 case 96: return 0x8;
1099 case 108: return 0xc;
1100
1101 /* unsupported rates (should not get there) */
1102 default: return 0xff;
1103 }
1104 }
1105
1106 Static void
1107 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1108 uint32_t flags, int len, int rate)
1109 {
1110 struct ieee80211com *ic = &sc->sc_ic;
1111 uint16_t plcp_length;
1112 int remainder;
1113
1114 desc->flags = htole32(flags);
1115 desc->flags |= htole32(RAL_TX_NEWSEQ);
1116 desc->flags |= htole32(len << 16);
1117
1118 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1119 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1120
1121 /* setup PLCP fields */
1122 desc->plcp_signal = ural_plcp_signal(rate);
1123 desc->plcp_service = 4;
1124
1125 len += IEEE80211_CRC_LEN;
1126 if (RAL_RATE_IS_OFDM(rate)) {
1127 desc->flags |= htole32(RAL_TX_OFDM);
1128
1129 plcp_length = len & 0xfff;
1130 desc->plcp_length_hi = plcp_length >> 6;
1131 desc->plcp_length_lo = plcp_length & 0x3f;
1132 } else {
1133 plcp_length = (16 * len + rate - 1) / rate;
1134 if (rate == 22) {
1135 remainder = (16 * len) % 22;
1136 if (remainder != 0 && remainder < 7)
1137 desc->plcp_service |= RAL_PLCP_LENGEXT;
1138 }
1139 desc->plcp_length_hi = plcp_length >> 8;
1140 desc->plcp_length_lo = plcp_length & 0xff;
1141
1142 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1143 desc->plcp_signal |= 0x08;
1144 }
1145
1146 desc->iv = 0;
1147 desc->eiv = 0;
1148 }
1149
1150 #define RAL_TX_TIMEOUT 5000
1151
1152 Static int
1153 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1154 {
1155 struct ural_tx_desc *desc;
1156 usbd_xfer_handle xfer;
1157 uint8_t cmd = 0;
1158 usbd_status error;
1159 uint8_t *buf;
1160 int xferlen, rate;
1161
1162 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1163
1164 xfer = usbd_alloc_xfer(sc->sc_udev);
1165 if (xfer == NULL)
1166 return ENOMEM;
1167
1168 /* xfer length needs to be a multiple of two! */
1169 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1170
1171 buf = usbd_alloc_buffer(xfer, xferlen);
1172 if (buf == NULL) {
1173 usbd_free_xfer(xfer);
1174 return ENOMEM;
1175 }
1176
1177 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1178 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1179
1180 error = usbd_sync_transfer(xfer);
1181 if (error != 0) {
1182 usbd_free_xfer(xfer);
1183 return error;
1184 }
1185
1186 desc = (struct ural_tx_desc *)buf;
1187
1188 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1189 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1190 m0->m_pkthdr.len, rate);
1191
1192 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1193 m0->m_pkthdr.len, rate, xferlen));
1194
1195 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1196 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1197
1198 error = usbd_sync_transfer(xfer);
1199 usbd_free_xfer(xfer);
1200
1201 return error;
1202 }
1203
1204 Static int
1205 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1206 {
1207 struct ieee80211com *ic = &sc->sc_ic;
1208 struct ural_tx_desc *desc;
1209 struct ural_tx_data *data;
1210 struct ieee80211_frame *wh;
1211 uint32_t flags = 0;
1212 uint16_t dur;
1213 usbd_status error;
1214 int xferlen, rate;
1215
1216 data = &sc->tx_data[0];
1217 desc = (struct ural_tx_desc *)data->buf;
1218
1219 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1220
1221 data->m = m0;
1222 data->ni = ni;
1223
1224 wh = mtod(m0, struct ieee80211_frame *);
1225
1226 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1227 flags |= RAL_TX_ACK;
1228
1229 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1230 *(uint16_t *)wh->i_dur = htole16(dur);
1231
1232 /* tell hardware to add timestamp for probe responses */
1233 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1234 IEEE80211_FC0_TYPE_MGT &&
1235 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1236 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1237 flags |= RAL_TX_TIMESTAMP;
1238 }
1239
1240 #if NBPFILTER > 0
1241 if (sc->sc_drvbpf != NULL) {
1242 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1243
1244 tap->wt_flags = 0;
1245 tap->wt_rate = rate;
1246 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1247 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1248 tap->wt_antenna = sc->tx_ant;
1249
1250 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1251 }
1252 #endif
1253
1254 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1255 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1256
1257 /* align end on a 2-bytes boundary */
1258 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1259
1260 /*
1261 * No space left in the last URB to store the extra 2 bytes, force
1262 * sending of another URB.
