if_ural.c revision 1.31 1 /* $NetBSD: if_ural.c,v 1.31 2008/11/07 00:20:13 dyoung Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.31 2008/11/07 00:20:13 dyoung Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
106 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
108 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
110 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
111 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
112 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
113 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
114 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
115 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
116 };
117
118 Static int ural_alloc_tx_list(struct ural_softc *);
119 Static void ural_free_tx_list(struct ural_softc *);
120 Static int ural_alloc_rx_list(struct ural_softc *);
121 Static void ural_free_rx_list(struct ural_softc *);
122 Static int ural_media_change(struct ifnet *);
123 Static void ural_next_scan(void *);
124 Static void ural_task(void *);
125 Static int ural_newstate(struct ieee80211com *,
126 enum ieee80211_state, int);
127 Static int ural_rxrate(struct ural_rx_desc *);
128 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
129 usbd_status);
130 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
131 usbd_status);
132 Static int ural_ack_rate(struct ieee80211com *, int);
133 Static uint16_t ural_txtime(int, int, uint32_t);
134 Static uint8_t ural_plcp_signal(int);
135 Static void ural_setup_tx_desc(struct ural_softc *,
136 struct ural_tx_desc *, uint32_t, int, int);
137 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
140 struct ieee80211_node *);
141 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
142 struct ieee80211_node *);
143 Static void ural_start(struct ifnet *);
144 Static void ural_watchdog(struct ifnet *);
145 Static int ural_reset(struct ifnet *);
146 Static int ural_ioctl(struct ifnet *, u_long, void *);
147 Static void ural_set_testmode(struct ural_softc *);
148 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
149 int);
150 Static uint16_t ural_read(struct ural_softc *, uint16_t);
151 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
152 int);
153 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
154 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
155 int);
156 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
157 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
158 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
159 Static void ural_set_chan(struct ural_softc *,
160 struct ieee80211_channel *);
161 Static void ural_disable_rf_tune(struct ural_softc *);
162 Static void ural_enable_tsf_sync(struct ural_softc *);
163 Static void ural_update_slot(struct ifnet *);
164 Static void ural_set_txpreamble(struct ural_softc *);
165 Static void ural_set_basicrates(struct ural_softc *);
166 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
167 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
168 Static void ural_update_promisc(struct ural_softc *);
169 Static const char *ural_get_rf(int);
170 Static void ural_read_eeprom(struct ural_softc *);
171 Static int ural_bbp_init(struct ural_softc *);
172 Static void ural_set_txantenna(struct ural_softc *, int);
173 Static void ural_set_rxantenna(struct ural_softc *, int);
174 Static int ural_init(struct ifnet *);
175 Static void ural_stop(struct ifnet *, int);
176 Static void ural_amrr_start(struct ural_softc *,
177 struct ieee80211_node *);
178 Static void ural_amrr_timeout(void *);
179 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
180 usbd_status status);
181
182 /*
183 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184 */
185 static const struct ieee80211_rateset ural_rateset_11a =
186 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187
188 static const struct ieee80211_rateset ural_rateset_11b =
189 { 4, { 2, 4, 11, 22 } };
190
191 static const struct ieee80211_rateset ural_rateset_11g =
192 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193
194 /*
195 * Default values for MAC registers; values taken from the reference driver.
196 */
197 static const struct {
198 uint16_t reg;
199 uint16_t val;
200 } ural_def_mac[] = {
201 { RAL_TXRX_CSR5, 0x8c8d },
202 { RAL_TXRX_CSR6, 0x8b8a },
203 { RAL_TXRX_CSR7, 0x8687 },
204 { RAL_TXRX_CSR8, 0x0085 },
205 { RAL_MAC_CSR13, 0x1111 },
206 { RAL_MAC_CSR14, 0x1e11 },
207 { RAL_TXRX_CSR21, 0xe78f },
208 { RAL_MAC_CSR9, 0xff1d },
209 { RAL_MAC_CSR11, 0x0002 },
210 { RAL_MAC_CSR22, 0x0053 },
211 { RAL_MAC_CSR15, 0x0000 },
212 { RAL_MAC_CSR8, 0x0780 },
213 { RAL_TXRX_CSR19, 0x0000 },
214 { RAL_TXRX_CSR18, 0x005a },
215 { RAL_PHY_CSR2, 0x0000 },
216 { RAL_TXRX_CSR0, 0x1ec0 },
217 { RAL_PHY_CSR4, 0x000f }
218 };
219
220 /*
221 * Default values for BBP registers; values taken from the reference driver.
222 */
223 static const struct {
224 uint8_t reg;
225 uint8_t val;
226 } ural_def_bbp[] = {
227 { 3, 0x02 },
228 { 4, 0x19 },
229 { 14, 0x1c },
230 { 15, 0x30 },
231 { 16, 0xac },
232 { 17, 0x48 },
233 { 18, 0x18 },
234 { 19, 0xff },
235 { 20, 0x1e },
236 { 21, 0x08 },
237 { 22, 0x08 },
238 { 23, 0x08 },
239 { 24, 0x80 },
240 { 25, 0x50 },
241 { 26, 0x08 },
242 { 27, 0x23 },
243 { 30, 0x10 },
244 { 31, 0x2b },
245 { 32, 0xb9 },
246 { 34, 0x12 },
247 { 35, 0x50 },
248 { 39, 0xc4 },
249 { 40, 0x02 },
250 { 41, 0x60 },
251 { 53, 0x10 },
252 { 54, 0x18 },
253 { 56, 0x08 },
254 { 57, 0x10 },
255 { 58, 0x08 },
256 { 61, 0x60 },
257 { 62, 0x10 },
258 { 75, 0xff }
259 };
260
261 /*
262 * Default values for RF register R2 indexed by channel numbers.
263 */
264 static const uint32_t ural_rf2522_r2[] = {
265 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
266 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
267 };
268
269 static const uint32_t ural_rf2523_r2[] = {
270 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
271 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
272 };
273
274 static const uint32_t ural_rf2524_r2[] = {
275 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
276 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
277 };
278
279 static const uint32_t ural_rf2525_r2[] = {
280 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
281 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
282 };
283
284 static const uint32_t ural_rf2525_hi_r2[] = {
285 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
286 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
287 };
288
289 static const uint32_t ural_rf2525e_r2[] = {
290 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
291 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
292 };
293
294 static const uint32_t ural_rf2526_hi_r2[] = {
295 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
296 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
297 };
298
299 static const uint32_t ural_rf2526_r2[] = {
300 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
301 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
302 };
303
304 /*
305 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
306 * values taken from the reference driver.
