if_ural.c revision 1.34.2.2 1 /* $NetBSD: if_ural.c,v 1.34.2.2 2010/11/06 08:08:36 uebayasi Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.34.2.2 2010/11/06 08:08:36 uebayasi Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67
68 #include <dev/usb/if_uralreg.h>
69 #include <dev/usb/if_uralvar.h>
70
71 #ifdef USB_DEBUG
72 #define URAL_DEBUG
73 #endif
74
75 #ifdef URAL_DEBUG
76 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
77 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
78 int ural_debug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83
84 /* various supported device vendors/products */
85 static const struct usb_devno ural_devs[] = {
86 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
87 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
88 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
90 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
91 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
92 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
93 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
94 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
95 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
103 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
109 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
110 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
111 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
112 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
113 };
114
115 Static int ural_alloc_tx_list(struct ural_softc *);
116 Static void ural_free_tx_list(struct ural_softc *);
117 Static int ural_alloc_rx_list(struct ural_softc *);
118 Static void ural_free_rx_list(struct ural_softc *);
119 Static int ural_media_change(struct ifnet *);
120 Static void ural_next_scan(void *);
121 Static void ural_task(void *);
122 Static int ural_newstate(struct ieee80211com *,
123 enum ieee80211_state, int);
124 Static int ural_rxrate(struct ural_rx_desc *);
125 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
126 usbd_status);
127 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
128 usbd_status);
129 Static int ural_ack_rate(struct ieee80211com *, int);
130 Static uint16_t ural_txtime(int, int, uint32_t);
131 Static uint8_t ural_plcp_signal(int);
132 Static void ural_setup_tx_desc(struct ural_softc *,
133 struct ural_tx_desc *, uint32_t, int, int);
134 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
135 struct ieee80211_node *);
136 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
137 struct ieee80211_node *);
138 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
139 struct ieee80211_node *);
140 Static void ural_start(struct ifnet *);
141 Static void ural_watchdog(struct ifnet *);
142 Static int ural_reset(struct ifnet *);
143 Static int ural_ioctl(struct ifnet *, u_long, void *);
144 Static void ural_set_testmode(struct ural_softc *);
145 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
146 int);
147 Static uint16_t ural_read(struct ural_softc *, uint16_t);
148 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
151 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
152 int);
153 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
154 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
155 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
156 Static void ural_set_chan(struct ural_softc *,
157 struct ieee80211_channel *);
158 Static void ural_disable_rf_tune(struct ural_softc *);
159 Static void ural_enable_tsf_sync(struct ural_softc *);
160 Static void ural_update_slot(struct ifnet *);
161 Static void ural_set_txpreamble(struct ural_softc *);
162 Static void ural_set_basicrates(struct ural_softc *);
163 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
164 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
165 Static void ural_update_promisc(struct ural_softc *);
166 Static const char *ural_get_rf(int);
167 Static void ural_read_eeprom(struct ural_softc *);
168 Static int ural_bbp_init(struct ural_softc *);
169 Static void ural_set_txantenna(struct ural_softc *, int);
170 Static void ural_set_rxantenna(struct ural_softc *, int);
171 Static int ural_init(struct ifnet *);
172 Static void ural_stop(struct ifnet *, int);
173 Static void ural_amrr_start(struct ural_softc *,
174 struct ieee80211_node *);
175 Static void ural_amrr_timeout(void *);
176 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
177 usbd_status status);
178
179 /*
180 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181 */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184
185 static const struct ieee80211_rateset ural_rateset_11b =
186 { 4, { 2, 4, 11, 22 } };
187
188 static const struct ieee80211_rateset ural_rateset_11g =
189 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190
191 /*
192 * Default values for MAC registers; values taken from the reference driver.
193 */
194 static const struct {
195 uint16_t reg;
196 uint16_t val;
197 } ural_def_mac[] = {
198 { RAL_TXRX_CSR5, 0x8c8d },
199 { RAL_TXRX_CSR6, 0x8b8a },
200 { RAL_TXRX_CSR7, 0x8687 },
201 { RAL_TXRX_CSR8, 0x0085 },
202 { RAL_MAC_CSR13, 0x1111 },
203 { RAL_MAC_CSR14, 0x1e11 },
204 { RAL_TXRX_CSR21, 0xe78f },
205 { RAL_MAC_CSR9, 0xff1d },
206 { RAL_MAC_CSR11, 0x0002 },
207 { RAL_MAC_CSR22, 0x0053 },
208 { RAL_MAC_CSR15, 0x0000 },
209 { RAL_MAC_CSR8, 0x0780 },
210 { RAL_TXRX_CSR19, 0x0000 },
211 { RAL_TXRX_CSR18, 0x005a },
212 { RAL_PHY_CSR2, 0x0000 },
213 { RAL_TXRX_CSR0, 0x1ec0 },
214 { RAL_PHY_CSR4, 0x000f }
215 };
216
217 /*
218 * Default values for BBP registers; values taken from the reference driver.
219 */
220 static const struct {
221 uint8_t reg;
222 uint8_t val;
223 } ural_def_bbp[] = {
224 { 3, 0x02 },
225 { 4, 0x19 },
226 { 14, 0x1c },
227 { 15, 0x30 },
228 { 16, 0xac },
229 { 17, 0x48 },
230 { 18, 0x18 },
231 { 19, 0xff },
232 { 20, 0x1e },
233 { 21, 0x08 },
234 { 22, 0x08 },
235 { 23, 0x08 },
236 { 24, 0x80 },
237 { 25, 0x50 },
238 { 26, 0x08 },
239 { 27, 0x23 },
240 { 30, 0x10 },
241 { 31, 0x2b },
242 { 32, 0xb9 },
243 { 34, 0x12 },
244 { 35, 0x50 },
245 { 39, 0xc4 },
246 { 40, 0x02 },
247 { 41, 0x60 },
248 { 53, 0x10 },
249 { 54, 0x18 },
250 { 56, 0x08 },
251 { 57, 0x10 },
252 { 58, 0x08 },
253 { 61, 0x60 },
254 { 62, 0x10 },
255 { 75, 0xff }
256 };
257
258 /*
259 * Default values for RF register R2 indexed by channel numbers.
260 */
261 static const uint32_t ural_rf2522_r2[] = {
262 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265
266 static const uint32_t ural_rf2523_r2[] = {
267 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270
271 static const uint32_t ural_rf2524_r2[] = {
272 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275
276 static const uint32_t ural_rf2525_r2[] = {
277 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285
286 static const uint32_t ural_rf2525e_r2[] = {
287 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295
296 static const uint32_t ural_rf2526_r2[] = {
297 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300
301 /*
302 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303 * values taken from the reference driver.
