if_ural.c revision 1.26 1 /* $NetBSD: if_ural.c,v 1.26 2007/10/21 17:03:37 degroote Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.26 2007/10/21 17:03:37 degroote Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
106 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
108 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
110 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
111 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
112 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
113 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
114 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
115 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117
118 Static int ural_alloc_tx_list(struct ural_softc *);
119 Static void ural_free_tx_list(struct ural_softc *);
120 Static int ural_alloc_rx_list(struct ural_softc *);
121 Static void ural_free_rx_list(struct ural_softc *);
122 Static int ural_media_change(struct ifnet *);
123 Static void ural_next_scan(void *);
124 Static void ural_task(void *);
125 Static int ural_newstate(struct ieee80211com *,
126 enum ieee80211_state, int);
127 Static int ural_rxrate(struct ural_rx_desc *);
128 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 usbd_status);
130 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 usbd_status);
132 Static int ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t ural_txtime(int, int, uint32_t);
134 Static uint8_t ural_plcp_signal(int);
135 Static void ural_setup_tx_desc(struct ural_softc *,
136 struct ural_tx_desc *, uint32_t, int, int);
137 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 struct ieee80211_node *);
141 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
142 struct ieee80211_node *);
143 Static void ural_start(struct ifnet *);
144 Static void ural_watchdog(struct ifnet *);
145 Static int ural_reset(struct ifnet *);
146 Static int ural_ioctl(struct ifnet *, u_long, void *);
147 Static void ural_set_testmode(struct ural_softc *);
148 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 int);
150 Static uint16_t ural_read(struct ural_softc *, uint16_t);
151 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
152 int);
153 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
155 int);
156 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void ural_set_chan(struct ural_softc *,
160 struct ieee80211_channel *);
161 Static void ural_disable_rf_tune(struct ural_softc *);
162 Static void ural_enable_tsf_sync(struct ural_softc *);
163 Static void ural_update_slot(struct ifnet *);
164 Static void ural_set_txpreamble(struct ural_softc *);
165 Static void ural_set_basicrates(struct ural_softc *);
166 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void ural_update_promisc(struct ural_softc *);
169 Static const char *ural_get_rf(int);
170 Static void ural_read_eeprom(struct ural_softc *);
171 Static int ural_bbp_init(struct ural_softc *);
172 Static void ural_set_txantenna(struct ural_softc *, int);
173 Static void ural_set_rxantenna(struct ural_softc *, int);
174 Static int ural_init(struct ifnet *);
175 Static void ural_stop(struct ifnet *, int);
176 Static void ural_amrr_start(struct ural_softc *,
177 struct ieee80211_node *);
178 Static void ural_amrr_timeout(void *);
179 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 usbd_status status);
181
182 /*
183 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184 */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187
188 static const struct ieee80211_rateset ural_rateset_11b =
189 { 4, { 2, 4, 11, 22 } };
190
191 static const struct ieee80211_rateset ural_rateset_11g =
192 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193
194 /*
195 * Default values for MAC registers; values taken from the reference driver.
196 */
197 static const struct {
198 uint16_t reg;
199 uint16_t val;
200 } ural_def_mac[] = {
201 { RAL_TXRX_CSR5, 0x8c8d },
202 { RAL_TXRX_CSR6, 0x8b8a },
203 { RAL_TXRX_CSR7, 0x8687 },
204 { RAL_TXRX_CSR8, 0x0085 },
205 { RAL_MAC_CSR13, 0x1111 },
206 { RAL_MAC_CSR14, 0x1e11 },
207 { RAL_TXRX_CSR21, 0xe78f },
208 { RAL_MAC_CSR9, 0xff1d },
209 { RAL_MAC_CSR11, 0x0002 },
210 { RAL_MAC_CSR22, 0x0053 },
211 { RAL_MAC_CSR15, 0x0000 },
212 { RAL_MAC_CSR8, 0x0780 },
213 { RAL_TXRX_CSR19, 0x0000 },
214 { RAL_TXRX_CSR18, 0x005a },
215 { RAL_PHY_CSR2, 0x0000 },
216 { RAL_TXRX_CSR0, 0x1ec0 },
217 { RAL_PHY_CSR4, 0x000f }
218 };
219
220 /*
221 * Default values for BBP registers; values taken from the reference driver.
222 */
223 static const struct {
224 uint8_t reg;
225 uint8_t val;
226 } ural_def_bbp[] = {
227 { 3, 0x02 },
228 { 4, 0x19 },
229 { 14, 0x1c },
230 { 15, 0x30 },
231 { 16, 0xac },
232 { 17, 0x48 },
233 { 18, 0x18 },
234 { 19, 0xff },
235 { 20, 0x1e },
236 { 21, 0x08 },
237 { 22, 0x08 },
238 { 23, 0x08 },
239 { 24, 0x80 },
240 { 25, 0x50 },
241 { 26, 0x08 },
242 { 27, 0x23 },
243 { 30, 0x10 },
244 { 31, 0x2b },
245 { 32, 0xb9 },
246 { 34, 0x12 },
247 { 35, 0x50 },
248 { 39, 0xc4 },
249 { 40, 0x02 },
250 { 41, 0x60 },
251 { 53, 0x10 },
252 { 54, 0x18 },
253 { 56, 0x08 },
254 { 57, 0x10 },
255 { 58, 0x08 },
256 { 61, 0x60 },
257 { 62, 0x10 },
258 { 75, 0xff }
259 };
260
261 /*
262 * Default values for RF register R2 indexed by channel numbers.
263 */
264 static const uint32_t ural_rf2522_r2[] = {
265 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268
269 static const uint32_t ural_rf2523_r2[] = {
270 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273
274 static const uint32_t ural_rf2524_r2[] = {
275 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278
279 static const uint32_t ural_rf2525_r2[] = {
280 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288
289 static const uint32_t ural_rf2525e_r2[] = {
290 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298
299 static const uint32_t ural_rf2526_r2[] = {
300 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303
304 /*
305 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306 * values taken from the reference driver.
307 */
308 static const struct {
309 uint8_t chan;
310 uint32_t r1;
311 uint32_t r2;
312 uint32_t r4;
313 } ural_rf5222[] = {
314 { 1, 0x08808, 0x0044d, 0x00282 },
315 { 2, 0x08808, 0x0044e, 0x00282 },
316 { 3, 0x08808, 0x0044f, 0x00282 },
317 { 4, 0x08808, 0x00460, 0x00282 },
318 { 5, 0x08808, 0x00461, 0x00282 },
319 { 6, 0x08808, 0x00462, 0x00282 },
320 { 7, 0x08808, 0x00463, 0x00282 },
321 { 8, 0x08808, 0x00464, 0x00282 },
322 { 9, 0x08808, 0x00465, 0x00282 },
323 { 10, 0x08808, 0x00466, 0x00282 },
324 { 11, 0x08808, 0x00467, 0x00282 },
325 { 12, 0x08808, 0x00468, 0x00282 },
326 { 13, 0x08808, 0x00469, 0x00282 },
327 { 14, 0x08808, 0x0046b, 0x00286 },
328
329 { 36, 0x08804, 0x06225, 0x00287 },
330 { 40, 0x08804, 0x06226, 0x00287 },
331 { 44, 0x08804, 0x06227, 0x00287 },
332 { 48, 0x08804, 0x06228, 0x00287 },
333 { 52, 0x08804, 0x06229, 0x00287 },
334 { 56, 0x08804, 0x0622a, 0x00287 },
335 { 60, 0x08804, 0x0622b, 0x00287 },
336 { 64, 0x08804, 0x0622c, 0x00287 },
337
338 { 100, 0x08804, 0x02200, 0x00283 },
339 { 104, 0x08804, 0x02201, 0x00283 },
340 { 108, 0x08804, 0x02202, 0x00283 },
341 { 112, 0x08804, 0x02203, 0x00283 },
342 { 116, 0x08804, 0x02204, 0x00283 },
343 { 120, 0x08804, 0x02205, 0x00283 },
344 { 124, 0x08804, 0x02206, 0x00283 },
345 { 128, 0x08804, 0x02207, 0x00283 },
346 { 132, 0x08804, 0x02208, 0x00283 },
347 { 136, 0x08804, 0x02209, 0x00283 },
348 { 140, 0x08804, 0x0220a, 0x00283 },
349
350 { 149, 0x08808, 0x02429, 0x00281 },
351 { 153, 0x08808, 0x0242b, 0x00281 },
352 { 157, 0x08808, 0x0242d, 0x00281 },
353 { 161, 0x08808, 0x0242f, 0x00281 }
354 };
355
356 USB_DECLARE_DRIVER(ural);
357
358 USB_MATCH(ural)
359 {
360 USB_MATCH_START(ural, uaa);
361
362 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365
366 USB_ATTACH(ural)
367 {
368 USB_ATTACH_START(ural, sc, uaa);
369 struct ieee80211com *ic = &sc->sc_ic;
370 struct ifnet *ifp = &sc->sc_if;
371 usb_interface_descriptor_t *id;
372 usb_endpoint_descriptor_t *ed;
373 usbd_status error;
374 char *devinfop;
375 int i;
376
377 sc->sc_udev = uaa->device;
378
379 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
380 USB_ATTACH_SETUP;
381 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
382 usbd_devinfo_free(devinfop);
383
384 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 printf("%s: could not set configuration no\n",
386 USBDEVNAME(sc->sc_dev));
387 USB_ATTACH_ERROR_RETURN;
388 }
389
390 /* get the first interface handle */
391 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 &sc->sc_iface);
393 if (error != 0) {
394 printf("%s: could not get interface handle\n",
395 USBDEVNAME(sc->sc_dev));
396 USB_ATTACH_ERROR_RETURN;
397 }
398
399 /*
400 * Find endpoints.