307 */
308 static const struct {
309 uint8_t chan;
310 uint32_t r1;
311 uint32_t r2;
312 uint32_t r4;
313 } ural_rf5222[] = {
314 { 1, 0x08808, 0x0044d, 0x00282 },
315 { 2, 0x08808, 0x0044e, 0x00282 },
316 { 3, 0x08808, 0x0044f, 0x00282 },
317 { 4, 0x08808, 0x00460, 0x00282 },
318 { 5, 0x08808, 0x00461, 0x00282 },
319 { 6, 0x08808, 0x00462, 0x00282 },
320 { 7, 0x08808, 0x00463, 0x00282 },
321 { 8, 0x08808, 0x00464, 0x00282 },
322 { 9, 0x08808, 0x00465, 0x00282 },
323 { 10, 0x08808, 0x00466, 0x00282 },
324 { 11, 0x08808, 0x00467, 0x00282 },
325 { 12, 0x08808, 0x00468, 0x00282 },
326 { 13, 0x08808, 0x00469, 0x00282 },
327 { 14, 0x08808, 0x0046b, 0x00286 },
328
329 { 36, 0x08804, 0x06225, 0x00287 },
330 { 40, 0x08804, 0x06226, 0x00287 },
331 { 44, 0x08804, 0x06227, 0x00287 },
332 { 48, 0x08804, 0x06228, 0x00287 },
333 { 52, 0x08804, 0x06229, 0x00287 },
334 { 56, 0x08804, 0x0622a, 0x00287 },
335 { 60, 0x08804, 0x0622b, 0x00287 },
336 { 64, 0x08804, 0x0622c, 0x00287 },
337
338 { 100, 0x08804, 0x02200, 0x00283 },
339 { 104, 0x08804, 0x02201, 0x00283 },
340 { 108, 0x08804, 0x02202, 0x00283 },
341 { 112, 0x08804, 0x02203, 0x00283 },
342 { 116, 0x08804, 0x02204, 0x00283 },
343 { 120, 0x08804, 0x02205, 0x00283 },
344 { 124, 0x08804, 0x02206, 0x00283 },
345 { 128, 0x08804, 0x02207, 0x00283 },
346 { 132, 0x08804, 0x02208, 0x00283 },
347 { 136, 0x08804, 0x02209, 0x00283 },
348 { 140, 0x08804, 0x0220a, 0x00283 },
349
350 { 149, 0x08808, 0x02429, 0x00281 },
351 { 153, 0x08808, 0x0242b, 0x00281 },
352 { 157, 0x08808, 0x0242d, 0x00281 },
353 { 161, 0x08808, 0x0242f, 0x00281 }
354 };
355
356 USB_DECLARE_DRIVER(ural);
357
358 USB_MATCH(ural)
359 {
360 USB_MATCH_START(ural, uaa);
361
362 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
363 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
364 }
365
366 USB_ATTACH(ural)
367 {
368 USB_ATTACH_START(ural, sc, uaa);
369 struct ieee80211com *ic = &sc->sc_ic;
370 struct ifnet *ifp = &sc->sc_if;
371 usb_interface_descriptor_t *id;
372 usb_endpoint_descriptor_t *ed;
373 usbd_status error;
374 char *devinfop;
375 int i;
376
377 sc->sc_dev = self;
378 sc->sc_udev = uaa->device;
379
380 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
381 USB_ATTACH_SETUP;
382 aprint_normal_dev(self, "%s\n", devinfop);
383 usbd_devinfo_free(devinfop);
384
385 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
386 aprint_error_dev(self, "could not set configuration no\n");
387 USB_ATTACH_ERROR_RETURN;
388 }
389
390 /* get the first interface handle */
391 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
392 &sc->sc_iface);
393 if (error != 0) {
394 aprint_error_dev(self, "could not get interface handle\n");
395 USB_ATTACH_ERROR_RETURN;
396 }
397
398 /*
399 * Find endpoints.
400 */
401 id = usbd_get_interface_descriptor(sc->sc_iface);
402
403 sc->sc_rx_no = sc->sc_tx_no = -1;
404 for (i = 0; i < id->bNumEndpoints; i++) {
405 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
406 if (ed == NULL) {
407 aprint_error_dev(self,
408 "no endpoint descriptor for %d\n", i);
409 USB_ATTACH_ERROR_RETURN;
410 }
411
412 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
413 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
414 sc->sc_rx_no = ed->bEndpointAddress;
415 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
416 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 sc->sc_tx_no = ed->bEndpointAddress;
418 }
419 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
420 aprint_error_dev(self, "missing endpoint\n");
421 USB_ATTACH_ERROR_RETURN;
422 }
423
424 usb_init_task(&sc->sc_task, ural_task, sc);
425 usb_callout_init(sc->sc_scan_ch);
426 sc->amrr.amrr_min_success_threshold = 1;
427 sc->amrr.amrr_max_success_threshold = 15;
428 usb_callout_init(sc->sc_amrr_ch);
429
430 /* retrieve RT2570 rev. no */
431 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
432
433 /* retrieve MAC address and various other things from EEPROM */
434 ural_read_eeprom(sc);
435
436 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
437 sc->asic_rev, ural_get_rf(sc->rf_rev));
438
439 ifp->if_softc = sc;
440 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
441 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
442 ifp->if_init = ural_init;
443 ifp->if_ioctl = ural_ioctl;
444 ifp->if_start = ural_start;
445 ifp->if_watchdog = ural_watchdog;
446 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
447 IFQ_SET_READY(&ifp->if_snd);
448
449 ic->ic_ifp = ifp;
450 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
451 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
452 ic->ic_state = IEEE80211_S_INIT;
453
454 /* set device capabilities */
455 ic->ic_caps =
456 IEEE80211_C_IBSS | /* IBSS mode supported */
457 IEEE80211_C_MONITOR | /* monitor mode supported */
458 IEEE80211_C_HOSTAP | /* HostAp mode supported */
459 IEEE80211_C_TXPMGT | /* tx power management */
460 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
461 IEEE80211_C_SHSLOT | /* short slot time supported */
462 IEEE80211_C_WPA; /* 802.11i */
463
464 if (sc->rf_rev == RAL_RF_5222) {
465 /* set supported .11a rates */
466 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
467
468 /* set supported .11a channels */
469 for (i = 36; i <= 64; i += 4) {
470 ic->ic_channels[i].ic_freq =
471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 }
474 for (i = 100; i <= 140; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 for (i = 149; i <= 161; i += 4) {
480 ic->ic_channels[i].ic_freq =
481 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
482 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
483 }
484 }
485
486 /* set supported .11b and .11g rates */
487 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
488 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
489
490 /* set supported .11b and .11g channels (1 through 14) */
491 for (i = 1; i <= 14; i++) {
492 ic->ic_channels[i].ic_freq =
493 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
494 ic->ic_channels[i].ic_flags =
495 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
496 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
497 }
498
499 if_attach(ifp);
500 ieee80211_ifattach(ic);
501 ic->ic_reset = ural_reset;
502
503 /* override state transition machine */
504 sc->sc_newstate = ic->ic_newstate;
505 ic->ic_newstate = ural_newstate;
506 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
507
508 #if NBPFILTER > 0
509 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
510 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
511
512 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
513 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
514 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
515
516 sc->sc_txtap_len = sizeof sc->sc_txtapu;
517 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
518 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
519 #endif
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 USBDEV(sc->sc_dev));
525
526 USB_ATTACH_SUCCESS_RETURN;
527 }
528
529 USB_DETACH(ural)
530 {
531 USB_DETACH_START(ural, sc);
532 struct ieee80211com *ic = &sc->sc_ic;
533 struct ifnet *ifp = &sc->sc_if;
534 int s;
535
536 s = splusb();
537
538 ural_stop(ifp, 1);
539 usb_rem_task(sc->sc_udev, &sc->sc_task);
540 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
541 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
542
543 if (sc->amrr_xfer != NULL) {
544 usbd_free_xfer(sc->amrr_xfer);
545 sc->amrr_xfer = NULL;
546 }
547
548 if (sc->sc_rx_pipeh != NULL) {
549 usbd_abort_pipe(sc->sc_rx_pipeh);
550 usbd_close_pipe(sc->sc_rx_pipeh);
551 }
552
553 if (sc->sc_tx_pipeh != NULL) {
554 usbd_abort_pipe(sc->sc_tx_pipeh);
555 usbd_close_pipe(sc->sc_tx_pipeh);
556 }
557
558 #if NBPFILTER > 0
559 bpfdetach(ifp);
560 #endif
561 ieee80211_ifdetach(ic);
562 if_detach(ifp);
563
564 splx(s);
565
566 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
567 USBDEV(sc->sc_dev));
568
569 return 0;
570 }
571
572 Static int
573 ural_alloc_tx_list(struct ural_softc *sc)
574 {
575 struct ural_tx_data *data;
576 int i, error;
577
578 sc->tx_queued = 0;
579
580 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
581 data = &sc->tx_data[i];
582
583 data->sc = sc;
584
585 data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 if (data->xfer == NULL) {
587 printf("%s: could not allocate tx xfer\n",
588 USBDEVNAME(sc->sc_dev));
589 error = ENOMEM;
590 goto fail;
591 }
592