304 */
305 static const struct {
306 uint8_t chan;
307 uint32_t r1;
308 uint32_t r2;
309 uint32_t r4;
310 } ural_rf5222[] = {
311 { 1, 0x08808, 0x0044d, 0x00282 },
312 { 2, 0x08808, 0x0044e, 0x00282 },
313 { 3, 0x08808, 0x0044f, 0x00282 },
314 { 4, 0x08808, 0x00460, 0x00282 },
315 { 5, 0x08808, 0x00461, 0x00282 },
316 { 6, 0x08808, 0x00462, 0x00282 },
317 { 7, 0x08808, 0x00463, 0x00282 },
318 { 8, 0x08808, 0x00464, 0x00282 },
319 { 9, 0x08808, 0x00465, 0x00282 },
320 { 10, 0x08808, 0x00466, 0x00282 },
321 { 11, 0x08808, 0x00467, 0x00282 },
322 { 12, 0x08808, 0x00468, 0x00282 },
323 { 13, 0x08808, 0x00469, 0x00282 },
324 { 14, 0x08808, 0x0046b, 0x00286 },
325
326 { 36, 0x08804, 0x06225, 0x00287 },
327 { 40, 0x08804, 0x06226, 0x00287 },
328 { 44, 0x08804, 0x06227, 0x00287 },
329 { 48, 0x08804, 0x06228, 0x00287 },
330 { 52, 0x08804, 0x06229, 0x00287 },
331 { 56, 0x08804, 0x0622a, 0x00287 },
332 { 60, 0x08804, 0x0622b, 0x00287 },
333 { 64, 0x08804, 0x0622c, 0x00287 },
334
335 { 100, 0x08804, 0x02200, 0x00283 },
336 { 104, 0x08804, 0x02201, 0x00283 },
337 { 108, 0x08804, 0x02202, 0x00283 },
338 { 112, 0x08804, 0x02203, 0x00283 },
339 { 116, 0x08804, 0x02204, 0x00283 },
340 { 120, 0x08804, 0x02205, 0x00283 },
341 { 124, 0x08804, 0x02206, 0x00283 },
342 { 128, 0x08804, 0x02207, 0x00283 },
343 { 132, 0x08804, 0x02208, 0x00283 },
344 { 136, 0x08804, 0x02209, 0x00283 },
345 { 140, 0x08804, 0x0220a, 0x00283 },
346
347 { 149, 0x08808, 0x02429, 0x00281 },
348 { 153, 0x08808, 0x0242b, 0x00281 },
349 { 157, 0x08808, 0x0242d, 0x00281 },
350 { 161, 0x08808, 0x0242f, 0x00281 }
351 };
352
353 int ural_match(device_t, cfdata_t, void *);
354 void ural_attach(device_t, device_t, void *);
355 int ural_detach(device_t, int);
356 int ural_activate(device_t, enum devact);
357 extern struct cfdriver ural_cd;
358 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
359
360 int
361 ural_match(device_t parent, cfdata_t match, void *aux)
362 {
363 struct usb_attach_arg *uaa = aux;
364
365 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
366 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
367 }
368
369 void
370 ural_attach(device_t parent, device_t self, void *aux)
371 {
372 struct ural_softc *sc = device_private(self);
373 struct usb_attach_arg *uaa = aux;
374 struct ieee80211com *ic = &sc->sc_ic;
375 struct ifnet *ifp = &sc->sc_if;
376 usb_interface_descriptor_t *id;
377 usb_endpoint_descriptor_t *ed;
378 usbd_status error;
379 char *devinfop;
380 int i;
381
382 sc->sc_dev = self;
383 sc->sc_udev = uaa->device;
384
385 aprint_naive("\n");
386 aprint_normal("\n");
387
388 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
389 aprint_normal_dev(self, "%s\n", devinfop);
390 usbd_devinfo_free(devinfop);
391
392 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
393 aprint_error_dev(self, "could not set configuration no\n");
394 return;
395 }
396
397 /* get the first interface handle */
398 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
399 &sc->sc_iface);
400 if (error != 0) {
401 aprint_error_dev(self, "could not get interface handle\n");
402 return;
403 }
404
405 /*
406 * Find endpoints.
407 */
408 id = usbd_get_interface_descriptor(sc->sc_iface);
409
410 sc->sc_rx_no = sc->sc_tx_no = -1;
411 for (i = 0; i < id->bNumEndpoints; i++) {
412 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
413 if (ed == NULL) {
414 aprint_error_dev(self,
415 "no endpoint descriptor for %d\n", i);
416 return;
417 }
418
419 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
420 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
421 sc->sc_rx_no = ed->bEndpointAddress;
422 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
423 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424 sc->sc_tx_no = ed->bEndpointAddress;
425 }
426 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
427 aprint_error_dev(self, "missing endpoint\n");
428 return;
429 }
430
431 usb_init_task(&sc->sc_task, ural_task, sc);
432 callout_init(&sc->sc_scan_ch, 0);
433 sc->amrr.amrr_min_success_threshold = 1;
434 sc->amrr.amrr_max_success_threshold = 15;
435 callout_init(&sc->sc_amrr_ch, 0);
436
437 /* retrieve RT2570 rev. no */
438 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
439
440 /* retrieve MAC address and various other things from EEPROM */
441 ural_read_eeprom(sc);
442
443 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
444 sc->asic_rev, ural_get_rf(sc->rf_rev));
445
446 ifp->if_softc = sc;
447 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = ural_init;
450 ifp->if_ioctl = ural_ioctl;
451 ifp->if_start = ural_start;
452 ifp->if_watchdog = ural_watchdog;
453 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
454 IFQ_SET_READY(&ifp->if_snd);
455
456 ic->ic_ifp = ifp;
457 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
458 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
459 ic->ic_state = IEEE80211_S_INIT;
460
461 /* set device capabilities */
462 ic->ic_caps =
463 IEEE80211_C_IBSS | /* IBSS mode supported */
464 IEEE80211_C_MONITOR | /* monitor mode supported */
465 IEEE80211_C_HOSTAP | /* HostAp mode supported */
466 IEEE80211_C_TXPMGT | /* tx power management */
467 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
468 IEEE80211_C_SHSLOT | /* short slot time supported */
469 IEEE80211_C_WPA; /* 802.11i */
470
471 if (sc->rf_rev == RAL_RF_5222) {
472 /* set supported .11a rates */
473 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
474
475 /* set supported .11a channels */
476 for (i = 36; i <= 64; i += 4) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 }
481 for (i = 100; i <= 140; i += 4) {
482 ic->ic_channels[i].ic_freq =
483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 }
486 for (i = 149; i <= 161; i += 4) {
487 ic->ic_channels[i].ic_freq =
488 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
489 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
490 }
491 }
492
493 /* set supported .11b and .11g rates */
494 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
495 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
496
497 /* set supported .11b and .11g channels (1 through 14) */
498 for (i = 1; i <= 14; i++) {
499 ic->ic_channels[i].ic_freq =
500 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
501 ic->ic_channels[i].ic_flags =
502 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
503 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
504 }
505
506 if_attach(ifp);
507 ieee80211_ifattach(ic);
508 ic->ic_reset = ural_reset;
509
510 /* override state transition machine */
511 sc->sc_newstate = ic->ic_newstate;
512 ic->ic_newstate = ural_newstate;
513 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
514
515 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
516 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
517
518 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
519 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
520 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
521
522 sc->sc_txtap_len = sizeof sc->sc_txtapu;
523 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
524 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
525
526 ieee80211_announce(ic);
527
528 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
529 sc->sc_dev);
530
531 return;
532 }
533
534 int
535 ural_detach(device_t self, int flags)
536 {
537 struct ural_softc *sc = device_private(self);
538 struct ieee80211com *ic = &sc->sc_ic;
539 struct ifnet *ifp = &sc->sc_if;
540 int s;
541
542 s = splusb();
543
544 ural_stop(ifp, 1);
545 usb_rem_task(sc->sc_udev, &sc->sc_task);
546 callout_stop(&sc->sc_scan_ch);
547 callout_stop(&sc->sc_amrr_ch);
548
549 if (sc->amrr_xfer != NULL) {
550 usbd_free_xfer(sc->amrr_xfer);
551 sc->amrr_xfer = NULL;
552 }
553
554 if (sc->sc_rx_pipeh != NULL) {
555 usbd_abort_pipe(sc->sc_rx_pipeh);
556 usbd_close_pipe(sc->sc_rx_pipeh);
557 }
558
559 if (sc->sc_tx_pipeh != NULL) {
560 usbd_abort_pipe(sc->sc_tx_pipeh);
561 usbd_close_pipe(sc->sc_tx_pipeh);
562 }
563
564 bpf_detach(ifp);
565 ieee80211_ifdetach(ic);
566 if_detach(ifp);
567
568 splx(s);
569
570 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
571 sc->sc_dev);
572
573 return 0;
574 }
575
576 Static int
577 ural_alloc_tx_list(struct ural_softc *sc)
578 {
579 struct ural_tx_data *data;
580 int i, error;
581
582 sc->tx_queued = 0;
583
584 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
585 data = &sc->tx_data[i];
586
587 data->sc = sc;
588
589 data->xfer = usbd_alloc_xfer(sc->sc_udev);
590 if (data->xfer == NULL) {
591 printf("%s: could not allocate tx xfer\n",