401 */
402 id = usbd_get_interface_descriptor(sc->sc_iface);
403
404 sc->sc_rx_no = sc->sc_tx_no = -1;
405 for (i = 0; i < id->bNumEndpoints; i++) {
406 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
407 if (ed == NULL) {
408 printf("%s: no endpoint descriptor for %d\n",
409 USBDEVNAME(sc->sc_dev), i);
410 USB_ATTACH_ERROR_RETURN;
411 }
412
413 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
414 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
415 sc->sc_rx_no = ed->bEndpointAddress;
416 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
417 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
418 sc->sc_tx_no = ed->bEndpointAddress;
419 }
420 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
421 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
422 USB_ATTACH_ERROR_RETURN;
423 }
424
425 usb_init_task(&sc->sc_task, ural_task, sc);
426 usb_callout_init(sc->sc_scan_ch);
427 sc->amrr.amrr_min_success_threshold = 1;
428 sc->amrr.amrr_min_success_threshold = 15;
429 usb_callout_init(sc->sc_amrr_ch);
430
431 /* retrieve RT2570 rev. no */
432 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
433
434 /* retrieve MAC address and various other things from EEPROM */
435 ural_read_eeprom(sc);
436
437 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
438 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
439
440 ifp->if_softc = sc;
441 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
442 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443 ifp->if_init = ural_init;
444 ifp->if_ioctl = ural_ioctl;
445 ifp->if_start = ural_start;
446 ifp->if_watchdog = ural_watchdog;
447 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
448 IFQ_SET_READY(&ifp->if_snd);
449
450 ic->ic_ifp = ifp;
451 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
452 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
453 ic->ic_state = IEEE80211_S_INIT;
454
455 /* set device capabilities */
456 ic->ic_caps =
457 IEEE80211_C_IBSS | /* IBSS mode supported */
458 IEEE80211_C_MONITOR | /* monitor mode supported */
459 IEEE80211_C_HOSTAP | /* HostAp mode supported */
460 IEEE80211_C_TXPMGT | /* tx power management */
461 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
462 IEEE80211_C_SHSLOT | /* short slot time supported */
463 IEEE80211_C_WPA; /* 802.11i */
464
465 if (sc->rf_rev == RAL_RF_5222) {
466 /* set supported .11a rates */
467 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
468
469 /* set supported .11a channels */
470 for (i = 36; i <= 64; i += 4) {
471 ic->ic_channels[i].ic_freq =
472 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 }
475 for (i = 100; i <= 140; i += 4) {
476 ic->ic_channels[i].ic_freq =
477 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 }
480 for (i = 149; i <= 161; i += 4) {
481 ic->ic_channels[i].ic_freq =
482 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
483 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
484 }
485 }
486
487 /* set supported .11b and .11g rates */
488 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
489 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
490
491 /* set supported .11b and .11g channels (1 through 14) */
492 for (i = 1; i <= 14; i++) {
493 ic->ic_channels[i].ic_freq =
494 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
495 ic->ic_channels[i].ic_flags =
496 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
497 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
498 }
499
500 if_attach(ifp);
501 ieee80211_ifattach(ic);
502 ic->ic_reset = ural_reset;
503
504 /* override state transition machine */
505 sc->sc_newstate = ic->ic_newstate;
506 ic->ic_newstate = ural_newstate;
507 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
508
509 #if NBPFILTER > 0
510 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
511 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
514 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517 sc->sc_txtap_len = sizeof sc->sc_txtapu;
518 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520 #endif
521
522 ieee80211_announce(ic);
523
524 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 USBDEV(sc->sc_dev));
526
527 USB_ATTACH_SUCCESS_RETURN;
528 }
529
530 USB_DETACH(ural)
531 {
532 USB_DETACH_START(ural, sc);
533 struct ieee80211com *ic = &sc->sc_ic;
534 struct ifnet *ifp = &sc->sc_if;
535 int s;
536
537 s = splusb();
538
539 ural_stop(ifp, 1);
540 usb_rem_task(sc->sc_udev, &sc->sc_task);
541 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
542 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
543
544 if (sc->amrr_xfer != NULL) {
545 usbd_free_xfer(sc->amrr_xfer);
546 sc->amrr_xfer = NULL;
547 }
548
549 if (sc->sc_rx_pipeh != NULL) {
550 usbd_abort_pipe(sc->sc_rx_pipeh);
551 usbd_close_pipe(sc->sc_rx_pipeh);
552 }
553
554 if (sc->sc_tx_pipeh != NULL) {
555 usbd_abort_pipe(sc->sc_tx_pipeh);
556 usbd_close_pipe(sc->sc_tx_pipeh);
557 }
558
559 #if NBPFILTER > 0
560 bpfdetach(ifp);
561 #endif
562 ieee80211_ifdetach(ic);
563 if_detach(ifp);
564
565 splx(s);
566
567 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
568 USBDEV(sc->sc_dev));
569
570 return 0;
571 }
572
573 Static int
574 ural_alloc_tx_list(struct ural_softc *sc)
575 {
576 struct ural_tx_data *data;
577 int i, error;
578
579 sc->tx_queued = 0;
580
581 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
582 data = &sc->tx_data[i];
583
584 data->sc = sc;
585
586 data->xfer = usbd_alloc_xfer(sc->sc_udev);
587 if (data->xfer == NULL) {
588 printf("%s: could not allocate tx xfer\n",
589 USBDEVNAME(sc->sc_dev));
590 error = ENOMEM;
591 goto fail;
592 }
593
594 data->buf = usbd_alloc_buffer(data->xfer,
595 RAL_TX_DESC_SIZE + MCLBYTES);
596 if (data->buf == NULL) {
597 printf("%s: could not allocate tx buffer\n",
598 USBDEVNAME(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602 }
603
604 return 0;
605
606 fail: ural_free_tx_list(sc);
607 return error;
608 }
609
610 Static void
611 ural_free_tx_list(struct ural_softc *sc)
612 {
613 struct ural_tx_data *data;
614 int i;
615
616 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
617 data = &sc->tx_data[i];
618
619 if (data->xfer != NULL) {
620 usbd_free_xfer(data->xfer);
621 data->xfer = NULL;
622 }
623
624 if (data->ni != NULL) {
625 ieee80211_free_node(data->ni);
626 data->ni = NULL;
627 }
628 }
629 }
630
631 Static int
632 ural_alloc_rx_list(struct ural_softc *sc)
633 {
634 struct ural_rx_data *data;
635 int i, error;
636
637 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
638 data = &sc->rx_data[i];
639
640 data->sc = sc;
641
642 data->xfer = usbd_alloc_xfer(sc->sc_udev);
643 if (data->xfer == NULL) {
644 printf("%s: could not allocate rx xfer\n",
645 USBDEVNAME(sc->sc_dev));
646 error = ENOMEM;
647 goto fail;
648 }
649
650 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
651 printf("%s: could not allocate rx buffer\n",
652 USBDEVNAME(sc->sc_dev));
653 error = ENOMEM;
654 goto fail;
655 }
656
657 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
658 if (data->m == NULL) {
659 printf("%s: could not allocate rx mbuf\n",
660 USBDEVNAME(sc->sc_dev));
661 error = ENOMEM;
662 goto fail;
663 }
664
665 MCLGET(data->m, M_DONTWAIT);
666 if (!(data->m->m_flags & M_EXT)) {
667 printf("%s: could not allocate rx mbuf cluster\n",
668 USBDEVNAME(sc->sc_dev));
669 error = ENOMEM;
670 goto fail;
671 }
672
673 data->buf = mtod(data->m, uint8_t *);
674 }
675
676 return 0;
677
678 fail: ural_free_tx_list(sc);
679 return error;
680 }
681
682 Static void
683 ural_free_rx_list(struct ural_softc *sc)
684 {
685 struct ural_rx_data *data;
686 int i;
687
688 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
689 data = &sc->rx_data[i];
690
691 if (data->xfer != NULL) {
692 usbd_free_xfer(data->xfer);
693 data->xfer = NULL;
694 }
695
696 if (data->m != NULL) {
697 m_freem(data->m);
698 data->m = NULL;
699 }
700 }
701 }
702
703 Static int
704 ural_media_change(struct ifnet *ifp)
705 {
706 int error;
707
708 error = ieee80211_media_change(ifp);
709 if (error != ENETRESET)
710 return error;
711
712 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
713 ural_init(ifp);
714
715 return 0;
716 }
717
718 /*
719 * This function is called periodically (every 200ms) during scanning to
720 * switch from one channel to another.