593 data->buf = usbd_alloc_buffer(data->xfer,
594 RAL_TX_DESC_SIZE + MCLBYTES);
595 if (data->buf == NULL) {
596 printf("%s: could not allocate tx buffer\n",
597 USBDEVNAME(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601 }
602
603 return 0;
604
605 fail: ural_free_tx_list(sc);
606 return error;
607 }
608
609 Static void
610 ural_free_tx_list(struct ural_softc *sc)
611 {
612 struct ural_tx_data *data;
613 int i;
614
615 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
616 data = &sc->tx_data[i];
617
618 if (data->xfer != NULL) {
619 usbd_free_xfer(data->xfer);
620 data->xfer = NULL;
621 }
622
623 if (data->ni != NULL) {
624 ieee80211_free_node(data->ni);
625 data->ni = NULL;
626 }
627 }
628 }
629
630 Static int
631 ural_alloc_rx_list(struct ural_softc *sc)
632 {
633 struct ural_rx_data *data;
634 int i, error;
635
636 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
637 data = &sc->rx_data[i];
638
639 data->sc = sc;
640
641 data->xfer = usbd_alloc_xfer(sc->sc_udev);
642 if (data->xfer == NULL) {
643 printf("%s: could not allocate rx xfer\n",
644 USBDEVNAME(sc->sc_dev));
645 error = ENOMEM;
646 goto fail;
647 }
648
649 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
650 printf("%s: could not allocate rx buffer\n",
651 USBDEVNAME(sc->sc_dev));
652 error = ENOMEM;
653 goto fail;
654 }
655
656 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
657 if (data->m == NULL) {
658 printf("%s: could not allocate rx mbuf\n",
659 USBDEVNAME(sc->sc_dev));
660 error = ENOMEM;
661 goto fail;
662 }
663
664 MCLGET(data->m, M_DONTWAIT);
665 if (!(data->m->m_flags & M_EXT)) {
666 printf("%s: could not allocate rx mbuf cluster\n",
667 USBDEVNAME(sc->sc_dev));
668 error = ENOMEM;
669 goto fail;
670 }
671
672 data->buf = mtod(data->m, uint8_t *);
673 }
674
675 return 0;
676
677 fail: ural_free_tx_list(sc);
678 return error;
679 }
680
681 Static void
682 ural_free_rx_list(struct ural_softc *sc)
683 {
684 struct ural_rx_data *data;
685 int i;
686
687 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
688 data = &sc->rx_data[i];
689
690 if (data->xfer != NULL) {
691 usbd_free_xfer(data->xfer);
692 data->xfer = NULL;
693 }
694
695 if (data->m != NULL) {
696 m_freem(data->m);
697 data->m = NULL;
698 }
699 }
700 }
701
702 Static int
703 ural_media_change(struct ifnet *ifp)
704 {
705 int error;
706
707 error = ieee80211_media_change(ifp);
708 if (error != ENETRESET)
709 return error;
710
711 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 ural_init(ifp);
713
714 return 0;
715 }
716
717 /*
718 * This function is called periodically (every 200ms) during scanning to
719 * switch from one channel to another.
720 */
721 Static void
722 ural_next_scan(void *arg)
723 {
724 struct ural_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726
727 if (ic->ic_state == IEEE80211_S_SCAN)
728 ieee80211_next_scan(ic);
729 }
730
731 Static void
732 ural_task(void *arg)
733 {
734 struct ural_softc *sc = arg;
735 struct ieee80211com *ic = &sc->sc_ic;
736 enum ieee80211_state ostate;
737 struct ieee80211_node *ni;
738 struct mbuf *m;
739
740 ostate = ic->ic_state;
741
742 switch (sc->sc_state) {
743 case IEEE80211_S_INIT:
744 if (ostate == IEEE80211_S_RUN) {
745 /* abort TSF synchronization */
746 ural_write(sc, RAL_TXRX_CSR19, 0);
747
748 /* force tx led to stop blinking */
749 ural_write(sc, RAL_MAC_CSR20, 0);
750 }
751 break;
752
753 case IEEE80211_S_SCAN:
754 ural_set_chan(sc, ic->ic_curchan);
755 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
756 break;
757
758 case IEEE80211_S_AUTH:
759 ural_set_chan(sc, ic->ic_curchan);
760 break;
761
762 case IEEE80211_S_ASSOC:
763 ural_set_chan(sc, ic->ic_curchan);
764 break;
765
766 case IEEE80211_S_RUN:
767 ural_set_chan(sc, ic->ic_curchan);
768
769 ni = ic->ic_bss;
770
771 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
772 ural_update_slot(ic->ic_ifp);
773 ural_set_txpreamble(sc);
774 ural_set_basicrates(sc);
775 ural_set_bssid(sc, ni->ni_bssid);
776 }
777
778 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
779 ic->ic_opmode == IEEE80211_M_IBSS) {
780 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
781 if (m == NULL) {
782 printf("%s: could not allocate beacon\n",
783 USBDEVNAME(sc->sc_dev));
784 return;
785 }
786
787 if (ural_tx_bcn(sc, m, ni) != 0) {
788 m_freem(m);
789 printf("%s: could not send beacon\n",
790 USBDEVNAME(sc->sc_dev));
791 return;
792 }
793
794 /* beacon is no longer needed */
795 m_freem(m);
796 }
797
798 /* make tx led blink on tx (controlled by ASIC) */
799 ural_write(sc, RAL_MAC_CSR20, 1);
800
801 if (ic->ic_opmode != IEEE80211_M_MONITOR)
802 ural_enable_tsf_sync(sc);
803
804 /* enable automatic rate adaptation in STA mode */
805 if (ic->ic_opmode == IEEE80211_M_STA &&
806 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
807 ural_amrr_start(sc, ni);
808
809 break;
810 }
811
812 sc->sc_newstate(ic, sc->sc_state, -1);
813 }
814
815 Static int
816 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
817 int arg)
818 {
819 struct ural_softc *sc = ic->ic_ifp->if_softc;
820
821 usb_rem_task(sc->sc_udev, &sc->sc_task);
822 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
823 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
824
825 /* do it in a process context */
826 sc->sc_state = nstate;
827 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
828
829 return 0;
830 }
831
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
834
835 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
836 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
837
838 #define RAL_SIFS 10 /* us */
839
840 #define RAL_RXTX_TURNAROUND 5 /* us */
841
842 /*
843 * This function is only used by the Rx radiotap code.
844 */
845 Static int
846 ural_rxrate(struct ural_rx_desc *desc)
847 {
848 if (le32toh(desc->flags) & RAL_RX_OFDM) {
849 /* reverse function of ural_plcp_signal */
850 switch (desc->rate) {
851 case 0xb: return 12;
852 case 0xf: return 18;
853 case 0xa: return 24;
854 case 0xe: return 36;
855 case 0x9: return 48;
856 case 0xd: return 72;
857 case 0x8: return 96;
858 case 0xc: return 108;
859 }
860 } else {
861 if (desc->rate == 10)
862 return 2;
863 if (desc->rate == 20)
864 return 4;
865 if (desc->rate == 55)
866 return 11;
867 if (desc->rate == 110)
868 return 22;
869 }
870 return 2; /* should not get there */
871 }
872
873 Static void
874 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
875 usbd_status status)
876 {
877 struct ural_tx_data *data = priv;
878 struct ural_softc *sc = data->sc;
879 struct ifnet *ifp = &sc->sc_if;
880 int s;
881
882 if (status != USBD_NORMAL_COMPLETION) {
883 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
884 return;
885
886 printf("%s: could not transmit buffer: %s\n",
887 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
888
889 if (status == USBD_STALLED)
890 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
891
892 ifp->if_oerrors++;
893 return;
894 }
895
896 s = splnet();
897
898 m_freem(data->m);
899 data->m = NULL;
900 ieee80211_free_node(data->ni);
901 data->ni = NULL;
902
903 sc->tx_queued--;
904 ifp->if_opackets++;
905
906 DPRINTFN(10, ("tx done\n"));
907
908 sc->sc_tx_timer = 0;
909 ifp->if_flags &= ~IFF_OACTIVE;
910 ural_start(ifp);
911
912 splx(s);
913 }
914
915 Static void
916 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
917 {
918 struct ural_rx_data *data = priv;
919 struct ural_softc *sc = data->sc;
920 struct ieee80211com *ic = &sc->sc_ic;
921 struct ifnet *ifp = &sc->sc_if;
922 struct ural_rx_desc *desc;
923 struct ieee80211_frame *wh;
924 struct ieee80211_node *ni;
925 struct mbuf *mnew, *m;
926 int s, len;
927
928 if (status != USBD_NORMAL_COMPLETION) {
929 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
930 return;
931
932 if (status == USBD_STALLED)
933 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
934 goto skip;
935 }
936
937 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
938
939 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
940 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
941 len));
942 ifp->if_ierrors++;
943 goto skip;
944 }
945
946 /* rx descriptor is located at the end */
947 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
948
949 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
950 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
951 /*
952 * This should not happen since we did not request to receive
953 * those frames when we filled RAL_TXRX_CSR2.
