if_ural.c revision 1.42 1 /* $NetBSD: if_ural.c,v 1.42 2013/01/05 01:30:16 christos Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.42 2013/01/05 01:30:16 christos Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
95 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
96 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
97 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
98 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
101 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
102 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
104 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
105 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
106 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
107 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
108 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
109 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
110 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
111 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
112 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
113 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
114 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
115 };
116
117 Static int ural_alloc_tx_list(struct ural_softc *);
118 Static void ural_free_tx_list(struct ural_softc *);
119 Static int ural_alloc_rx_list(struct ural_softc *);
120 Static void ural_free_rx_list(struct ural_softc *);
121 Static int ural_media_change(struct ifnet *);
122 Static void ural_next_scan(void *);
123 Static void ural_task(void *);
124 Static int ural_newstate(struct ieee80211com *,
125 enum ieee80211_state, int);
126 Static int ural_rxrate(struct ural_rx_desc *);
127 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
128 usbd_status);
129 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
130 usbd_status);
131 Static int ural_ack_rate(struct ieee80211com *, int);
132 Static uint16_t ural_txtime(int, int, uint32_t);
133 Static uint8_t ural_plcp_signal(int);
134 Static void ural_setup_tx_desc(struct ural_softc *,
135 struct ural_tx_desc *, uint32_t, int, int);
136 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
137 struct ieee80211_node *);
138 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
139 struct ieee80211_node *);
140 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
141 struct ieee80211_node *);
142 Static void ural_start(struct ifnet *);
143 Static void ural_watchdog(struct ifnet *);
144 Static int ural_reset(struct ifnet *);
145 Static int ural_ioctl(struct ifnet *, u_long, void *);
146 Static void ural_set_testmode(struct ural_softc *);
147 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
148 int);
149 Static uint16_t ural_read(struct ural_softc *, uint16_t);
150 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
151 int);
152 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
153 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
154 int);
155 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
156 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
157 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
158 Static void ural_set_chan(struct ural_softc *,
159 struct ieee80211_channel *);
160 Static void ural_disable_rf_tune(struct ural_softc *);
161 Static void ural_enable_tsf_sync(struct ural_softc *);
162 Static void ural_update_slot(struct ifnet *);
163 Static void ural_set_txpreamble(struct ural_softc *);
164 Static void ural_set_basicrates(struct ural_softc *);
165 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
166 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
167 Static void ural_update_promisc(struct ural_softc *);
168 Static const char *ural_get_rf(int);
169 Static void ural_read_eeprom(struct ural_softc *);
170 Static int ural_bbp_init(struct ural_softc *);
171 Static void ural_set_txantenna(struct ural_softc *, int);
172 Static void ural_set_rxantenna(struct ural_softc *, int);
173 Static int ural_init(struct ifnet *);
174 Static void ural_stop(struct ifnet *, int);
175 Static void ural_amrr_start(struct ural_softc *,
176 struct ieee80211_node *);
177 Static void ural_amrr_timeout(void *);
178 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
179 usbd_status status);
180
181 /*
182 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
183 */
184 static const struct ieee80211_rateset ural_rateset_11a =
185 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
186
187 static const struct ieee80211_rateset ural_rateset_11b =
188 { 4, { 2, 4, 11, 22 } };
189
190 static const struct ieee80211_rateset ural_rateset_11g =
191 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
192
193 /*
194 * Default values for MAC registers; values taken from the reference driver.
195 */
196 static const struct {
197 uint16_t reg;
198 uint16_t val;
199 } ural_def_mac[] = {
200 { RAL_TXRX_CSR5, 0x8c8d },
201 { RAL_TXRX_CSR6, 0x8b8a },
202 { RAL_TXRX_CSR7, 0x8687 },
203 { RAL_TXRX_CSR8, 0x0085 },
204 { RAL_MAC_CSR13, 0x1111 },
205 { RAL_MAC_CSR14, 0x1e11 },
206 { RAL_TXRX_CSR21, 0xe78f },
207 { RAL_MAC_CSR9, 0xff1d },
208 { RAL_MAC_CSR11, 0x0002 },
209 { RAL_MAC_CSR22, 0x0053 },
210 { RAL_MAC_CSR15, 0x0000 },
211 { RAL_MAC_CSR8, 0x0780 },
212 { RAL_TXRX_CSR19, 0x0000 },
213 { RAL_TXRX_CSR18, 0x005a },
214 { RAL_PHY_CSR2, 0x0000 },
215 { RAL_TXRX_CSR0, 0x1ec0 },
216 { RAL_PHY_CSR4, 0x000f }
217 };
218
219 /*
220 * Default values for BBP registers; values taken from the reference driver.
221 */
222 static const struct {
223 uint8_t reg;
224 uint8_t val;
225 } ural_def_bbp[] = {
226 { 3, 0x02 },
227 { 4, 0x19 },
228 { 14, 0x1c },
229 { 15, 0x30 },
230 { 16, 0xac },
231 { 17, 0x48 },
232 { 18, 0x18 },
233 { 19, 0xff },
234 { 20, 0x1e },
235 { 21, 0x08 },
236 { 22, 0x08 },
237 { 23, 0x08 },
238 { 24, 0x80 },
239 { 25, 0x50 },
240 { 26, 0x08 },
241 { 27, 0x23 },
242 { 30, 0x10 },
243 { 31, 0x2b },
244 { 32, 0xb9 },
245 { 34, 0x12 },
246 { 35, 0x50 },
247 { 39, 0xc4 },
248 { 40, 0x02 },
249 { 41, 0x60 },
250 { 53, 0x10 },
251 { 54, 0x18 },
252 { 56, 0x08 },
253 { 57, 0x10 },
254 { 58, 0x08 },
255 { 61, 0x60 },
256 { 62, 0x10 },
257 { 75, 0xff }
258 };
259
260 /*
261 * Default values for RF register R2 indexed by channel numbers.
262 */
263 static const uint32_t ural_rf2522_r2[] = {
264 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
265 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
266 };
267
268 static const uint32_t ural_rf2523_r2[] = {
269 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
270 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
271 };
272
273 static const uint32_t ural_rf2524_r2[] = {
274 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276 };
277
278 static const uint32_t ural_rf2525_r2[] = {
279 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
280 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
281 };
282
283 static const uint32_t ural_rf2525_hi_r2[] = {
284 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
285 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
286 };
287
288 static const uint32_t ural_rf2525e_r2[] = {
289 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
290 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
291 };
292
293 static const uint32_t ural_rf2526_hi_r2[] = {
294 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
295 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
296 };
297
298 static const uint32_t ural_rf2526_r2[] = {
299 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
300 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
301 };
302
303 /*
304 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
305 * values taken from the reference driver.
