if_ural.c revision 1.35 1 /* $NetBSD: if_ural.c,v 1.35 2010/04/05 07:21:48 joerg Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.35 2010/04/05 07:21:48 joerg Exp $");
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67
68 #include <dev/usb/if_uralreg.h>
69 #include <dev/usb/if_uralvar.h>
70
71 #ifdef USB_DEBUG
72 #define URAL_DEBUG
73 #endif
74
75 #ifdef URAL_DEBUG
76 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
77 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
78 int ural_debug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83
84 /* various supported device vendors/products */
85 static const struct usb_devno ural_devs[] = {
86 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
87 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
88 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
90 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
91 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
92 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
93 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
94 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
95 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
103 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_RALINK_2, USB_PRODUCT_RALINK_2_RT2570 },
108 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
109 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
110 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
111 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
112 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
113 };
114
115 Static int ural_alloc_tx_list(struct ural_softc *);
116 Static void ural_free_tx_list(struct ural_softc *);
117 Static int ural_alloc_rx_list(struct ural_softc *);
118 Static void ural_free_rx_list(struct ural_softc *);
119 Static int ural_media_change(struct ifnet *);
120 Static void ural_next_scan(void *);
121 Static void ural_task(void *);
122 Static int ural_newstate(struct ieee80211com *,
123 enum ieee80211_state, int);
124 Static int ural_rxrate(struct ural_rx_desc *);
125 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
126 usbd_status);
127 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
128 usbd_status);
129 Static int ural_ack_rate(struct ieee80211com *, int);
130 Static uint16_t ural_txtime(int, int, uint32_t);
131 Static uint8_t ural_plcp_signal(int);
132 Static void ural_setup_tx_desc(struct ural_softc *,
133 struct ural_tx_desc *, uint32_t, int, int);
134 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
135 struct ieee80211_node *);
136 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
137 struct ieee80211_node *);
138 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
139 struct ieee80211_node *);
140 Static void ural_start(struct ifnet *);
141 Static void ural_watchdog(struct ifnet *);
142 Static int ural_reset(struct ifnet *);
143 Static int ural_ioctl(struct ifnet *, u_long, void *);
144 Static void ural_set_testmode(struct ural_softc *);
145 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
146 int);
147 Static uint16_t ural_read(struct ural_softc *, uint16_t);
148 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
151 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
152 int);
153 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
154 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
155 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
156 Static void ural_set_chan(struct ural_softc *,
157 struct ieee80211_channel *);
158 Static void ural_disable_rf_tune(struct ural_softc *);
159 Static void ural_enable_tsf_sync(struct ural_softc *);
160 Static void ural_update_slot(struct ifnet *);
161 Static void ural_set_txpreamble(struct ural_softc *);
162 Static void ural_set_basicrates(struct ural_softc *);
163 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
164 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
165 Static void ural_update_promisc(struct ural_softc *);
166 Static const char *ural_get_rf(int);
167 Static void ural_read_eeprom(struct ural_softc *);
168 Static int ural_bbp_init(struct ural_softc *);
169 Static void ural_set_txantenna(struct ural_softc *, int);
170 Static void ural_set_rxantenna(struct ural_softc *, int);
171 Static int ural_init(struct ifnet *);
172 Static void ural_stop(struct ifnet *, int);
173 Static void ural_amrr_start(struct ural_softc *,
174 struct ieee80211_node *);
175 Static void ural_amrr_timeout(void *);
176 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
177 usbd_status status);
178
179 /*
180 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
181 */
182 static const struct ieee80211_rateset ural_rateset_11a =
183 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
184
185 static const struct ieee80211_rateset ural_rateset_11b =
186 { 4, { 2, 4, 11, 22 } };
187
188 static const struct ieee80211_rateset ural_rateset_11g =
189 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
190
191 /*
192 * Default values for MAC registers; values taken from the reference driver.
193 */
194 static const struct {
195 uint16_t reg;
196 uint16_t val;
197 } ural_def_mac[] = {
198 { RAL_TXRX_CSR5, 0x8c8d },
199 { RAL_TXRX_CSR6, 0x8b8a },
200 { RAL_TXRX_CSR7, 0x8687 },
201 { RAL_TXRX_CSR8, 0x0085 },
202 { RAL_MAC_CSR13, 0x1111 },
203 { RAL_MAC_CSR14, 0x1e11 },
204 { RAL_TXRX_CSR21, 0xe78f },
205 { RAL_MAC_CSR9, 0xff1d },
206 { RAL_MAC_CSR11, 0x0002 },
207 { RAL_MAC_CSR22, 0x0053 },
208 { RAL_MAC_CSR15, 0x0000 },
209 { RAL_MAC_CSR8, 0x0780 },
210 { RAL_TXRX_CSR19, 0x0000 },
211 { RAL_TXRX_CSR18, 0x005a },
212 { RAL_PHY_CSR2, 0x0000 },
213 { RAL_TXRX_CSR0, 0x1ec0 },
214 { RAL_PHY_CSR4, 0x000f }
215 };
216
217 /*
218 * Default values for BBP registers; values taken from the reference driver.
219 */
220 static const struct {
221 uint8_t reg;
222 uint8_t val;
223 } ural_def_bbp[] = {
224 { 3, 0x02 },
225 { 4, 0x19 },
226 { 14, 0x1c },
227 { 15, 0x30 },
228 { 16, 0xac },
229 { 17, 0x48 },
230 { 18, 0x18 },
231 { 19, 0xff },
232 { 20, 0x1e },
233 { 21, 0x08 },
234 { 22, 0x08 },
235 { 23, 0x08 },
236 { 24, 0x80 },
237 { 25, 0x50 },
238 { 26, 0x08 },
239 { 27, 0x23 },
240 { 30, 0x10 },
241 { 31, 0x2b },
242 { 32, 0xb9 },
243 { 34, 0x12 },
244 { 35, 0x50 },
245 { 39, 0xc4 },
246 { 40, 0x02 },
247 { 41, 0x60 },
248 { 53, 0x10 },
249 { 54, 0x18 },
250 { 56, 0x08 },
251 { 57, 0x10 },
252 { 58, 0x08 },
253 { 61, 0x60 },
254 { 62, 0x10 },
255 { 75, 0xff }
256 };
257
258 /*
259 * Default values for RF register R2 indexed by channel numbers.
260 */
261 static const uint32_t ural_rf2522_r2[] = {
262 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
263 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
264 };
265
266 static const uint32_t ural_rf2523_r2[] = {
267 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
268 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
269 };
270
271 static const uint32_t ural_rf2524_r2[] = {
272 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274 };
275
276 static const uint32_t ural_rf2525_r2[] = {
277 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
278 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
279 };
280
281 static const uint32_t ural_rf2525_hi_r2[] = {
282 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
283 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
284 };
285
286 static const uint32_t ural_rf2525e_r2[] = {
287 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
288 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
289 };
290
291 static const uint32_t ural_rf2526_hi_r2[] = {
292 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
293 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
294 };
295
296 static const uint32_t ural_rf2526_r2[] = {
297 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
298 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
299 };
300
301 /*
302 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
303 * values taken from the reference driver.