592 device_xname(sc->sc_dev));
593 error = ENOMEM;
594 goto fail;
595 }
596
597 data->buf = usbd_alloc_buffer(data->xfer,
598 RAL_TX_DESC_SIZE + MCLBYTES);
599 if (data->buf == NULL) {
600 printf("%s: could not allocate tx buffer\n",
601 device_xname(sc->sc_dev));
602 error = ENOMEM;
603 goto fail;
604 }
605 }
606
607 return 0;
608
609 fail: ural_free_tx_list(sc);
610 return error;
611 }
612
613 Static void
614 ural_free_tx_list(struct ural_softc *sc)
615 {
616 struct ural_tx_data *data;
617 int i;
618
619 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
620 data = &sc->tx_data[i];
621
622 if (data->xfer != NULL) {
623 usbd_free_xfer(data->xfer);
624 data->xfer = NULL;
625 }
626
627 if (data->ni != NULL) {
628 ieee80211_free_node(data->ni);
629 data->ni = NULL;
630 }
631 }
632 }
633
634 Static int
635 ural_alloc_rx_list(struct ural_softc *sc)
636 {
637 struct ural_rx_data *data;
638 int i, error;
639
640 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
641 data = &sc->rx_data[i];
642
643 data->sc = sc;
644
645 data->xfer = usbd_alloc_xfer(sc->sc_udev);
646 if (data->xfer == NULL) {
647 printf("%s: could not allocate rx xfer\n",
648 device_xname(sc->sc_dev));
649 error = ENOMEM;
650 goto fail;
651 }
652
653 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
654 printf("%s: could not allocate rx buffer\n",
655 device_xname(sc->sc_dev));
656 error = ENOMEM;
657 goto fail;
658 }
659
660 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
661 if (data->m == NULL) {
662 printf("%s: could not allocate rx mbuf\n",
663 device_xname(sc->sc_dev));
664 error = ENOMEM;
665 goto fail;
666 }
667
668 MCLGET(data->m, M_DONTWAIT);
669 if (!(data->m->m_flags & M_EXT)) {
670 printf("%s: could not allocate rx mbuf cluster\n",
671 device_xname(sc->sc_dev));
672 error = ENOMEM;
673 goto fail;
674 }
675
676 data->buf = mtod(data->m, uint8_t *);
677 }
678
679 return 0;
680
681 fail: ural_free_tx_list(sc);
682 return error;
683 }
684
685 Static void
686 ural_free_rx_list(struct ural_softc *sc)
687 {
688 struct ural_rx_data *data;
689 int i;
690
691 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
692 data = &sc->rx_data[i];
693
694 if (data->xfer != NULL) {
695 usbd_free_xfer(data->xfer);
696 data->xfer = NULL;
697 }
698
699 if (data->m != NULL) {
700 m_freem(data->m);
701 data->m = NULL;
702 }
703 }
704 }
705
706 Static int
707 ural_media_change(struct ifnet *ifp)
708 {
709 int error;
710
711 error = ieee80211_media_change(ifp);
712 if (error != ENETRESET)
713 return error;
714
715 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
716 ural_init(ifp);
717
718 return 0;
719 }
720
721 /*
722 * This function is called periodically (every 200ms) during scanning to
723 * switch from one channel to another.
724 */
725 Static void
726 ural_next_scan(void *arg)
727 {
728 struct ural_softc *sc = arg;
729 struct ieee80211com *ic = &sc->sc_ic;
730
731 if (ic->ic_state == IEEE80211_S_SCAN)
732 ieee80211_next_scan(ic);
733 }
734
735 Static void
736 ural_task(void *arg)
737 {
738 struct ural_softc *sc = arg;
739 struct ieee80211com *ic = &sc->sc_ic;
740 enum ieee80211_state ostate;
741 struct ieee80211_node *ni;
742 struct mbuf *m;
743
744 ostate = ic->ic_state;
745
746 switch (sc->sc_state) {
747 case IEEE80211_S_INIT:
748 if (ostate == IEEE80211_S_RUN) {
749 /* abort TSF synchronization */
750 ural_write(sc, RAL_TXRX_CSR19, 0);
751
752 /* force tx led to stop blinking */
753 ural_write(sc, RAL_MAC_CSR20, 0);
754 }
755 break;
756
757 case IEEE80211_S_SCAN:
758 ural_set_chan(sc, ic->ic_curchan);
759 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
760 break;
761
762 case IEEE80211_S_AUTH:
763 ural_set_chan(sc, ic->ic_curchan);
764 break;
765
766 case IEEE80211_S_ASSOC:
767 ural_set_chan(sc, ic->ic_curchan);
768 break;
769
770 case IEEE80211_S_RUN:
771 ural_set_chan(sc, ic->ic_curchan);
772
773 ni = ic->ic_bss;
774
775 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
776 ural_update_slot(ic->ic_ifp);
777 ural_set_txpreamble(sc);
778 ural_set_basicrates(sc);
779 ural_set_bssid(sc, ni->ni_bssid);
780 }
781
782 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
783 ic->ic_opmode == IEEE80211_M_IBSS) {
784 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
785 if (m == NULL) {
786 printf("%s: could not allocate beacon\n",
787 device_xname(sc->sc_dev));
788 return;
789 }
790
791 if (ural_tx_bcn(sc, m, ni) != 0) {
792 m_freem(m);
793 printf("%s: could not send beacon\n",
794 device_xname(sc->sc_dev));
795 return;
796 }
797
798 /* beacon is no longer needed */
799 m_freem(m);
800 }
801
802 /* make tx led blink on tx (controlled by ASIC) */
803 ural_write(sc, RAL_MAC_CSR20, 1);
804
805 if (ic->ic_opmode != IEEE80211_M_MONITOR)
806 ural_enable_tsf_sync(sc);
807
808 /* enable automatic rate adaptation in STA mode */
809 if (ic->ic_opmode == IEEE80211_M_STA &&
810 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
811 ural_amrr_start(sc, ni);
812
813 break;
814 }
815
816 sc->sc_newstate(ic, sc->sc_state, -1);
817 }
818
819 Static int
820 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
821 int arg)
822 {
823 struct ural_softc *sc = ic->ic_ifp->if_softc;
824
825 usb_rem_task(sc->sc_udev, &sc->sc_task);
826 callout_stop(&sc->sc_scan_ch);
827 callout_stop(&sc->sc_amrr_ch);
828
829 /* do it in a process context */
830 sc->sc_state = nstate;
831 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
832
833 return 0;
834 }
835
836 /* quickly determine if a given rate is CCK or OFDM */
837 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
838
839 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
840 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
841
842 #define RAL_SIFS 10 /* us */
843
844 #define RAL_RXTX_TURNAROUND 5 /* us */
845
846 /*
847 * This function is only used by the Rx radiotap code.
848 */
849 Static int
850 ural_rxrate(struct ural_rx_desc *desc)
851 {
852 if (le32toh(desc->flags) & RAL_RX_OFDM) {
853 /* reverse function of ural_plcp_signal */
854 switch (desc->rate) {
855 case 0xb: return 12;
856 case 0xf: return 18;
857 case 0xa: return 24;
858 case 0xe: return 36;
859 case 0x9: return 48;
860 case 0xd: return 72;
861 case 0x8: return 96;
862 case 0xc: return 108;
863 }
864 } else {
865 if (desc->rate == 10)
866 return 2;
867 if (desc->rate == 20)
868 return 4;
869 if (desc->rate == 55)
870 return 11;
871 if (desc->rate == 110)
872 return 22;
873 }
874 return 2; /* should not get there */
875 }
876
877 Static void
878 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
879 usbd_status status)
880 {
881 struct ural_tx_data *data = priv;
882 struct ural_softc *sc = data->sc;
883 struct ifnet *ifp = &sc->sc_if;
884 int s;
885
886 if (status != USBD_NORMAL_COMPLETION) {
887 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
888 return;
889
890 printf("%s: could not transmit buffer: %s\n",
891 device_xname(sc->sc_dev), usbd_errstr(status));
892
893 if (status == USBD_STALLED)
894 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
895
896 ifp->if_oerrors++;
897 return;
898 }
899
900 s = splnet();
901
902 m_freem(data->m);
903 data->m = NULL;
904 ieee80211_free_node(data->ni);
905 data->ni = NULL;
906
907 sc->tx_queued--;
908 ifp->if_opackets++;
909
910 DPRINTFN(10, ("tx done\n"));
911
912 sc->sc_tx_timer = 0;
913 ifp->if_flags &= ~IFF_OACTIVE;
914 ural_start(ifp);
915
916 splx(s);
917 }
918
919 Static void
920 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
921 {
922 struct ural_rx_data *data = priv;
923 struct ural_softc *sc = data->sc;
924 struct ieee80211com *ic = &sc->sc_ic;
925 struct ifnet *ifp = &sc->sc_if;
926 struct ural_rx_desc *desc;
927 struct ieee80211_frame *wh;
928 struct ieee80211_node *ni;
929 struct mbuf *mnew, *m;
930 int s, len;
931
932 if (status != USBD_NORMAL_COMPLETION) {
933 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
934 return;
935
936 if (status == USBD_STALLED)
937 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
938 goto skip;
939 }
940
941 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
942
943 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
944 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
945 len));
946 ifp->if_ierrors++;
947 goto skip;
948 }
949
950 /* rx descriptor is located at the end */
951 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
952
953 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
954 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
955 /*
956 * This should not happen since we did not request to receive
957 * those frames when we filled RAL_TXRX_CSR2.