1263 */
1264 if ((xferlen % 64) == 0)
1265 xferlen += 2;
1266
1267 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1268 m0->m_pkthdr.len, rate, xferlen));
1269
1270 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1271 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1272 ural_txeof);
1273
1274 error = usbd_transfer(data->xfer);
1275 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1276 m_freem(m0);
1277 return error;
1278 }
1279
1280 sc->tx_queued++;
1281
1282 return 0;
1283 }
1284
1285 Static int
1286 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1287 {
1288 struct ieee80211com *ic = &sc->sc_ic;
1289 struct ural_tx_desc *desc;
1290 struct ural_tx_data *data;
1291 struct ieee80211_frame *wh;
1292 struct ieee80211_key *k;
1293 uint32_t flags = 0;
1294 uint16_t dur;
1295 usbd_status error;
1296 int xferlen, rate;
1297
1298 wh = mtod(m0, struct ieee80211_frame *);
1299
1300 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1301 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1302 else
1303 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1304
1305 rate &= IEEE80211_RATE_VAL;
1306
1307 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1308 k = ieee80211_crypto_encap(ic, ni, m0);
1309 if (k == NULL) {
1310 m_freem(m0);
1311 return ENOBUFS;
1312 }
1313
1314 /* packet header may have moved, reset our local pointer */
1315 wh = mtod(m0, struct ieee80211_frame *);
1316 }
1317
1318 data = &sc->tx_data[0];
1319 desc = (struct ural_tx_desc *)data->buf;
1320
1321 data->m = m0;
1322 data->ni = ni;
1323
1324 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1325 flags |= RAL_TX_ACK;
1326 flags |= RAL_TX_RETRY(7);
1327
1328 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1329 ic->ic_flags) + RAL_SIFS;
1330 *(uint16_t *)wh->i_dur = htole16(dur);
1331 }
1332
1333 #if NBPFILTER > 0
1334 if (sc->sc_drvbpf != NULL) {
1335 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1336
1337 tap->wt_flags = 0;
1338 tap->wt_rate = rate;
1339 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1340 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1341 tap->wt_antenna = sc->tx_ant;
1342
1343 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1344 }
1345 #endif
1346
1347 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1348 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1349
1350 /* align end on a 2-bytes boundary */
1351 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1352
1353 /*
1354 * No space left in the last URB to store the extra 2 bytes, force
1355 * sending of another URB.
1356 */
1357 if ((xferlen % 64) == 0)
1358 xferlen += 2;
1359
1360 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1361 m0->m_pkthdr.len, rate, xferlen));
1362
1363 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1364 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1365 ural_txeof);
1366
1367 error = usbd_transfer(data->xfer);
1368 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1369 return error;
1370
1371 sc->tx_queued++;
1372
1373 return 0;
1374 }
1375
1376 Static void
1377 ural_start(struct ifnet *ifp)
1378 {
1379 struct ural_softc *sc = ifp->if_softc;
1380 struct ieee80211com *ic = &sc->sc_ic;
1381 struct mbuf *m0;
1382 struct ether_header *eh;
1383 struct ieee80211_node *ni;
1384
1385 for (;;) {
1386 IF_POLL(&ic->ic_mgtq, m0);
1387 if (m0 != NULL) {
1388 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1389 ifp->if_flags |= IFF_OACTIVE;
1390 break;
1391 }
1392 IF_DEQUEUE(&ic->ic_mgtq, m0);
1393
1394 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1395 m0->m_pkthdr.rcvif = NULL;
1396 #if NBPFILTER > 0
1397 if (ic->ic_rawbpf != NULL)
1398 bpf_mtap(ic->ic_rawbpf, m0);
1399 #endif
1400 if (ural_tx_mgt(sc, m0, ni) != 0)
1401 break;
1402
1403 } else {
1404 if (ic->ic_state != IEEE80211_S_RUN)
1405 break;
1406 IFQ_DEQUEUE(&ifp->if_snd, m0);
1407 if (m0 == NULL)
1408 break;
1409 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1410 IF_PREPEND(&ifp->if_snd, m0);
1411 ifp->if_flags |= IFF_OACTIVE;
1412 break;
1413 }
1414
1415 if (m0->m_len < sizeof (struct ether_header) &&