304 */
305 static const struct {
306 uint8_t chan;
307 uint32_t r1;
308 uint32_t r2;
309 uint32_t r4;
310 } ural_rf5222[] = {
311 { 1, 0x08808, 0x0044d, 0x00282 },
312 { 2, 0x08808, 0x0044e, 0x00282 },
313 { 3, 0x08808, 0x0044f, 0x00282 },
314 { 4, 0x08808, 0x00460, 0x00282 },
315 { 5, 0x08808, 0x00461, 0x00282 },
316 { 6, 0x08808, 0x00462, 0x00282 },
317 { 7, 0x08808, 0x00463, 0x00282 },
318 { 8, 0x08808, 0x00464, 0x00282 },
319 { 9, 0x08808, 0x00465, 0x00282 },
320 { 10, 0x08808, 0x00466, 0x00282 },
321 { 11, 0x08808, 0x00467, 0x00282 },
322 { 12, 0x08808, 0x00468, 0x00282 },
323 { 13, 0x08808, 0x00469, 0x00282 },
324 { 14, 0x08808, 0x0046b, 0x00286 },
325
326 { 36, 0x08804, 0x06225, 0x00287 },
327 { 40, 0x08804, 0x06226, 0x00287 },
328 { 44, 0x08804, 0x06227, 0x00287 },
329 { 48, 0x08804, 0x06228, 0x00287 },
330 { 52, 0x08804, 0x06229, 0x00287 },
331 { 56, 0x08804, 0x0622a, 0x00287 },
332 { 60, 0x08804, 0x0622b, 0x00287 },
333 { 64, 0x08804, 0x0622c, 0x00287 },
334
335 { 100, 0x08804, 0x02200, 0x00283 },
336 { 104, 0x08804, 0x02201, 0x00283 },
337 { 108, 0x08804, 0x02202, 0x00283 },
338 { 112, 0x08804, 0x02203, 0x00283 },
339 { 116, 0x08804, 0x02204, 0x00283 },
340 { 120, 0x08804, 0x02205, 0x00283 },
341 { 124, 0x08804, 0x02206, 0x00283 },
342 { 128, 0x08804, 0x02207, 0x00283 },
343 { 132, 0x08804, 0x02208, 0x00283 },
344 { 136, 0x08804, 0x02209, 0x00283 },
345 { 140, 0x08804, 0x0220a, 0x00283 },
346
347 { 149, 0x08808, 0x02429, 0x00281 },
348 { 153, 0x08808, 0x0242b, 0x00281 },
349 { 157, 0x08808, 0x0242d, 0x00281 },
350 { 161, 0x08808, 0x0242f, 0x00281 }
351 };
352
353 USB_DECLARE_DRIVER(ural);
354
355 USB_MATCH(ural)
356 {
357 USB_MATCH_START(ural, uaa);
358
359 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
360 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361 }
362
363 USB_ATTACH(ural)
364 {
365 USB_ATTACH_START(ural, sc, uaa);
366 struct ieee80211com *ic = &sc->sc_ic;
367 struct ifnet *ifp = &sc->sc_if;
368 usb_interface_descriptor_t *id;
369 usb_endpoint_descriptor_t *ed;
370 usbd_status error;
371 char *devinfop;
372 int i;
373
374 sc->sc_dev = self;
375 sc->sc_udev = uaa->device;
376
377 aprint_naive("\n");
378 aprint_normal("\n");
379
380 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
381 aprint_normal_dev(self, "%s\n", devinfop);
382 usbd_devinfo_free(devinfop);
383
384 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
385 aprint_error_dev(self, "could not set configuration no\n");
386 USB_ATTACH_ERROR_RETURN;
387 }
388
389 /* get the first interface handle */
390 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
391 &sc->sc_iface);
392 if (error != 0) {
393 aprint_error_dev(self, "could not get interface handle\n");
394 USB_ATTACH_ERROR_RETURN;
395 }
396
397 /*
398 * Find endpoints.
399 */
400 id = usbd_get_interface_descriptor(sc->sc_iface);
401
402 sc->sc_rx_no = sc->sc_tx_no = -1;
403 for (i = 0; i < id->bNumEndpoints; i++) {
404 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
405 if (ed == NULL) {
406 aprint_error_dev(self,
407 "no endpoint descriptor for %d\n", i);
408 USB_ATTACH_ERROR_RETURN;
409 }
410
411 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
412 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 sc->sc_rx_no = ed->bEndpointAddress;
414 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 sc->sc_tx_no = ed->bEndpointAddress;
417 }
418 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
419 aprint_error_dev(self, "missing endpoint\n");
420 USB_ATTACH_ERROR_RETURN;
421 }
422
423 usb_init_task(&sc->sc_task, ural_task, sc);
424 usb_callout_init(sc->sc_scan_ch);
425 sc->amrr.amrr_min_success_threshold = 1;
426 sc->amrr.amrr_max_success_threshold = 15;
427 usb_callout_init(sc->sc_amrr_ch);
428
429 /* retrieve RT2570 rev. no */
430 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
431
432 /* retrieve MAC address and various other things from EEPROM */
433 ural_read_eeprom(sc);
434
435 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
436 sc->asic_rev, ural_get_rf(sc->rf_rev));
437
438 ifp->if_softc = sc;
439 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
441 ifp->if_init = ural_init;
442 ifp->if_ioctl = ural_ioctl;
443 ifp->if_start = ural_start;
444 ifp->if_watchdog = ural_watchdog;
445 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
446 IFQ_SET_READY(&ifp->if_snd);
447
448 ic->ic_ifp = ifp;
449 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
450 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
451 ic->ic_state = IEEE80211_S_INIT;
452
453 /* set device capabilities */
454 ic->ic_caps =
455 IEEE80211_C_IBSS | /* IBSS mode supported */
456 IEEE80211_C_MONITOR | /* monitor mode supported */
457 IEEE80211_C_HOSTAP | /* HostAp mode supported */
458 IEEE80211_C_TXPMGT | /* tx power management */
459 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
460 IEEE80211_C_SHSLOT | /* short slot time supported */
461 IEEE80211_C_WPA; /* 802.11i */
462
463 if (sc->rf_rev == RAL_RF_5222) {
464 /* set supported .11a rates */
465 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
466
467 /* set supported .11a channels */
468 for (i = 36; i <= 64; i += 4) {
469 ic->ic_channels[i].ic_freq =
470 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
471 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
472 }
473 for (i = 100; i <= 140; i += 4) {
474 ic->ic_channels[i].ic_freq =
475 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
476 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
477 }
478 for (i = 149; i <= 161; i += 4) {
479 ic->ic_channels[i].ic_freq =
480 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
481 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
482 }
483 }
484
485 /* set supported .11b and .11g rates */
486 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
487 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
488
489 /* set supported .11b and .11g channels (1 through 14) */
490 for (i = 1; i <= 14; i++) {
491 ic->ic_channels[i].ic_freq =
492 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
493 ic->ic_channels[i].ic_flags =
494 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
495 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
496 }
497
498 if_attach(ifp);
499 ieee80211_ifattach(ic);
500 ic->ic_reset = ural_reset;
501
502 /* override state transition machine */
503 sc->sc_newstate = ic->ic_newstate;
504 ic->ic_newstate = ural_newstate;
505 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
506
507 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
508 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
509
510 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
511 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
512 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
513
514 sc->sc_txtap_len = sizeof sc->sc_txtapu;
515 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
516 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
517
518 ieee80211_announce(ic);
519
520 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
521 USBDEV(sc->sc_dev));
522
523 USB_ATTACH_SUCCESS_RETURN;
524 }
525
526 USB_DETACH(ural)
527 {