954 */
955 DPRINTFN(5, ("PHY or CRC error\n"));
956 ifp->if_ierrors++;
957 goto skip;
958 }
959
960 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
961 if (mnew == NULL) {
962 ifp->if_ierrors++;
963 goto skip;
964 }
965
966 MCLGET(mnew, M_DONTWAIT);
967 if (!(mnew->m_flags & M_EXT)) {
968 ifp->if_ierrors++;
969 m_freem(mnew);
970 goto skip;
971 }
972
973 m = data->m;
974 data->m = mnew;
975 data->buf = mtod(data->m, uint8_t *);
976
977 /* finalize mbuf */
978 m->m_pkthdr.rcvif = ifp;
979 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
980 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
981
982 s = splnet();
983
984 #if NBPFILTER > 0
985 if (sc->sc_drvbpf != NULL) {
986 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
987
988 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
989 tap->wr_rate = ural_rxrate(desc);
990 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
991 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
992 tap->wr_antenna = sc->rx_ant;
993 tap->wr_antsignal = desc->rssi;
994
995 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
996 }
997 #endif
998
999 wh = mtod(m, struct ieee80211_frame *);
1000 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1001
1002 /* send the frame to the 802.11 layer */
1003 ieee80211_input(ic, m, ni, desc->rssi, 0);
1004
1005 /* node is no longer needed */
1006 ieee80211_free_node(ni);
1007
1008 splx(s);
1009
1010 DPRINTFN(15, ("rx done\n"));
1011
1012 skip: /* setup a new transfer */
1013 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1014 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1015 usbd_transfer(xfer);
1016 }
1017
1018 /*
1019 * Return the expected ack rate for a frame transmitted at rate `rate'.
1020 * XXX: this should depend on the destination node basic rate set.
1021 */
1022 Static int
1023 ural_ack_rate(struct ieee80211com *ic, int rate)
1024 {
1025 switch (rate) {
1026 /* CCK rates */
1027 case 2:
1028 return 2;
1029 case 4:
1030 case 11:
1031 case 22:
1032 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1033
1034 /* OFDM rates */
1035 case 12:
1036 case 18:
1037 return 12;
1038 case 24:
1039 case 36:
1040 return 24;
1041 case 48:
1042 case 72:
1043 case 96:
1044 case 108:
1045 return 48;
1046 }
1047
1048 /* default to 1Mbps */
1049 return 2;
1050 }
1051
1052 /*
1053 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1054 * The function automatically determines the operating mode depending on the
1055 * given rate. `flags' indicates whether short preamble is in use or not.
1056 */
1057 Static uint16_t
1058 ural_txtime(int len, int rate, uint32_t flags)
1059 {
1060 uint16_t txtime;
1061
1062 if (RAL_RATE_IS_OFDM(rate)) {
1063 /* IEEE Std 802.11g-2003, pp. 37 */
1064 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1065 txtime = 16 + 4 + 4 * txtime + 6;
1066 } else {
1067 /* IEEE Std 802.11b-1999, pp. 28 */
1068 txtime = (16 * len + rate - 1) / rate;
1069 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1070 txtime += 72 + 24;
1071 else
1072 txtime += 144 + 48;
1073 }
1074 return txtime;
1075 }
1076
1077 Static uint8_t
1078 ural_plcp_signal(int rate)
1079 {
1080 switch (rate) {
1081 /* CCK rates (returned values are device-dependent) */
1082 case 2: return 0x0;
1083 case 4: return 0x1;
1084 case 11: return 0x2;
1085 case 22: return 0x3;
1086
1087 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1088 case 12: return 0xb;
1089 case 18: return 0xf;
1090 case 24: return 0xa;
1091 case 36: return 0xe;
1092 case 48: return 0x9;
1093 case 72: return 0xd;
1094 case 96: return 0x8;
1095 case 108: return 0xc;
1096
1097 /* unsupported rates (should not get there) */
1098 default: return 0xff;
1099 }
1100 }
1101
1102 Static void
1103 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1104 uint32_t flags, int len, int rate)
1105 {
1106 struct ieee80211com *ic = &sc->sc_ic;
1107 uint16_t plcp_length;
1108 int remainder;
1109
1110 desc->flags = htole32(flags);
1111 desc->flags |= htole32(RAL_TX_NEWSEQ);
1112 desc->flags |= htole32(len << 16);
1113
1114 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1115 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1116
1117 /* setup PLCP fields */
1118 desc->plcp_signal = ural_plcp_signal(rate);
1119 desc->plcp_service = 4;
1120
1121 len += IEEE80211_CRC_LEN;
1122 if (RAL_RATE_IS_OFDM(rate)) {
1123 desc->flags |= htole32(RAL_TX_OFDM);
1124
1125 plcp_length = len & 0xfff;
1126 desc->plcp_length_hi = plcp_length >> 6;
1127 desc->plcp_length_lo = plcp_length & 0x3f;
1128 } else {
1129 plcp_length = (16 * len + rate - 1) / rate;
1130 if (rate == 22) {
1131 remainder = (16 * len) % 22;
1132 if (remainder != 0 && remainder < 7)
1133 desc->plcp_service |= RAL_PLCP_LENGEXT;
1134 }
1135 desc->plcp_length_hi = plcp_length >> 8;
1136 desc->plcp_length_lo = plcp_length & 0xff;
1137
1138 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1139 desc->plcp_signal |= 0x08;
1140 }
1141
1142 desc->iv = 0;
1143 desc->eiv = 0;
1144 }
1145
1146 #define RAL_TX_TIMEOUT 5000
1147
1148 Static int
1149 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1150 {
1151 struct ural_tx_desc *desc;
1152 usbd_xfer_handle xfer;
1153 uint8_t cmd = 0;
1154 usbd_status error;
1155 uint8_t *buf;
1156 int xferlen, rate;
1157
1158 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1159
1160 xfer = usbd_alloc_xfer(sc->sc_udev);
1161 if (xfer == NULL)
1162 return ENOMEM;
1163
1164 /* xfer length needs to be a multiple of two! */
1165 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1166
1167 buf = usbd_alloc_buffer(xfer, xferlen);
1168 if (buf == NULL) {
1169 usbd_free_xfer(xfer);
1170 return ENOMEM;
1171 }
1172
1173 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1174 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1175
1176 error = usbd_sync_transfer(xfer);
1177 if (error != 0) {
1178 usbd_free_xfer(xfer);
1179 return error;
1180 }
1181
1182 desc = (struct ural_tx_desc *)buf;
1183
1184 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1185 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1186 m0->m_pkthdr.len, rate);
1187
1188 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1189 m0->m_pkthdr.len, rate, xferlen));
1190
1191 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1192 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1193
1194 error = usbd_sync_transfer(xfer);
1195 usbd_free_xfer(xfer);
1196
1197 return error;
1198 }
1199
1200 Static int
1201 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1202 {
1203 struct ieee80211com *ic = &sc->sc_ic;
1204 struct ural_tx_desc *desc;
1205 struct ural_tx_data *data;
1206 struct ieee80211_frame *wh;
1207 struct ieee80211_key *k;
1208 uint32_t flags = 0;
1209 uint16_t dur;
1210 usbd_status error;
1211 int xferlen, rate;
1212
1213 data = &sc->tx_data[0];
1214 desc = (struct ural_tx_desc *)data->buf;
1215
1216 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1217
1218 wh = mtod(m0, struct ieee80211_frame *);
1219
1220 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1221 k = ieee80211_crypto_encap(ic, ni, m0);
1222 if (k == NULL) {
1223 m_freem(m0);
1224 return ENOBUFS;
1225 }
1226 }
1227
1228 data->m = m0;
1229 data->ni = ni;
1230
1231 wh = mtod(m0, struct ieee80211_frame *);
1232
1233 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1234 flags |= RAL_TX_ACK;
1235
1236 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1237 *(uint16_t *)wh->i_dur = htole16(dur);
1238
1239 /* tell hardware to add timestamp for probe responses */
1240 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1241 IEEE80211_FC0_TYPE_MGT &&
1242 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1243 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1244 flags |= RAL_TX_TIMESTAMP;
1245 }
1246
1247 #if NBPFILTER > 0
1248 if (sc->sc_drvbpf != NULL) {
1249 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1250
1251 tap->wt_flags = 0;
1252 tap->wt_rate = rate;
1253 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1254 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1255 tap->wt_antenna = sc->tx_ant;
1256
1257 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1258 }
1259 #endif
1260
1261 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1262 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1263
1264 /* align end on a 2-bytes boundary */
1265 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1266
1267 /*
1268 * No space left in the last URB to store the extra 2 bytes, force
1269 * sending of another URB.