1416 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1417 continue;
1418
1419 eh = mtod(m0, struct ether_header *);
1420 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1421 if (ni == NULL) {
1422 m_freem(m0);
1423 continue;
1424 }
1425 #if NBPFILTER > 0
1426 if (ifp->if_bpf != NULL)
1427 bpf_mtap(ifp->if_bpf, m0);
1428 #endif
1429 m0 = ieee80211_encap(ic, m0, ni);
1430 if (m0 == NULL) {
1431 ieee80211_free_node(ni);
1432 continue;
1433 }
1434 #if NBPFILTER > 0
1435 if (ic->ic_rawbpf != NULL)
1436 bpf_mtap(ic->ic_rawbpf, m0);
1437 #endif
1438 if (ural_tx_data(sc, m0, ni) != 0) {
1439 ieee80211_free_node(ni);
1440 ifp->if_oerrors++;
1441 break;
1442 }
1443 }
1444
1445 sc->sc_tx_timer = 5;
1446 ifp->if_timer = 1;
1447 }
1448 }
1449
1450 Static void
1451 ural_watchdog(struct ifnet *ifp)
1452 {
1453 struct ural_softc *sc = ifp->if_softc;
1454 struct ieee80211com *ic = &sc->sc_ic;
1455
1456 ifp->if_timer = 0;
1457
1458 if (sc->sc_tx_timer > 0) {
1459 if (--sc->sc_tx_timer == 0) {
1460 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1461 /*ural_init(sc); XXX needs a process context! */
1462 ifp->if_oerrors++;
1463 return;
1464 }
1465 ifp->if_timer = 1;
1466 }
1467
1468 ieee80211_watchdog(ic);
1469 }
1470
1471 /*
1472 * This function allows for fast channel switching in monitor mode (used by
1473 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1474 * generate a new beacon frame.
1475 */
1476 Static int
1477 ural_reset(struct ifnet *ifp)
1478 {
1479 struct ural_softc *sc = ifp->if_softc;
1480 struct ieee80211com *ic = &sc->sc_ic;
1481
1482 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1483 return ENETRESET;
1484
1485 ural_set_chan(sc, ic->ic_curchan);
1486
1487 return 0;
1488 }
1489
1490 Static int
1491 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1492 {
1493 struct ural_softc *sc = ifp->if_softc;
1494 struct ieee80211com *ic = &sc->sc_ic;
1495 int s, error = 0;
1496
1497 s = splnet();
1498
1499 switch (cmd) {
1500 case SIOCSIFFLAGS:
1501 if (ifp->if_flags & IFF_UP) {
1502 if (ifp->if_flags & IFF_RUNNING)
1503 ural_update_promisc(sc);
1504 else
1505 ural_init(ifp);
1506 } else {
1507 if (ifp->if_flags & IFF_RUNNING)
1508 ural_stop(ifp, 1);
1509 }
1510 break;
1511
1512 default:
1513 error = ieee80211_ioctl(ic, cmd, data);
1514 }
1515
1516 if (error == ENETRESET) {
1517 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1518 (IFF_UP | IFF_RUNNING))
1519 ural_init(ifp);
1520 error = 0;
1521 }
1522
1523 splx(s);
1524
1525 return error;
1526 }
1527
1528 Static void
1529 ural_set_testmode(struct ural_softc *sc)
1530 {
1531 usb_device_request_t req;
1532 usbd_status error;
1533
1534 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1535 req.bRequest = RAL_VENDOR_REQUEST;
1536 USETW(req.wValue, 4);
1537 USETW(req.wIndex, 1);
1538 USETW(req.wLength, 0);
1539
1540 error = usbd_do_request(sc->sc_udev, &req, NULL);
1541 if (error != 0) {
1542 printf("%s: could not set test mode: %s\n",
1543 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1544 }
1545 }
1546
1547 Static void
1548 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1549 {
1550 usb_device_request_t req;
1551 usbd_status error;
1552
1553 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1554 req.bRequest = RAL_READ_EEPROM;
1555 USETW(req.wValue, 0);
1556 USETW(req.wIndex, addr);
1557 USETW(req.wLength, len);
1558
1559 error = usbd_do_request(sc->sc_udev, &req, buf);
1560 if (error != 0) {
1561 printf("%s: could not read EEPROM: %s\n",
1562 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1563 }
1564 }
1565
1566 Static uint16_t
1567 ural_read(struct ural_softc *sc, uint16_t reg)
1568 {
1569 usb_device_request_t req;
1570 usbd_status error;
1571 uint16_t val;
1572
1573 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1574 req.bRequest = RAL_READ_MAC;
1575 USETW(req.wValue, 0);
1576 USETW(req.wIndex, reg);
1577 USETW(req.wLength, sizeof (uint16_t));
1578
1579 error = usbd_do_request(sc->sc_udev, &req, &val);
1580 if (error != 0) {
1581 printf("%s: could not read MAC register: %s\n",
1582 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1583 return 0;
1584 }
1585
1586 return le16toh(val);