958 */
959 DPRINTFN(5, ("PHY or CRC error\n"));
960 ifp->if_ierrors++;
961 goto skip;
962 }
963
964 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
965 if (mnew == NULL) {
966 ifp->if_ierrors++;
967 goto skip;
968 }
969
970 MCLGET(mnew, M_DONTWAIT);
971 if (!(mnew->m_flags & M_EXT)) {
972 ifp->if_ierrors++;
973 m_freem(mnew);
974 goto skip;
975 }
976
977 m = data->m;
978 data->m = mnew;
979 data->buf = mtod(data->m, uint8_t *);
980
981 /* finalize mbuf */
982 m->m_pkthdr.rcvif = ifp;
983 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
984 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
985
986 s = splnet();
987
988 if (sc->sc_drvbpf != NULL) {
989 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
990
991 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
992 tap->wr_rate = ural_rxrate(desc);
993 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
994 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
995 tap->wr_antenna = sc->rx_ant;
996 tap->wr_antsignal = desc->rssi;
997
998 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
999 }
1000
1001 wh = mtod(m, struct ieee80211_frame *);
1002 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1003
1004 /* send the frame to the 802.11 layer */
1005 ieee80211_input(ic, m, ni, desc->rssi, 0);
1006
1007 /* node is no longer needed */
1008 ieee80211_free_node(ni);
1009
1010 splx(s);
1011
1012 DPRINTFN(15, ("rx done\n"));
1013
1014 skip: /* setup a new transfer */
1015 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1016 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1017 usbd_transfer(xfer);
1018 }
1019
1020 /*
1021 * Return the expected ack rate for a frame transmitted at rate `rate'.
1022 * XXX: this should depend on the destination node basic rate set.
1023 */
1024 Static int
1025 ural_ack_rate(struct ieee80211com *ic, int rate)
1026 {
1027 switch (rate) {
1028 /* CCK rates */
1029 case 2:
1030 return 2;
1031 case 4:
1032 case 11:
1033 case 22:
1034 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1035
1036 /* OFDM rates */
1037 case 12:
1038 case 18:
1039 return 12;
1040 case 24:
1041 case 36:
1042 return 24;
1043 case 48:
1044 case 72:
1045 case 96:
1046 case 108:
1047 return 48;
1048 }
1049
1050 /* default to 1Mbps */
1051 return 2;
1052 }
1053
1054 /*
1055 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1056 * The function automatically determines the operating mode depending on the
1057 * given rate. `flags' indicates whether short preamble is in use or not.
1058 */
1059 Static uint16_t
1060 ural_txtime(int len, int rate, uint32_t flags)
1061 {
1062 uint16_t txtime;
1063
1064 if (RAL_RATE_IS_OFDM(rate)) {
1065 /* IEEE Std 802.11g-2003, pp. 37 */
1066 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1067 txtime = 16 + 4 + 4 * txtime + 6;
1068 } else {
1069 /* IEEE Std 802.11b-1999, pp. 28 */
1070 txtime = (16 * len + rate - 1) / rate;
1071 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1072 txtime += 72 + 24;
1073 else
1074 txtime += 144 + 48;
1075 }
1076 return txtime;
1077 }
1078
1079 Static uint8_t
1080 ural_plcp_signal(int rate)
1081 {
1082 switch (rate) {
1083 /* CCK rates (returned values are device-dependent) */
1084 case 2: return 0x0;
1085 case 4: return 0x1;
1086 case 11: return 0x2;
1087 case 22: return 0x3;
1088
1089 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1090 case 12: return 0xb;
1091 case 18: return 0xf;
1092 case 24: return 0xa;
1093 case 36: return 0xe;
1094 case 48: return 0x9;
1095 case 72: return 0xd;
1096 case 96: return 0x8;
1097 case 108: return 0xc;
1098
1099 /* unsupported rates (should not get there) */
1100 default: return 0xff;
1101 }
1102 }
1103
1104 Static void
1105 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1106 uint32_t flags, int len, int rate)
1107 {
1108 struct ieee80211com *ic = &sc->sc_ic;
1109 uint16_t plcp_length;
1110 int remainder;
1111
1112 desc->flags = htole32(flags);
1113 desc->flags |= htole32(RAL_TX_NEWSEQ);
1114 desc->flags |= htole32(len << 16);
1115
1116 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1117 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1118
1119 /* setup PLCP fields */
1120 desc->plcp_signal = ural_plcp_signal(rate);
1121 desc->plcp_service = 4;
1122
1123 len += IEEE80211_CRC_LEN;
1124 if (RAL_RATE_IS_OFDM(rate)) {
1125 desc->flags |= htole32(RAL_TX_OFDM);
1126
1127 plcp_length = len & 0xfff;
1128 desc->plcp_length_hi = plcp_length >> 6;
1129 desc->plcp_length_lo = plcp_length & 0x3f;
1130 } else {
1131 plcp_length = (16 * len + rate - 1) / rate;
1132 if (rate == 22) {
1133 remainder = (16 * len) % 22;
1134 if (remainder != 0 && remainder < 7)
1135 desc->plcp_service |= RAL_PLCP_LENGEXT;
1136 }
1137 desc->plcp_length_hi = plcp_length >> 8;
1138 desc->plcp_length_lo = plcp_length & 0xff;
1139
1140 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1141 desc->plcp_signal |= 0x08;
1142 }
1143
1144 desc->iv = 0;
1145 desc->eiv = 0;
1146 }
1147
1148 #define RAL_TX_TIMEOUT 5000
1149
1150 Static int
1151 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1152 {
1153 struct ural_tx_desc *desc;
1154 usbd_xfer_handle xfer;
1155 uint8_t cmd = 0;
1156 usbd_status error;
1157 uint8_t *buf;
1158 int xferlen, rate;
1159
1160 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1161
1162 xfer = usbd_alloc_xfer(sc->sc_udev);
1163 if (xfer == NULL)
1164 return ENOMEM;
1165
1166 /* xfer length needs to be a multiple of two! */
1167 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1168
1169 buf = usbd_alloc_buffer(xfer, xferlen);
1170 if (buf == NULL) {
1171 usbd_free_xfer(xfer);
1172 return ENOMEM;
1173 }
1174
1175 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1176 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1177
1178 error = usbd_sync_transfer(xfer);
1179 if (error != 0) {
1180 usbd_free_xfer(xfer);
1181 return error;
1182 }
1183
1184 desc = (struct ural_tx_desc *)buf;
1185
1186 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1187 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1188 m0->m_pkthdr.len, rate);
1189
1190 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1191 m0->m_pkthdr.len, rate, xferlen));
1192
1193 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1194 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1195
1196 error = usbd_sync_transfer(xfer);
1197 usbd_free_xfer(xfer);
1198
1199 return error;
1200 }
1201
1202 Static int
1203 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1204 {
1205 struct ieee80211com *ic = &sc->sc_ic;
1206 struct ural_tx_desc *desc;
1207 struct ural_tx_data *data;
1208 struct ieee80211_frame *wh;
1209 struct ieee80211_key *k;
1210 uint32_t flags = 0;
1211 uint16_t dur;
1212 usbd_status error;
1213 int xferlen, rate;
1214
1215 data = &sc->tx_data[0];
1216 desc = (struct ural_tx_desc *)data->buf;
1217
1218 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1219
1220 wh = mtod(m0, struct ieee80211_frame *);
1221
1222 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1223 k = ieee80211_crypto_encap(ic, ni, m0);
1224 if (k == NULL) {
1225 m_freem(m0);
1226 return ENOBUFS;
1227 }
1228 }
1229
1230 data->m = m0;
1231 data->ni = ni;
1232
1233 wh = mtod(m0, struct ieee80211_frame *);
1234
1235 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1236 flags |= RAL_TX_ACK;
1237
1238 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1239 *(uint16_t *)wh->i_dur = htole16(dur);
1240
1241 /* tell hardware to add timestamp for probe responses */
1242 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1243 IEEE80211_FC0_TYPE_MGT &&
1244 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1245 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1246 flags |= RAL_TX_TIMESTAMP;
1247 }
1248
1249 if (sc->sc_drvbpf != NULL) {
1250 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1251
1252 tap->wt_flags = 0;
1253 tap->wt_rate = rate;
1254 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1255 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1256 tap->wt_antenna = sc->tx_ant;
1257
1258 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1259 }
1260
1261 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1262 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1263
1264 /* align end on a 2-bytes boundary */
1265 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1266
1267 /*
1268 * No space left in the last URB to store the extra 2 bytes, force
1269 * sending of another URB.