721 */
722 Static void
723 ural_next_scan(void *arg)
724 {
725 struct ural_softc *sc = arg;
726 struct ieee80211com *ic = &sc->sc_ic;
727
728 if (ic->ic_state == IEEE80211_S_SCAN)
729 ieee80211_next_scan(ic);
730 }
731
732 Static void
733 ural_task(void *arg)
734 {
735 struct ural_softc *sc = arg;
736 struct ieee80211com *ic = &sc->sc_ic;
737 enum ieee80211_state ostate;
738 struct ieee80211_node *ni;
739 struct mbuf *m;
740
741 ostate = ic->ic_state;
742
743 switch (sc->sc_state) {
744 case IEEE80211_S_INIT:
745 if (ostate == IEEE80211_S_RUN) {
746 /* abort TSF synchronization */
747 ural_write(sc, RAL_TXRX_CSR19, 0);
748
749 /* force tx led to stop blinking */
750 ural_write(sc, RAL_MAC_CSR20, 0);
751 }
752 break;
753
754 case IEEE80211_S_SCAN:
755 ural_set_chan(sc, ic->ic_curchan);
756 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
757 break;
758
759 case IEEE80211_S_AUTH:
760 ural_set_chan(sc, ic->ic_curchan);
761 break;
762
763 case IEEE80211_S_ASSOC:
764 ural_set_chan(sc, ic->ic_curchan);
765 break;
766
767 case IEEE80211_S_RUN:
768 ural_set_chan(sc, ic->ic_curchan);
769
770 ni = ic->ic_bss;
771
772 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
773 ural_update_slot(ic->ic_ifp);
774 ural_set_txpreamble(sc);
775 ural_set_basicrates(sc);
776 ural_set_bssid(sc, ni->ni_bssid);
777 }
778
779 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
780 ic->ic_opmode == IEEE80211_M_IBSS) {
781 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
782 if (m == NULL) {
783 printf("%s: could not allocate beacon\n",
784 USBDEVNAME(sc->sc_dev));
785 return;
786 }
787
788 if (ural_tx_bcn(sc, m, ni) != 0) {
789 m_freem(m);
790 printf("%s: could not send beacon\n",
791 USBDEVNAME(sc->sc_dev));
792 return;
793 }
794
795 /* beacon is no longer needed */
796 m_freem(m);
797 }
798
799 /* make tx led blink on tx (controlled by ASIC) */
800 ural_write(sc, RAL_MAC_CSR20, 1);
801
802 if (ic->ic_opmode != IEEE80211_M_MONITOR)
803 ural_enable_tsf_sync(sc);
804
805 /* enable automatic rate adaptation in STA mode */
806 if (ic->ic_opmode == IEEE80211_M_STA &&
807 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
808 ural_amrr_start(sc, ni);
809
810 break;
811 }
812
813 sc->sc_newstate(ic, sc->sc_state, -1);
814 }
815
816 Static int
817 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
818 int arg)
819 {
820 struct ural_softc *sc = ic->ic_ifp->if_softc;
821
822 usb_rem_task(sc->sc_udev, &sc->sc_task);
823 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
824 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
825
826 /* do it in a process context */
827 sc->sc_state = nstate;
828 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
829
830 return 0;
831 }
832
833 /* quickly determine if a given rate is CCK or OFDM */
834 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
835
836 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
837 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
838
839 #define RAL_SIFS 10 /* us */
840
841 #define RAL_RXTX_TURNAROUND 5 /* us */
842
843 /*
844 * This function is only used by the Rx radiotap code.
845 */
846 Static int
847 ural_rxrate(struct ural_rx_desc *desc)
848 {
849 if (le32toh(desc->flags) & RAL_RX_OFDM) {
850 /* reverse function of ural_plcp_signal */
851 switch (desc->rate) {
852 case 0xb: return 12;
853 case 0xf: return 18;
854 case 0xa: return 24;
855 case 0xe: return 36;
856 case 0x9: return 48;
857 case 0xd: return 72;
858 case 0x8: return 96;
859 case 0xc: return 108;
860 }
861 } else {
862 if (desc->rate == 10)
863 return 2;
864 if (desc->rate == 20)
865 return 4;
866 if (desc->rate == 55)
867 return 11;
868 if (desc->rate == 110)
869 return 22;
870 }
871 return 2; /* should not get there */
872 }
873
874 Static void
875 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
876 usbd_status status)
877 {
878 struct ural_tx_data *data = priv;
879 struct ural_softc *sc = data->sc;
880 struct ifnet *ifp = &sc->sc_if;
881 int s;
882
883 if (status != USBD_NORMAL_COMPLETION) {
884 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
885 return;
886
887 printf("%s: could not transmit buffer: %s\n",
888 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
889
890 if (status == USBD_STALLED)
891 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
892
893 ifp->if_oerrors++;
894 return;
895 }
896
897 s = splnet();
898
899 m_freem(data->m);
900 data->m = NULL;
901 ieee80211_free_node(data->ni);
902 data->ni = NULL;
903
904 sc->tx_queued--;
905 ifp->if_opackets++;
906
907 DPRINTFN(10, ("tx done\n"));
908
909 sc->sc_tx_timer = 0;
910 ifp->if_flags &= ~IFF_OACTIVE;
911 ural_start(ifp);
912
913 splx(s);
914 }
915
916 Static void
917 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
918 {
919 struct ural_rx_data *data = priv;
920 struct ural_softc *sc = data->sc;
921 struct ieee80211com *ic = &sc->sc_ic;
922 struct ifnet *ifp = &sc->sc_if;
923 struct ural_rx_desc *desc;
924 struct ieee80211_frame *wh;
925 struct ieee80211_node *ni;
926 struct mbuf *mnew, *m;
927 int s, len;
928
929 if (status != USBD_NORMAL_COMPLETION) {
930 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
931 return;
932
933 if (status == USBD_STALLED)
934 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
935 goto skip;
936 }
937
938 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
939
940 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
941 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
942 len));
943 ifp->if_ierrors++;
944 goto skip;
945 }
946
947 /* rx descriptor is located at the end */
948 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
949
950 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
951 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
952 /*
953 * This should not happen since we did not request to receive
954 * those frames when we filled RAL_TXRX_CSR2.