1587 }
1588
1589 Static void
1590 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1591 {
1592 usb_device_request_t req;
1593 usbd_status error;
1594
1595 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1596 req.bRequest = RAL_READ_MULTI_MAC;
1597 USETW(req.wValue, 0);
1598 USETW(req.wIndex, reg);
1599 USETW(req.wLength, len);
1600
1601 error = usbd_do_request(sc->sc_udev, &req, buf);
1602 if (error != 0) {
1603 printf("%s: could not read MAC register: %s\n",
1604 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1605 }
1606 }
1607
1608 Static void
1609 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1610 {
1611 usb_device_request_t req;
1612 usbd_status error;
1613
1614 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1615 req.bRequest = RAL_WRITE_MAC;
1616 USETW(req.wValue, val);
1617 USETW(req.wIndex, reg);
1618 USETW(req.wLength, 0);
1619
1620 error = usbd_do_request(sc->sc_udev, &req, NULL);
1621 if (error != 0) {
1622 printf("%s: could not write MAC register: %s\n",
1623 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1624 }
1625 }
1626
1627 Static void
1628 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1629 {
1630 usb_device_request_t req;
1631 usbd_status error;
1632
1633 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1634 req.bRequest = RAL_WRITE_MULTI_MAC;
1635 USETW(req.wValue, 0);
1636 USETW(req.wIndex, reg);
1637 USETW(req.wLength, len);
1638
1639 error = usbd_do_request(sc->sc_udev, &req, buf);
1640 if (error != 0) {
1641 printf("%s: could not write MAC register: %s\n",
1642 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1643 }
1644 }
1645
1646 Static void
1647 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1648 {
1649 uint16_t tmp;
1650 int ntries;
1651
1652 for (ntries = 0; ntries < 5; ntries++) {
1653 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1654 break;
1655 }
1656 if (ntries == 5) {
1657 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1658 return;
1659 }
1660
1661 tmp = reg << 8 | val;
1662 ural_write(sc, RAL_PHY_CSR7, tmp);
1663 }
1664
1665 Static uint8_t
1666 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1667 {
1668 uint16_t val;
1669 int ntries;
1670
1671 val = RAL_BBP_WRITE | reg << 8;
1672 ural_write(sc, RAL_PHY_CSR7, val);
1673
1674 for (ntries = 0; ntries < 5; ntries++) {
1675 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1676 break;
1677 }
1678 if (ntries == 5) {
1679 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1680 return 0;
1681 }
1682
1683 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1684 }
1685
1686 Static void
1687 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1688 {
1689 uint32_t tmp;
1690 int ntries;
1691
1692 for (ntries = 0; ntries < 5; ntries++) {
1693 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1694 break;
1695 }
1696 if (ntries == 5) {
1697 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1698 return;
1699 }
1700
1701 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1702 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1703 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1704
1705 /* remember last written value in sc */
1706 sc->rf_regs[reg] = val;
1707
1708 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1709 }
1710
1711 Static void
1712 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1713 {
1714 struct ieee80211com *ic = &sc->sc_ic;
1715 uint8_t power, tmp;
1716 u_int i, chan;
1717
1718 chan = ieee80211_chan2ieee(ic, c);
1719 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1720 return;
1721
1722 if (IEEE80211_IS_CHAN_2GHZ(c))
1723 power = min(sc->txpow[chan - 1], 31);
1724 else
1725 power = 31;
1726
1727 /* adjust txpower using ifconfig settings */
1728 power -= (100 - ic->ic_txpowlimit) / 8;
1729
1730 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1731
1732 switch (sc->rf_rev) {
1733 case RAL_RF_2522:
1734 ural_rf_write(sc, RAL_RF1, 0x00814);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1737 break;
1738
1739 case RAL_RF_2523:
1740 ural_rf_write(sc, RAL_RF1, 0x08804);