1270 */
1271 if ((xferlen % 64) == 0)
1272 xferlen += 2;
1273
1274 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1275 m0->m_pkthdr.len, rate, xferlen));
1276
1277 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1278 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1279 ural_txeof);
1280
1281 error = usbd_transfer(data->xfer);
1282 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1283 m_freem(m0);
1284 return error;
1285 }
1286
1287 sc->tx_queued++;
1288
1289 return 0;
1290 }
1291
1292 Static int
1293 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1294 {
1295 struct ieee80211com *ic = &sc->sc_ic;
1296 struct ural_tx_desc *desc;
1297 struct ural_tx_data *data;
1298 struct ieee80211_frame *wh;
1299 struct ieee80211_key *k;
1300 uint32_t flags = 0;
1301 uint16_t dur;
1302 usbd_status error;
1303 int xferlen, rate;
1304
1305 wh = mtod(m0, struct ieee80211_frame *);
1306
1307 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1308 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1309 else
1310 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1311
1312 rate &= IEEE80211_RATE_VAL;
1313
1314 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1315 k = ieee80211_crypto_encap(ic, ni, m0);
1316 if (k == NULL) {
1317 m_freem(m0);
1318 return ENOBUFS;
1319 }
1320
1321 /* packet header may have moved, reset our local pointer */
1322 wh = mtod(m0, struct ieee80211_frame *);
1323 }
1324
1325 data = &sc->tx_data[0];
1326 desc = (struct ural_tx_desc *)data->buf;
1327
1328 data->m = m0;
1329 data->ni = ni;
1330
1331 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1332 flags |= RAL_TX_ACK;
1333 flags |= RAL_TX_RETRY(7);
1334
1335 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1336 ic->ic_flags) + RAL_SIFS;
1337 *(uint16_t *)wh->i_dur = htole16(dur);
1338 }
1339
1340 if (sc->sc_drvbpf != NULL) {
1341 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1342
1343 tap->wt_flags = 0;
1344 tap->wt_rate = rate;
1345 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1346 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1347 tap->wt_antenna = sc->tx_ant;
1348
1349 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1350 }
1351
1352 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1353 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1354
1355 /* align end on a 2-bytes boundary */
1356 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1357
1358 /*
1359 * No space left in the last URB to store the extra 2 bytes, force
1360 * sending of another URB.
1361 */
1362 if ((xferlen % 64) == 0)
1363 xferlen += 2;
1364
1365 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1366 m0->m_pkthdr.len, rate, xferlen));
1367
1368 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1369 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1370 ural_txeof);
1371
1372 error = usbd_transfer(data->xfer);
1373 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1374 return error;
1375
1376 sc->tx_queued++;
1377
1378 return 0;
1379 }
1380
1381 Static void
1382 ural_start(struct ifnet *ifp)
1383 {
1384 struct ural_softc *sc = ifp->if_softc;
1385 struct ieee80211com *ic = &sc->sc_ic;
1386 struct mbuf *m0;
1387 struct ether_header *eh;
1388 struct ieee80211_node *ni;
1389
1390 for (;;) {
1391 IF_POLL(&ic->ic_mgtq, m0);
1392 if (m0 != NULL) {
1393 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1394 ifp->if_flags |= IFF_OACTIVE;
1395 break;
1396 }
1397 IF_DEQUEUE(&ic->ic_mgtq, m0);
1398
1399 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1400 m0->m_pkthdr.rcvif = NULL;
1401 bpf_mtap3(ic->ic_rawbpf, m0);
1402 if (ural_tx_mgt(sc, m0, ni) != 0)
1403 break;
1404
1405 } else {
1406 if (ic->ic_state != IEEE80211_S_RUN)
1407 break;
1408 IFQ_DEQUEUE(&ifp->if_snd, m0);
1409 if (m0 == NULL)
1410 break;
1411 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1412 IF_PREPEND(&ifp->if_snd, m0);
1413 ifp->if_flags |= IFF_OACTIVE;
1414 break;
1415 }
1416
1417 if (m0->m_len < sizeof (struct ether_header) &&
1418 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1419 continue;
1420
1421 eh = mtod(m0, struct ether_header *);
1422 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1423 if (ni == NULL) {
1424 m_freem(m0);
1425 continue;
1426 }
1427 bpf_mtap(ifp, m0);
1428 m0 = ieee80211_encap(ic, m0, ni);
1429 if (m0 == NULL) {
1430 ieee80211_free_node(ni);
1431 continue;
1432 }
1433 bpf_mtap3(ic->ic_rawbpf, m0);
1434 if (ural_tx_data(sc, m0, ni) != 0) {
1435 ieee80211_free_node(ni);
1436 ifp->if_oerrors++;
1437 break;
1438 }
1439 }
1440
1441 sc->sc_tx_timer = 5;
1442 ifp->if_timer = 1;
1443 }
1444 }
1445
1446 Static void
1447 ural_watchdog(struct ifnet *ifp)
1448 {
1449 struct ural_softc *sc = ifp->if_softc;
1450 struct ieee80211com *ic = &sc->sc_ic;
1451
1452 ifp->if_timer = 0;
1453
1454 if (sc->sc_tx_timer > 0) {
1455 if (--sc->sc_tx_timer == 0) {
1456 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1457 /*ural_init(sc); XXX needs a process context! */
1458 ifp->if_oerrors++;
1459 return;
1460 }
1461 ifp->if_timer = 1;
1462 }
1463
1464 ieee80211_watchdog(ic);
1465 }
1466
1467 /*
1468 * This function allows for fast channel switching in monitor mode (used by
1469 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1470 * generate a new beacon frame.