528 USB_DETACH_START(ural, sc);
529 struct ieee80211com *ic = &sc->sc_ic;
530 struct ifnet *ifp = &sc->sc_if;
531 int s;
532
533 s = splusb();
534
535 ural_stop(ifp, 1);
536 usb_rem_task(sc->sc_udev, &sc->sc_task);
537 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
538 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
539
540 if (sc->amrr_xfer != NULL) {
541 usbd_free_xfer(sc->amrr_xfer);
542 sc->amrr_xfer = NULL;
543 }
544
545 if (sc->sc_rx_pipeh != NULL) {
546 usbd_abort_pipe(sc->sc_rx_pipeh);
547 usbd_close_pipe(sc->sc_rx_pipeh);
548 }
549
550 if (sc->sc_tx_pipeh != NULL) {
551 usbd_abort_pipe(sc->sc_tx_pipeh);
552 usbd_close_pipe(sc->sc_tx_pipeh);
553 }
554
555 bpf_detach(ifp);
556 ieee80211_ifdetach(ic);
557 if_detach(ifp);
558
559 splx(s);
560
561 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
562 USBDEV(sc->sc_dev));
563
564 return 0;
565 }
566
567 Static int
568 ural_alloc_tx_list(struct ural_softc *sc)
569 {
570 struct ural_tx_data *data;
571 int i, error;
572
573 sc->tx_queued = 0;
574
575 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
576 data = &sc->tx_data[i];
577
578 data->sc = sc;
579
580 data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 if (data->xfer == NULL) {
582 printf("%s: could not allocate tx xfer\n",
583 USBDEVNAME(sc->sc_dev));
584 error = ENOMEM;
585 goto fail;
586 }
587
588 data->buf = usbd_alloc_buffer(data->xfer,
589 RAL_TX_DESC_SIZE + MCLBYTES);
590 if (data->buf == NULL) {
591 printf("%s: could not allocate tx buffer\n",
592 USBDEVNAME(sc->sc_dev));
593 error = ENOMEM;
594 goto fail;
595 }
596 }
597
598 return 0;
599
600 fail: ural_free_tx_list(sc);
601 return error;
602 }
603
604 Static void
605 ural_free_tx_list(struct ural_softc *sc)
606 {
607 struct ural_tx_data *data;
608 int i;
609
610 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
611 data = &sc->tx_data[i];
612
613 if (data->xfer != NULL) {
614 usbd_free_xfer(data->xfer);
615 data->xfer = NULL;
616 }
617
618 if (data->ni != NULL) {
619 ieee80211_free_node(data->ni);
620 data->ni = NULL;
621 }
622 }
623 }
624
625 Static int
626 ural_alloc_rx_list(struct ural_softc *sc)
627 {
628 struct ural_rx_data *data;
629 int i, error;
630
631 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
632 data = &sc->rx_data[i];
633
634 data->sc = sc;
635
636 data->xfer = usbd_alloc_xfer(sc->sc_udev);
637 if (data->xfer == NULL) {
638 printf("%s: could not allocate rx xfer\n",
639 USBDEVNAME(sc->sc_dev));
640 error = ENOMEM;
641 goto fail;
642 }
643
644 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
645 printf("%s: could not allocate rx buffer\n",
646 USBDEVNAME(sc->sc_dev));
647 error = ENOMEM;
648 goto fail;
649 }
650
651 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
652 if (data->m == NULL) {
653 printf("%s: could not allocate rx mbuf\n",
654 USBDEVNAME(sc->sc_dev));
655 error = ENOMEM;
656 goto fail;
657 }
658
659 MCLGET(data->m, M_DONTWAIT);
660 if (!(data->m->m_flags & M_EXT)) {
661 printf("%s: could not allocate rx mbuf cluster\n",
662 USBDEVNAME(sc->sc_dev));
663 error = ENOMEM;
664 goto fail;
665 }
666
667 data->buf = mtod(data->m, uint8_t *);
668 }
669
670 return 0;
671
672 fail: ural_free_tx_list(sc);
673 return error;
674 }
675
676 Static void
677 ural_free_rx_list(struct ural_softc *sc)
678 {
679 struct ural_rx_data *data;
680 int i;
681
682 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
683 data = &sc->rx_data[i];
684
685 if (data->xfer != NULL) {
686 usbd_free_xfer(data->xfer);
687 data->xfer = NULL;
688 }
689
690 if (data->m != NULL) {
691 m_freem(data->m);
692 data->m = NULL;
693 }
694 }
695 }
696
697 Static int
698 ural_media_change(struct ifnet *ifp)
699 {
700 int error;
701
702 error = ieee80211_media_change(ifp);
703 if (error != ENETRESET)
704 return error;
705
706 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
707 ural_init(ifp);
708
709 return 0;
710 }
711
712 /*
713 * This function is called periodically (every 200ms) during scanning to
714 * switch from one channel to another.
715 */
716 Static void
717 ural_next_scan(void *arg)
718 {
719 struct ural_softc *sc = arg;
720 struct ieee80211com *ic = &sc->sc_ic;
721
722 if (ic->ic_state == IEEE80211_S_SCAN)
723 ieee80211_next_scan(ic);
724 }
725
726 Static void
727 ural_task(void *arg)
728 {
729 struct ural_softc *sc = arg;
730 struct ieee80211com *ic = &sc->sc_ic;
731 enum ieee80211_state ostate;
732 struct ieee80211_node *ni;
733 struct mbuf *m;
734
735 ostate = ic->ic_state;
736
737 switch (sc->sc_state) {
738 case IEEE80211_S_INIT:
739 if (ostate == IEEE80211_S_RUN) {
740 /* abort TSF synchronization */
741 ural_write(sc, RAL_TXRX_CSR19, 0);
742
743 /* force tx led to stop blinking */
744 ural_write(sc, RAL_MAC_CSR20, 0);
745 }
746 break;
747
748 case IEEE80211_S_SCAN:
749 ural_set_chan(sc, ic->ic_curchan);
750 usb_callout(sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
751 break;
752
753 case IEEE80211_S_AUTH:
754 ural_set_chan(sc, ic->ic_curchan);
755 break;
756
757 case IEEE80211_S_ASSOC:
758 ural_set_chan(sc, ic->ic_curchan);
759 break;
760
761 case IEEE80211_S_RUN:
762 ural_set_chan(sc, ic->ic_curchan);
763
764 ni = ic->ic_bss;
765
766 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
767 ural_update_slot(ic->ic_ifp);
768 ural_set_txpreamble(sc);
769 ural_set_basicrates(sc);
770 ural_set_bssid(sc, ni->ni_bssid);
771 }
772
773 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
774 ic->ic_opmode == IEEE80211_M_IBSS) {
775 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
776 if (m == NULL) {
777 printf("%s: could not allocate beacon\n",
778 USBDEVNAME(sc->sc_dev));
779 return;
780 }
781
782 if (ural_tx_bcn(sc, m, ni) != 0) {
783 m_freem(m);
784 printf("%s: could not send beacon\n",
785 USBDEVNAME(sc->sc_dev));
786 return;
787 }
788
789 /* beacon is no longer needed */
790 m_freem(m);
791 }
792
793 /* make tx led blink on tx (controlled by ASIC) */
794 ural_write(sc, RAL_MAC_CSR20, 1);
795
796 if (ic->ic_opmode != IEEE80211_M_MONITOR)
797 ural_enable_tsf_sync(sc);
798
799 /* enable automatic rate adaptation in STA mode */
800 if (ic->ic_opmode == IEEE80211_M_STA &&
801 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
802 ural_amrr_start(sc, ni);
803
804 break;
805 }
806
807 sc->sc_newstate(ic, sc->sc_state, -1);
808 }
809
810 Static int
811 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
812 int arg)
813 {
814 struct ural_softc *sc = ic->ic_ifp->if_softc;
815
816 usb_rem_task(sc->sc_udev, &sc->sc_task);
817 usb_uncallout(sc->sc_scan_ch, ural_next_scan, sc);
818 usb_uncallout(sc->sc_amrr_ch, ural_amrr_timeout, sc);
819
820 /* do it in a process context */
821 sc->sc_state = nstate;
822 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
823
824 return 0;
825 }
826
827 /* quickly determine if a given rate is CCK or OFDM */
828 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
829
830 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
831 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
832
833 #define RAL_SIFS 10 /* us */
834
835 #define RAL_RXTX_TURNAROUND 5 /* us */
836
837 /*
838 * This function is only used by the Rx radiotap code.