1741 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1742 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1743 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1744 break;
1745
1746 case RAL_RF_2524:
1747 ural_rf_write(sc, RAL_RF1, 0x0c808);
1748 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1749 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1750 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1751 break;
1752
1753 case RAL_RF_2525:
1754 ural_rf_write(sc, RAL_RF1, 0x08808);
1755 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1756 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1757 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1758
1759 ural_rf_write(sc, RAL_RF1, 0x08808);
1760 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1761 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1762 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1763 break;
1764
1765 case RAL_RF_2525E:
1766 ural_rf_write(sc, RAL_RF1, 0x08808);
1767 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1768 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1769 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1770 break;
1771
1772 case RAL_RF_2526:
1773 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1774 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1775 ural_rf_write(sc, RAL_RF1, 0x08804);
1776
1777 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1778 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1779 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1780 break;
1781
1782 /* dual-band RF */
1783 case RAL_RF_5222:
1784 for (i = 0; ural_rf5222[i].chan != chan; i++);
1785
1786 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1787 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1788 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1789 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1790 break;
1791 }
1792
1793 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1794 ic->ic_state != IEEE80211_S_SCAN) {
1795 /* set Japan filter bit for channel 14 */
1796 tmp = ural_bbp_read(sc, 70);
1797
1798 tmp &= ~RAL_JAPAN_FILTER;
1799 if (chan == 14)
1800 tmp |= RAL_JAPAN_FILTER;
1801
1802 ural_bbp_write(sc, 70, tmp);
1803
1804 /* clear CRC errors */
1805 ural_read(sc, RAL_STA_CSR0);
1806
1807 DELAY(10000);
1808 ural_disable_rf_tune(sc);
1809 }
1810 }
1811
1812 /*
1813 * Disable RF auto-tuning.
1814 */
1815 Static void
1816 ural_disable_rf_tune(struct ural_softc *sc)
1817 {
1818 uint32_t tmp;
1819
1820 if (sc->rf_rev != RAL_RF_2523) {
1821 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1822 ural_rf_write(sc, RAL_RF1, tmp);
1823 }
1824
1825 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1826 ural_rf_write(sc, RAL_RF3, tmp);
1827
1828 DPRINTFN(2, ("disabling RF autotune\n"));
1829 }
1830
1831 /*
1832 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1833 * synchronization.
1834 */
1835 Static void
1836 ural_enable_tsf_sync(struct ural_softc *sc)
1837 {
1838 struct ieee80211com *ic = &sc->sc_ic;
1839 uint16_t logcwmin, preload, tmp;
1840
1841 /* first, disable TSF synchronization */
1842 ural_write(sc, RAL_TXRX_CSR19, 0);
1843
1844 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1845 ural_write(sc, RAL_TXRX_CSR18, tmp);
1846
1847 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1848 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1849 tmp = logcwmin << 12 | preload;
1850 ural_write(sc, RAL_TXRX_CSR20, tmp);
1851
1852 /* finally, enable TSF synchronization */
1853 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1854 if (ic->ic_opmode == IEEE80211_M_STA)
1855 tmp |= RAL_ENABLE_TSF_SYNC(1);
1856 else
1857 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1858 ural_write(sc, RAL_TXRX_CSR19, tmp);
1859
1860 DPRINTF(("enabling TSF synchronization\n"));
1861 }
1862
1863 Static void
1864 ural_update_slot(struct ifnet *ifp)
1865 {
1866 struct ural_softc *sc = ifp->if_softc;
1867 struct ieee80211com *ic = &sc->sc_ic;
1868 uint16_t slottime, sifs, eifs;
1869
1870 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1871
1872 /*
1873 * These settings may sound a bit inconsistent but this is what the
1874 * reference driver does.