955 */
956 DPRINTFN(5, ("PHY or CRC error\n"));
957 ifp->if_ierrors++;
958 goto skip;
959 }
960
961 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
962 if (mnew == NULL) {
963 ifp->if_ierrors++;
964 goto skip;
965 }
966
967 MCLGET(mnew, M_DONTWAIT);
968 if (!(mnew->m_flags & M_EXT)) {
969 ifp->if_ierrors++;
970 m_freem(mnew);
971 goto skip;
972 }
973
974 m = data->m;
975 data->m = mnew;
976 data->buf = mtod(data->m, uint8_t *);
977
978 /* finalize mbuf */
979 m->m_pkthdr.rcvif = ifp;
980 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
981 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
982
983 s = splnet();
984
985 #if NBPFILTER > 0
986 if (sc->sc_drvbpf != NULL) {
987 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
988
989 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
990 tap->wr_rate = ural_rxrate(desc);
991 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
992 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
993 tap->wr_antenna = sc->rx_ant;
994 tap->wr_antsignal = desc->rssi;
995
996 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
997 }
998 #endif
999
1000 wh = mtod(m, struct ieee80211_frame *);
1001 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1002
1003 /* send the frame to the 802.11 layer */
1004 ieee80211_input(ic, m, ni, desc->rssi, 0);
1005
1006 /* node is no longer needed */
1007 ieee80211_free_node(ni);
1008
1009 splx(s);
1010
1011 DPRINTFN(15, ("rx done\n"));
1012
1013 skip: /* setup a new transfer */
1014 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1015 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1016 usbd_transfer(xfer);
1017 }
1018
1019 /*
1020 * Return the expected ack rate for a frame transmitted at rate `rate'.
1021 * XXX: this should depend on the destination node basic rate set.
1022 */
1023 Static int
1024 ural_ack_rate(struct ieee80211com *ic, int rate)
1025 {
1026 switch (rate) {
1027 /* CCK rates */
1028 case 2:
1029 return 2;
1030 case 4:
1031 case 11:
1032 case 22:
1033 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1034
1035 /* OFDM rates */
1036 case 12:
1037 case 18:
1038 return 12;
1039 case 24:
1040 case 36:
1041 return 24;
1042 case 48:
1043 case 72:
1044 case 96:
1045 case 108:
1046 return 48;
1047 }
1048
1049 /* default to 1Mbps */
1050 return 2;
1051 }
1052
1053 /*
1054 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1055 * The function automatically determines the operating mode depending on the
1056 * given rate. `flags' indicates whether short preamble is in use or not.
1057 */
1058 Static uint16_t
1059 ural_txtime(int len, int rate, uint32_t flags)
1060 {
1061 uint16_t txtime;
1062
1063 if (RAL_RATE_IS_OFDM(rate)) {
1064 /* IEEE Std 802.11g-2003, pp. 37 */
1065 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1066 txtime = 16 + 4 + 4 * txtime + 6;
1067 } else {
1068 /* IEEE Std 802.11b-1999, pp. 28 */
1069 txtime = (16 * len + rate - 1) / rate;
1070 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1071 txtime += 72 + 24;
1072 else
1073 txtime += 144 + 48;
1074 }
1075 return txtime;
1076 }
1077
1078 Static uint8_t
1079 ural_plcp_signal(int rate)
1080 {
1081 switch (rate) {
1082 /* CCK rates (returned values are device-dependent) */
1083 case 2: return 0x0;
1084 case 4: return 0x1;
1085 case 11: return 0x2;
1086 case 22: return 0x3;
1087
1088 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1089 case 12: return 0xb;
1090 case 18: return 0xf;
1091 case 24: return 0xa;
1092 case 36: return 0xe;
1093 case 48: return 0x9;
1094 case 72: return 0xd;
1095 case 96: return 0x8;
1096 case 108: return 0xc;
1097
1098 /* unsupported rates (should not get there) */
1099 default: return 0xff;
1100 }
1101 }
1102
1103 Static void
1104 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1105 uint32_t flags, int len, int rate)
1106 {
1107 struct ieee80211com *ic = &sc->sc_ic;
1108 uint16_t plcp_length;
1109 int remainder;
1110
1111 desc->flags = htole32(flags);
1112 desc->flags |= htole32(RAL_TX_NEWSEQ);
1113 desc->flags |= htole32(len << 16);
1114
1115 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1116 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1117
1118 /* setup PLCP fields */
1119 desc->plcp_signal = ural_plcp_signal(rate);
1120 desc->plcp_service = 4;
1121
1122 len += IEEE80211_CRC_LEN;
1123 if (RAL_RATE_IS_OFDM(rate)) {
1124 desc->flags |= htole32(RAL_TX_OFDM);
1125
1126 plcp_length = len & 0xfff;
1127 desc->plcp_length_hi = plcp_length >> 6;
1128 desc->plcp_length_lo = plcp_length & 0x3f;
1129 } else {
1130 plcp_length = (16 * len + rate - 1) / rate;
1131 if (rate == 22) {
1132 remainder = (16 * len) % 22;
1133 if (remainder != 0 && remainder < 7)
1134 desc->plcp_service |= RAL_PLCP_LENGEXT;
1135 }
1136 desc->plcp_length_hi = plcp_length >> 8;
1137 desc->plcp_length_lo = plcp_length & 0xff;
1138
1139 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1140 desc->plcp_signal |= 0x08;
1141 }
1142
1143 desc->iv = 0;
1144 desc->eiv = 0;
1145 }
1146
1147 #define RAL_TX_TIMEOUT 5000
1148
1149 Static int
1150 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1151 {
1152 struct ural_tx_desc *desc;
1153 usbd_xfer_handle xfer;
1154 uint8_t cmd = 0;
1155 usbd_status error;
1156 uint8_t *buf;
1157 int xferlen, rate;
1158
1159 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1160
1161 xfer = usbd_alloc_xfer(sc->sc_udev);
1162 if (xfer == NULL)
1163 return ENOMEM;
1164
1165 /* xfer length needs to be a multiple of two! */
1166 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1167
1168 buf = usbd_alloc_buffer(xfer, xferlen);
1169 if (buf == NULL) {
1170 usbd_free_xfer(xfer);
1171 return ENOMEM;
1172 }
1173
1174 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1175 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1176
1177 error = usbd_sync_transfer(xfer);
1178 if (error != 0) {
1179 usbd_free_xfer(xfer);
1180 return error;
1181 }
1182
1183 desc = (struct ural_tx_desc *)buf;
1184
1185 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1186 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1187 m0->m_pkthdr.len, rate);
1188
1189 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1190 m0->m_pkthdr.len, rate, xferlen));
1191
1192 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1193 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1194
1195 error = usbd_sync_transfer(xfer);
1196 usbd_free_xfer(xfer);
1197
1198 return error;
1199 }
1200
1201 Static int
1202 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1203 {
1204 struct ieee80211com *ic = &sc->sc_ic;
1205 struct ural_tx_desc *desc;
1206 struct ural_tx_data *data;
1207 struct ieee80211_frame *wh;
1208 struct ieee80211_key *k;
1209 uint32_t flags = 0;
1210 uint16_t dur;
1211 usbd_status error;
1212 int xferlen, rate;
1213
1214 data = &sc->tx_data[0];
1215 desc = (struct ural_tx_desc *)data->buf;
1216
1217 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1218
1219 wh = mtod(m0, struct ieee80211_frame *);
1220
1221 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1222 k = ieee80211_crypto_encap(ic, ni, m0);
1223 if (k == NULL) {
1224 m_freem(m0);
1225 return ENOBUFS;
1226 }
1227 }
1228
1229 data->m = m0;
1230 data->ni = ni;
1231
1232 wh = mtod(m0, struct ieee80211_frame *);
1233
1234 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1235 flags |= RAL_TX_ACK;
1236
1237 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1238 *(uint16_t *)wh->i_dur = htole16(dur);
1239
1240 /* tell hardware to add timestamp for probe responses */
1241 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1242 IEEE80211_FC0_TYPE_MGT &&
1243 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1244 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1245 flags |= RAL_TX_TIMESTAMP;
1246 }
1247
1248 #if NBPFILTER > 0
1249 if (sc->sc_drvbpf != NULL) {
1250 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1251
1252 tap->wt_flags = 0;
1253 tap->wt_rate = rate;
1254 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1255 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1256 tap->wt_antenna = sc->tx_ant;
1257
1258 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1259 }
1260 #endif
1261
1262 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1263 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1264
1265 /* align end on a 2-bytes boundary */
1266 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1267
1268 /*
1269 * No space left in the last URB to store the extra 2 bytes, force
1270 * sending of another URB.