306 */
307 static const struct {
308 uint8_t chan;
309 uint32_t r1;
310 uint32_t r2;
311 uint32_t r4;
312 } ural_rf5222[] = {
313 { 1, 0x08808, 0x0044d, 0x00282 },
314 { 2, 0x08808, 0x0044e, 0x00282 },
315 { 3, 0x08808, 0x0044f, 0x00282 },
316 { 4, 0x08808, 0x00460, 0x00282 },
317 { 5, 0x08808, 0x00461, 0x00282 },
318 { 6, 0x08808, 0x00462, 0x00282 },
319 { 7, 0x08808, 0x00463, 0x00282 },
320 { 8, 0x08808, 0x00464, 0x00282 },
321 { 9, 0x08808, 0x00465, 0x00282 },
322 { 10, 0x08808, 0x00466, 0x00282 },
323 { 11, 0x08808, 0x00467, 0x00282 },
324 { 12, 0x08808, 0x00468, 0x00282 },
325 { 13, 0x08808, 0x00469, 0x00282 },
326 { 14, 0x08808, 0x0046b, 0x00286 },
327
328 { 36, 0x08804, 0x06225, 0x00287 },
329 { 40, 0x08804, 0x06226, 0x00287 },
330 { 44, 0x08804, 0x06227, 0x00287 },
331 { 48, 0x08804, 0x06228, 0x00287 },
332 { 52, 0x08804, 0x06229, 0x00287 },
333 { 56, 0x08804, 0x0622a, 0x00287 },
334 { 60, 0x08804, 0x0622b, 0x00287 },
335 { 64, 0x08804, 0x0622c, 0x00287 },
336
337 { 100, 0x08804, 0x02200, 0x00283 },
338 { 104, 0x08804, 0x02201, 0x00283 },
339 { 108, 0x08804, 0x02202, 0x00283 },
340 { 112, 0x08804, 0x02203, 0x00283 },
341 { 116, 0x08804, 0x02204, 0x00283 },
342 { 120, 0x08804, 0x02205, 0x00283 },
343 { 124, 0x08804, 0x02206, 0x00283 },
344 { 128, 0x08804, 0x02207, 0x00283 },
345 { 132, 0x08804, 0x02208, 0x00283 },
346 { 136, 0x08804, 0x02209, 0x00283 },
347 { 140, 0x08804, 0x0220a, 0x00283 },
348
349 { 149, 0x08808, 0x02429, 0x00281 },
350 { 153, 0x08808, 0x0242b, 0x00281 },
351 { 157, 0x08808, 0x0242d, 0x00281 },
352 { 161, 0x08808, 0x0242f, 0x00281 }
353 };
354
355 int ural_match(device_t, cfdata_t, void *);
356 void ural_attach(device_t, device_t, void *);
357 int ural_detach(device_t, int);
358 int ural_activate(device_t, enum devact);
359 extern struct cfdriver ural_cd;
360 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
361
362 int
363 ural_match(device_t parent, cfdata_t match, void *aux)
364 {
365 struct usb_attach_arg *uaa = aux;
366
367 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
368 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
369 }
370
371 void
372 ural_attach(device_t parent, device_t self, void *aux)
373 {
374 struct ural_softc *sc = device_private(self);
375 struct usb_attach_arg *uaa = aux;
376 struct ieee80211com *ic = &sc->sc_ic;
377 struct ifnet *ifp = &sc->sc_if;
378 usb_interface_descriptor_t *id;
379 usb_endpoint_descriptor_t *ed;
380 usbd_status error;
381 char *devinfop;
382 int i;
383
384 sc->sc_dev = self;
385 sc->sc_udev = uaa->device;
386
387 aprint_naive("\n");
388 aprint_normal("\n");
389
390 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
391 aprint_normal_dev(self, "%s\n", devinfop);
392 usbd_devinfo_free(devinfop);
393
394 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
395 if (error != 0) {
396 aprint_error_dev(self, "failed to set configuration"
397 ", err=%s\n", usbd_errstr(error));
398 return;
399 }
400
401 /* get the first interface handle */
402 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
403 &sc->sc_iface);
404 if (error != 0) {
405 aprint_error_dev(self, "could not get interface handle\n");
406 return;
407 }
408
409 /*
410 * Find endpoints.
411 */
412 id = usbd_get_interface_descriptor(sc->sc_iface);
413
414 sc->sc_rx_no = sc->sc_tx_no = -1;
415 for (i = 0; i < id->bNumEndpoints; i++) {
416 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
417 if (ed == NULL) {
418 aprint_error_dev(self,
419 "no endpoint descriptor for %d\n", i);
420 return;
421 }
422
423 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
424 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
425 sc->sc_rx_no = ed->bEndpointAddress;
426 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
427 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
428 sc->sc_tx_no = ed->bEndpointAddress;
429 }
430 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
431 aprint_error_dev(self, "missing endpoint\n");
432 return;
433 }
434
435 usb_init_task(&sc->sc_task, ural_task, sc);
436 callout_init(&sc->sc_scan_ch, 0);
437 sc->amrr.amrr_min_success_threshold = 1;
438 sc->amrr.amrr_max_success_threshold = 15;
439 callout_init(&sc->sc_amrr_ch, 0);
440
441 /* retrieve RT2570 rev. no */
442 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
443
444 /* retrieve MAC address and various other things from EEPROM */
445 ural_read_eeprom(sc);
446
447 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
448 sc->asic_rev, ural_get_rf(sc->rf_rev));
449
450 ifp->if_softc = sc;
451 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
452 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
453 ifp->if_init = ural_init;
454 ifp->if_ioctl = ural_ioctl;
455 ifp->if_start = ural_start;
456 ifp->if_watchdog = ural_watchdog;
457 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
458 IFQ_SET_READY(&ifp->if_snd);
459
460 ic->ic_ifp = ifp;
461 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
462 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
463 ic->ic_state = IEEE80211_S_INIT;
464
465 /* set device capabilities */
466 ic->ic_caps =
467 IEEE80211_C_IBSS | /* IBSS mode supported */
468 IEEE80211_C_MONITOR | /* monitor mode supported */
469 IEEE80211_C_HOSTAP | /* HostAp mode supported */
470 IEEE80211_C_TXPMGT | /* tx power management */
471 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
472 IEEE80211_C_SHSLOT | /* short slot time supported */
473 IEEE80211_C_WPA; /* 802.11i */
474
475 if (sc->rf_rev == RAL_RF_5222) {
476 /* set supported .11a rates */
477 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
478
479 /* set supported .11a channels */
480 for (i = 36; i <= 64; i += 4) {
481 ic->ic_channels[i].ic_freq =
482 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
483 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
484 }
485 for (i = 100; i <= 140; i += 4) {
486 ic->ic_channels[i].ic_freq =
487 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
488 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
489 }
490 for (i = 149; i <= 161; i += 4) {
491 ic->ic_channels[i].ic_freq =
492 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
493 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
494 }
495 }
496
497 /* set supported .11b and .11g rates */
498 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
499 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
500
501 /* set supported .11b and .11g channels (1 through 14) */
502 for (i = 1; i <= 14; i++) {
503 ic->ic_channels[i].ic_freq =
504 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
505 ic->ic_channels[i].ic_flags =
506 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
507 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
508 }
509
510 if_attach(ifp);
511 ieee80211_ifattach(ic);
512 ic->ic_reset = ural_reset;
513
514 /* override state transition machine */
515 sc->sc_newstate = ic->ic_newstate;
516 ic->ic_newstate = ural_newstate;
517 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
518
519 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
520 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
521
522 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
523 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
524 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
525
526 sc->sc_txtap_len = sizeof sc->sc_txtapu;