1270 */
1271 if ((xferlen % 64) == 0)
1272 xferlen += 2;
1273
1274 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1275 m0->m_pkthdr.len, rate, xferlen));
1276
1277 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1278 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1279 ural_txeof);
1280
1281 error = usbd_transfer(data->xfer);
1282 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1283 m_freem(m0);
1284 return error;
1285 }
1286
1287 sc->tx_queued++;
1288
1289 return 0;
1290 }
1291
1292 Static int
1293 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1294 {
1295 struct ieee80211com *ic = &sc->sc_ic;
1296 struct ural_tx_desc *desc;
1297 struct ural_tx_data *data;
1298 struct ieee80211_frame *wh;
1299 struct ieee80211_key *k;
1300 uint32_t flags = 0;
1301 uint16_t dur;
1302 usbd_status error;
1303 int xferlen, rate;
1304
1305 wh = mtod(m0, struct ieee80211_frame *);
1306
1307 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1308 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1309 else
1310 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1311
1312 rate &= IEEE80211_RATE_VAL;
1313
1314 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1315 k = ieee80211_crypto_encap(ic, ni, m0);
1316 if (k == NULL) {
1317 m_freem(m0);
1318 return ENOBUFS;
1319 }
1320
1321 /* packet header may have moved, reset our local pointer */
1322 wh = mtod(m0, struct ieee80211_frame *);
1323 }
1324
1325 data = &sc->tx_data[0];
1326 desc = (struct ural_tx_desc *)data->buf;
1327
1328 data->m = m0;
1329 data->ni = ni;
1330
1331 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1332 flags |= RAL_TX_ACK;
1333 flags |= RAL_TX_RETRY(7);
1334
1335 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1336 ic->ic_flags) + RAL_SIFS;
1337 *(uint16_t *)wh->i_dur = htole16(dur);
1338 }
1339
1340 #if NBPFILTER > 0
1341 if (sc->sc_drvbpf != NULL) {
1342 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1343
1344 tap->wt_flags = 0;
1345 tap->wt_rate = rate;
1346 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1347 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1348 tap->wt_antenna = sc->tx_ant;
1349
1350 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1351 }
1352 #endif
1353
1354 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1355 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1356
1357 /* align end on a 2-bytes boundary */
1358 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1359
1360 /*
1361 * No space left in the last URB to store the extra 2 bytes, force
1362 * sending of another URB.
1363 */
1364 if ((xferlen % 64) == 0)
1365 xferlen += 2;
1366
1367 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1368 m0->m_pkthdr.len, rate, xferlen));
1369
1370 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1371 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1372 ural_txeof);
1373
1374 error = usbd_transfer(data->xfer);
1375 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1376 return error;
1377
1378 sc->tx_queued++;
1379
1380 return 0;
1381 }
1382
1383 Static void
1384 ural_start(struct ifnet *ifp)
1385 {
1386 struct ural_softc *sc = ifp->if_softc;
1387 struct ieee80211com *ic = &sc->sc_ic;
1388 struct mbuf *m0;
1389 struct ether_header *eh;
1390 struct ieee80211_node *ni;
1391
1392 for (;;) {
1393 IF_POLL(&ic->ic_mgtq, m0);
1394 if (m0 != NULL) {
1395 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1396 ifp->if_flags |= IFF_OACTIVE;
1397 break;
1398 }
1399 IF_DEQUEUE(&ic->ic_mgtq, m0);
1400
1401 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1402 m0->m_pkthdr.rcvif = NULL;
1403 #if NBPFILTER > 0
1404 if (ic->ic_rawbpf != NULL)
1405 bpf_mtap(ic->ic_rawbpf, m0);
1406 #endif
1407 if (ural_tx_mgt(sc, m0, ni) != 0)
1408 break;
1409
1410 } else {
1411 if (ic->ic_state != IEEE80211_S_RUN)
1412 break;
1413 IFQ_DEQUEUE(&ifp->if_snd, m0);
1414 if (m0 == NULL)
1415 break;
1416 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1417 IF_PREPEND(&ifp->if_snd, m0);
1418 ifp->if_flags |= IFF_OACTIVE;
1419 break;
1420 }
1421
1422 if (m0->m_len < sizeof (struct ether_header) &&
1423 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1424 continue;
1425
1426 eh = mtod(m0, struct ether_header *);
1427 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1428 if (ni == NULL) {
1429 m_freem(m0);
1430 continue;
1431 }
1432 #if NBPFILTER > 0
1433 if (ifp->if_bpf != NULL)
1434 bpf_mtap(ifp->if_bpf, m0);
1435 #endif
1436 m0 = ieee80211_encap(ic, m0, ni);
1437 if (m0 == NULL) {
1438 ieee80211_free_node(ni);
1439 continue;
1440 }
1441 #if NBPFILTER > 0
1442 if (ic->ic_rawbpf != NULL)
1443 bpf_mtap(ic->ic_rawbpf, m0);
1444 #endif
1445 if (ural_tx_data(sc, m0, ni) != 0) {
1446 ieee80211_free_node(ni);
1447 ifp->if_oerrors++;
1448 break;
1449 }
1450 }
1451
1452 sc->sc_tx_timer = 5;
1453 ifp->if_timer = 1;
1454 }
1455 }
1456
1457 Static void
1458 ural_watchdog(struct ifnet *ifp)
1459 {
1460 struct ural_softc *sc = ifp->if_softc;
1461 struct ieee80211com *ic = &sc->sc_ic;
1462
1463 ifp->if_timer = 0;
1464
1465 if (sc->sc_tx_timer > 0) {
1466 if (--sc->sc_tx_timer == 0) {
1467 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1468 /*ural_init(sc); XXX needs a process context! */
1469 ifp->if_oerrors++;
1470 return;
1471 }
1472 ifp->if_timer = 1;
1473 }
1474
1475 ieee80211_watchdog(ic);
1476 }
1477
1478 /*
1479 * This function allows for fast channel switching in monitor mode (used by
1480 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1481 * generate a new beacon frame.