1271 */
1272 if ((xferlen % 64) == 0)
1273 xferlen += 2;
1274
1275 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1276 m0->m_pkthdr.len, rate, xferlen));
1277
1278 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1279 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1280 ural_txeof);
1281
1282 error = usbd_transfer(data->xfer);
1283 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1284 m_freem(m0);
1285 return error;
1286 }
1287
1288 sc->tx_queued++;
1289
1290 return 0;
1291 }
1292
1293 Static int
1294 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1295 {
1296 struct ieee80211com *ic = &sc->sc_ic;
1297 struct ural_tx_desc *desc;
1298 struct ural_tx_data *data;
1299 struct ieee80211_frame *wh;
1300 struct ieee80211_key *k;
1301 uint32_t flags = 0;
1302 uint16_t dur;
1303 usbd_status error;
1304 int xferlen, rate;
1305
1306 wh = mtod(m0, struct ieee80211_frame *);
1307
1308 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1309 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1310 else
1311 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1312
1313 rate &= IEEE80211_RATE_VAL;
1314
1315 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1316 k = ieee80211_crypto_encap(ic, ni, m0);
1317 if (k == NULL) {
1318 m_freem(m0);
1319 return ENOBUFS;
1320 }
1321
1322 /* packet header may have moved, reset our local pointer */
1323 wh = mtod(m0, struct ieee80211_frame *);
1324 }
1325
1326 data = &sc->tx_data[0];
1327 desc = (struct ural_tx_desc *)data->buf;
1328
1329 data->m = m0;
1330 data->ni = ni;
1331
1332 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1333 flags |= RAL_TX_ACK;
1334 flags |= RAL_TX_RETRY(7);
1335
1336 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1337 ic->ic_flags) + RAL_SIFS;
1338 *(uint16_t *)wh->i_dur = htole16(dur);
1339 }
1340
1341 #if NBPFILTER > 0
1342 if (sc->sc_drvbpf != NULL) {
1343 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1344
1345 tap->wt_flags = 0;
1346 tap->wt_rate = rate;
1347 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1348 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1349 tap->wt_antenna = sc->tx_ant;
1350
1351 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1352 }
1353 #endif
1354
1355 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1356 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1357
1358 /* align end on a 2-bytes boundary */
1359 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1360
1361 /*
1362 * No space left in the last URB to store the extra 2 bytes, force
1363 * sending of another URB.
1364 */
1365 if ((xferlen % 64) == 0)
1366 xferlen += 2;
1367
1368 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1369 m0->m_pkthdr.len, rate, xferlen));
1370
1371 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1372 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1373 ural_txeof);
1374
1375 error = usbd_transfer(data->xfer);
1376 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1377 return error;
1378
1379 sc->tx_queued++;
1380
1381 return 0;
1382 }
1383
1384 Static void
1385 ural_start(struct ifnet *ifp)
1386 {
1387 struct ural_softc *sc = ifp->if_softc;
1388 struct ieee80211com *ic = &sc->sc_ic;
1389 struct mbuf *m0;
1390 struct ether_header *eh;
1391 struct ieee80211_node *ni;
1392
1393 for (;;) {
1394 IF_POLL(&ic->ic_mgtq, m0);
1395 if (m0 != NULL) {
1396 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1397 ifp->if_flags |= IFF_OACTIVE;
1398 break;
1399 }
1400 IF_DEQUEUE(&ic->ic_mgtq, m0);
1401
1402 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1403 m0->m_pkthdr.rcvif = NULL;
1404 #if NBPFILTER > 0
1405 if (ic->ic_rawbpf != NULL)
1406 bpf_mtap(ic->ic_rawbpf, m0);
1407 #endif
1408 if (ural_tx_mgt(sc, m0, ni) != 0)
1409 break;
1410
1411 } else {
1412 if (ic->ic_state != IEEE80211_S_RUN)
1413 break;
1414 IFQ_DEQUEUE(&ifp->if_snd, m0);
1415 if (m0 == NULL)
1416 break;
1417 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1418 IF_PREPEND(&ifp->if_snd, m0);
1419 ifp->if_flags |= IFF_OACTIVE;
1420 break;
1421 }
1422
1423 if (m0->m_len < sizeof (struct ether_header) &&
1424 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1425 continue;
1426
1427 eh = mtod(m0, struct ether_header *);
1428 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1429 if (ni == NULL) {
1430 m_freem(m0);
1431 continue;
1432 }
1433 #if NBPFILTER > 0
1434 if (ifp->if_bpf != NULL)
1435 bpf_mtap(ifp->if_bpf, m0);
1436 #endif
1437 m0 = ieee80211_encap(ic, m0, ni);
1438 if (m0 == NULL) {
1439 ieee80211_free_node(ni);
1440 continue;
1441 }
1442 #if NBPFILTER > 0
1443 if (ic->ic_rawbpf != NULL)
1444 bpf_mtap(ic->ic_rawbpf, m0);
1445 #endif
1446 if (ural_tx_data(sc, m0, ni) != 0) {
1447 ieee80211_free_node(ni);
1448 ifp->if_oerrors++;
1449 break;
1450 }
1451 }
1452
1453 sc->sc_tx_timer = 5;
1454 ifp->if_timer = 1;
1455 }
1456 }
1457
1458 Static void
1459 ural_watchdog(struct ifnet *ifp)
1460 {
1461 struct ural_softc *sc = ifp->if_softc;
1462 struct ieee80211com *ic = &sc->sc_ic;
1463
1464 ifp->if_timer = 0;
1465
1466 if (sc->sc_tx_timer > 0) {
1467 if (--sc->sc_tx_timer == 0) {
1468 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1469 /*ural_init(sc); XXX needs a process context! */
1470 ifp->if_oerrors++;
1471 return;
1472 }
1473 ifp->if_timer = 1;
1474 }
1475
1476 ieee80211_watchdog(ic);
1477 }
1478
1479 /*
1480 * This function allows for fast channel switching in monitor mode (used by
1481 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1482 * generate a new beacon frame.