527 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
528 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
529
530 ieee80211_announce(ic);
531
532 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
533 sc->sc_dev);
534
535 return;
536 }
537
538 int
539 ural_detach(device_t self, int flags)
540 {
541 struct ural_softc *sc = device_private(self);
542 struct ieee80211com *ic = &sc->sc_ic;
543 struct ifnet *ifp = &sc->sc_if;
544 int s;
545
546 s = splusb();
547
548 ural_stop(ifp, 1);
549 usb_rem_task(sc->sc_udev, &sc->sc_task);
550 callout_stop(&sc->sc_scan_ch);
551 callout_stop(&sc->sc_amrr_ch);
552
553 if (sc->amrr_xfer != NULL) {
554 usbd_free_xfer(sc->amrr_xfer);
555 sc->amrr_xfer = NULL;
556 }
557
558 if (sc->sc_rx_pipeh != NULL) {
559 usbd_abort_pipe(sc->sc_rx_pipeh);
560 usbd_close_pipe(sc->sc_rx_pipeh);
561 }
562
563 if (sc->sc_tx_pipeh != NULL) {
564 usbd_abort_pipe(sc->sc_tx_pipeh);
565 usbd_close_pipe(sc->sc_tx_pipeh);
566 }
567
568 bpf_detach(ifp);
569 ieee80211_ifdetach(ic);
570 if_detach(ifp);
571
572 splx(s);
573
574 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
575 sc->sc_dev);
576
577 return 0;
578 }
579
580 Static int
581 ural_alloc_tx_list(struct ural_softc *sc)
582 {
583 struct ural_tx_data *data;
584 int i, error;
585
586 sc->tx_queued = 0;
587
588 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
589 data = &sc->tx_data[i];
590
591 data->sc = sc;
592
593 data->xfer = usbd_alloc_xfer(sc->sc_udev);
594 if (data->xfer == NULL) {
595 printf("%s: could not allocate tx xfer\n",
596 device_xname(sc->sc_dev));
597 error = ENOMEM;
598 goto fail;
599 }
600
601 data->buf = usbd_alloc_buffer(data->xfer,
602 RAL_TX_DESC_SIZE + MCLBYTES);
603 if (data->buf == NULL) {
604 printf("%s: could not allocate tx buffer\n",
605 device_xname(sc->sc_dev));
606 error = ENOMEM;
607 goto fail;
608 }
609 }
610
611 return 0;
612
613 fail: ural_free_tx_list(sc);
614 return error;
615 }
616
617 Static void
618 ural_free_tx_list(struct ural_softc *sc)
619 {
620 struct ural_tx_data *data;
621 int i;
622
623 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
624 data = &sc->tx_data[i];
625
626 if (data->xfer != NULL) {
627 usbd_free_xfer(data->xfer);
628 data->xfer = NULL;
629 }
630
631 if (data->ni != NULL) {
632 ieee80211_free_node(data->ni);
633 data->ni = NULL;
634 }
635 }
636 }
637
638 Static int
639 ural_alloc_rx_list(struct ural_softc *sc)
640 {
641 struct ural_rx_data *data;
642 int i, error;
643
644 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
645 data = &sc->rx_data[i];
646
647 data->sc = sc;
648
649 data->xfer = usbd_alloc_xfer(sc->sc_udev);
650 if (data->xfer == NULL) {
651 printf("%s: could not allocate rx xfer\n",
652 device_xname(sc->sc_dev));
653 error = ENOMEM;
654 goto fail;
655 }
656
657 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
658 printf("%s: could not allocate rx buffer\n",
659 device_xname(sc->sc_dev));
660 error = ENOMEM;
661 goto fail;
662 }
663
664 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
665 if (data->m == NULL) {
666 printf("%s: could not allocate rx mbuf\n",
667 device_xname(sc->sc_dev));
668 error = ENOMEM;
669 goto fail;
670 }
671
672 MCLGET(data->m, M_DONTWAIT);
673 if (!(data->m->m_flags & M_EXT)) {
674 printf("%s: could not allocate rx mbuf cluster\n",
675 device_xname(sc->sc_dev));
676 error = ENOMEM;
677 goto fail;
678 }
679
680 data->buf = mtod(data->m, uint8_t *);
681 }
682
683 return 0;
684
685 fail: ural_free_tx_list(sc);
686 return error;
687 }
688
689 Static void
690 ural_free_rx_list(struct ural_softc *sc)
691 {
692 struct ural_rx_data *data;
693 int i;
694
695 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
696 data = &sc->rx_data[i];
697
698 if (data->xfer != NULL) {
699 usbd_free_xfer(data->xfer);
700 data->xfer = NULL;
701 }
702
703 if (data->m != NULL) {
704 m_freem(data->m);
705 data->m = NULL;
706 }
707 }
708 }
709
710 Static int
711 ural_media_change(struct ifnet *ifp)
712 {
713 int error;
714
715 error = ieee80211_media_change(ifp);
716 if (error != ENETRESET)
717 return error;
718
719 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
720 ural_init(ifp);
721
722 return 0;
723 }
724
725 /*
726 * This function is called periodically (every 200ms) during scanning to
727 * switch from one channel to another.
728 */
729 Static void
730 ural_next_scan(void *arg)
731 {
732 struct ural_softc *sc = arg;
733 struct ieee80211com *ic = &sc->sc_ic;
734
735 if (ic->ic_state == IEEE80211_S_SCAN)
736 ieee80211_next_scan(ic);
737 }
738
739 Static void
740 ural_task(void *arg)
741 {
742 struct ural_softc *sc = arg;
743 struct ieee80211com *ic = &sc->sc_ic;
744 enum ieee80211_state ostate;
745 struct ieee80211_node *ni;
746 struct mbuf *m;
747
748 ostate = ic->ic_state;
749
750 switch (sc->sc_state) {
751 case IEEE80211_S_INIT:
752 if (ostate == IEEE80211_S_RUN) {
753 /* abort TSF synchronization */
754 ural_write(sc, RAL_TXRX_CSR19, 0);
755
756 /* force tx led to stop blinking */
757 ural_write(sc, RAL_MAC_CSR20, 0);
758 }
759 break;
760
761 case IEEE80211_S_SCAN:
762 ural_set_chan(sc, ic->ic_curchan);
763 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
764 break;
765
766 case IEEE80211_S_AUTH:
767 ural_set_chan(sc, ic->ic_curchan);
768 break;
769
770 case IEEE80211_S_ASSOC:
771 ural_set_chan(sc, ic->ic_curchan);
772 break;
773
774 case IEEE80211_S_RUN:
775 ural_set_chan(sc, ic->ic_curchan);
776
777 ni = ic->ic_bss;
778
779 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
780 ural_update_slot(ic->ic_ifp);
781 ural_set_txpreamble(sc);
782 ural_set_basicrates(sc);
783 ural_set_bssid(sc, ni->ni_bssid);
784 }
785
786 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
787 ic->ic_opmode == IEEE80211_M_IBSS) {
788 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
789 if (m == NULL) {
790 printf("%s: could not allocate beacon\n",
791 device_xname(sc->sc_dev));
792 return;
793 }
794
795 if (ural_tx_bcn(sc, m, ni) != 0) {
796 m_freem(m);
797 printf("%s: could not send beacon\n",
798 device_xname(sc->sc_dev));
799 return;
800 }
801
802 /* beacon is no longer needed */
803 m_freem(m);
804 }
805
806 /* make tx led blink on tx (controlled by ASIC) */
807 ural_write(sc, RAL_MAC_CSR20, 1);
808
809 if (ic->ic_opmode != IEEE80211_M_MONITOR)
810 ural_enable_tsf_sync(sc);
811
812 /* enable automatic rate adaptation in STA mode */
813 if (ic->ic_opmode == IEEE80211_M_STA &&
814 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
815 ural_amrr_start(sc, ni);
816
817 break;
818 }
819
820 sc->sc_newstate(ic, sc->sc_state, -1);
821 }
822
823 Static int
824 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
825 int arg)
826 {
827 struct ural_softc *sc = ic->ic_ifp->if_softc;
828
829 usb_rem_task(sc->sc_udev, &sc->sc_task);
830 callout_stop(&sc->sc_scan_ch);
831 callout_stop(&sc->sc_amrr_ch);
832
833 /* do it in a process context */
834 sc->sc_state = nstate;
835 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
836
837 return 0;
838 }
839
840 /* quickly determine if a given rate is CCK or OFDM */
841 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
842
843 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
844 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
845
846 #define RAL_SIFS 10 /* us */
847
848 #define RAL_RXTX_TURNAROUND 5 /* us */
849
850 /*
851 * This function is only used by the Rx radiotap code.