839 */
840 Static int
841 ural_rxrate(struct ural_rx_desc *desc)
842 {
843 if (le32toh(desc->flags) & RAL_RX_OFDM) {
844 /* reverse function of ural_plcp_signal */
845 switch (desc->rate) {
846 case 0xb: return 12;
847 case 0xf: return 18;
848 case 0xa: return 24;
849 case 0xe: return 36;
850 case 0x9: return 48;
851 case 0xd: return 72;
852 case 0x8: return 96;
853 case 0xc: return 108;
854 }
855 } else {
856 if (desc->rate == 10)
857 return 2;
858 if (desc->rate == 20)
859 return 4;
860 if (desc->rate == 55)
861 return 11;
862 if (desc->rate == 110)
863 return 22;
864 }
865 return 2; /* should not get there */
866 }
867
868 Static void
869 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
870 usbd_status status)
871 {
872 struct ural_tx_data *data = priv;
873 struct ural_softc *sc = data->sc;
874 struct ifnet *ifp = &sc->sc_if;
875 int s;
876
877 if (status != USBD_NORMAL_COMPLETION) {
878 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
879 return;
880
881 printf("%s: could not transmit buffer: %s\n",
882 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
883
884 if (status == USBD_STALLED)
885 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
886
887 ifp->if_oerrors++;
888 return;
889 }
890
891 s = splnet();
892
893 m_freem(data->m);
894 data->m = NULL;
895 ieee80211_free_node(data->ni);
896 data->ni = NULL;
897
898 sc->tx_queued--;
899 ifp->if_opackets++;
900
901 DPRINTFN(10, ("tx done\n"));
902
903 sc->sc_tx_timer = 0;
904 ifp->if_flags &= ~IFF_OACTIVE;
905 ural_start(ifp);
906
907 splx(s);
908 }
909
910 Static void
911 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
912 {
913 struct ural_rx_data *data = priv;
914 struct ural_softc *sc = data->sc;
915 struct ieee80211com *ic = &sc->sc_ic;
916 struct ifnet *ifp = &sc->sc_if;
917 struct ural_rx_desc *desc;
918 struct ieee80211_frame *wh;
919 struct ieee80211_node *ni;
920 struct mbuf *mnew, *m;
921 int s, len;
922
923 if (status != USBD_NORMAL_COMPLETION) {
924 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
925 return;
926
927 if (status == USBD_STALLED)
928 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
929 goto skip;
930 }
931
932 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
933
934 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
935 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
936 len));
937 ifp->if_ierrors++;
938 goto skip;
939 }
940
941 /* rx descriptor is located at the end */
942 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
943
944 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
945 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
946 /*
947 * This should not happen since we did not request to receive
948 * those frames when we filled RAL_TXRX_CSR2.
949 */
950 DPRINTFN(5, ("PHY or CRC error\n"));
951 ifp->if_ierrors++;
952 goto skip;
953 }
954
955 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
956 if (mnew == NULL) {
957 ifp->if_ierrors++;
958 goto skip;
959 }
960
961 MCLGET(mnew, M_DONTWAIT);
962 if (!(mnew->m_flags & M_EXT)) {
963 ifp->if_ierrors++;
964 m_freem(mnew);
965 goto skip;
966 }
967
968 m = data->m;
969 data->m = mnew;
970 data->buf = mtod(data->m, uint8_t *);
971
972 /* finalize mbuf */
973 m->m_pkthdr.rcvif = ifp;
974 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
975 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
976
977 s = splnet();
978
979 if (sc->sc_drvbpf != NULL) {
980 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
981
982 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
983 tap->wr_rate = ural_rxrate(desc);
984 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
985 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
986 tap->wr_antenna = sc->rx_ant;
987 tap->wr_antsignal = desc->rssi;
988
989 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
990 }
991
992 wh = mtod(m, struct ieee80211_frame *);
993 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
994
995 /* send the frame to the 802.11 layer */
996 ieee80211_input(ic, m, ni, desc->rssi, 0);
997
998 /* node is no longer needed */
999 ieee80211_free_node(ni);
1000
1001 splx(s);
1002
1003 DPRINTFN(15, ("rx done\n"));
1004
1005 skip: /* setup a new transfer */
1006 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1007 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1008 usbd_transfer(xfer);
1009 }
1010
1011 /*
1012 * Return the expected ack rate for a frame transmitted at rate `rate'.
1013 * XXX: this should depend on the destination node basic rate set.
1014 */
1015 Static int
1016 ural_ack_rate(struct ieee80211com *ic, int rate)
1017 {
1018 switch (rate) {
1019 /* CCK rates */
1020 case 2:
1021 return 2;
1022 case 4:
1023 case 11:
1024 case 22:
1025 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1026
1027 /* OFDM rates */
1028 case 12:
1029 case 18:
1030 return 12;
1031 case 24:
1032 case 36:
1033 return 24;
1034 case 48:
1035 case 72:
1036 case 96:
1037 case 108:
1038 return 48;
1039 }
1040
1041 /* default to 1Mbps */
1042 return 2;
1043 }
1044
1045 /*
1046 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1047 * The function automatically determines the operating mode depending on the
1048 * given rate. `flags' indicates whether short preamble is in use or not.
1049 */
1050 Static uint16_t
1051 ural_txtime(int len, int rate, uint32_t flags)
1052 {
1053 uint16_t txtime;
1054
1055 if (RAL_RATE_IS_OFDM(rate)) {
1056 /* IEEE Std 802.11g-2003, pp. 37 */
1057 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1058 txtime = 16 + 4 + 4 * txtime + 6;
1059 } else {
1060 /* IEEE Std 802.11b-1999, pp. 28 */
1061 txtime = (16 * len + rate - 1) / rate;
1062 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1063 txtime += 72 + 24;
1064 else
1065 txtime += 144 + 48;
1066 }
1067 return txtime;
1068 }
1069
1070 Static uint8_t
1071 ural_plcp_signal(int rate)
1072 {
1073 switch (rate) {
1074 /* CCK rates (returned values are device-dependent) */
1075 case 2: return 0x0;
1076 case 4: return 0x1;
1077 case 11: return 0x2;
1078 case 22: return 0x3;
1079
1080 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1081 case 12: return 0xb;
1082 case 18: return 0xf;
1083 case 24: return 0xa;
1084 case 36: return 0xe;
1085 case 48: return 0x9;
1086 case 72: return 0xd;
1087 case 96: return 0x8;
1088 case 108: return 0xc;
1089
1090 /* unsupported rates (should not get there) */
1091 default: return 0xff;
1092 }
1093 }
1094
1095 Static void
1096 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1097 uint32_t flags, int len, int rate)
1098 {
1099 struct ieee80211com *ic = &sc->sc_ic;
1100 uint16_t plcp_length;
1101 int remainder;
1102
1103 desc->flags = htole32(flags);
1104 desc->flags |= htole32(RAL_TX_NEWSEQ);
1105 desc->flags |= htole32(len << 16);
1106
1107 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1108 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1109
1110 /* setup PLCP fields */
1111 desc->plcp_signal = ural_plcp_signal(rate);
1112 desc->plcp_service = 4;
1113
1114 len += IEEE80211_CRC_LEN;
1115 if (RAL_RATE_IS_OFDM(rate)) {
1116 desc->flags |= htole32(RAL_TX_OFDM);
1117
1118 plcp_length = len & 0xfff;
1119 desc->plcp_length_hi = plcp_length >> 6;
1120 desc->plcp_length_lo = plcp_length & 0x3f;
1121 } else {
1122 plcp_length = (16 * len + rate - 1) / rate;
1123 if (rate == 22) {
1124 remainder = (16 * len) % 22;
1125 if (remainder != 0 && remainder < 7)
1126 desc->plcp_service |= RAL_PLCP_LENGEXT;
1127 }
1128 desc->plcp_length_hi = plcp_length >> 8;
1129 desc->plcp_length_lo = plcp_length & 0xff;
1130
1131 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1132 desc->plcp_signal |= 0x08;
1133 }
1134
1135 desc->iv = 0;
1136 desc->eiv = 0;
1137 }
1138
1139 #define RAL_TX_TIMEOUT 5000
1140
1141 Static int
1142 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1143 {
1144 struct ural_tx_desc *desc;
1145 usbd_xfer_handle xfer;
1146 uint8_t cmd = 0;
1147 usbd_status error;
1148 uint8_t *buf;
1149 int xferlen, rate;
1150
1151 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1152
1153 xfer = usbd_alloc_xfer(sc->sc_udev);
1154 if (xfer == NULL)
1155 return ENOMEM;
1156
1157 /* xfer length needs to be a multiple of two! */
1158 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1159
1160 buf = usbd_alloc_buffer(xfer, xferlen);
1161 if (buf == NULL) {
1162 usbd_free_xfer(xfer);
1163 return ENOMEM;
1164 }
1165
1166 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1167 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1168
1169 error = usbd_sync_transfer(xfer);
1170 if (error != 0) {
1171 usbd_free_xfer(xfer);
1172 return error;
1173 }
1174
1175 desc = (struct ural_tx_desc *)buf;
1176
1177 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1178 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1179 m0->m_pkthdr.len, rate);
1180
1181 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1182 m0->m_pkthdr.len, rate, xferlen));
1183
1184 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1185 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1186
1187 error = usbd_sync_transfer(xfer);
1188 usbd_free_xfer(xfer);
1189
1190 return error;
1191 }
1192
1193 Static int
1194 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1195 {
1196 struct ieee80211com *ic = &sc->sc_ic;
1197 struct ural_tx_desc *desc;
1198 struct ural_tx_data *data;
1199 struct ieee80211_frame *wh;
1200 struct ieee80211_key *k;
1201 uint32_t flags = 0;
1202 uint16_t dur;
1203 usbd_status error;
1204 int xferlen, rate;
1205
1206 data = &sc->tx_data[0];
1207 desc = (struct ural_tx_desc *)data->buf;
1208
1209 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1210
1211 wh = mtod(m0, struct ieee80211_frame *);
1212
1213 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1214 k = ieee80211_crypto_encap(ic, ni, m0);
1215 if (k == NULL) {
1216 m_freem(m0);
1217 return ENOBUFS;
1218 }
1219 }
1220
1221 data->m = m0;
1222 data->ni = ni;
1223
1224 wh = mtod(m0, struct ieee80211_frame *);
1225
1226 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1227 flags |= RAL_TX_ACK;
1228
1229 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1230 *(uint16_t *)wh->i_dur = htole16(dur);
1231
1232 /* tell hardware to add timestamp for probe responses */
1233 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1234 IEEE80211_FC0_TYPE_MGT &&
1235 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1236 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1237 flags |= RAL_TX_TIMESTAMP;
1238 }
1239
1240 if (sc->sc_drvbpf != NULL) {
1241 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1242
1243 tap->wt_flags = 0;
1244 tap->wt_rate = rate;
1245 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1246 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1247 tap->wt_antenna = sc->tx_ant;
1248
1249 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1250 }
1251
1252 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1253 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1254
1255 /* align end on a 2-bytes boundary */
1256 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1257
1258 /*
1259 * No space left in the last URB to store the extra 2 bytes, force
1260 * sending of another URB.