1483 */
1484 Static int
1485 ural_reset(struct ifnet *ifp)
1486 {
1487 struct ural_softc *sc = ifp->if_softc;
1488 struct ieee80211com *ic = &sc->sc_ic;
1489
1490 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1491 return ENETRESET;
1492
1493 ural_set_chan(sc, ic->ic_curchan);
1494
1495 return 0;
1496 }
1497
1498 Static int
1499 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1500 {
1501 struct ural_softc *sc = ifp->if_softc;
1502 struct ieee80211com *ic = &sc->sc_ic;
1503 int s, error = 0;
1504
1505 s = splnet();
1506
1507 switch (cmd) {
1508 case SIOCSIFFLAGS:
1509 if (ifp->if_flags & IFF_UP) {
1510 if (ifp->if_flags & IFF_RUNNING)
1511 ural_update_promisc(sc);
1512 else
1513 ural_init(ifp);
1514 } else {
1515 if (ifp->if_flags & IFF_RUNNING)
1516 ural_stop(ifp, 1);
1517 }
1518 break;
1519
1520 default:
1521 error = ieee80211_ioctl(ic, cmd, data);
1522 }
1523
1524 if (error == ENETRESET) {
1525 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1526 (IFF_UP | IFF_RUNNING))
1527 ural_init(ifp);
1528 error = 0;
1529 }
1530
1531 splx(s);
1532
1533 return error;
1534 }
1535
1536 Static void
1537 ural_set_testmode(struct ural_softc *sc)
1538 {
1539 usb_device_request_t req;
1540 usbd_status error;
1541
1542 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1543 req.bRequest = RAL_VENDOR_REQUEST;
1544 USETW(req.wValue, 4);
1545 USETW(req.wIndex, 1);
1546 USETW(req.wLength, 0);
1547
1548 error = usbd_do_request(sc->sc_udev, &req, NULL);
1549 if (error != 0) {
1550 printf("%s: could not set test mode: %s\n",
1551 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1552 }
1553 }
1554
1555 Static void
1556 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1557 {
1558 usb_device_request_t req;
1559 usbd_status error;
1560
1561 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1562 req.bRequest = RAL_READ_EEPROM;
1563 USETW(req.wValue, 0);
1564 USETW(req.wIndex, addr);
1565 USETW(req.wLength, len);
1566
1567 error = usbd_do_request(sc->sc_udev, &req, buf);
1568 if (error != 0) {
1569 printf("%s: could not read EEPROM: %s\n",
1570 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1571 }
1572 }
1573
1574 Static uint16_t
1575 ural_read(struct ural_softc *sc, uint16_t reg)
1576 {
1577 usb_device_request_t req;
1578 usbd_status error;
1579 uint16_t val;
1580
1581 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1582 req.bRequest = RAL_READ_MAC;
1583 USETW(req.wValue, 0);
1584 USETW(req.wIndex, reg);
1585 USETW(req.wLength, sizeof (uint16_t));
1586
1587 error = usbd_do_request(sc->sc_udev, &req, &val);
1588 if (error != 0) {
1589 printf("%s: could not read MAC register: %s\n",
1590 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1591 return 0;
1592 }
1593
1594 return le16toh(val);
1595 }
1596
1597 Static void
1598 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1599 {
1600 usb_device_request_t req;
1601 usbd_status error;
1602
1603 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1604 req.bRequest = RAL_READ_MULTI_MAC;
1605 USETW(req.wValue, 0);
1606 USETW(req.wIndex, reg);
1607 USETW(req.wLength, len);
1608
1609 error = usbd_do_request(sc->sc_udev, &req, buf);
1610 if (error != 0) {
1611 printf("%s: could not read MAC register: %s\n",
1612 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1613 }
1614 }
1615
1616 Static void
1617 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1618 {
1619 usb_device_request_t req;
1620 usbd_status error;
1621
1622 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1623 req.bRequest = RAL_WRITE_MAC;
1624 USETW(req.wValue, val);
1625 USETW(req.wIndex, reg);
1626 USETW(req.wLength, 0);
1627
1628 error = usbd_do_request(sc->sc_udev, &req, NULL);
1629 if (error != 0) {
1630 printf("%s: could not write MAC register: %s\n",
1631 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1632 }
1633 }
1634
1635 Static void
1636 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1637 {
1638 usb_device_request_t req;
1639 usbd_status error;
1640
1641 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1642 req.bRequest = RAL_WRITE_MULTI_MAC;
1643 USETW(req.wValue, 0);
1644 USETW(req.wIndex, reg);
1645 USETW(req.wLength, len);
1646
1647 error = usbd_do_request(sc->sc_udev, &req, buf);
1648 if (error != 0) {
1649 printf("%s: could not write MAC register: %s\n",
1650 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1651 }
1652 }
1653
1654 Static void
1655 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1656 {
1657 uint16_t tmp;
1658 int ntries;
1659
1660 for (ntries = 0; ntries < 5; ntries++) {
1661 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1662 break;
1663 }
1664 if (ntries == 5) {
1665 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1666 return;
1667 }
1668
1669 tmp = reg << 8 | val;
1670 ural_write(sc, RAL_PHY_CSR7, tmp);
1671 }
1672
1673 Static uint8_t
1674 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1675 {
1676 uint16_t val;
1677 int ntries;
1678
1679 val = RAL_BBP_WRITE | reg << 8;
1680 ural_write(sc, RAL_PHY_CSR7, val);
1681
1682 for (ntries = 0; ntries < 5; ntries++) {
1683 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1684 break;
1685 }
1686 if (ntries == 5) {
1687 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1688 return 0;
1689 }
1690
1691 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1692 }
1693
1694 Static void
1695 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1696 {
1697 uint32_t tmp;
1698 int ntries;
1699
1700 for (ntries = 0; ntries < 5; ntries++) {
1701 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1702 break;
1703 }
1704 if (ntries == 5) {
1705 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1706 return;
1707 }
1708
1709 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1710 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1711 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1712
1713 /* remember last written value in sc */
1714 sc->rf_regs[reg] = val;
1715
1716 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1717 }
1718
1719 Static void
1720 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1721 {
1722 struct ieee80211com *ic = &sc->sc_ic;
1723 uint8_t power, tmp;
1724 u_int i, chan;
1725
1726 chan = ieee80211_chan2ieee(ic, c);
1727 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1728 return;
1729
1730 if (IEEE80211_IS_CHAN_2GHZ(c))
1731 power = min(sc->txpow[chan - 1], 31);
1732 else
1733 power = 31;
1734
1735 /* adjust txpower using ifconfig settings */
1736 power -= (100 - ic->ic_txpowlimit) / 8;
1737
1738 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1739
1740 switch (sc->rf_rev) {
1741 case RAL_RF_2522:
1742 ural_rf_write(sc, RAL_RF1, 0x00814);
1743 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1744 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1745 break;
1746
1747 case RAL_RF_2523:
1748 ural_rf_write(sc, RAL_RF1, 0x08804);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1751 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752 break;
1753
1754 case RAL_RF_2524:
1755 ural_rf_write(sc, RAL_RF1, 0x0c808);
1756 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1757 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1758 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1759 break;
1760
1761 case RAL_RF_2525:
1762 ural_rf_write(sc, RAL_RF1, 0x08808);
1763 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1764 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1765 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1766
1767 ural_rf_write(sc, RAL_RF1, 0x08808);
1768 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1769 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1770 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1771 break;
1772
1773 case RAL_RF_2525E:
1774 ural_rf_write(sc, RAL_RF1, 0x08808);
1775 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1776 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1777 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1778 break;
1779
1780 case RAL_RF_2526:
1781 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1782 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1783 ural_rf_write(sc, RAL_RF1, 0x08804);
1784
1785 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1786 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1787 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1788 break;
1789
1790 /* dual-band RF */
1791 case RAL_RF_5222:
1792 for (i = 0; ural_rf5222[i].chan != chan; i++);
1793
1794 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1795 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1796 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1797 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1798 break;
1799 }
1800
1801 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1802 ic->ic_state != IEEE80211_S_SCAN) {
1803 /* set Japan filter bit for channel 14 */
1804 tmp = ural_bbp_read(sc, 70);
1805
1806 tmp &= ~RAL_JAPAN_FILTER;
1807 if (chan == 14)
1808 tmp |= RAL_JAPAN_FILTER;
1809
1810 ural_bbp_write(sc, 70, tmp);
1811
1812 /* clear CRC errors */
1813 ural_read(sc, RAL_STA_CSR0);
1814
1815 DELAY(10000);
1816 ural_disable_rf_tune(sc);
1817 }
1818 }
1819
1820 /*
1821 * Disable RF auto-tuning.
1822 */
1823 Static void
1824 ural_disable_rf_tune(struct ural_softc *sc)
1825 {
1826 uint32_t tmp;
1827
1828 if (sc->rf_rev != RAL_RF_2523) {
1829 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1830 ural_rf_write(sc, RAL_RF1, tmp);
1831 }
1832
1833 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1834 ural_rf_write(sc, RAL_RF3, tmp);
1835
1836 DPRINTFN(2, ("disabling RF autotune\n"));
1837 }
1838
1839 /*
1840 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1841 * synchronization.