852 */
853 Static int
854 ural_rxrate(struct ural_rx_desc *desc)
855 {
856 if (le32toh(desc->flags) & RAL_RX_OFDM) {
857 /* reverse function of ural_plcp_signal */
858 switch (desc->rate) {
859 case 0xb: return 12;
860 case 0xf: return 18;
861 case 0xa: return 24;
862 case 0xe: return 36;
863 case 0x9: return 48;
864 case 0xd: return 72;
865 case 0x8: return 96;
866 case 0xc: return 108;
867 }
868 } else {
869 if (desc->rate == 10)
870 return 2;
871 if (desc->rate == 20)
872 return 4;
873 if (desc->rate == 55)
874 return 11;
875 if (desc->rate == 110)
876 return 22;
877 }
878 return 2; /* should not get there */
879 }
880
881 Static void
882 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
883 usbd_status status)
884 {
885 struct ural_tx_data *data = priv;
886 struct ural_softc *sc = data->sc;
887 struct ifnet *ifp = &sc->sc_if;
888 int s;
889
890 if (status != USBD_NORMAL_COMPLETION) {
891 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
892 return;
893
894 printf("%s: could not transmit buffer: %s\n",
895 device_xname(sc->sc_dev), usbd_errstr(status));
896
897 if (status == USBD_STALLED)
898 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
899
900 ifp->if_oerrors++;
901 return;
902 }
903
904 s = splnet();
905
906 m_freem(data->m);
907 data->m = NULL;
908 ieee80211_free_node(data->ni);
909 data->ni = NULL;
910
911 sc->tx_queued--;
912 ifp->if_opackets++;
913
914 DPRINTFN(10, ("tx done\n"));
915
916 sc->sc_tx_timer = 0;
917 ifp->if_flags &= ~IFF_OACTIVE;
918 ural_start(ifp);
919
920 splx(s);
921 }
922
923 Static void
924 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
925 {
926 struct ural_rx_data *data = priv;
927 struct ural_softc *sc = data->sc;
928 struct ieee80211com *ic = &sc->sc_ic;
929 struct ifnet *ifp = &sc->sc_if;
930 struct ural_rx_desc *desc;
931 struct ieee80211_frame *wh;
932 struct ieee80211_node *ni;
933 struct mbuf *mnew, *m;
934 int s, len;
935
936 if (status != USBD_NORMAL_COMPLETION) {
937 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
938 return;
939
940 if (status == USBD_STALLED)
941 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
942 goto skip;
943 }
944
945 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
946
947 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
948 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
949 len));
950 ifp->if_ierrors++;
951 goto skip;
952 }
953
954 /* rx descriptor is located at the end */
955 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
956
957 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
958 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
959 /*
960 * This should not happen since we did not request to receive
961 * those frames when we filled RAL_TXRX_CSR2.
962 */
963 DPRINTFN(5, ("PHY or CRC error\n"));
964 ifp->if_ierrors++;
965 goto skip;
966 }
967
968 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
969 if (mnew == NULL) {
970 ifp->if_ierrors++;
971 goto skip;
972 }
973
974 MCLGET(mnew, M_DONTWAIT);
975 if (!(mnew->m_flags & M_EXT)) {
976 ifp->if_ierrors++;
977 m_freem(mnew);
978 goto skip;
979 }
980
981 m = data->m;
982 data->m = mnew;
983 data->buf = mtod(data->m, uint8_t *);
984
985 /* finalize mbuf */
986 m->m_pkthdr.rcvif = ifp;
987 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
988 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
989
990 s = splnet();
991
992 if (sc->sc_drvbpf != NULL) {
993 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
994
995 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
996 tap->wr_rate = ural_rxrate(desc);
997 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
998 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
999 tap->wr_antenna = sc->rx_ant;
1000 tap->wr_antsignal = desc->rssi;
1001
1002 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1003 }
1004
1005 wh = mtod(m, struct ieee80211_frame *);
1006 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1007
1008 /* send the frame to the 802.11 layer */
1009 ieee80211_input(ic, m, ni, desc->rssi, 0);
1010
1011 /* node is no longer needed */
1012 ieee80211_free_node(ni);
1013
1014 splx(s);
1015
1016 DPRINTFN(15, ("rx done\n"));
1017
1018 skip: /* setup a new transfer */
1019 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1020 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1021 usbd_transfer(xfer);
1022 }
1023
1024 /*
1025 * Return the expected ack rate for a frame transmitted at rate `rate'.
1026 * XXX: this should depend on the destination node basic rate set.
1027 */
1028 Static int
1029 ural_ack_rate(struct ieee80211com *ic, int rate)
1030 {
1031 switch (rate) {
1032 /* CCK rates */
1033 case 2:
1034 return 2;
1035 case 4:
1036 case 11:
1037 case 22:
1038 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1039
1040 /* OFDM rates */
1041 case 12:
1042 case 18:
1043 return 12;
1044 case 24:
1045 case 36:
1046 return 24;
1047 case 48:
1048 case 72:
1049 case 96:
1050 case 108:
1051 return 48;
1052 }
1053
1054 /* default to 1Mbps */
1055 return 2;
1056 }
1057
1058 /*
1059 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1060 * The function automatically determines the operating mode depending on the
1061 * given rate. `flags' indicates whether short preamble is in use or not.
1062 */
1063 Static uint16_t
1064 ural_txtime(int len, int rate, uint32_t flags)
1065 {
1066 uint16_t txtime;
1067
1068 if (RAL_RATE_IS_OFDM(rate)) {
1069 /* IEEE Std 802.11g-2003, pp. 37 */
1070 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1071 txtime = 16 + 4 + 4 * txtime + 6;
1072 } else {
1073 /* IEEE Std 802.11b-1999, pp. 28 */
1074 txtime = (16 * len + rate - 1) / rate;
1075 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1076 txtime += 72 + 24;
1077 else
1078 txtime += 144 + 48;
1079 }
1080 return txtime;
1081 }
1082
1083 Static uint8_t
1084 ural_plcp_signal(int rate)
1085 {
1086 switch (rate) {
1087 /* CCK rates (returned values are device-dependent) */
1088 case 2: return 0x0;
1089 case 4: return 0x1;
1090 case 11: return 0x2;
1091 case 22: return 0x3;
1092
1093 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1094 case 12: return 0xb;
1095 case 18: return 0xf;
1096 case 24: return 0xa;
1097 case 36: return 0xe;
1098 case 48: return 0x9;
1099 case 72: return 0xd;
1100 case 96: return 0x8;
1101 case 108: return 0xc;
1102
1103 /* unsupported rates (should not get there) */
1104 default: return 0xff;
1105 }
1106 }
1107
1108 Static void
1109 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1110 uint32_t flags, int len, int rate)
1111 {
1112 struct ieee80211com *ic = &sc->sc_ic;
1113 uint16_t plcp_length;
1114 int remainder;
1115
1116 desc->flags = htole32(flags);
1117 desc->flags |= htole32(RAL_TX_NEWSEQ);
1118 desc->flags |= htole32(len << 16);
1119
1120 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1121 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1122
1123 /* setup PLCP fields */
1124 desc->plcp_signal = ural_plcp_signal(rate);
1125 desc->plcp_service = 4;
1126
1127 len += IEEE80211_CRC_LEN;
1128 if (RAL_RATE_IS_OFDM(rate)) {
1129 desc->flags |= htole32(RAL_TX_OFDM);
1130
1131 plcp_length = len & 0xfff;
1132 desc->plcp_length_hi = plcp_length >> 6;
1133 desc->plcp_length_lo = plcp_length & 0x3f;
1134 } else {
1135 plcp_length = (16 * len + rate - 1) / rate;
1136 if (rate == 22) {
1137 remainder = (16 * len) % 22;
1138 if (remainder != 0 && remainder < 7)
1139 desc->plcp_service |= RAL_PLCP_LENGEXT;
1140 }
1141 desc->plcp_length_hi = plcp_length >> 8;
1142 desc->plcp_length_lo = plcp_length & 0xff;
1143
1144 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1145 desc->plcp_signal |= 0x08;
1146 }
1147
1148 desc->iv = 0;
1149 desc->eiv = 0;
1150 }
1151
1152 #define RAL_TX_TIMEOUT 5000
1153
1154 Static int
1155 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1156 {
1157 struct ural_tx_desc *desc;
1158 usbd_xfer_handle xfer;
1159 uint8_t cmd = 0;
1160 usbd_status error;
1161 uint8_t *buf;
1162 int xferlen, rate;
1163
1164 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1165
1166 xfer = usbd_alloc_xfer(sc->sc_udev);
1167 if (xfer == NULL)
1168 return ENOMEM;
1169
1170 /* xfer length needs to be a multiple of two! */
1171 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1172