1261 */
1262 if ((xferlen % 64) == 0)
1263 xferlen += 2;
1264
1265 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1266 m0->m_pkthdr.len, rate, xferlen));
1267
1268 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1269 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1270 ural_txeof);
1271
1272 error = usbd_transfer(data->xfer);
1273 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1274 m_freem(m0);
1275 return error;
1276 }
1277
1278 sc->tx_queued++;
1279
1280 return 0;
1281 }
1282
1283 Static int
1284 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1285 {
1286 struct ieee80211com *ic = &sc->sc_ic;
1287 struct ural_tx_desc *desc;
1288 struct ural_tx_data *data;
1289 struct ieee80211_frame *wh;
1290 struct ieee80211_key *k;
1291 uint32_t flags = 0;
1292 uint16_t dur;
1293 usbd_status error;
1294 int xferlen, rate;
1295
1296 wh = mtod(m0, struct ieee80211_frame *);
1297
1298 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1299 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1300 else
1301 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1302
1303 rate &= IEEE80211_RATE_VAL;
1304
1305 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1306 k = ieee80211_crypto_encap(ic, ni, m0);
1307 if (k == NULL) {
1308 m_freem(m0);
1309 return ENOBUFS;
1310 }
1311
1312 /* packet header may have moved, reset our local pointer */
1313 wh = mtod(m0, struct ieee80211_frame *);
1314 }
1315
1316 data = &sc->tx_data[0];
1317 desc = (struct ural_tx_desc *)data->buf;
1318
1319 data->m = m0;
1320 data->ni = ni;
1321
1322 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1323 flags |= RAL_TX_ACK;
1324 flags |= RAL_TX_RETRY(7);
1325
1326 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1327 ic->ic_flags) + RAL_SIFS;
1328 *(uint16_t *)wh->i_dur = htole16(dur);
1329 }
1330
1331 if (sc->sc_drvbpf != NULL) {
1332 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1333
1334 tap->wt_flags = 0;
1335 tap->wt_rate = rate;
1336 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1337 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1338 tap->wt_antenna = sc->tx_ant;
1339
1340 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1341 }
1342
1343 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1344 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1345
1346 /* align end on a 2-bytes boundary */
1347 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1348
1349 /*
1350 * No space left in the last URB to store the extra 2 bytes, force
1351 * sending of another URB.
1352 */
1353 if ((xferlen % 64) == 0)
1354 xferlen += 2;
1355
1356 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1357 m0->m_pkthdr.len, rate, xferlen));
1358
1359 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1360 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1361 ural_txeof);
1362
1363 error = usbd_transfer(data->xfer);
1364 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1365 return error;
1366
1367 sc->tx_queued++;
1368
1369 return 0;
1370 }
1371
1372 Static void
1373 ural_start(struct ifnet *ifp)
1374 {
1375 struct ural_softc *sc = ifp->if_softc;
1376 struct ieee80211com *ic = &sc->sc_ic;
1377 struct mbuf *m0;
1378 struct ether_header *eh;
1379 struct ieee80211_node *ni;
1380
1381 for (;;) {
1382 IF_POLL(&ic->ic_mgtq, m0);
1383 if (m0 != NULL) {
1384 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1385 ifp->if_flags |= IFF_OACTIVE;
1386 break;
1387 }
1388 IF_DEQUEUE(&ic->ic_mgtq, m0);
1389
1390 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1391 m0->m_pkthdr.rcvif = NULL;
1392 bpf_mtap3(ic->ic_rawbpf, m0);
1393 if (ural_tx_mgt(sc, m0, ni) != 0)
1394 break;
1395
1396 } else {
1397 if (ic->ic_state != IEEE80211_S_RUN)
1398 break;
1399 IFQ_DEQUEUE(&ifp->if_snd, m0);
1400 if (m0 == NULL)
1401 break;
1402 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1403 IF_PREPEND(&ifp->if_snd, m0);
1404 ifp->if_flags |= IFF_OACTIVE;
1405 break;
1406 }
1407
1408 if (m0->m_len < sizeof (struct ether_header) &&
1409 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1410 continue;
1411
1412 eh = mtod(m0, struct ether_header *);
1413 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1414 if (ni == NULL) {
1415 m_freem(m0);
1416 continue;
1417 }
1418 bpf_mtap(ifp, m0);
1419 m0 = ieee80211_encap(ic, m0, ni);
1420 if (m0 == NULL) {
1421 ieee80211_free_node(ni);
1422 continue;
1423 }
1424 bpf_mtap3(ic->ic_rawbpf, m0);
1425 if (ural_tx_data(sc, m0, ni) != 0) {
1426 ieee80211_free_node(ni);
1427 ifp->if_oerrors++;
1428 break;
1429 }
1430 }
1431
1432 sc->sc_tx_timer = 5;
1433 ifp->if_timer = 1;
1434 }
1435 }
1436
1437 Static void
1438 ural_watchdog(struct ifnet *ifp)
1439 {
1440 struct ural_softc *sc = ifp->if_softc;
1441 struct ieee80211com *ic = &sc->sc_ic;
1442
1443 ifp->if_timer = 0;
1444
1445 if (sc->sc_tx_timer > 0) {
1446 if (--sc->sc_tx_timer == 0) {
1447 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1448 /*ural_init(sc); XXX needs a process context! */
1449 ifp->if_oerrors++;
1450 return;
1451 }
1452 ifp->if_timer = 1;
1453 }
1454
1455 ieee80211_watchdog(ic);
1456 }
1457
1458 /*
1459 * This function allows for fast channel switching in monitor mode (used by
1460 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1461 * generate a new beacon frame.