1842 */
1843 Static void
1844 ural_enable_tsf_sync(struct ural_softc *sc)
1845 {
1846 struct ieee80211com *ic = &sc->sc_ic;
1847 uint16_t logcwmin, preload, tmp;
1848
1849 /* first, disable TSF synchronization */
1850 ural_write(sc, RAL_TXRX_CSR19, 0);
1851
1852 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1853 ural_write(sc, RAL_TXRX_CSR18, tmp);
1854
1855 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1856 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1857 tmp = logcwmin << 12 | preload;
1858 ural_write(sc, RAL_TXRX_CSR20, tmp);
1859
1860 /* finally, enable TSF synchronization */
1861 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1862 if (ic->ic_opmode == IEEE80211_M_STA)
1863 tmp |= RAL_ENABLE_TSF_SYNC(1);
1864 else
1865 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1866 ural_write(sc, RAL_TXRX_CSR19, tmp);
1867
1868 DPRINTF(("enabling TSF synchronization\n"));
1869 }
1870
1871 Static void
1872 ural_update_slot(struct ifnet *ifp)
1873 {
1874 struct ural_softc *sc = ifp->if_softc;
1875 struct ieee80211com *ic = &sc->sc_ic;
1876 uint16_t slottime, sifs, eifs;
1877
1878 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1879
1880 /*
1881 * These settings may sound a bit inconsistent but this is what the
1882 * reference driver does.
1883 */
1884 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1885 sifs = 16 - RAL_RXTX_TURNAROUND;
1886 eifs = 364;
1887 } else {
1888 sifs = 10 - RAL_RXTX_TURNAROUND;
1889 eifs = 64;
1890 }
1891
1892 ural_write(sc, RAL_MAC_CSR10, slottime);
1893 ural_write(sc, RAL_MAC_CSR11, sifs);
1894 ural_write(sc, RAL_MAC_CSR12, eifs);
1895 }
1896
1897 Static void
1898 ural_set_txpreamble(struct ural_softc *sc)
1899 {
1900 uint16_t tmp;
1901
1902 tmp = ural_read(sc, RAL_TXRX_CSR10);
1903
1904 tmp &= ~RAL_SHORT_PREAMBLE;
1905 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1906 tmp |= RAL_SHORT_PREAMBLE;
1907
1908 ural_write(sc, RAL_TXRX_CSR10, tmp);
1909 }
1910
1911 Static void
1912 ural_set_basicrates(struct ural_softc *sc)
1913 {
1914 struct ieee80211com *ic = &sc->sc_ic;
1915
1916 /* update basic rate set */
1917 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1918 /* 11b basic rates: 1, 2Mbps */
1919 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1920 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1921 /* 11a basic rates: 6, 12, 24Mbps */
1922 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1923 } else {
1924 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1925 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1926 }
1927 }
1928
1929 Static void
1930 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1931 {
1932 uint16_t tmp;
1933
1934 tmp = bssid[0] | bssid[1] << 8;
1935 ural_write(sc, RAL_MAC_CSR5, tmp);
1936
1937 tmp = bssid[2] | bssid[3] << 8;
1938 ural_write(sc, RAL_MAC_CSR6, tmp);
1939
1940 tmp = bssid[4] | bssid[5] << 8;
1941 ural_write(sc, RAL_MAC_CSR7, tmp);
1942
1943 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1944 }
1945
1946 Static void
1947 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1948 {
1949 uint16_t tmp;
1950
1951 tmp = addr[0] | addr[1] << 8;
1952 ural_write(sc, RAL_MAC_CSR2, tmp);
1953
1954 tmp = addr[2] | addr[3] << 8;
1955 ural_write(sc, RAL_MAC_CSR3, tmp);
1956
1957 tmp = addr[4] | addr[5] << 8;
1958 ural_write(sc, RAL_MAC_CSR4, tmp);
1959
1960 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1961 }
1962
1963 Static void
1964 ural_update_promisc(struct ural_softc *sc)
1965 {
1966 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1967 uint32_t tmp;
1968
1969 tmp = ural_read(sc, RAL_TXRX_CSR2);
1970
1971 tmp &= ~RAL_DROP_NOT_TO_ME;
1972 if (!(ifp->if_flags & IFF_PROMISC))
1973 tmp |= RAL_DROP_NOT_TO_ME;
1974
1975 ural_write(sc, RAL_TXRX_CSR2, tmp);
1976
1977 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1978 "entering" : "leaving"));
1979 }
1980
1981 Static const char *
1982 ural_get_rf(int rev)
1983 {
1984 switch (rev) {
1985 case RAL_RF_2522: return "RT2522";
1986 case RAL_RF_2523: return "RT2523";
1987 case RAL_RF_2524: return "RT2524";
1988 case RAL_RF_2525: return "RT2525";
1989 case RAL_RF_2525E: return "RT2525e";
1990 case RAL_RF_2526: return "RT2526";
1991 case RAL_RF_5222: return "RT5222";
1992 default: return "unknown";
1993 }
1994 }
1995
1996 Static void
1997 ural_read_eeprom(struct ural_softc *sc)
1998 {
1999 struct ieee80211com *ic = &sc->sc_ic;
2000 uint16_t val;
2001
2002 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2003 val = le16toh(val);
2004 sc->rf_rev = (val >> 11) & 0x7;
2005 sc->hw_radio = (val >> 10) & 0x1;
2006 sc->led_mode = (val >> 6) & 0x7;
2007 sc->rx_ant = (val >> 4) & 0x3;
2008 sc->tx_ant = (val >> 2) & 0x3;
2009 sc->nb_ant = val & 0x3;
2010
2011 /* read MAC address */
2012 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2013
2014 /* read default values for BBP registers */
2015 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2016
2017 /* read Tx power for all b/g channels */
2018 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2019 }
2020
2021 Static int
2022 ural_bbp_init(struct ural_softc *sc)
2023 {
2024 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2025 int i, ntries;
2026
2027 /* wait for BBP to be ready */
2028 for (ntries = 0; ntries < 100; ntries++) {
2029 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2030 break;
2031 DELAY(1000);
2032 }
2033 if (ntries == 100) {
2034 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2035 return EIO;
2036 }
2037
2038 /* initialize BBP registers to default values */
2039 for (i = 0; i < N(ural_def_bbp); i++)
2040 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2041
2042 #if 0
2043 /* initialize BBP registers to values stored in EEPROM */
2044 for (i = 0; i < 16; i++) {
2045 if (sc->bbp_prom[i].reg == 0xff)
2046 continue;
2047 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2048 }
2049 #endif
2050
2051 return 0;
2052 #undef N
2053 }
2054
2055 Static void
2056 ural_set_txantenna(struct ural_softc *sc, int antenna)
2057 {
2058 uint16_t tmp;
2059 uint8_t tx;
2060
2061 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2062 if (antenna == 1)
2063 tx |= RAL_BBP_ANTA;
2064 else if (antenna == 2)
2065 tx |= RAL_BBP_ANTB;
2066 else
2067 tx |= RAL_BBP_DIVERSITY;
2068
2069 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2070 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2071 sc->rf_rev == RAL_RF_5222)
2072 tx |= RAL_BBP_FLIPIQ;
2073
2074 ural_bbp_write(sc, RAL_BBP_TX, tx);
2075
2076 /* update values in PHY_CSR5 and PHY_CSR6 */
2077 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2078 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2079
2080 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2081 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2082 }
2083
2084 Static void
2085 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2086 {
2087 uint8_t rx;
2088
2089 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2090 if (antenna == 1)
2091 rx |= RAL_BBP_ANTA;
2092 else if (antenna == 2)
2093 rx |= RAL_BBP_ANTB;
2094 else
2095 rx |= RAL_BBP_DIVERSITY;
2096
2097 /* need to force no I/Q flip for RF 2525e and 2526 */
2098 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2099 rx &= ~RAL_BBP_FLIPIQ;
2100
2101 ural_bbp_write(sc, RAL_BBP_RX, rx);
2102 }
2103
2104 Static int
2105 ural_init(struct ifnet *ifp)
2106 {
2107 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2108 struct ural_softc *sc = ifp->if_softc;
2109 struct ieee80211com *ic = &sc->sc_ic;
2110 struct ieee80211_key *wk;
2111 struct ural_rx_data *data;
2112 uint16_t tmp;
2113 usbd_status error;
2114 int i, ntries;
2115
2116 ural_set_testmode(sc);
2117 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2118
2119 ural_stop(ifp, 0);
2120
2121 /* initialize MAC registers to default values */
2122 for (i = 0; i < N(ural_def_mac); i++)
2123 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2124
2125 /* wait for BBP and RF to wake up (this can take a long time!) */
2126 for (ntries = 0; ntries < 100; ntries++) {
2127 tmp = ural_read(sc, RAL_MAC_CSR17);
2128 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2129 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2130 break;
2131 DELAY(1000);
2132 }
2133 if (ntries == 100) {
2134 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2135 USBDEVNAME(sc->sc_dev));
2136 error = EIO;
2137 goto fail;
2138 }
2139
2140 /* we're ready! */
2141 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2142
2143 /* set basic rate set (will be updated later) */
2144 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2145
2146 error = ural_bbp_init(sc);
2147 if (error != 0)
2148 goto fail;
2149
2150 /* set default BSS channel */
2151 ural_set_chan(sc, ic->ic_curchan);
2152
2153 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2154 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2155
2156 ural_set_txantenna(sc, sc->tx_ant);
2157 ural_set_rxantenna(sc, sc->rx_ant);
2158
2159 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2160 ural_set_macaddr(sc, ic->ic_myaddr);
2161
2162 /*
2163 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2164 */
2165 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2166 wk = &ic->ic_crypto.cs_nw_keys[i];
2167 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2168 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2169 }
2170
2171 /*
2172 * Allocate xfer for AMRR statistics requests.