1482 */
1483 Static int
1484 ural_reset(struct ifnet *ifp)
1485 {
1486 struct ural_softc *sc = ifp->if_softc;
1487 struct ieee80211com *ic = &sc->sc_ic;
1488
1489 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1490 return ENETRESET;
1491
1492 ural_set_chan(sc, ic->ic_curchan);
1493
1494 return 0;
1495 }
1496
1497 Static int
1498 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1499 {
1500 struct ural_softc *sc = ifp->if_softc;
1501 struct ieee80211com *ic = &sc->sc_ic;
1502 int s, error = 0;
1503
1504 s = splnet();
1505
1506 switch (cmd) {
1507 case SIOCSIFFLAGS:
1508 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1509 break;
1510 /* XXX re-use ether_ioctl() */
1511 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1512 case IFF_UP|IFF_RUNNING:
1513 ural_update_promisc(sc);
1514 break;
1515 case IFF_UP:
1516 ural_init(ifp);
1517 break;
1518 case IFF_RUNNING:
1519 ural_stop(ifp, 1);
1520 break;
1521 case 0:
1522 break;
1523 }
1524 break;
1525
1526 default:
1527 error = ieee80211_ioctl(ic, cmd, data);
1528 }
1529
1530 if (error == ENETRESET) {
1531 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1532 (IFF_UP | IFF_RUNNING))
1533 ural_init(ifp);
1534 error = 0;
1535 }
1536
1537 splx(s);
1538
1539 return error;
1540 }
1541
1542 Static void
1543 ural_set_testmode(struct ural_softc *sc)
1544 {
1545 usb_device_request_t req;
1546 usbd_status error;
1547
1548 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1549 req.bRequest = RAL_VENDOR_REQUEST;
1550 USETW(req.wValue, 4);
1551 USETW(req.wIndex, 1);
1552 USETW(req.wLength, 0);
1553
1554 error = usbd_do_request(sc->sc_udev, &req, NULL);
1555 if (error != 0) {
1556 printf("%s: could not set test mode: %s\n",
1557 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1558 }
1559 }
1560
1561 Static void
1562 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1563 {
1564 usb_device_request_t req;
1565 usbd_status error;
1566
1567 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1568 req.bRequest = RAL_READ_EEPROM;
1569 USETW(req.wValue, 0);
1570 USETW(req.wIndex, addr);
1571 USETW(req.wLength, len);
1572
1573 error = usbd_do_request(sc->sc_udev, &req, buf);
1574 if (error != 0) {
1575 printf("%s: could not read EEPROM: %s\n",
1576 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1577 }
1578 }
1579
1580 Static uint16_t
1581 ural_read(struct ural_softc *sc, uint16_t reg)
1582 {
1583 usb_device_request_t req;
1584 usbd_status error;
1585 uint16_t val;
1586
1587 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1588 req.bRequest = RAL_READ_MAC;
1589 USETW(req.wValue, 0);
1590 USETW(req.wIndex, reg);
1591 USETW(req.wLength, sizeof (uint16_t));
1592
1593 error = usbd_do_request(sc->sc_udev, &req, &val);
1594 if (error != 0) {
1595 printf("%s: could not read MAC register: %s\n",
1596 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1597 return 0;
1598 }
1599
1600 return le16toh(val);
1601 }
1602
1603 Static void
1604 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1605 {
1606 usb_device_request_t req;
1607 usbd_status error;
1608
1609 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1610 req.bRequest = RAL_READ_MULTI_MAC;
1611 USETW(req.wValue, 0);
1612 USETW(req.wIndex, reg);
1613 USETW(req.wLength, len);
1614
1615 error = usbd_do_request(sc->sc_udev, &req, buf);
1616 if (error != 0) {
1617 printf("%s: could not read MAC register: %s\n",
1618 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1619 }
1620 }
1621
1622 Static void
1623 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1624 {
1625 usb_device_request_t req;
1626 usbd_status error;
1627
1628 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1629 req.bRequest = RAL_WRITE_MAC;
1630 USETW(req.wValue, val);
1631 USETW(req.wIndex, reg);
1632 USETW(req.wLength, 0);
1633
1634 error = usbd_do_request(sc->sc_udev, &req, NULL);
1635 if (error != 0) {
1636 printf("%s: could not write MAC register: %s\n",
1637 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1638 }
1639 }
1640
1641 Static void
1642 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1643 {
1644 usb_device_request_t req;
1645 usbd_status error;
1646
1647 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1648 req.bRequest = RAL_WRITE_MULTI_MAC;
1649 USETW(req.wValue, 0);
1650 USETW(req.wIndex, reg);
1651 USETW(req.wLength, len);
1652
1653 error = usbd_do_request(sc->sc_udev, &req, buf);
1654 if (error != 0) {
1655 printf("%s: could not write MAC register: %s\n",
1656 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1657 }
1658 }
1659
1660 Static void
1661 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1662 {
1663 uint16_t tmp;
1664 int ntries;
1665
1666 for (ntries = 0; ntries < 5; ntries++) {
1667 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1668 break;
1669 }
1670 if (ntries == 5) {
1671 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1672 return;
1673 }
1674
1675 tmp = reg << 8 | val;
1676 ural_write(sc, RAL_PHY_CSR7, tmp);
1677 }
1678
1679 Static uint8_t
1680 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1681 {
1682 uint16_t val;
1683 int ntries;
1684
1685 val = RAL_BBP_WRITE | reg << 8;
1686 ural_write(sc, RAL_PHY_CSR7, val);
1687
1688 for (ntries = 0; ntries < 5; ntries++) {
1689 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1690 break;
1691 }
1692 if (ntries == 5) {
1693 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1694 return 0;
1695 }
1696
1697 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1698 }
1699
1700 Static void
1701 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1702 {
1703 uint32_t tmp;
1704 int ntries;
1705
1706 for (ntries = 0; ntries < 5; ntries++) {
1707 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1708 break;
1709 }
1710 if (ntries == 5) {
1711 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1712 return;
1713 }
1714
1715 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1716 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1717 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1718
1719 /* remember last written value in sc */
1720 sc->rf_regs[reg] = val;
1721
1722 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1723 }
1724
1725 Static void
1726 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1727 {
1728 struct ieee80211com *ic = &sc->sc_ic;
1729 uint8_t power, tmp;
1730 u_int i, chan;
1731
1732 chan = ieee80211_chan2ieee(ic, c);
1733 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1734 return;
1735
1736 if (IEEE80211_IS_CHAN_2GHZ(c))
1737 power = min(sc->txpow[chan - 1], 31);
1738 else
1739 power = 31;
1740
1741 /* adjust txpower using ifconfig settings */
1742 power -= (100 - ic->ic_txpowlimit) / 8;
1743
1744 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1745
1746 switch (sc->rf_rev) {
1747 case RAL_RF_2522:
1748 ural_rf_write(sc, RAL_RF1, 0x00814);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1751 break;
1752
1753 case RAL_RF_2523:
1754 ural_rf_write(sc, RAL_RF1, 0x08804);
1755 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1756 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1757 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1758 break;
1759
1760 case RAL_RF_2524:
1761 ural_rf_write(sc, RAL_RF1, 0x0c808);
1762 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1763 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1764 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1765 break;
1766
1767 case RAL_RF_2525:
1768 ural_rf_write(sc, RAL_RF1, 0x08808);
1769 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1770 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1771 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1772
1773 ural_rf_write(sc, RAL_RF1, 0x08808);
1774 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1775 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1776 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1777 break;
1778
1779 case RAL_RF_2525E:
1780 ural_rf_write(sc, RAL_RF1, 0x08808);
1781 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1782 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1783 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1784 break;
1785
1786 case RAL_RF_2526:
1787 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1788 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1789 ural_rf_write(sc, RAL_RF1, 0x08804);
1790
1791 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1792 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1793 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1794 break;
1795
1796 /* dual-band RF */
1797 case RAL_RF_5222:
1798 for (i = 0; ural_rf5222[i].chan != chan; i++);
1799
1800 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1801 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1802 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1803 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1804 break;
1805 }
1806
1807 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1808 ic->ic_state != IEEE80211_S_SCAN) {
1809 /* set Japan filter bit for channel 14 */
1810 tmp = ural_bbp_read(sc, 70);
1811
1812 tmp &= ~RAL_JAPAN_FILTER;
1813 if (chan == 14)
1814 tmp |= RAL_JAPAN_FILTER;
1815
1816 ural_bbp_write(sc, 70, tmp);
1817
1818 /* clear CRC errors */
1819 ural_read(sc, RAL_STA_CSR0);
1820
1821 DELAY(10000);
1822 ural_disable_rf_tune(sc);
1823 }
1824 }
1825
1826 /*
1827 * Disable RF auto-tuning.