1462 */
1463 Static int
1464 ural_reset(struct ifnet *ifp)
1465 {
1466 struct ural_softc *sc = ifp->if_softc;
1467 struct ieee80211com *ic = &sc->sc_ic;
1468
1469 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1470 return ENETRESET;
1471
1472 ural_set_chan(sc, ic->ic_curchan);
1473
1474 return 0;
1475 }
1476
1477 Static int
1478 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1479 {
1480 struct ural_softc *sc = ifp->if_softc;
1481 struct ieee80211com *ic = &sc->sc_ic;
1482 int s, error = 0;
1483
1484 s = splnet();
1485
1486 switch (cmd) {
1487 case SIOCSIFFLAGS:
1488 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1489 break;
1490 /* XXX re-use ether_ioctl() */
1491 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1492 case IFF_UP|IFF_RUNNING:
1493 ural_update_promisc(sc);
1494 break;
1495 case IFF_UP:
1496 ural_init(ifp);
1497 break;
1498 case IFF_RUNNING:
1499 ural_stop(ifp, 1);
1500 break;
1501 case 0:
1502 break;
1503 }
1504 break;
1505
1506 default:
1507 error = ieee80211_ioctl(ic, cmd, data);
1508 }
1509
1510 if (error == ENETRESET) {
1511 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1512 (IFF_UP | IFF_RUNNING))
1513 ural_init(ifp);
1514 error = 0;
1515 }
1516
1517 splx(s);
1518
1519 return error;
1520 }
1521
1522 Static void
1523 ural_set_testmode(struct ural_softc *sc)
1524 {
1525 usb_device_request_t req;
1526 usbd_status error;
1527
1528 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1529 req.bRequest = RAL_VENDOR_REQUEST;
1530 USETW(req.wValue, 4);
1531 USETW(req.wIndex, 1);
1532 USETW(req.wLength, 0);
1533
1534 error = usbd_do_request(sc->sc_udev, &req, NULL);
1535 if (error != 0) {
1536 printf("%s: could not set test mode: %s\n",
1537 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1538 }
1539 }
1540
1541 Static void
1542 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1543 {
1544 usb_device_request_t req;
1545 usbd_status error;
1546
1547 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1548 req.bRequest = RAL_READ_EEPROM;
1549 USETW(req.wValue, 0);
1550 USETW(req.wIndex, addr);
1551 USETW(req.wLength, len);
1552
1553 error = usbd_do_request(sc->sc_udev, &req, buf);
1554 if (error != 0) {
1555 printf("%s: could not read EEPROM: %s\n",
1556 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1557 }
1558 }
1559
1560 Static uint16_t
1561 ural_read(struct ural_softc *sc, uint16_t reg)
1562 {
1563 usb_device_request_t req;
1564 usbd_status error;
1565 uint16_t val;
1566
1567 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1568 req.bRequest = RAL_READ_MAC;
1569 USETW(req.wValue, 0);
1570 USETW(req.wIndex, reg);
1571 USETW(req.wLength, sizeof (uint16_t));
1572
1573 error = usbd_do_request(sc->sc_udev, &req, &val);
1574 if (error != 0) {
1575 printf("%s: could not read MAC register: %s\n",
1576 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1577 return 0;
1578 }
1579
1580 return le16toh(val);
1581 }
1582
1583 Static void
1584 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1585 {
1586 usb_device_request_t req;
1587 usbd_status error;
1588
1589 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1590 req.bRequest = RAL_READ_MULTI_MAC;
1591 USETW(req.wValue, 0);
1592 USETW(req.wIndex, reg);
1593 USETW(req.wLength, len);
1594
1595 error = usbd_do_request(sc->sc_udev, &req, buf);
1596 if (error != 0) {
1597 printf("%s: could not read MAC register: %s\n",
1598 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1599 }
1600 }
1601
1602 Static void
1603 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1604 {
1605 usb_device_request_t req;
1606 usbd_status error;
1607
1608 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 req.bRequest = RAL_WRITE_MAC;
1610 USETW(req.wValue, val);
1611 USETW(req.wIndex, reg);
1612 USETW(req.wLength, 0);
1613
1614 error = usbd_do_request(sc->sc_udev, &req, NULL);
1615 if (error != 0) {
1616 printf("%s: could not write MAC register: %s\n",
1617 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1618 }
1619 }
1620
1621 Static void
1622 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1623 {
1624 usb_device_request_t req;
1625 usbd_status error;
1626
1627 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1628 req.bRequest = RAL_WRITE_MULTI_MAC;
1629 USETW(req.wValue, 0);
1630 USETW(req.wIndex, reg);
1631 USETW(req.wLength, len);
1632
1633 error = usbd_do_request(sc->sc_udev, &req, buf);
1634 if (error != 0) {
1635 printf("%s: could not write MAC register: %s\n",
1636 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1637 }
1638 }
1639
1640 Static void
1641 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1642 {
1643 uint16_t tmp;
1644 int ntries;
1645
1646 for (ntries = 0; ntries < 5; ntries++) {
1647 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1648 break;
1649 }
1650 if (ntries == 5) {
1651 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1652 return;
1653 }
1654
1655 tmp = reg << 8 | val;
1656 ural_write(sc, RAL_PHY_CSR7, tmp);
1657 }
1658
1659 Static uint8_t
1660 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1661 {
1662 uint16_t val;
1663 int ntries;
1664
1665 val = RAL_BBP_WRITE | reg << 8;
1666 ural_write(sc, RAL_PHY_CSR7, val);
1667
1668 for (ntries = 0; ntries < 5; ntries++) {
1669 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1670 break;
1671 }
1672 if (ntries == 5) {
1673 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1674 return 0;
1675 }
1676
1677 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1678 }
1679
1680 Static void
1681 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1682 {
1683 uint32_t tmp;
1684 int ntries;
1685
1686 for (ntries = 0; ntries < 5; ntries++) {
1687 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1688 break;
1689 }
1690 if (ntries == 5) {
1691 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1692 return;
1693 }
1694
1695 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1696 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1697 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1698
1699 /* remember last written value in sc */
1700 sc->rf_regs[reg] = val;
1701
1702 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1703 }
1704
1705 Static void
1706 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1707 {
1708 struct ieee80211com *ic = &sc->sc_ic;
1709 uint8_t power, tmp;
1710 u_int i, chan;
1711
1712 chan = ieee80211_chan2ieee(ic, c);
1713 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1714 return;
1715
1716 if (IEEE80211_IS_CHAN_2GHZ(c))
1717 power = min(sc->txpow[chan - 1], 31);
1718 else
1719 power = 31;
1720
1721 /* adjust txpower using ifconfig settings */
1722 power -= (100 - ic->ic_txpowlimit) / 8;
1723
1724 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1725
1726 switch (sc->rf_rev) {
1727 case RAL_RF_2522:
1728 ural_rf_write(sc, RAL_RF1, 0x00814);
1729 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1730 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 break;
1732
1733 case RAL_RF_2523:
1734 ural_rf_write(sc, RAL_RF1, 0x08804);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1737 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 break;
1739
1740 case RAL_RF_2524:
1741 ural_rf_write(sc, RAL_RF1, 0x0c808);
1742 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1743 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1744 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 break;
1746
1747 case RAL_RF_2525:
1748 ural_rf_write(sc, RAL_RF1, 0x08808);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752
1753 ural_rf_write(sc, RAL_RF1, 0x08808);
1754 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1755 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1756 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757 break;
1758
1759 case RAL_RF_2525E:
1760 ural_rf_write(sc, RAL_RF1, 0x08808);
1761 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1762 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1763 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1764 break;
1765
1766 case RAL_RF_2526:
1767 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1768 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1769 ural_rf_write(sc, RAL_RF1, 0x08804);
1770
1771 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1772 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1773 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1774 break;
1775
1776 /* dual-band RF */
1777 case RAL_RF_5222:
1778 for (i = 0; ural_rf5222[i].chan != chan; i++);
1779
1780 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1781 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1782 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1783 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1784 break;
1785 }
1786
1787 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1788 ic->ic_state != IEEE80211_S_SCAN) {
1789 /* set Japan filter bit for channel 14 */
1790 tmp = ural_bbp_read(sc, 70);
1791
1792 tmp &= ~RAL_JAPAN_FILTER;
1793 if (chan == 14)
1794 tmp |= RAL_JAPAN_FILTER;
1795
1796 ural_bbp_write(sc, 70, tmp);
1797
1798 /* clear CRC errors */
1799 ural_read(sc, RAL_STA_CSR0);
1800
1801 DELAY(10000);
1802 ural_disable_rf_tune(sc);
1803 }
1804 }
1805
1806 /*
1807 * Disable RF auto-tuning.