1173 buf = usbd_alloc_buffer(xfer, xferlen);
1174 if (buf == NULL) {
1175 usbd_free_xfer(xfer);
1176 return ENOMEM;
1177 }
1178
1179 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1180 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1181
1182 error = usbd_sync_transfer(xfer);
1183 if (error != 0) {
1184 usbd_free_xfer(xfer);
1185 return error;
1186 }
1187
1188 desc = (struct ural_tx_desc *)buf;
1189
1190 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1191 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1192 m0->m_pkthdr.len, rate);
1193
1194 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1195 m0->m_pkthdr.len, rate, xferlen));
1196
1197 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1198 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1199
1200 error = usbd_sync_transfer(xfer);
1201 usbd_free_xfer(xfer);
1202
1203 return error;
1204 }
1205
1206 Static int
1207 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1208 {
1209 struct ieee80211com *ic = &sc->sc_ic;
1210 struct ural_tx_desc *desc;
1211 struct ural_tx_data *data;
1212 struct ieee80211_frame *wh;
1213 struct ieee80211_key *k;
1214 uint32_t flags = 0;
1215 uint16_t dur;
1216 usbd_status error;
1217 int xferlen, rate;
1218
1219 data = &sc->tx_data[0];
1220 desc = (struct ural_tx_desc *)data->buf;
1221
1222 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1223
1224 wh = mtod(m0, struct ieee80211_frame *);
1225
1226 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1227 k = ieee80211_crypto_encap(ic, ni, m0);
1228 if (k == NULL) {
1229 m_freem(m0);
1230 return ENOBUFS;
1231 }
1232 }
1233
1234 data->m = m0;
1235 data->ni = ni;
1236
1237 wh = mtod(m0, struct ieee80211_frame *);
1238
1239 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1240 flags |= RAL_TX_ACK;
1241
1242 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1243 *(uint16_t *)wh->i_dur = htole16(dur);
1244
1245 /* tell hardware to add timestamp for probe responses */
1246 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1247 IEEE80211_FC0_TYPE_MGT &&
1248 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1249 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1250 flags |= RAL_TX_TIMESTAMP;
1251 }
1252
1253 if (sc->sc_drvbpf != NULL) {
1254 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1255
1256 tap->wt_flags = 0;
1257 tap->wt_rate = rate;
1258 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1259 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1260 tap->wt_antenna = sc->tx_ant;
1261
1262 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1263 }
1264
1265 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1266 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1267
1268 /* align end on a 2-bytes boundary */
1269 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1270
1271 /*
1272 * No space left in the last URB to store the extra 2 bytes, force
1273 * sending of another URB.
1274 */
1275 if ((xferlen % 64) == 0)
1276 xferlen += 2;
1277
1278 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1279 m0->m_pkthdr.len, rate, xferlen));
1280
1281 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1282 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1283 ural_txeof);
1284
1285 error = usbd_transfer(data->xfer);
1286 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1287 m_freem(m0);
1288 return error;
1289 }
1290
1291 sc->tx_queued++;
1292
1293 return 0;
1294 }
1295
1296 Static int
1297 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1298 {
1299 struct ieee80211com *ic = &sc->sc_ic;
1300 struct ural_tx_desc *desc;
1301 struct ural_tx_data *data;
1302 struct ieee80211_frame *wh;
1303 struct ieee80211_key *k;
1304 uint32_t flags = 0;
1305 uint16_t dur;
1306 usbd_status error;
1307 int xferlen, rate;
1308
1309 wh = mtod(m0, struct ieee80211_frame *);
1310
1311 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1312 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1313 else
1314 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1315
1316 rate &= IEEE80211_RATE_VAL;
1317
1318 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1319 k = ieee80211_crypto_encap(ic, ni, m0);
1320 if (k == NULL) {
1321 m_freem(m0);
1322 return ENOBUFS;
1323 }
1324
1325 /* packet header may have moved, reset our local pointer */
1326 wh = mtod(m0, struct ieee80211_frame *);
1327 }
1328
1329 data = &sc->tx_data[0];
1330 desc = (struct ural_tx_desc *)data->buf;
1331
1332 data->m = m0;
1333 data->ni = ni;
1334
1335 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1336 flags |= RAL_TX_ACK;
1337 flags |= RAL_TX_RETRY(7);
1338
1339 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1340 ic->ic_flags) + RAL_SIFS;
1341 *(uint16_t *)wh->i_dur = htole16(dur);
1342 }
1343
1344 if (sc->sc_drvbpf != NULL) {
1345 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1346
1347 tap->wt_flags = 0;
1348 tap->wt_rate = rate;
1349 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1350 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1351 tap->wt_antenna = sc->tx_ant;
1352
1353 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1354 }
1355
1356 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1357 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1358
1359 /* align end on a 2-bytes boundary */
1360 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1361
1362 /*
1363 * No space left in the last URB to store the extra 2 bytes, force
1364 * sending of another URB.
1365 */
1366 if ((xferlen % 64) == 0)
1367 xferlen += 2;
1368
1369 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1370 m0->m_pkthdr.len, rate, xferlen));
1371
1372 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1373 xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
1374 ural_txeof);
1375
1376 error = usbd_transfer(data->xfer);
1377 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1378 return error;
1379
1380 sc->tx_queued++;
1381
1382 return 0;
1383 }
1384
1385 Static void
1386 ural_start(struct ifnet *ifp)
1387 {
1388 struct ural_softc *sc = ifp->if_softc;
1389 struct ieee80211com *ic = &sc->sc_ic;
1390 struct mbuf *m0;
1391 struct ether_header *eh;
1392 struct ieee80211_node *ni;
1393
1394 for (;;) {
1395 IF_POLL(&ic->ic_mgtq, m0);
1396 if (m0 != NULL) {
1397 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1398 ifp->if_flags |= IFF_OACTIVE;
1399 break;
1400 }
1401 IF_DEQUEUE(&ic->ic_mgtq, m0);
1402
1403 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1404 m0->m_pkthdr.rcvif = NULL;
1405 bpf_mtap3(ic->ic_rawbpf, m0);
1406 if (ural_tx_mgt(sc, m0, ni) != 0)
1407 break;
1408
1409 } else {
1410 if (ic->ic_state != IEEE80211_S_RUN)
1411 break;
1412 IFQ_DEQUEUE(&ifp->if_snd, m0);
1413 if (m0 == NULL)
1414 break;
1415 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1416 IF_PREPEND(&ifp->if_snd, m0);
1417 ifp->if_flags |= IFF_OACTIVE;
1418 break;
1419 }
1420
1421 if (m0->m_len < sizeof (struct ether_header) &&
1422 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1423 continue;
1424
1425 eh = mtod(m0, struct ether_header *);
1426 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1427 if (ni == NULL) {
1428 m_freem(m0);
1429 continue;
1430 }
1431 bpf_mtap(ifp, m0);
1432 m0 = ieee80211_encap(ic, m0, ni);
1433 if (m0 == NULL) {
1434 ieee80211_free_node(ni);
1435 continue;
1436 }
1437 bpf_mtap3(ic->ic_rawbpf, m0);
1438 if (ural_tx_data(sc, m0, ni) != 0) {
1439 ieee80211_free_node(ni);
1440 ifp->if_oerrors++;
1441 break;
1442 }
1443 }
1444
1445 sc->sc_tx_timer = 5;
1446 ifp->if_timer = 1;
1447 }
1448 }
1449
1450 Static void
1451 ural_watchdog(struct ifnet *ifp)
1452 {
1453 struct ural_softc *sc = ifp->if_softc;
1454 struct ieee80211com *ic = &sc->sc_ic;
1455
1456 ifp->if_timer = 0;
1457
1458 if (sc->sc_tx_timer > 0) {
1459 if (--sc->sc_tx_timer == 0) {
1460 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1461 /*ural_init(sc); XXX needs a process context! */
1462 ifp->if_oerrors++;
1463 return;
1464 }
1465 ifp->if_timer = 1;
1466 }
1467
1468 ieee80211_watchdog(ic);
1469 }
1470
1471 /*
1472 * This function allows for fast channel switching in monitor mode (used by
1473 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1474 * generate a new beacon frame.