1828 */
1829 Static void
1830 ural_disable_rf_tune(struct ural_softc *sc)
1831 {
1832 uint32_t tmp;
1833
1834 if (sc->rf_rev != RAL_RF_2523) {
1835 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1836 ural_rf_write(sc, RAL_RF1, tmp);
1837 }
1838
1839 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1840 ural_rf_write(sc, RAL_RF3, tmp);
1841
1842 DPRINTFN(2, ("disabling RF autotune\n"));
1843 }
1844
1845 /*
1846 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1847 * synchronization.
1848 */
1849 Static void
1850 ural_enable_tsf_sync(struct ural_softc *sc)
1851 {
1852 struct ieee80211com *ic = &sc->sc_ic;
1853 uint16_t logcwmin, preload, tmp;
1854
1855 /* first, disable TSF synchronization */
1856 ural_write(sc, RAL_TXRX_CSR19, 0);
1857
1858 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1859 ural_write(sc, RAL_TXRX_CSR18, tmp);
1860
1861 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1862 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1863 tmp = logcwmin << 12 | preload;
1864 ural_write(sc, RAL_TXRX_CSR20, tmp);
1865
1866 /* finally, enable TSF synchronization */
1867 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1868 if (ic->ic_opmode == IEEE80211_M_STA)
1869 tmp |= RAL_ENABLE_TSF_SYNC(1);
1870 else
1871 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1872 ural_write(sc, RAL_TXRX_CSR19, tmp);
1873
1874 DPRINTF(("enabling TSF synchronization\n"));
1875 }
1876
1877 Static void
1878 ural_update_slot(struct ifnet *ifp)
1879 {
1880 struct ural_softc *sc = ifp->if_softc;
1881 struct ieee80211com *ic = &sc->sc_ic;
1882 uint16_t slottime, sifs, eifs;
1883
1884 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1885
1886 /*
1887 * These settings may sound a bit inconsistent but this is what the
1888 * reference driver does.
1889 */
1890 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1891 sifs = 16 - RAL_RXTX_TURNAROUND;
1892 eifs = 364;
1893 } else {
1894 sifs = 10 - RAL_RXTX_TURNAROUND;
1895 eifs = 64;
1896 }
1897
1898 ural_write(sc, RAL_MAC_CSR10, slottime);
1899 ural_write(sc, RAL_MAC_CSR11, sifs);
1900 ural_write(sc, RAL_MAC_CSR12, eifs);
1901 }
1902
1903 Static void
1904 ural_set_txpreamble(struct ural_softc *sc)
1905 {
1906 uint16_t tmp;
1907
1908 tmp = ural_read(sc, RAL_TXRX_CSR10);
1909
1910 tmp &= ~RAL_SHORT_PREAMBLE;
1911 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1912 tmp |= RAL_SHORT_PREAMBLE;
1913
1914 ural_write(sc, RAL_TXRX_CSR10, tmp);
1915 }
1916
1917 Static void
1918 ural_set_basicrates(struct ural_softc *sc)
1919 {
1920 struct ieee80211com *ic = &sc->sc_ic;
1921
1922 /* update basic rate set */
1923 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1924 /* 11b basic rates: 1, 2Mbps */
1925 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1926 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1927 /* 11a basic rates: 6, 12, 24Mbps */
1928 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1929 } else {
1930 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1931 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1932 }
1933 }
1934
1935 Static void
1936 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1937 {
1938 uint16_t tmp;
1939
1940 tmp = bssid[0] | bssid[1] << 8;
1941 ural_write(sc, RAL_MAC_CSR5, tmp);
1942
1943 tmp = bssid[2] | bssid[3] << 8;
1944 ural_write(sc, RAL_MAC_CSR6, tmp);
1945
1946 tmp = bssid[4] | bssid[5] << 8;
1947 ural_write(sc, RAL_MAC_CSR7, tmp);
1948
1949 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1950 }
1951
1952 Static void
1953 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1954 {
1955 uint16_t tmp;
1956
1957 tmp = addr[0] | addr[1] << 8;
1958 ural_write(sc, RAL_MAC_CSR2, tmp);
1959
1960 tmp = addr[2] | addr[3] << 8;
1961 ural_write(sc, RAL_MAC_CSR3, tmp);
1962
1963 tmp = addr[4] | addr[5] << 8;
1964 ural_write(sc, RAL_MAC_CSR4, tmp);
1965
1966 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1967 }
1968
1969 Static void
1970 ural_update_promisc(struct ural_softc *sc)
1971 {
1972 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1973 uint32_t tmp;
1974
1975 tmp = ural_read(sc, RAL_TXRX_CSR2);
1976
1977 tmp &= ~RAL_DROP_NOT_TO_ME;
1978 if (!(ifp->if_flags & IFF_PROMISC))
1979 tmp |= RAL_DROP_NOT_TO_ME;
1980
1981 ural_write(sc, RAL_TXRX_CSR2, tmp);
1982
1983 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1984 "entering" : "leaving"));
1985 }
1986
1987 Static const char *
1988 ural_get_rf(int rev)
1989 {
1990 switch (rev) {
1991 case RAL_RF_2522: return "RT2522";
1992 case RAL_RF_2523: return "RT2523";
1993 case RAL_RF_2524: return "RT2524";
1994 case RAL_RF_2525: return "RT2525";
1995 case RAL_RF_2525E: return "RT2525e";
1996 case RAL_RF_2526: return "RT2526";
1997 case RAL_RF_5222: return "RT5222";
1998 default: return "unknown";
1999 }
2000 }
2001
2002 Static void
2003 ural_read_eeprom(struct ural_softc *sc)
2004 {
2005 struct ieee80211com *ic = &sc->sc_ic;
2006 uint16_t val;
2007
2008 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2009 val = le16toh(val);
2010 sc->rf_rev = (val >> 11) & 0x7;
2011 sc->hw_radio = (val >> 10) & 0x1;
2012 sc->led_mode = (val >> 6) & 0x7;
2013 sc->rx_ant = (val >> 4) & 0x3;
2014 sc->tx_ant = (val >> 2) & 0x3;
2015 sc->nb_ant = val & 0x3;
2016
2017 /* read MAC address */
2018 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2019
2020 /* read default values for BBP registers */
2021 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2022
2023 /* read Tx power for all b/g channels */
2024 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2025 }
2026
2027 Static int
2028 ural_bbp_init(struct ural_softc *sc)
2029 {
2030 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2031 int i, ntries;
2032
2033 /* wait for BBP to be ready */
2034 for (ntries = 0; ntries < 100; ntries++) {
2035 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2036 break;
2037 DELAY(1000);
2038 }
2039 if (ntries == 100) {
2040 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2041 return EIO;
2042 }
2043
2044 /* initialize BBP registers to default values */
2045 for (i = 0; i < N(ural_def_bbp); i++)
2046 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2047
2048 #if 0
2049 /* initialize BBP registers to values stored in EEPROM */
2050 for (i = 0; i < 16; i++) {
2051 if (sc->bbp_prom[i].reg == 0xff)
2052 continue;
2053 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2054 }
2055 #endif
2056
2057 return 0;
2058 #undef N
2059 }
2060
2061 Static void
2062 ural_set_txantenna(struct ural_softc *sc, int antenna)
2063 {
2064 uint16_t tmp;
2065 uint8_t tx;
2066
2067 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2068 if (antenna == 1)
2069 tx |= RAL_BBP_ANTA;
2070 else if (antenna == 2)
2071 tx |= RAL_BBP_ANTB;
2072 else
2073 tx |= RAL_BBP_DIVERSITY;
2074
2075 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2076 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2077 sc->rf_rev == RAL_RF_5222)
2078 tx |= RAL_BBP_FLIPIQ;
2079
2080 ural_bbp_write(sc, RAL_BBP_TX, tx);
2081
2082 /* update values in PHY_CSR5 and PHY_CSR6 */
2083 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2084 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2085
2086 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2087 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2088 }
2089
2090 Static void
2091 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2092 {
2093 uint8_t rx;
2094
2095 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2096 if (antenna == 1)
2097 rx |= RAL_BBP_ANTA;
2098 else if (antenna == 2)
2099 rx |= RAL_BBP_ANTB;
2100 else
2101 rx |= RAL_BBP_DIVERSITY;
2102
2103 /* need to force no I/Q flip for RF 2525e and 2526 */
2104 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2105 rx &= ~RAL_BBP_FLIPIQ;
2106
2107 ural_bbp_write(sc, RAL_BBP_RX, rx);
2108 }
2109
2110 Static int
2111 ural_init(struct ifnet *ifp)
2112 {
2113 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2114 struct ural_softc *sc = ifp->if_softc;
2115 struct ieee80211com *ic = &sc->sc_ic;
2116 struct ieee80211_key *wk;
2117 struct ural_rx_data *data;
2118 uint16_t tmp;
2119 usbd_status error;
2120 int i, ntries;
2121
2122 ural_set_testmode(sc);
2123 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2124
2125 ural_stop(ifp, 0);
2126
2127 /* initialize MAC registers to default values */
2128 for (i = 0; i < N(ural_def_mac); i++)
2129 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2130
2131 /* wait for BBP and RF to wake up (this can take a long time!) */
2132 for (ntries = 0; ntries < 100; ntries++) {
2133 tmp = ural_read(sc, RAL_MAC_CSR17);
2134 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2135 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2136 break;
2137 DELAY(1000);
2138 }
2139 if (ntries == 100) {
2140 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2141 USBDEVNAME(sc->sc_dev));
2142 error = EIO;
2143 goto fail;
2144 }
2145
2146 /* we're ready! */
2147 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2148
2149 /* set basic rate set (will be updated later) */
2150 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2151
2152 error = ural_bbp_init(sc);
2153 if (error != 0)
2154 goto fail;
2155
2156 /* set default BSS channel */
2157 ural_set_chan(sc, ic->ic_curchan);
2158
2159 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2160 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2161
2162 ural_set_txantenna(sc, sc->tx_ant);
2163 ural_set_rxantenna(sc, sc->rx_ant);
2164
2165 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2166 ural_set_macaddr(sc, ic->ic_myaddr);
2167
2168 /*
2169 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2170 */
2171 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2172 wk = &ic->ic_crypto.cs_nw_keys[i];
2173 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2174 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2175 }
2176
2177 /*
2178 * Allocate xfer for AMRR statistics requests.