1808 */
1809 Static void
1810 ural_disable_rf_tune(struct ural_softc *sc)
1811 {
1812 uint32_t tmp;
1813
1814 if (sc->rf_rev != RAL_RF_2523) {
1815 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1816 ural_rf_write(sc, RAL_RF1, tmp);
1817 }
1818
1819 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1820 ural_rf_write(sc, RAL_RF3, tmp);
1821
1822 DPRINTFN(2, ("disabling RF autotune\n"));
1823 }
1824
1825 /*
1826 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1827 * synchronization.
1828 */
1829 Static void
1830 ural_enable_tsf_sync(struct ural_softc *sc)
1831 {
1832 struct ieee80211com *ic = &sc->sc_ic;
1833 uint16_t logcwmin, preload, tmp;
1834
1835 /* first, disable TSF synchronization */
1836 ural_write(sc, RAL_TXRX_CSR19, 0);
1837
1838 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1839 ural_write(sc, RAL_TXRX_CSR18, tmp);
1840
1841 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1842 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1843 tmp = logcwmin << 12 | preload;
1844 ural_write(sc, RAL_TXRX_CSR20, tmp);
1845
1846 /* finally, enable TSF synchronization */
1847 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1848 if (ic->ic_opmode == IEEE80211_M_STA)
1849 tmp |= RAL_ENABLE_TSF_SYNC(1);
1850 else
1851 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1852 ural_write(sc, RAL_TXRX_CSR19, tmp);
1853
1854 DPRINTF(("enabling TSF synchronization\n"));
1855 }
1856
1857 Static void
1858 ural_update_slot(struct ifnet *ifp)
1859 {
1860 struct ural_softc *sc = ifp->if_softc;
1861 struct ieee80211com *ic = &sc->sc_ic;
1862 uint16_t slottime, sifs, eifs;
1863
1864 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1865
1866 /*
1867 * These settings may sound a bit inconsistent but this is what the
1868 * reference driver does.
1869 */
1870 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1871 sifs = 16 - RAL_RXTX_TURNAROUND;
1872 eifs = 364;
1873 } else {
1874 sifs = 10 - RAL_RXTX_TURNAROUND;
1875 eifs = 64;
1876 }
1877
1878 ural_write(sc, RAL_MAC_CSR10, slottime);
1879 ural_write(sc, RAL_MAC_CSR11, sifs);
1880 ural_write(sc, RAL_MAC_CSR12, eifs);
1881 }
1882
1883 Static void
1884 ural_set_txpreamble(struct ural_softc *sc)
1885 {
1886 uint16_t tmp;
1887
1888 tmp = ural_read(sc, RAL_TXRX_CSR10);
1889
1890 tmp &= ~RAL_SHORT_PREAMBLE;
1891 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1892 tmp |= RAL_SHORT_PREAMBLE;
1893
1894 ural_write(sc, RAL_TXRX_CSR10, tmp);
1895 }
1896
1897 Static void
1898 ural_set_basicrates(struct ural_softc *sc)
1899 {
1900 struct ieee80211com *ic = &sc->sc_ic;
1901
1902 /* update basic rate set */
1903 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1904 /* 11b basic rates: 1, 2Mbps */
1905 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1906 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1907 /* 11a basic rates: 6, 12, 24Mbps */
1908 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1909 } else {
1910 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1911 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1912 }
1913 }
1914
1915 Static void
1916 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1917 {
1918 uint16_t tmp;
1919
1920 tmp = bssid[0] | bssid[1] << 8;
1921 ural_write(sc, RAL_MAC_CSR5, tmp);
1922
1923 tmp = bssid[2] | bssid[3] << 8;
1924 ural_write(sc, RAL_MAC_CSR6, tmp);
1925
1926 tmp = bssid[4] | bssid[5] << 8;
1927 ural_write(sc, RAL_MAC_CSR7, tmp);
1928
1929 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1930 }
1931
1932 Static void
1933 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1934 {
1935 uint16_t tmp;
1936
1937 tmp = addr[0] | addr[1] << 8;
1938 ural_write(sc, RAL_MAC_CSR2, tmp);
1939
1940 tmp = addr[2] | addr[3] << 8;
1941 ural_write(sc, RAL_MAC_CSR3, tmp);
1942
1943 tmp = addr[4] | addr[5] << 8;
1944 ural_write(sc, RAL_MAC_CSR4, tmp);
1945
1946 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1947 }
1948
1949 Static void
1950 ural_update_promisc(struct ural_softc *sc)
1951 {
1952 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1953 uint32_t tmp;
1954
1955 tmp = ural_read(sc, RAL_TXRX_CSR2);
1956
1957 tmp &= ~RAL_DROP_NOT_TO_ME;
1958 if (!(ifp->if_flags & IFF_PROMISC))
1959 tmp |= RAL_DROP_NOT_TO_ME;
1960
1961 ural_write(sc, RAL_TXRX_CSR2, tmp);
1962
1963 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1964 "entering" : "leaving"));
1965 }
1966
1967 Static const char *
1968 ural_get_rf(int rev)
1969 {
1970 switch (rev) {
1971 case RAL_RF_2522: return "RT2522";
1972 case RAL_RF_2523: return "RT2523";
1973 case RAL_RF_2524: return "RT2524";
1974 case RAL_RF_2525: return "RT2525";
1975 case RAL_RF_2525E: return "RT2525e";
1976 case RAL_RF_2526: return "RT2526";
1977 case RAL_RF_5222: return "RT5222";
1978 default: return "unknown";
1979 }
1980 }
1981
1982 Static void
1983 ural_read_eeprom(struct ural_softc *sc)
1984 {
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 uint16_t val;
1987
1988 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1989 val = le16toh(val);
1990 sc->rf_rev = (val >> 11) & 0x7;
1991 sc->hw_radio = (val >> 10) & 0x1;
1992 sc->led_mode = (val >> 6) & 0x7;
1993 sc->rx_ant = (val >> 4) & 0x3;
1994 sc->tx_ant = (val >> 2) & 0x3;
1995 sc->nb_ant = val & 0x3;
1996
1997 /* read MAC address */
1998 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1999
2000 /* read default values for BBP registers */
2001 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2002
2003 /* read Tx power for all b/g channels */
2004 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2005 }
2006
2007 Static int
2008 ural_bbp_init(struct ural_softc *sc)
2009 {
2010 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2011 int i, ntries;
2012
2013 /* wait for BBP to be ready */
2014 for (ntries = 0; ntries < 100; ntries++) {
2015 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2016 break;
2017 DELAY(1000);
2018 }
2019 if (ntries == 100) {
2020 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
2021 return EIO;
2022 }
2023
2024 /* initialize BBP registers to default values */
2025 for (i = 0; i < N(ural_def_bbp); i++)
2026 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2027
2028 #if 0
2029 /* initialize BBP registers to values stored in EEPROM */
2030 for (i = 0; i < 16; i++) {
2031 if (sc->bbp_prom[i].reg == 0xff)
2032 continue;
2033 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2034 }
2035 #endif
2036
2037 return 0;
2038 #undef N
2039 }
2040
2041 Static void
2042 ural_set_txantenna(struct ural_softc *sc, int antenna)
2043 {
2044 uint16_t tmp;
2045 uint8_t tx;
2046
2047 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2048 if (antenna == 1)
2049 tx |= RAL_BBP_ANTA;
2050 else if (antenna == 2)
2051 tx |= RAL_BBP_ANTB;
2052 else
2053 tx |= RAL_BBP_DIVERSITY;
2054
2055 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2056 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2057 sc->rf_rev == RAL_RF_5222)
2058 tx |= RAL_BBP_FLIPIQ;
2059
2060 ural_bbp_write(sc, RAL_BBP_TX, tx);
2061
2062 /* update values in PHY_CSR5 and PHY_CSR6 */
2063 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2064 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2065
2066 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2067 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2068 }
2069
2070 Static void
2071 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2072 {
2073 uint8_t rx;
2074
2075 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2076 if (antenna == 1)
2077 rx |= RAL_BBP_ANTA;
2078 else if (antenna == 2)
2079 rx |= RAL_BBP_ANTB;
2080 else
2081 rx |= RAL_BBP_DIVERSITY;
2082
2083 /* need to force no I/Q flip for RF 2525e and 2526 */
2084 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2085 rx &= ~RAL_BBP_FLIPIQ;
2086
2087 ural_bbp_write(sc, RAL_BBP_RX, rx);
2088 }
2089
2090 Static int
2091 ural_init(struct ifnet *ifp)
2092 {
2093 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2094 struct ural_softc *sc = ifp->if_softc;
2095 struct ieee80211com *ic = &sc->sc_ic;
2096 struct ieee80211_key *wk;
2097 struct ural_rx_data *data;
2098 uint16_t tmp;
2099 usbd_status error;
2100 int i, ntries;
2101
2102 ural_set_testmode(sc);
2103 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2104
2105 ural_stop(ifp, 0);
2106
2107 /* initialize MAC registers to default values */
2108 for (i = 0; i < N(ural_def_mac); i++)
2109 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2110
2111 /* wait for BBP and RF to wake up (this can take a long time!) */
2112 for (ntries = 0; ntries < 100; ntries++) {
2113 tmp = ural_read(sc, RAL_MAC_CSR17);
2114 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2115 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2116 break;
2117 DELAY(1000);
2118 }
2119 if (ntries == 100) {
2120 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2121 USBDEVNAME(sc->sc_dev));
2122 error = EIO;
2123 goto fail;
2124 }
2125
2126 /* we're ready! */
2127 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2128
2129 /* set basic rate set (will be updated later) */
2130 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2131
2132 error = ural_bbp_init(sc);
2133 if (error != 0)
2134 goto fail;
2135
2136 /* set default BSS channel */
2137 ural_set_chan(sc, ic->ic_curchan);
2138
2139 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2140 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2141
2142 ural_set_txantenna(sc, sc->tx_ant);
2143 ural_set_rxantenna(sc, sc->rx_ant);
2144
2145 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2146 ural_set_macaddr(sc, ic->ic_myaddr);
2147
2148 /*
2149 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2150 */
2151 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2152 wk = &ic->ic_crypto.cs_nw_keys[i];
2153 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2154 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2155 }
2156
2157 /*
2158 * Allocate xfer for AMRR statistics requests.