1475 */
1476 Static int
1477 ural_reset(struct ifnet *ifp)
1478 {
1479 struct ural_softc *sc = ifp->if_softc;
1480 struct ieee80211com *ic = &sc->sc_ic;
1481
1482 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1483 return ENETRESET;
1484
1485 ural_set_chan(sc, ic->ic_curchan);
1486
1487 return 0;
1488 }
1489
1490 Static int
1491 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1492 {
1493 #define IS_RUNNING(ifp) \
1494 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1495
1496 struct ural_softc *sc = ifp->if_softc;
1497 struct ieee80211com *ic = &sc->sc_ic;
1498 int s, error = 0;
1499
1500 s = splnet();
1501
1502 switch (cmd) {
1503 case SIOCSIFFLAGS:
1504 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1505 break;
1506 /* XXX re-use ether_ioctl() */
1507 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1508 case IFF_UP|IFF_RUNNING:
1509 ural_update_promisc(sc);
1510 break;
1511 case IFF_UP:
1512 ural_init(ifp);
1513 break;
1514 case IFF_RUNNING:
1515 ural_stop(ifp, 1);
1516 break;
1517 case 0:
1518 break;
1519 }
1520 break;
1521
1522 case SIOCADDMULTI:
1523 case SIOCDELMULTI:
1524 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1525 error = 0;
1526 }
1527 break;
1528
1529 default:
1530 error = ieee80211_ioctl(ic, cmd, data);
1531 }
1532
1533 if (error == ENETRESET) {
1534 if (IS_RUNNING(ifp) &&
1535 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1536 ural_init(ifp);
1537 error = 0;
1538 }
1539
1540 splx(s);
1541
1542 return error;
1543 #undef IS_RUNNING
1544 }
1545
1546 Static void
1547 ural_set_testmode(struct ural_softc *sc)
1548 {
1549 usb_device_request_t req;
1550 usbd_status error;
1551
1552 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1553 req.bRequest = RAL_VENDOR_REQUEST;
1554 USETW(req.wValue, 4);
1555 USETW(req.wIndex, 1);
1556 USETW(req.wLength, 0);
1557
1558 error = usbd_do_request(sc->sc_udev, &req, NULL);
1559 if (error != 0) {
1560 printf("%s: could not set test mode: %s\n",
1561 device_xname(sc->sc_dev), usbd_errstr(error));
1562 }
1563 }
1564
1565 Static void
1566 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1567 {
1568 usb_device_request_t req;
1569 usbd_status error;
1570
1571 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1572 req.bRequest = RAL_READ_EEPROM;
1573 USETW(req.wValue, 0);
1574 USETW(req.wIndex, addr);
1575 USETW(req.wLength, len);
1576
1577 error = usbd_do_request(sc->sc_udev, &req, buf);
1578 if (error != 0) {
1579 printf("%s: could not read EEPROM: %s\n",
1580 device_xname(sc->sc_dev), usbd_errstr(error));
1581 }
1582 }
1583
1584 Static uint16_t
1585 ural_read(struct ural_softc *sc, uint16_t reg)
1586 {
1587 usb_device_request_t req;
1588 usbd_status error;
1589 uint16_t val;
1590
1591 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1592 req.bRequest = RAL_READ_MAC;
1593 USETW(req.wValue, 0);
1594 USETW(req.wIndex, reg);
1595 USETW(req.wLength, sizeof (uint16_t));
1596
1597 error = usbd_do_request(sc->sc_udev, &req, &val);
1598 if (error != 0) {
1599 printf("%s: could not read MAC register: %s\n",
1600 device_xname(sc->sc_dev), usbd_errstr(error));
1601 return 0;
1602 }
1603
1604 return le16toh(val);
1605 }
1606
1607 Static void
1608 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1609 {
1610 usb_device_request_t req;
1611 usbd_status error;
1612
1613 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1614 req.bRequest = RAL_READ_MULTI_MAC;
1615 USETW(req.wValue, 0);
1616 USETW(req.wIndex, reg);
1617 USETW(req.wLength, len);
1618
1619 error = usbd_do_request(sc->sc_udev, &req, buf);
1620 if (error != 0) {
1621 printf("%s: could not read MAC register: %s\n",
1622 device_xname(sc->sc_dev), usbd_errstr(error));
1623 }
1624 }
1625
1626 Static void
1627 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1628 {
1629 usb_device_request_t req;
1630 usbd_status error;
1631
1632 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1633 req.bRequest = RAL_WRITE_MAC;
1634 USETW(req.wValue, val);
1635 USETW(req.wIndex, reg);
1636 USETW(req.wLength, 0);
1637
1638 error = usbd_do_request(sc->sc_udev, &req, NULL);
1639 if (error != 0) {
1640 printf("%s: could not write MAC register: %s\n",
1641 device_xname(sc->sc_dev), usbd_errstr(error));
1642 }
1643 }
1644
1645 Static void
1646 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1647 {
1648 usb_device_request_t req;
1649 usbd_status error;
1650
1651 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1652 req.bRequest = RAL_WRITE_MULTI_MAC;
1653 USETW(req.wValue, 0);
1654 USETW(req.wIndex, reg);
1655 USETW(req.wLength, len);
1656
1657 error = usbd_do_request(sc->sc_udev, &req, buf);
1658 if (error != 0) {
1659 printf("%s: could not write MAC register: %s\n",
1660 device_xname(sc->sc_dev), usbd_errstr(error));
1661 }
1662 }
1663
1664 Static void
1665 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1666 {
1667 uint16_t tmp;
1668 int ntries;
1669
1670 for (ntries = 0; ntries < 5; ntries++) {
1671 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1672 break;
1673 }
1674 if (ntries == 5) {
1675 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1676 return;
1677 }
1678
1679 tmp = reg << 8 | val;
1680 ural_write(sc, RAL_PHY_CSR7, tmp);
1681 }
1682
1683 Static uint8_t
1684 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1685 {
1686 uint16_t val;
1687 int ntries;
1688
1689 val = RAL_BBP_WRITE | reg << 8;
1690 ural_write(sc, RAL_PHY_CSR7, val);
1691
1692 for (ntries = 0; ntries < 5; ntries++) {
1693 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1694 break;
1695 }
1696 if (ntries == 5) {
1697 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1698 return 0;
1699 }
1700
1701 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1702 }
1703
1704 Static void
1705 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1706 {
1707 uint32_t tmp;
1708 int ntries;
1709
1710 for (ntries = 0; ntries < 5; ntries++) {
1711 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1712 break;
1713 }
1714 if (ntries == 5) {
1715 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1716 return;
1717 }
1718
1719 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1720 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1721 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1722
1723 /* remember last written value in sc */
1724 sc->rf_regs[reg] = val;
1725
1726 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1727 }
1728
1729 Static void
1730 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1731 {
1732 struct ieee80211com *ic = &sc->sc_ic;
1733 uint8_t power, tmp;
1734 u_int i, chan;
1735
1736 chan = ieee80211_chan2ieee(ic, c);
1737 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1738 return;
1739
1740 if (IEEE80211_IS_CHAN_2GHZ(c))
1741 power = min(sc->txpow[chan - 1], 31);
1742 else
1743 power = 31;
1744
1745 /* adjust txpower using ifconfig settings */
1746 power -= (100 - ic->ic_txpowlimit) / 8;
1747
1748 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1749
1750 switch (sc->rf_rev) {
1751 case RAL_RF_2522:
1752 ural_rf_write(sc, RAL_RF1, 0x00814);
1753 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1754 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1755 break;
1756
1757 case RAL_RF_2523:
1758 ural_rf_write(sc, RAL_RF1, 0x08804);
1759 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1760 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1761 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1762 break;
1763
1764 case RAL_RF_2524:
1765 ural_rf_write(sc, RAL_RF1, 0x0c808);
1766 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1767 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1768 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1769 break;
1770
1771 case RAL_RF_2525:
1772 ural_rf_write(sc, RAL_RF1, 0x08808);
1773 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1774 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1775 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1776
1777 ural_rf_write(sc, RAL_RF1, 0x08808);
1778 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1779 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1780 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1781 break;
1782
1783 case RAL_RF_2525E:
1784 ural_rf_write(sc, RAL_RF1, 0x08808);
1785 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1786 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1787 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1788 break;
1789
1790 case RAL_RF_2526:
1791 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1792 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1793 ural_rf_write(sc, RAL_RF1, 0x08804);
1794
1795 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1796 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1797 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1798 break;
1799
1800 /* dual-band RF */
1801 case RAL_RF_5222:
1802 for (i = 0; ural_rf5222[i].chan != chan; i++);
1803
1804 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1805 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1806 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1807 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1808 break;
1809 }
1810
1811 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1812 ic->ic_state != IEEE80211_S_SCAN) {
1813 /* set Japan filter bit for channel 14 */
1814 tmp = ural_bbp_read(sc, 70);
1815
1816 tmp &= ~RAL_JAPAN_FILTER;
1817 if (chan == 14)
1818 tmp |= RAL_JAPAN_FILTER;
1819
1820 ural_bbp_write(sc, 70, tmp);
1821
1822 /* clear CRC errors */
1823 ural_read(sc, RAL_STA_CSR0);
1824
1825 DELAY(10000);
1826 ural_disable_rf_tune(sc);
1827 }
1828 }
1829
1830 /*
1831 * Disable RF auto-tuning.
1832 */
1833 Static void
1834 ural_disable_rf_tune(struct ural_softc *sc)
1835 {
1836 uint32_t tmp;
1837
1838 if (sc->rf_rev != RAL_RF_2523) {
1839 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1840 ural_rf_write(sc, RAL_RF1, tmp);
1841 }
1842
1843 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1844 ural_rf_write(sc, RAL_RF3, tmp);
1845
1846 DPRINTFN(2, ("disabling RF autotune\n"));
1847 }
1848
1849 /*
1850 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1851 * synchronization.
1852 */
1853 Static void
1854 ural_enable_tsf_sync(struct ural_softc *sc)
1855 {
1856 struct ieee80211com *ic = &sc->sc_ic;
1857 uint16_t logcwmin, preload, tmp;
1858
1859 /* first, disable TSF synchronization */
1860 ural_write(sc, RAL_TXRX_CSR19, 0);
1861
1862 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1863 ural_write(sc, RAL_TXRX_CSR18, tmp);
1864
1865 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1866 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1867 tmp = logcwmin << 12 | preload;
1868 ural_write(sc, RAL_TXRX_CSR20, tmp);
1869
1870 /* finally, enable TSF synchronization */
1871 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1872 if (ic->ic_opmode == IEEE80211_M_STA)
1873 tmp |= RAL_ENABLE_TSF_SYNC(1);
1874 else
1875 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1876 ural_write(sc, RAL_TXRX_CSR19, tmp);
1877
1878 DPRINTF(("enabling TSF synchronization\n"));
1879 }
1880
1881 Static void
1882 ural_update_slot(struct ifnet *ifp)
1883 {
1884 struct ural_softc *sc = ifp->if_softc;
1885 struct ieee80211com *ic = &sc->sc_ic;
1886 uint16_t slottime, sifs, eifs;
1887
1888 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1889
1890 /*
1891 * These settings may sound a bit inconsistent but this is what the
1892 * reference driver does.
1893 */
1894 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1895 sifs = 16 - RAL_RXTX_TURNAROUND;
1896 eifs = 364;
1897 } else {
1898 sifs = 10 - RAL_RXTX_TURNAROUND;
1899 eifs = 64;
1900 }
1901
1902 ural_write(sc, RAL_MAC_CSR10, slottime);
1903 ural_write(sc, RAL_MAC_CSR11, sifs);
1904 ural_write(sc, RAL_MAC_CSR12, eifs);
1905 }
1906
1907 Static void
1908 ural_set_txpreamble(struct ural_softc *sc)
1909 {
1910 uint16_t tmp;
1911
1912 tmp = ural_read(sc, RAL_TXRX_CSR10);
1913
1914 tmp &= ~RAL_SHORT_PREAMBLE;
1915 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1916 tmp |= RAL_SHORT_PREAMBLE;
1917
1918 ural_write(sc, RAL_TXRX_CSR10, tmp);
1919 }
1920
1921 Static void
1922 ural_set_basicrates(struct ural_softc *sc)
1923 {
1924 struct ieee80211com *ic = &sc->sc_ic;
1925
1926 /* update basic rate set */
1927 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1928 /* 11b basic rates: 1, 2Mbps */
1929 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1930 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1931 /* 11a basic rates: 6, 12, 24Mbps */
1932 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1933 } else {
1934 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1935 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1936 }
1937 }
1938
1939 Static void
1940 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1941 {
1942 uint16_t tmp;
1943
1944 tmp = bssid[0] | bssid[1] << 8;
1945 ural_write(sc, RAL_MAC_CSR5, tmp);
1946
1947 tmp = bssid[2] | bssid[3] << 8;
1948 ural_write(sc, RAL_MAC_CSR6, tmp);
1949
1950 tmp = bssid[4] | bssid[5] << 8;
1951 ural_write(sc, RAL_MAC_CSR7, tmp);
1952
1953 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1954 }
1955
1956 Static void
1957 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1958 {
1959 uint16_t tmp;
1960
1961 tmp = addr[0] | addr[1] << 8;
1962 ural_write(sc, RAL_MAC_CSR2, tmp);
1963
1964 tmp = addr[2] | addr[3] << 8;
1965 ural_write(sc, RAL_MAC_CSR3, tmp);
1966
1967 tmp = addr[4] | addr[5] << 8;
1968 ural_write(sc, RAL_MAC_CSR4, tmp);
1969
1970 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1971 }
1972
1973 Static void
1974 ural_update_promisc(struct ural_softc *sc)
1975 {
1976 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1977 uint32_t tmp;
1978
1979 tmp = ural_read(sc, RAL_TXRX_CSR2);
1980
1981 tmp &= ~RAL_DROP_NOT_TO_ME;
1982 if (!(ifp->if_flags & IFF_PROMISC))
1983 tmp |= RAL_DROP_NOT_TO_ME;
1984
1985 ural_write(sc, RAL_TXRX_CSR2, tmp);
1986
1987 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1988 "entering" : "leaving"));
1989 }
1990
1991 Static const char *
1992 ural_get_rf(int rev)
1993 {
1994 switch (rev) {
1995 case RAL_RF_2522: return "RT2522";
1996 case RAL_RF_2523: return "RT2523";
1997 case RAL_RF_2524: return "RT2524";
1998 case RAL_RF_2525: return "RT2525";
1999 case RAL_RF_2525E: return "RT2525e";
2000 case RAL_RF_2526: return "RT2526";
2001 case RAL_RF_5222: return "RT5222";
2002 default: return "unknown";
2003 }
2004 }
2005
2006 Static void
2007 ural_read_eeprom(struct ural_softc *sc)
2008 {
2009 struct ieee80211com *ic = &sc->sc_ic;
2010 uint16_t val;
2011
2012 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2013 val = le16toh(val);
2014 sc->rf_rev = (val >> 11) & 0x7;
2015 sc->hw_radio = (val >> 10) & 0x1;
2016 sc->led_mode = (val >> 6) & 0x7;
2017 sc->rx_ant = (val >> 4) & 0x3;
2018 sc->tx_ant = (val >> 2) & 0x3;
2019 sc->nb_ant = val & 0x3;
2020
2021 /* read MAC address */