2179 */
2180 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2181 if (sc->amrr_xfer == NULL) {
2182 printf("%s: could not allocate AMRR xfer\n",
2183 USBDEVNAME(sc->sc_dev));
2184 goto fail;
2185 }
2186
2187 /*
2188 * Open Tx and Rx USB bulk pipes.
2189 */
2190 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2191 &sc->sc_tx_pipeh);
2192 if (error != 0) {
2193 printf("%s: could not open Tx pipe: %s\n",
2194 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2195 goto fail;
2196 }
2197
2198 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2199 &sc->sc_rx_pipeh);
2200 if (error != 0) {
2201 printf("%s: could not open Rx pipe: %s\n",
2202 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2203 goto fail;
2204 }
2205
2206 /*
2207 * Allocate Tx and Rx xfer queues.
2208 */
2209 error = ural_alloc_tx_list(sc);
2210 if (error != 0) {
2211 printf("%s: could not allocate Tx list\n",
2212 USBDEVNAME(sc->sc_dev));
2213 goto fail;
2214 }
2215
2216 error = ural_alloc_rx_list(sc);
2217 if (error != 0) {
2218 printf("%s: could not allocate Rx list\n",
2219 USBDEVNAME(sc->sc_dev));
2220 goto fail;
2221 }
2222
2223 /*
2224 * Start up the receive pipe.
2225 */
2226 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2227 data = &sc->rx_data[i];
2228
2229 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2230 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2231 usbd_transfer(data->xfer);
2232 }
2233
2234 /* kick Rx */
2235 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2236 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2237 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2238 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2239 tmp |= RAL_DROP_TODS;
2240 if (!(ifp->if_flags & IFF_PROMISC))
2241 tmp |= RAL_DROP_NOT_TO_ME;
2242 }
2243 ural_write(sc, RAL_TXRX_CSR2, tmp);
2244
2245 ifp->if_flags &= ~IFF_OACTIVE;
2246 ifp->if_flags |= IFF_RUNNING;
2247
2248 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2249 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2250 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2251 } else
2252 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2253
2254 return 0;
2255
2256 fail: ural_stop(ifp, 1);
2257 return error;
2258 #undef N
2259 }
2260
2261 Static void
2262 ural_stop(struct ifnet *ifp, int disable)
2263 {
2264 struct ural_softc *sc = ifp->if_softc;
2265 struct ieee80211com *ic = &sc->sc_ic;
2266
2267 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2268
2269 sc->sc_tx_timer = 0;
2270 ifp->if_timer = 0;
2271 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2272
2273 /* disable Rx */
2274 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2275
2276 /* reset ASIC and BBP (but won't reset MAC registers!) */
2277 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2278 ural_write(sc, RAL_MAC_CSR1, 0);
2279
2280 if (sc->amrr_xfer != NULL) {
2281 usbd_free_xfer(sc->amrr_xfer);
2282 sc->amrr_xfer = NULL;
2283 }
2284
2285 if (sc->sc_rx_pipeh != NULL) {
2286 usbd_abort_pipe(sc->sc_rx_pipeh);
2287 usbd_close_pipe(sc->sc_rx_pipeh);
2288 sc->sc_rx_pipeh = NULL;
2289 }
2290
2291 if (sc->sc_tx_pipeh != NULL) {
2292 usbd_abort_pipe(sc->sc_tx_pipeh);
2293 usbd_close_pipe(sc->sc_tx_pipeh);
2294 sc->sc_tx_pipeh = NULL;
2295 }
2296
2297 ural_free_rx_list(sc);
2298 ural_free_tx_list(sc);
2299 }
2300
2301 int
2302 ural_activate(device_ptr_t self, enum devact act)
2303 {
2304 struct ural_softc *sc = device_private(self);
2305
2306 switch (act) {
2307 case DVACT_ACTIVATE:
2308 return EOPNOTSUPP;
2309 break;
2310
2311 case DVACT_DEACTIVATE:
2312 if_deactivate(&sc->sc_if);
2313 break;
2314 }
2315
2316 return 0;
2317 }
2318
2319 Static void
2320 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2321 {
2322 int i;
2323
2324 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2325 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2326
2327 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2328
2329 /* set rate to some reasonable initial value */
2330 for (i = ni->ni_rates.rs_nrates - 1;
2331 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2332 i--);
2333 ni->ni_txrate = i;
2334
2335 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2336 }
2337
2338 Static void
2339 ural_amrr_timeout(void *arg)
2340 {
2341 struct ural_softc *sc = (struct ural_softc *)arg;
2342 usb_device_request_t req;
2343 int s;
2344
2345 s = splusb();
2346
2347 /*
2348 * Asynchronously read statistic registers (cleared by read).
2349 */
2350 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2351 req.bRequest = RAL_READ_MULTI_MAC;
2352 USETW(req.wValue, 0);
2353 USETW(req.wIndex, RAL_STA_CSR0);
2354 USETW(req.wLength, sizeof sc->sta);
2355
2356 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2357 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2358 ural_amrr_update);
2359 (void)usbd_transfer(sc->amrr_xfer);
2360
2361 splx(s);
2362 }
2363
2364 Static void
2365 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2366 usbd_status status)
2367 {
2368 struct ural_softc *sc = (struct ural_softc *)priv;
2369 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2370
2371 if (status != USBD_NORMAL_COMPLETION) {
2372 printf("%s: could not retrieve Tx statistics - "
2373 "cancelling automatic rate control\n",
2374 USBDEVNAME(sc->sc_dev));
2375 return;
2376 }
2377
2378 /* count TX retry-fail as Tx errors */
2379 ifp->if_oerrors += sc->sta[9];
2380
2381 sc->amn.amn_retrycnt =
2382 sc->sta[7] + /* TX one-retry ok count */
2383 sc->sta[8] + /* TX more-retry ok count */
2384 sc->sta[9]; /* TX retry-fail count */
2385
2386 sc->amn.amn_txcnt =
2387 sc->amn.amn_retrycnt +
2388 sc->sta[6]; /* TX no-retry ok count */
2389
2390 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2391
2392 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2393 }
2394