1471 */
1472 Static int
1473 ural_reset(struct ifnet *ifp)
1474 {
1475 struct ural_softc *sc = ifp->if_softc;
1476 struct ieee80211com *ic = &sc->sc_ic;
1477
1478 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1479 return ENETRESET;
1480
1481 ural_set_chan(sc, ic->ic_curchan);
1482
1483 return 0;
1484 }
1485
1486 Static int
1487 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1488 {
1489 struct ural_softc *sc = ifp->if_softc;
1490 struct ieee80211com *ic = &sc->sc_ic;
1491 int s, error = 0;
1492
1493 s = splnet();
1494
1495 switch (cmd) {
1496 case SIOCSIFFLAGS:
1497 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1498 break;
1499 /* XXX re-use ether_ioctl() */
1500 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1501 case IFF_UP|IFF_RUNNING:
1502 ural_update_promisc(sc);
1503 break;
1504 case IFF_UP:
1505 ural_init(ifp);
1506 break;
1507 case IFF_RUNNING:
1508 ural_stop(ifp, 1);
1509 break;
1510 case 0:
1511 break;
1512 }
1513 break;
1514
1515 default:
1516 error = ieee80211_ioctl(ic, cmd, data);
1517 }
1518
1519 if (error == ENETRESET) {
1520 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1521 (IFF_UP | IFF_RUNNING))
1522 ural_init(ifp);
1523 error = 0;
1524 }
1525
1526 splx(s);
1527
1528 return error;
1529 }
1530
1531 Static void
1532 ural_set_testmode(struct ural_softc *sc)
1533 {
1534 usb_device_request_t req;
1535 usbd_status error;
1536
1537 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1538 req.bRequest = RAL_VENDOR_REQUEST;
1539 USETW(req.wValue, 4);
1540 USETW(req.wIndex, 1);
1541 USETW(req.wLength, 0);
1542
1543 error = usbd_do_request(sc->sc_udev, &req, NULL);
1544 if (error != 0) {
1545 printf("%s: could not set test mode: %s\n",
1546 device_xname(sc->sc_dev), usbd_errstr(error));
1547 }
1548 }
1549
1550 Static void
1551 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1552 {
1553 usb_device_request_t req;
1554 usbd_status error;
1555
1556 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1557 req.bRequest = RAL_READ_EEPROM;
1558 USETW(req.wValue, 0);
1559 USETW(req.wIndex, addr);
1560 USETW(req.wLength, len);
1561
1562 error = usbd_do_request(sc->sc_udev, &req, buf);
1563 if (error != 0) {
1564 printf("%s: could not read EEPROM: %s\n",
1565 device_xname(sc->sc_dev), usbd_errstr(error));
1566 }
1567 }
1568
1569 Static uint16_t
1570 ural_read(struct ural_softc *sc, uint16_t reg)
1571 {
1572 usb_device_request_t req;
1573 usbd_status error;
1574 uint16_t val;
1575
1576 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1577 req.bRequest = RAL_READ_MAC;
1578 USETW(req.wValue, 0);
1579 USETW(req.wIndex, reg);
1580 USETW(req.wLength, sizeof (uint16_t));
1581
1582 error = usbd_do_request(sc->sc_udev, &req, &val);
1583 if (error != 0) {
1584 printf("%s: could not read MAC register: %s\n",
1585 device_xname(sc->sc_dev), usbd_errstr(error));
1586 return 0;
1587 }
1588
1589 return le16toh(val);
1590 }
1591
1592 Static void
1593 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1594 {
1595 usb_device_request_t req;
1596 usbd_status error;
1597
1598 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1599 req.bRequest = RAL_READ_MULTI_MAC;
1600 USETW(req.wValue, 0);
1601 USETW(req.wIndex, reg);
1602 USETW(req.wLength, len);
1603
1604 error = usbd_do_request(sc->sc_udev, &req, buf);
1605 if (error != 0) {
1606 printf("%s: could not read MAC register: %s\n",
1607 device_xname(sc->sc_dev), usbd_errstr(error));
1608 }
1609 }
1610
1611 Static void
1612 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1613 {
1614 usb_device_request_t req;
1615 usbd_status error;
1616
1617 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1618 req.bRequest = RAL_WRITE_MAC;
1619 USETW(req.wValue, val);
1620 USETW(req.wIndex, reg);
1621 USETW(req.wLength, 0);
1622
1623 error = usbd_do_request(sc->sc_udev, &req, NULL);
1624 if (error != 0) {
1625 printf("%s: could not write MAC register: %s\n",
1626 device_xname(sc->sc_dev), usbd_errstr(error));
1627 }
1628 }
1629
1630 Static void
1631 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1632 {
1633 usb_device_request_t req;
1634 usbd_status error;
1635
1636 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1637 req.bRequest = RAL_WRITE_MULTI_MAC;
1638 USETW(req.wValue, 0);
1639 USETW(req.wIndex, reg);
1640 USETW(req.wLength, len);
1641
1642 error = usbd_do_request(sc->sc_udev, &req, buf);
1643 if (error != 0) {
1644 printf("%s: could not write MAC register: %s\n",
1645 device_xname(sc->sc_dev), usbd_errstr(error));
1646 }
1647 }
1648
1649 Static void
1650 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1651 {
1652 uint16_t tmp;
1653 int ntries;
1654
1655 for (ntries = 0; ntries < 5; ntries++) {
1656 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1657 break;
1658 }
1659 if (ntries == 5) {
1660 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1661 return;
1662 }
1663
1664 tmp = reg << 8 | val;
1665 ural_write(sc, RAL_PHY_CSR7, tmp);
1666 }
1667
1668 Static uint8_t
1669 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1670 {
1671 uint16_t val;
1672 int ntries;
1673
1674 val = RAL_BBP_WRITE | reg << 8;
1675 ural_write(sc, RAL_PHY_CSR7, val);
1676
1677 for (ntries = 0; ntries < 5; ntries++) {
1678 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1679 break;
1680 }
1681 if (ntries == 5) {
1682 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1683 return 0;
1684 }
1685
1686 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1687 }
1688
1689 Static void
1690 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1691 {
1692 uint32_t tmp;
1693 int ntries;
1694
1695 for (ntries = 0; ntries < 5; ntries++) {
1696 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1697 break;
1698 }
1699 if (ntries == 5) {
1700 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1701 return;
1702 }
1703
1704 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1705 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1706 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1707
1708 /* remember last written value in sc */
1709 sc->rf_regs[reg] = val;
1710
1711 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1712 }
1713
1714 Static void
1715 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1716 {
1717 struct ieee80211com *ic = &sc->sc_ic;
1718 uint8_t power, tmp;
1719 u_int i, chan;
1720
1721 chan = ieee80211_chan2ieee(ic, c);
1722 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1723 return;
1724
1725 if (IEEE80211_IS_CHAN_2GHZ(c))
1726 power = min(sc->txpow[chan - 1], 31);
1727 else
1728 power = 31;
1729
1730 /* adjust txpower using ifconfig settings */
1731 power -= (100 - ic->ic_txpowlimit) / 8;
1732
1733 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1734
1735 switch (sc->rf_rev) {
1736 case RAL_RF_2522:
1737 ural_rf_write(sc, RAL_RF1, 0x00814);
1738 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1739 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1740 break;
1741
1742 case RAL_RF_2523:
1743 ural_rf_write(sc, RAL_RF1, 0x08804);
1744 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1745 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1746 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1747 break;
1748
1749 case RAL_RF_2524:
1750 ural_rf_write(sc, RAL_RF1, 0x0c808);
1751 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1752 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1753 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1754 break;
1755
1756 case RAL_RF_2525:
1757 ural_rf_write(sc, RAL_RF1, 0x08808);
1758 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1759 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1760 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1761
1762 ural_rf_write(sc, RAL_RF1, 0x08808);
1763 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1764 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1765 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1766 break;
1767
1768 case RAL_RF_2525E:
1769 ural_rf_write(sc, RAL_RF1, 0x08808);
1770 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1771 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1772 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1773 break;
1774
1775 case RAL_RF_2526:
1776 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1777 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1778 ural_rf_write(sc, RAL_RF1, 0x08804);
1779
1780 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1781 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1782 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1783 break;
1784
1785 /* dual-band RF */
1786 case RAL_RF_5222:
1787 for (i = 0; ural_rf5222[i].chan != chan; i++);
1788
1789 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1790 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1791 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1792 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1793 break;
1794 }
1795
1796 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1797 ic->ic_state != IEEE80211_S_SCAN) {
1798 /* set Japan filter bit for channel 14 */
1799 tmp = ural_bbp_read(sc, 70);
1800
1801 tmp &= ~RAL_JAPAN_FILTER;
1802 if (chan == 14)
1803 tmp |= RAL_JAPAN_FILTER;
1804
1805 ural_bbp_write(sc, 70, tmp);
1806
1807 /* clear CRC errors */
1808 ural_read(sc, RAL_STA_CSR0);
1809
1810 DELAY(10000);
1811 ural_disable_rf_tune(sc);
1812 }
1813 }
1814
1815 /*
1816 * Disable RF auto-tuning.