1875 */
1876 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1877 sifs = 16 - RAL_RXTX_TURNAROUND;
1878 eifs = 364;
1879 } else {
1880 sifs = 10 - RAL_RXTX_TURNAROUND;
1881 eifs = 64;
1882 }
1883
1884 ural_write(sc, RAL_MAC_CSR10, slottime);
1885 ural_write(sc, RAL_MAC_CSR11, sifs);
1886 ural_write(sc, RAL_MAC_CSR12, eifs);
1887 }
1888
1889 Static void
1890 ural_set_txpreamble(struct ural_softc *sc)
1891 {
1892 uint16_t tmp;
1893
1894 tmp = ural_read(sc, RAL_TXRX_CSR10);
1895
1896 tmp &= ~RAL_SHORT_PREAMBLE;
1897 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1898 tmp |= RAL_SHORT_PREAMBLE;
1899
1900 ural_write(sc, RAL_TXRX_CSR10, tmp);
1901 }
1902
1903 Static void
1904 ural_set_basicrates(struct ural_softc *sc)
1905 {
1906 struct ieee80211com *ic = &sc->sc_ic;
1907
1908 /* update basic rate set */
1909 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1910 /* 11b basic rates: 1, 2Mbps */
1911 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1912 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1913 /* 11a basic rates: 6, 12, 24Mbps */
1914 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1915 } else {
1916 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1917 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1918 }
1919 }
1920
1921 Static void
1922 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1923 {
1924 uint16_t tmp;
1925
1926 tmp = bssid[0] | bssid[1] << 8;
1927 ural_write(sc, RAL_MAC_CSR5, tmp);
1928
1929 tmp = bssid[2] | bssid[3] << 8;
1930 ural_write(sc, RAL_MAC_CSR6, tmp);
1931
1932 tmp = bssid[4] | bssid[5] << 8;
1933 ural_write(sc, RAL_MAC_CSR7, tmp);
1934
1935 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1936 }
1937
1938 Static void
1939 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1940 {
1941 uint16_t tmp;
1942
1943 tmp = addr[0] | addr[1] << 8;
1944 ural_write(sc, RAL_MAC_CSR2, tmp);
1945
1946 tmp = addr[2] | addr[3] << 8;
1947 ural_write(sc, RAL_MAC_CSR3, tmp);
1948
1949 tmp = addr[4] | addr[5] << 8;
1950 ural_write(sc, RAL_MAC_CSR4, tmp);
1951
1952 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1953 }
1954
1955 Static void
1956 ural_update_promisc(struct ural_softc *sc)
1957 {
1958 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1959 uint32_t tmp;
1960
1961 tmp = ural_read(sc, RAL_TXRX_CSR2);
1962
1963 tmp &= ~RAL_DROP_NOT_TO_ME;
1964 if (!(ifp->if_flags & IFF_PROMISC))
1965 tmp |= RAL_DROP_NOT_TO_ME;
1966
1967 ural_write(sc, RAL_TXRX_CSR2, tmp);
1968
1969 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1970 "entering" : "leaving"));
1971 }
1972
1973 Static const char *
1974 ural_get_rf(int rev)
1975 {
1976 switch (rev) {
1977 case RAL_RF_2522: return "RT2522";
1978 case RAL_RF_2523: return "RT2523";
1979 case RAL_RF_2524: return "RT2524";
1980 case RAL_RF_2525: return "RT2525";
1981 case RAL_RF_2525E: return "RT2525e";
1982 case RAL_RF_2526: return "RT2526";
1983 case RAL_RF_5222: return "RT5222";
1984 default: return "unknown";
1985 }
1986 }
1987
1988 Static void
1989 ural_read_eeprom(struct ural_softc *sc)
1990 {
1991 struct ieee80211com *ic = &sc->sc_ic;
1992 uint16_t val;
1993
1994 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1995 val = le16toh(val);
1996 sc->rf_rev = (val >> 11) & 0x7;
1997 sc->hw_radio = (val >> 10) & 0x1;
1998 sc->led_mode = (val >> 6) & 0x7;
1999 sc->rx_ant = (val >> 4) & 0x3;
2000 sc->tx_ant = (val >> 2) & 0x3;
2001 sc->nb_ant = val & 0x3;
2002
2003 /* read MAC address */
2004 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2005
2006 /* read default values for BBP registers */
2007 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2008
2009 /* read Tx power for all b/g channels */
2010 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2011 }
2012
2013 Static int
2014 ural_bbp_init(struct ural_softc *sc)
2015 {
2016 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2017 int i, ntries;
2018
2019 /* wait for BBP to be ready */
2020 for (ntries = 0; ntries < 100; ntries++) {
2021 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2022 break;
2023 DELAY(1000);
2024 }
2025 if (ntries == 100) {
2026 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2027 return EIO;
2028 }
2029
2030 /* initialize BBP registers to default values */
2031 for (i = 0; i < N(ural_def_bbp); i++)
2032 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2033
2034 #if 0
2035 /* initialize BBP registers to values stored in EEPROM */
2036 for (i = 0; i < 16; i++) {
2037 if (sc->bbp_prom[i].reg == 0xff)
2038 continue;
2039 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2040 }
2041 #endif
2042
2043 return 0;
2044 #undef N
2045 }
2046
2047 Static void