2159 */
2160 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2161 if (sc->amrr_xfer == NULL) {
2162 printf("%s: could not allocate AMRR xfer\n",
2163 USBDEVNAME(sc->sc_dev));
2164 goto fail;
2165 }
2166
2167 /*
2168 * Open Tx and Rx USB bulk pipes.
2169 */
2170 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2171 &sc->sc_tx_pipeh);
2172 if (error != 0) {
2173 printf("%s: could not open Tx pipe: %s\n",
2174 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2175 goto fail;
2176 }
2177
2178 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2179 &sc->sc_rx_pipeh);
2180 if (error != 0) {
2181 printf("%s: could not open Rx pipe: %s\n",
2182 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2183 goto fail;
2184 }
2185
2186 /*
2187 * Allocate Tx and Rx xfer queues.
2188 */
2189 error = ural_alloc_tx_list(sc);
2190 if (error != 0) {
2191 printf("%s: could not allocate Tx list\n",
2192 USBDEVNAME(sc->sc_dev));
2193 goto fail;
2194 }
2195
2196 error = ural_alloc_rx_list(sc);
2197 if (error != 0) {
2198 printf("%s: could not allocate Rx list\n",
2199 USBDEVNAME(sc->sc_dev));
2200 goto fail;
2201 }
2202
2203 /*
2204 * Start up the receive pipe.
2205 */
2206 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2207 data = &sc->rx_data[i];
2208
2209 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2210 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2211 usbd_transfer(data->xfer);
2212 }
2213
2214 /* kick Rx */
2215 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2216 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2218 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2219 tmp |= RAL_DROP_TODS;
2220 if (!(ifp->if_flags & IFF_PROMISC))
2221 tmp |= RAL_DROP_NOT_TO_ME;
2222 }
2223 ural_write(sc, RAL_TXRX_CSR2, tmp);
2224
2225 ifp->if_flags &= ~IFF_OACTIVE;
2226 ifp->if_flags |= IFF_RUNNING;
2227
2228 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2229 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2230 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2231 } else
2232 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2233
2234 return 0;
2235
2236 fail: ural_stop(ifp, 1);
2237 return error;
2238 #undef N
2239 }
2240
2241 Static void
2242 ural_stop(struct ifnet *ifp, int disable)
2243 {
2244 struct ural_softc *sc = ifp->if_softc;
2245 struct ieee80211com *ic = &sc->sc_ic;
2246
2247 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2248
2249 sc->sc_tx_timer = 0;
2250 ifp->if_timer = 0;
2251 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2252
2253 /* disable Rx */
2254 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2255
2256 /* reset ASIC and BBP (but won't reset MAC registers!) */
2257 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2258 ural_write(sc, RAL_MAC_CSR1, 0);
2259
2260 if (sc->amrr_xfer != NULL) {
2261 usbd_free_xfer(sc->amrr_xfer);
2262 sc->amrr_xfer = NULL;
2263 }
2264
2265 if (sc->sc_rx_pipeh != NULL) {
2266 usbd_abort_pipe(sc->sc_rx_pipeh);
2267 usbd_close_pipe(sc->sc_rx_pipeh);
2268 sc->sc_rx_pipeh = NULL;
2269 }
2270
2271 if (sc->sc_tx_pipeh != NULL) {
2272 usbd_abort_pipe(sc->sc_tx_pipeh);
2273 usbd_close_pipe(sc->sc_tx_pipeh);
2274 sc->sc_tx_pipeh = NULL;
2275 }
2276
2277 ural_free_rx_list(sc);
2278 ural_free_tx_list(sc);
2279 }
2280
2281 int
2282 ural_activate(device_ptr_t self, enum devact act)
2283 {
2284 struct ural_softc *sc = device_private(self);
2285
2286 switch (act) {
2287 case DVACT_DEACTIVATE:
2288 if_deactivate(&sc->sc_if);
2289 return 0;
2290 default:
2291 return EOPNOTSUPP;
2292 }
2293 }
2294
2295 Static void
2296 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2297 {
2298 int i;
2299
2300 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2301 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2302
2303 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2304
2305 /* set rate to some reasonable initial value */
2306 for (i = ni->ni_rates.rs_nrates - 1;
2307 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2308 i--);
2309 ni->ni_txrate = i;
2310
2311 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2312 }
2313
2314 Static void
2315 ural_amrr_timeout(void *arg)
2316 {
2317 struct ural_softc *sc = (struct ural_softc *)arg;
2318 usb_device_request_t req;
2319 int s;
2320
2321 s = splusb();
2322
2323 /*
2324 * Asynchronously read statistic registers (cleared by read).
2325 */
2326 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2327 req.bRequest = RAL_READ_MULTI_MAC;
2328 USETW(req.wValue, 0);
2329 USETW(req.wIndex, RAL_STA_CSR0);
2330 USETW(req.wLength, sizeof sc->sta);
2331
2332 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2333 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2334 ural_amrr_update);
2335 (void)usbd_transfer(sc->amrr_xfer);
2336
2337 splx(s);
2338 }
2339
2340 Static void
2341 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2342 usbd_status status)
2343 {
2344 struct ural_softc *sc = (struct ural_softc *)priv;
2345 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2346
2347 if (status != USBD_NORMAL_COMPLETION) {
2348 printf("%s: could not retrieve Tx statistics - "
2349 "cancelling automatic rate control\n",
2350 USBDEVNAME(sc->sc_dev));
2351 return;
2352 }
2353
2354 /* count TX retry-fail as Tx errors */
2355 ifp->if_oerrors += sc->sta[9];
2356
2357 sc->amn.amn_retrycnt =
2358 sc->sta[7] + /* TX one-retry ok count */
2359 sc->sta[8] + /* TX more-retry ok count */
2360 sc->sta[9]; /* TX retry-fail count */
2361
2362 sc->amn.amn_txcnt =
2363 sc->amn.amn_retrycnt +
2364 sc->sta[6]; /* TX no-retry ok count */
2365
2366 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2367
2368 usb_callout(sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2369 }
2370