1817 */
1818 Static void
1819 ural_disable_rf_tune(struct ural_softc *sc)
1820 {
1821 uint32_t tmp;
1822
1823 if (sc->rf_rev != RAL_RF_2523) {
1824 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1825 ural_rf_write(sc, RAL_RF1, tmp);
1826 }
1827
1828 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1829 ural_rf_write(sc, RAL_RF3, tmp);
1830
1831 DPRINTFN(2, ("disabling RF autotune\n"));
1832 }
1833
1834 /*
1835 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1836 * synchronization.
1837 */
1838 Static void
1839 ural_enable_tsf_sync(struct ural_softc *sc)
1840 {
1841 struct ieee80211com *ic = &sc->sc_ic;
1842 uint16_t logcwmin, preload, tmp;
1843
1844 /* first, disable TSF synchronization */
1845 ural_write(sc, RAL_TXRX_CSR19, 0);
1846
1847 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1848 ural_write(sc, RAL_TXRX_CSR18, tmp);
1849
1850 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1851 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1852 tmp = logcwmin << 12 | preload;
1853 ural_write(sc, RAL_TXRX_CSR20, tmp);
1854
1855 /* finally, enable TSF synchronization */
1856 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1857 if (ic->ic_opmode == IEEE80211_M_STA)
1858 tmp |= RAL_ENABLE_TSF_SYNC(1);
1859 else
1860 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1861 ural_write(sc, RAL_TXRX_CSR19, tmp);
1862
1863 DPRINTF(("enabling TSF synchronization\n"));
1864 }
1865
1866 Static void
1867 ural_update_slot(struct ifnet *ifp)
1868 {
1869 struct ural_softc *sc = ifp->if_softc;
1870 struct ieee80211com *ic = &sc->sc_ic;
1871 uint16_t slottime, sifs, eifs;
1872
1873 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1874
1875 /*
1876 * These settings may sound a bit inconsistent but this is what the
1877 * reference driver does.
1878 */
1879 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1880 sifs = 16 - RAL_RXTX_TURNAROUND;
1881 eifs = 364;
1882 } else {
1883 sifs = 10 - RAL_RXTX_TURNAROUND;
1884 eifs = 64;
1885 }
1886
1887 ural_write(sc, RAL_MAC_CSR10, slottime);
1888 ural_write(sc, RAL_MAC_CSR11, sifs);
1889 ural_write(sc, RAL_MAC_CSR12, eifs);
1890 }
1891
1892 Static void
1893 ural_set_txpreamble(struct ural_softc *sc)
1894 {
1895 uint16_t tmp;
1896
1897 tmp = ural_read(sc, RAL_TXRX_CSR10);
1898
1899 tmp &= ~RAL_SHORT_PREAMBLE;
1900 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1901 tmp |= RAL_SHORT_PREAMBLE;
1902
1903 ural_write(sc, RAL_TXRX_CSR10, tmp);
1904 }
1905
1906 Static void
1907 ural_set_basicrates(struct ural_softc *sc)
1908 {
1909 struct ieee80211com *ic = &sc->sc_ic;
1910
1911 /* update basic rate set */
1912 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1913 /* 11b basic rates: 1, 2Mbps */
1914 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1915 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1916 /* 11a basic rates: 6, 12, 24Mbps */
1917 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1918 } else {
1919 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1920 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1921 }
1922 }
1923
1924 Static void
1925 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1926 {
1927 uint16_t tmp;
1928
1929 tmp = bssid[0] | bssid[1] << 8;
1930 ural_write(sc, RAL_MAC_CSR5, tmp);
1931
1932 tmp = bssid[2] | bssid[3] << 8;
1933 ural_write(sc, RAL_MAC_CSR6, tmp);
1934
1935 tmp = bssid[4] | bssid[5] << 8;
1936 ural_write(sc, RAL_MAC_CSR7, tmp);
1937
1938 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1939 }
1940
1941 Static void
1942 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1943 {
1944 uint16_t tmp;
1945
1946 tmp = addr[0] | addr[1] << 8;
1947 ural_write(sc, RAL_MAC_CSR2, tmp);
1948
1949 tmp = addr[2] | addr[3] << 8;
1950 ural_write(sc, RAL_MAC_CSR3, tmp);
1951
1952 tmp = addr[4] | addr[5] << 8;
1953 ural_write(sc, RAL_MAC_CSR4, tmp);
1954
1955 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1956 }
1957
1958 Static void
1959 ural_update_promisc(struct ural_softc *sc)
1960 {
1961 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1962 uint32_t tmp;
1963
1964 tmp = ural_read(sc, RAL_TXRX_CSR2);
1965
1966 tmp &= ~RAL_DROP_NOT_TO_ME;
1967 if (!(ifp->if_flags & IFF_PROMISC))
1968 tmp |= RAL_DROP_NOT_TO_ME;
1969
1970 ural_write(sc, RAL_TXRX_CSR2, tmp);
1971
1972 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1973 "entering" : "leaving"));
1974 }
1975
1976 Static const char *
1977 ural_get_rf(int rev)
1978 {
1979 switch (rev) {
1980 case RAL_RF_2522: return "RT2522";
1981 case RAL_RF_2523: return "RT2523";
1982 case RAL_RF_2524: return "RT2524";
1983 case RAL_RF_2525: return "RT2525";
1984 case RAL_RF_2525E: return "RT2525e";
1985 case RAL_RF_2526: return "RT2526";
1986 case RAL_RF_5222: return "RT5222";
1987 default: return "unknown";
1988 }
1989 }
1990
1991 Static void
1992 ural_read_eeprom(struct ural_softc *sc)
1993 {
1994 struct ieee80211com *ic = &sc->sc_ic;
1995 uint16_t val;
1996
1997 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1998 val = le16toh(val);
1999 sc->rf_rev = (val >> 11) & 0x7;
2000 sc->hw_radio = (val >> 10) & 0x1;
2001 sc->led_mode = (val >> 6) & 0x7;
2002 sc->rx_ant = (val >> 4) & 0x3;
2003 sc->tx_ant = (val >> 2) & 0x3;
2004 sc->nb_ant = val & 0x3;
2005
2006 /* read MAC address */
2007 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2008
2009 /* read default values for BBP registers */
2010 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2011
2012 /* read Tx power for all b/g channels */
2013 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2014 }
2015
2016 Static int
2017 ural_bbp_init(struct ural_softc *sc)
2018 {
2019 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2020 int i, ntries;
2021
2022 /* wait for BBP to be ready */
2023 for (ntries = 0; ntries < 100; ntries++) {
2024 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2025 break;
2026 DELAY(1000);
2027 }
2028 if (ntries == 100) {
2029 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2030 return EIO;
2031 }
2032
2033 /* initialize BBP registers to default values */
2034 for (i = 0; i < N(ural_def_bbp); i++)
2035 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2036
2037 #if 0
2038 /* initialize BBP registers to values stored in EEPROM */
2039 for (i = 0; i < 16; i++) {
2040 if (sc->bbp_prom[i].reg == 0xff)
2041 continue;
2042 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2043 }
2044 #endif
2045
2046 return 0;
2047 #undef N
2048 }
2049
2050 Static void
2051 ural_set_txantenna(struct ural_softc *sc, int antenna)
2052 {
2053 uint16_t tmp;
2054 uint8_t tx;
2055
2056 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2057 if (antenna == 1)
2058 tx |= RAL_BBP_ANTA;
2059 else if (antenna == 2)
2060 tx |= RAL_BBP_ANTB;
2061 else
2062 tx |= RAL_BBP_DIVERSITY;
2063
2064 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2065 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2066 sc->rf_rev == RAL_RF_5222)
2067 tx |= RAL_BBP_FLIPIQ;
2068
2069 ural_bbp_write(sc, RAL_BBP_TX, tx);
2070
2071 /* update values in PHY_CSR5 and PHY_CSR6 */
2072 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2073 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2074
2075 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2076 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2077 }
2078
2079 Static void
2080 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2081 {
2082 uint8_t rx;
2083
2084 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2085 if (antenna == 1)
2086 rx |= RAL_BBP_ANTA;
2087 else if (antenna == 2)
2088 rx |= RAL_BBP_ANTB;
2089 else
2090 rx |= RAL_BBP_DIVERSITY;
2091
2092 /* need to force no I/Q flip for RF 2525e and 2526 */
2093 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2094 rx &= ~RAL_BBP_FLIPIQ;
2095
2096 ural_bbp_write(sc, RAL_BBP_RX, rx);
2097 }
2098
2099 Static int
2100 ural_init(struct ifnet *ifp)
2101 {
2102 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2103 struct ural_softc *sc = ifp->if_softc;
2104 struct ieee80211com *ic = &sc->sc_ic;
2105 struct ieee80211_key *wk;
2106 struct ural_rx_data *data;
2107 uint16_t tmp;
2108 usbd_status error;
2109 int i, ntries;
2110
2111 ural_set_testmode(sc);
2112 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2113
2114 ural_stop(ifp, 0);
2115
2116 /* initialize MAC registers to default values */
2117 for (i = 0; i < N(ural_def_mac); i++)
2118 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2119
2120 /* wait for BBP and RF to wake up (this can take a long time!) */
2121 for (ntries = 0; ntries < 100; ntries++) {
2122 tmp = ural_read(sc, RAL_MAC_CSR17);
2123 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2124 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2125 break;
2126 DELAY(1000);
2127 }
2128 if (ntries == 100) {
2129 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2130 device_xname(sc->sc_dev));
2131 error = EIO;
2132 goto fail;
2133 }
2134
2135 /* we're ready! */
2136 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2137
2138 /* set basic rate set (will be updated later) */
2139 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2140
2141 error = ural_bbp_init(sc);
2142 if (error != 0)
2143 goto fail;
2144
2145 /* set default BSS channel */
2146 ural_set_chan(sc, ic->ic_curchan);
2147
2148 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2149 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2150
2151 ural_set_txantenna(sc, sc->tx_ant);
2152 ural_set_rxantenna(sc, sc->rx_ant);
2153
2154 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2155 ural_set_macaddr(sc, ic->ic_myaddr);
2156
2157 /*
2158 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2159 */
2160 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2161 wk = &ic->ic_crypto.cs_nw_keys[i];
2162 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2163 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2164 }
2165
2166 /*
2167 * Allocate xfer for AMRR statistics requests.