2048 ural_set_txantenna(struct ural_softc *sc, int antenna)
2049 {
2050 uint16_t tmp;
2051 uint8_t tx;
2052
2053 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2054 if (antenna == 1)
2055 tx |= RAL_BBP_ANTA;
2056 else if (antenna == 2)
2057 tx |= RAL_BBP_ANTB;
2058 else
2059 tx |= RAL_BBP_DIVERSITY;
2060
2061 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2062 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2063 sc->rf_rev == RAL_RF_5222)
2064 tx |= RAL_BBP_FLIPIQ;
2065
2066 ural_bbp_write(sc, RAL_BBP_TX, tx);
2067
2068 /* update values in PHY_CSR5 and PHY_CSR6 */
2069 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2070 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2071
2072 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2073 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2074 }
2075
2076 Static void
2077 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2078 {
2079 uint8_t rx;
2080
2081 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2082 if (antenna == 1)
2083 rx |= RAL_BBP_ANTA;
2084 else if (antenna == 2)
2085 rx |= RAL_BBP_ANTB;
2086 else
2087 rx |= RAL_BBP_DIVERSITY;
2088
2089 /* need to force no I/Q flip for RF 2525e and 2526 */
2090 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2091 rx &= ~RAL_BBP_FLIPIQ;
2092
2093 ural_bbp_write(sc, RAL_BBP_RX, rx);
2094 }
2095
2096 Static int
2097 ural_init(struct ifnet *ifp)
2098 {
2099 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2100 struct ural_softc *sc = ifp->if_softc;
2101 struct ieee80211com *ic = &sc->sc_ic;
2102 struct ieee80211_key *wk;
2103 struct ural_rx_data *data;
2104 uint16_t tmp;
2105 usbd_status error;
2106 int i, ntries;
2107
2108 ural_set_testmode(sc);
2109 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2110
2111 ural_stop(ifp, 0);
2112
2113 /* initialize MAC registers to default values */
2114 for (i = 0; i < N(ural_def_mac); i++)
2115 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2116
2117 /* wait for BBP and RF to wake up (this can take a long time!) */
2118 for (ntries = 0; ntries < 100; ntries++) {
2119 tmp = ural_read(sc, RAL_MAC_CSR17);
2120 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2121 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2122 break;
2123 DELAY(1000);
2124 }
2125 if (ntries == 100) {
2126 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2127 USBDEVNAME(sc->sc_dev));
2128 error = EIO;
2129 goto fail;
2130 }
2131
2132 /* we're ready! */
2133 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2134
2135 /* set basic rate set (will be updated later) */
2136 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2137
2138 error = ural_bbp_init(sc);
2139 if (error != 0)
2140 goto fail;
2141
2142 /* set default BSS channel */
2143 ural_set_chan(sc, ic->ic_curchan);
2144
2145 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2146 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2147
2148 ural_set_txantenna(sc, sc->tx_ant);
2149 ural_set_rxantenna(sc, sc->rx_ant);
2150
2151 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2152 ural_set_macaddr(sc, ic->ic_myaddr);
2153
2154 /*
2155 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2156 */
2157 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2158 wk = &ic->ic_crypto.cs_nw_keys[i];
2159 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2160 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2161 }
2162
2163 /*
2164 * Allocate xfer for AMRR statistics requests.
2165 */
2166 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2167 if (sc->amrr_xfer == NULL) {
2168 printf("%s: could not allocate AMRR xfer\n",
2169 USBDEVNAME(sc->sc_dev));
2170 goto fail;
2171 }
2172
2173 /*
2174 * Open Tx and Rx USB bulk pipes.
2175 */
2176 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2177 &sc->sc_tx_pipeh);
2178 if (error != 0) {
2179 printf("%s: could not open Tx pipe: %s\n",
2180 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2181 goto fail;
2182 }
2183
2184 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2185 &sc->sc_rx_pipeh);
2186 if (error != 0) {
2187 printf("%s: could not open Rx pipe: %s\n",
2188 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2189 goto fail;
2190 }
2191
2192 /*
2193 * Allocate Tx and Rx xfer queues.
2194 */
2195 error = ural_alloc_tx_list(sc);
2196 if (error != 0) {
2197 printf("%s: could not allocate Tx list\n",
2198 USBDEVNAME(sc->sc_dev));
2199 goto fail;
2200 }
2201
2202 error = ural_alloc_rx_list(sc);
2203 if (error != 0) {
2204 printf("%s: could not allocate Rx list\n",
2205 USBDEVNAME(sc->sc_dev));
2206 goto fail;
2207 }
2208
2209 /*
2210 * Start up the receive pipe.