2173 */
2174 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2175 if (sc->amrr_xfer == NULL) {
2176 printf("%s: could not allocate AMRR xfer\n",
2177 USBDEVNAME(sc->sc_dev));
2178 goto fail;
2179 }
2180
2181 /*
2182 * Open Tx and Rx USB bulk pipes.
2183 */
2184 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2185 &sc->sc_tx_pipeh);
2186 if (error != 0) {
2187 printf("%s: could not open Tx pipe: %s\n",
2188 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2189 goto fail;
2190 }
2191
2192 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2193 &sc->sc_rx_pipeh);
2194 if (error != 0) {
2195 printf("%s: could not open Rx pipe: %s\n",
2196 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2197 goto fail;
2198 }
2199
2200 /*
2201 * Allocate Tx and Rx xfer queues.
2202 */
2203 error = ural_alloc_tx_list(sc);
2204 if (error != 0) {
2205 printf("%s: could not allocate Tx list\n",
2206 USBDEVNAME(sc->sc_dev));
2207 goto fail;
2208 }
2209
2210 error = ural_alloc_rx_list(sc);
2211 if (error != 0) {
2212 printf("%s: could not allocate Rx list\n",
2213 USBDEVNAME(sc->sc_dev));
2214 goto fail;
2215 }
2216
2217 /*
2218 * Start up the receive pipe.
2219 */
2220 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2221 data = &sc->rx_data[i];
2222
2223 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2224 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2225 usbd_transfer(data->xfer);
2226 }
2227
2228 /* kick Rx */
2229 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2230 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2231 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2232 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2233 tmp |= RAL_DROP_TODS;
2234 if (!(ifp->if_flags & IFF_PROMISC))
2235 tmp |= RAL_DROP_NOT_TO_ME;
2236 }
2237 ural_write(sc, RAL_TXRX_CSR2, tmp);
2238
2239 ifp->if_flags &= ~IFF_OACTIVE;
2240 ifp->if_flags |= IFF_RUNNING;
2241
2242 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2243 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2244 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2245 } else
2246 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2247
2248 return 0;
2249
2250 fail: ural_stop(ifp, 1);
2251 return error;
2252 #undef N
2253 }
2254
2255 Static void
2256 ural_stop(struct ifnet *ifp, int disable)
2257 {
2258 struct ural_softc *sc = ifp->if_softc;
2259 struct ieee80211com *ic = &sc->sc_ic;
2260
2261 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2262
2263 sc->sc_tx_timer = 0;
2264 ifp->if_timer = 0;
2265 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2266
2267 /* disable Rx */
2268 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2269
2270 /* reset ASIC and BBP (but won't reset MAC registers!) */
2271 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2272 ural_write(sc, RAL_MAC_CSR1, 0);
2273
2274 if (sc->amrr_xfer != NULL) {
2275 usbd_free_xfer(sc->amrr_xfer);
2276 sc->amrr_xfer = NULL;
2277 }
2278
2279 if (sc->sc_rx_pipeh != NULL) {
2280 usbd_abort_pipe(sc->sc_rx_pipeh);
2281 usbd_close_pipe(sc->sc_rx_pipeh);
2282 sc->sc_rx_pipeh = NULL;
2283 }
2284
2285 if (sc->sc_tx_pipeh != NULL) {
2286 usbd_abort_pipe(sc->sc_tx_pipeh);
2287 usbd_close_pipe(sc->sc_tx_pipeh);
2288 sc->sc_tx_pipeh = NULL;
2289 }
2290
2291 ural_free_rx_list(sc);
2292 ural_free_tx_list(sc);
2293 }
2294
2295 int
2296 ural_activate(device_ptr_t self, enum devact act)
2297 {
2298 struct ural_softc *sc = (struct ural_softc *)self;
2299
2300 switch (act) {
2301 case DVACT_ACTIVATE:
2302 return EOPNOTSUPP;
2303 break;
2304
2305 case DVACT_DEACTIVATE:
2306 if_deactivate(&sc->sc_if);
2307 break;
2308 }
2309
2310 return 0;
2311 }
2312
2313 Static void
2314 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2315 {
2316 int i;
2317
2318 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2319 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2320
2321 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2322
2323 /* set rate to some reasonable initial value */
2324 for (i = ni->ni_rates.rs_nrates - 1;
2325 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2326 i--);
2327 ni->ni_txrate = i;
2328
2329 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2330 }
2331
2332 Static void
2333 ural_amrr_timeout(void *arg)
2334 {
2335 struct ural_softc *sc = (struct ural_softc *)arg;
2336 usb_device_request_t req;
2337 int s;
2338
2339 s = splusb();
2340
2341 /*
2342 * Asynchronously read statistic registers (cleared by read).
2343 */
2344 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2345 req.bRequest = RAL_READ_MULTI_MAC;
2346 USETW(req.wValue, 0);
2347 USETW(req.wIndex, RAL_STA_CSR0);
2348 USETW(req.wLength, sizeof sc->sta);
2349
2350 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2351 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2352 ural_amrr_update);
2353 (void)usbd_transfer(sc->amrr_xfer);
2354
2355 splx(s);
2356 }
2357
2358 Static void
2359 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2360 usbd_status status)
2361 {
2362 struct ural_softc *sc = (struct ural_softc *)priv;
2363 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2364
2365 if (status != USBD_NORMAL_COMPLETION) {
2366 printf("%s: could not retrieve Tx statistics - "
2367 "cancelling automatic rate control\n",
2368 USBDEVNAME(sc->sc_dev));
2369 return;
2370 }
2371
2372 /* count TX retry-fail as Tx errors */
2373 ifp->if_oerrors += sc->sta[9];
2374
2375 sc->amn.amn_retrycnt =
2376 sc->sta[7] + /* TX one-retry ok count */
2377 sc->sta[8] + /* TX more-retry ok count */
2378 sc->sta[9]; /* TX retry-fail count */
2379
2380 sc->amn.amn_txcnt =
2381 sc->amn.amn_retrycnt +
2382 sc->sta[6]; /* TX no-retry ok count */
2383
2384 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2385
2386 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2387 }
2388