2168 */
2169 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2170 if (sc->amrr_xfer == NULL) {
2171 printf("%s: could not allocate AMRR xfer\n",
2172 device_xname(sc->sc_dev));
2173 goto fail;
2174 }
2175
2176 /*
2177 * Open Tx and Rx USB bulk pipes.
2178 */
2179 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2180 &sc->sc_tx_pipeh);
2181 if (error != 0) {
2182 printf("%s: could not open Tx pipe: %s\n",
2183 device_xname(sc->sc_dev), usbd_errstr(error));
2184 goto fail;
2185 }
2186
2187 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2188 &sc->sc_rx_pipeh);
2189 if (error != 0) {
2190 printf("%s: could not open Rx pipe: %s\n",
2191 device_xname(sc->sc_dev), usbd_errstr(error));
2192 goto fail;
2193 }
2194
2195 /*
2196 * Allocate Tx and Rx xfer queues.
2197 */
2198 error = ural_alloc_tx_list(sc);
2199 if (error != 0) {
2200 printf("%s: could not allocate Tx list\n",
2201 device_xname(sc->sc_dev));
2202 goto fail;
2203 }
2204
2205 error = ural_alloc_rx_list(sc);
2206 if (error != 0) {
2207 printf("%s: could not allocate Rx list\n",
2208 device_xname(sc->sc_dev));
2209 goto fail;
2210 }
2211
2212 /*
2213 * Start up the receive pipe.
2214 */
2215 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2216 data = &sc->rx_data[i];
2217
2218 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2219 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2220 usbd_transfer(data->xfer);
2221 }
2222
2223 /* kick Rx */
2224 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2225 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2226 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2227 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2228 tmp |= RAL_DROP_TODS;
2229 if (!(ifp->if_flags & IFF_PROMISC))
2230 tmp |= RAL_DROP_NOT_TO_ME;
2231 }
2232 ural_write(sc, RAL_TXRX_CSR2, tmp);
2233
2234 ifp->if_flags &= ~IFF_OACTIVE;
2235 ifp->if_flags |= IFF_RUNNING;
2236
2237 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2238 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2239 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2240 } else
2241 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2242
2243 return 0;
2244
2245 fail: ural_stop(ifp, 1);
2246 return error;
2247 #undef N
2248 }
2249
2250 Static void
2251 ural_stop(struct ifnet *ifp, int disable)
2252 {
2253 struct ural_softc *sc = ifp->if_softc;
2254 struct ieee80211com *ic = &sc->sc_ic;
2255
2256 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2257
2258 sc->sc_tx_timer = 0;
2259 ifp->if_timer = 0;
2260 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2261
2262 /* disable Rx */
2263 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2264
2265 /* reset ASIC and BBP (but won't reset MAC registers!) */
2266 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2267 ural_write(sc, RAL_MAC_CSR1, 0);
2268
2269 if (sc->amrr_xfer != NULL) {
2270 usbd_free_xfer(sc->amrr_xfer);
2271 sc->amrr_xfer = NULL;
2272 }
2273
2274 if (sc->sc_rx_pipeh != NULL) {
2275 usbd_abort_pipe(sc->sc_rx_pipeh);
2276 usbd_close_pipe(sc->sc_rx_pipeh);
2277 sc->sc_rx_pipeh = NULL;
2278 }
2279
2280 if (sc->sc_tx_pipeh != NULL) {
2281 usbd_abort_pipe(sc->sc_tx_pipeh);
2282 usbd_close_pipe(sc->sc_tx_pipeh);
2283 sc->sc_tx_pipeh = NULL;
2284 }
2285
2286 ural_free_rx_list(sc);
2287 ural_free_tx_list(sc);
2288 }
2289
2290 int
2291 ural_activate(device_t self, enum devact act)
2292 {
2293 struct ural_softc *sc = device_private(self);
2294
2295 switch (act) {
2296 case DVACT_DEACTIVATE:
2297 if_deactivate(&sc->sc_if);
2298 return 0;
2299 default:
2300 return EOPNOTSUPP;
2301 }
2302 }
2303
2304 Static void
2305 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2306 {
2307 int i;
2308
2309 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2310 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2311
2312 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2313
2314 /* set rate to some reasonable initial value */
2315 for (i = ni->ni_rates.rs_nrates - 1;
2316 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2317 i--);
2318 ni->ni_txrate = i;
2319
2320 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2321 }
2322
2323 Static void
2324 ural_amrr_timeout(void *arg)
2325 {
2326 struct ural_softc *sc = (struct ural_softc *)arg;
2327 usb_device_request_t req;
2328 int s;
2329
2330 s = splusb();
2331
2332 /*
2333 * Asynchronously read statistic registers (cleared by read).
2334 */
2335 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2336 req.bRequest = RAL_READ_MULTI_MAC;
2337 USETW(req.wValue, 0);
2338 USETW(req.wIndex, RAL_STA_CSR0);
2339 USETW(req.wLength, sizeof sc->sta);
2340
2341 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2342 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2343 ural_amrr_update);
2344 (void)usbd_transfer(sc->amrr_xfer);
2345
2346 splx(s);
2347 }
2348
2349 Static void
2350 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2351 usbd_status status)
2352 {
2353 struct ural_softc *sc = (struct ural_softc *)priv;
2354 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2355
2356 if (status != USBD_NORMAL_COMPLETION) {
2357 printf("%s: could not retrieve Tx statistics - "
2358 "cancelling automatic rate control\n",
2359 device_xname(sc->sc_dev));
2360 return;
2361 }
2362
2363 /* count TX retry-fail as Tx errors */
2364 ifp->if_oerrors += sc->sta[9];
2365
2366 sc->amn.amn_retrycnt =
2367 sc->sta[7] + /* TX one-retry ok count */
2368 sc->sta[8] + /* TX more-retry ok count */
2369 sc->sta[9]; /* TX retry-fail count */
2370
2371 sc->amn.amn_txcnt =
2372 sc->amn.amn_retrycnt +
2373 sc->sta[6]; /* TX no-retry ok count */
2374
2375 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2376
2377 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2378 }
2379