2211 */
2212 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2213 data = &sc->rx_data[i];
2214
2215 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2216 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2217 usbd_transfer(data->xfer);
2218 }
2219
2220 /* kick Rx */
2221 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2222 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2223 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2224 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2225 tmp |= RAL_DROP_TODS;
2226 if (!(ifp->if_flags & IFF_PROMISC))
2227 tmp |= RAL_DROP_NOT_TO_ME;
2228 }
2229 ural_write(sc, RAL_TXRX_CSR2, tmp);
2230
2231 ifp->if_flags &= ~IFF_OACTIVE;
2232 ifp->if_flags |= IFF_RUNNING;
2233
2234 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2235 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2236 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2237 } else
2238 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2239
2240 return 0;
2241
2242 fail: ural_stop(ifp, 1);
2243 return error;
2244 #undef N
2245 }
2246
2247 Static void
2248 ural_stop(struct ifnet *ifp, int disable)
2249 {
2250 struct ural_softc *sc = ifp->if_softc;
2251 struct ieee80211com *ic = &sc->sc_ic;
2252
2253 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2254
2255 sc->sc_tx_timer = 0;
2256 ifp->if_timer = 0;
2257 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2258
2259 /* disable Rx */
2260 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2261
2262 /* reset ASIC and BBP (but won't reset MAC registers!) */
2263 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2264 ural_write(sc, RAL_MAC_CSR1, 0);
2265
2266 if (sc->amrr_xfer != NULL) {
2267 usbd_free_xfer(sc->amrr_xfer);
2268 sc->amrr_xfer = NULL;
2269 }
2270
2271 if (sc->sc_rx_pipeh != NULL) {
2272 usbd_abort_pipe(sc->sc_rx_pipeh);
2273 usbd_close_pipe(sc->sc_rx_pipeh);
2274 sc->sc_rx_pipeh = NULL;
2275 }
2276
2277 if (sc->sc_tx_pipeh != NULL) {
2278 usbd_abort_pipe(sc->sc_tx_pipeh);
2279 usbd_close_pipe(sc->sc_tx_pipeh);
2280 sc->sc_tx_pipeh = NULL;
2281 }
2282
2283 ural_free_rx_list(sc);
2284 ural_free_tx_list(sc);
2285 }
2286
2287 int
2288 ural_activate(device_ptr_t self, enum devact act)
2289 {
2290 struct ural_softc *sc = (struct ural_softc *)self;
2291
2292 switch (act) {
2293 case DVACT_ACTIVATE:
2294 return EOPNOTSUPP;
2295 break;
2296
2297 case DVACT_DEACTIVATE:
2298 if_deactivate(&sc->sc_if);
2299 break;
2300 }
2301
2302 return 0;
2303 }
2304
2305 Static void
2306 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2307 {
2308 int i;
2309
2310 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2311 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2312
2313 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2314
2315 /* set rate to some reasonable initial value */
2316 for (i = ni->ni_rates.rs_nrates - 1;
2317 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2318 i--);
2319 ni->ni_txrate = i;
2320
2321 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2322 }
2323
2324 Static void
2325 ural_amrr_timeout(void *arg)
2326 {
2327 struct ural_softc *sc = (struct ural_softc *)arg;
2328 usb_device_request_t req;
2329 int s;
2330
2331 s = splusb();
2332
2333 /*
2334 * Asynchronously read statistic registers (cleared by read).
2335 */
2336 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2337 req.bRequest = RAL_READ_MULTI_MAC;
2338 USETW(req.wValue, 0);
2339 USETW(req.wIndex, RAL_STA_CSR0);
2340 USETW(req.wLength, sizeof sc->sta);
2341
2342 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2343 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2344 ural_amrr_update);
2345 (void)usbd_transfer(sc->amrr_xfer);
2346
2347 splx(s);
2348 }
2349
2350 Static void
2351 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2352 usbd_status status)
2353 {
2354 struct ural_softc *sc = (struct ural_softc *)priv;
2355 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2356
2357 if (status != USBD_NORMAL_COMPLETION) {
2358 printf("%s: could not retrieve Tx statistics - "
2359 "cancelling automatic rate control\n",
2360 USBDEVNAME(sc->sc_dev));
2361 return;
2362 }
2363
2364 /* count TX retry-fail as Tx errors */
2365 ifp->if_oerrors += sc->sta[9];
2366
2367 sc->amn.amn_retrycnt =
2368 sc->sta[7] + /* TX one-retry ok count */
2369 sc->sta[8] + /* TX more-retry ok count */
2370 sc->sta[9]; /* TX retry-fail count */
2371
2372 sc->amn.amn_txcnt =
2373 sc->amn.amn_retrycnt +
2374 sc->sta[6]; /* TX no-retry ok count */
2375
2376 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2377
2378 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2379 }
2380