2022 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2023
2024 /* read default values for BBP registers */
2025 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2026
2027 /* read Tx power for all b/g channels */
2028 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2029 }
2030
2031 Static int
2032 ural_bbp_init(struct ural_softc *sc)
2033 {
2034 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2035 int i, ntries;
2036
2037 /* wait for BBP to be ready */
2038 for (ntries = 0; ntries < 100; ntries++) {
2039 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2040 break;
2041 DELAY(1000);
2042 }
2043 if (ntries == 100) {
2044 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2045 return EIO;
2046 }
2047
2048 /* initialize BBP registers to default values */
2049 for (i = 0; i < N(ural_def_bbp); i++)
2050 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2051
2052 #if 0
2053 /* initialize BBP registers to values stored in EEPROM */
2054 for (i = 0; i < 16; i++) {
2055 if (sc->bbp_prom[i].reg == 0xff)
2056 continue;
2057 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2058 }
2059 #endif
2060
2061 return 0;
2062 #undef N
2063 }
2064
2065 Static void
2066 ural_set_txantenna(struct ural_softc *sc, int antenna)
2067 {
2068 uint16_t tmp;
2069 uint8_t tx;
2070
2071 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2072 if (antenna == 1)
2073 tx |= RAL_BBP_ANTA;
2074 else if (antenna == 2)
2075 tx |= RAL_BBP_ANTB;
2076 else
2077 tx |= RAL_BBP_DIVERSITY;
2078
2079 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2080 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2081 sc->rf_rev == RAL_RF_5222)
2082 tx |= RAL_BBP_FLIPIQ;
2083
2084 ural_bbp_write(sc, RAL_BBP_TX, tx);
2085
2086 /* update values in PHY_CSR5 and PHY_CSR6 */
2087 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2088 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2089
2090 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2091 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2092 }
2093
2094 Static void
2095 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2096 {
2097 uint8_t rx;
2098
2099 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2100 if (antenna == 1)
2101 rx |= RAL_BBP_ANTA;
2102 else if (antenna == 2)
2103 rx |= RAL_BBP_ANTB;
2104 else
2105 rx |= RAL_BBP_DIVERSITY;
2106
2107 /* need to force no I/Q flip for RF 2525e and 2526 */
2108 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2109 rx &= ~RAL_BBP_FLIPIQ;
2110
2111 ural_bbp_write(sc, RAL_BBP_RX, rx);
2112 }
2113
2114 Static int
2115 ural_init(struct ifnet *ifp)
2116 {
2117 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2118 struct ural_softc *sc = ifp->if_softc;
2119 struct ieee80211com *ic = &sc->sc_ic;
2120 struct ieee80211_key *wk;
2121 struct ural_rx_data *data;
2122 uint16_t tmp;
2123 usbd_status error;
2124 int i, ntries;
2125
2126 ural_set_testmode(sc);
2127 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2128
2129 ural_stop(ifp, 0);
2130
2131 /* initialize MAC registers to default values */
2132 for (i = 0; i < N(ural_def_mac); i++)
2133 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2134
2135 /* wait for BBP and RF to wake up (this can take a long time!) */
2136 for (ntries = 0; ntries < 100; ntries++) {
2137 tmp = ural_read(sc, RAL_MAC_CSR17);
2138 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2139 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2140 break;
2141 DELAY(1000);
2142 }
2143 if (ntries == 100) {
2144 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2145 device_xname(sc->sc_dev));
2146 error = EIO;
2147 goto fail;
2148 }
2149
2150 /* we're ready! */
2151 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2152
2153 /* set basic rate set (will be updated later) */
2154 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2155
2156 error = ural_bbp_init(sc);
2157 if (error != 0)
2158 goto fail;
2159
2160 /* set default BSS channel */
2161 ural_set_chan(sc, ic->ic_curchan);
2162
2163 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2164 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2165
2166 ural_set_txantenna(sc, sc->tx_ant);
2167 ural_set_rxantenna(sc, sc->rx_ant);
2168
2169 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2170 ural_set_macaddr(sc, ic->ic_myaddr);
2171
2172 /*
2173 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2174 */
2175 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2176 wk = &ic->ic_crypto.cs_nw_keys[i];
2177 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2178 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2179 }
2180
2181 /*
2182 * Allocate xfer for AMRR statistics requests.
2183 */
2184 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2185 if (sc->amrr_xfer == NULL) {
2186 printf("%s: could not allocate AMRR xfer\n",
2187 device_xname(sc->sc_dev));
2188 goto fail;
2189 }
2190
2191 /*
2192 * Open Tx and Rx USB bulk pipes.
2193 */
2194 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2195 &sc->sc_tx_pipeh);
2196 if (error != 0) {
2197 printf("%s: could not open Tx pipe: %s\n",
2198 device_xname(sc->sc_dev), usbd_errstr(error));
2199 goto fail;
2200 }
2201
2202 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2203 &sc->sc_rx_pipeh);
2204 if (error != 0) {
2205 printf("%s: could not open Rx pipe: %s\n",
2206 device_xname(sc->sc_dev), usbd_errstr(error));
2207 goto fail;
2208 }
2209
2210 /*
2211 * Allocate Tx and Rx xfer queues.
2212 */
2213 error = ural_alloc_tx_list(sc);
2214 if (error != 0) {
2215 printf("%s: could not allocate Tx list\n",
2216 device_xname(sc->sc_dev));
2217 goto fail;
2218 }
2219
2220 error = ural_alloc_rx_list(sc);
2221 if (error != 0) {
2222 printf("%s: could not allocate Rx list\n",
2223 device_xname(sc->sc_dev));
2224 goto fail;
2225 }
2226
2227 /*
2228 * Start up the receive pipe.
2229 */
2230 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2231 data = &sc->rx_data[i];
2232
2233 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2234 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2235 usbd_transfer(data->xfer);
2236 }
2237
2238 /* kick Rx */
2239 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2240 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2241 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2242 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2243 tmp |= RAL_DROP_TODS;
2244 if (!(ifp->if_flags & IFF_PROMISC))
2245 tmp |= RAL_DROP_NOT_TO_ME;
2246 }
2247 ural_write(sc, RAL_TXRX_CSR2, tmp);
2248
2249 ifp->if_flags &= ~IFF_OACTIVE;
2250 ifp->if_flags |= IFF_RUNNING;
2251
2252 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2253 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2254 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2255 } else
2256 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2257
2258 return 0;
2259
2260 fail: ural_stop(ifp, 1);
2261 return error;
2262 #undef N
2263 }
2264
2265 Static void
2266 ural_stop(struct ifnet *ifp, int disable)
2267 {
2268 struct ural_softc *sc = ifp->if_softc;
2269 struct ieee80211com *ic = &sc->sc_ic;
2270
2271 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2272
2273 sc->sc_tx_timer = 0;
2274 ifp->if_timer = 0;
2275 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2276
2277 /* disable Rx */
2278 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2279
2280 /* reset ASIC and BBP (but won't reset MAC registers!) */
2281 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2282 ural_write(sc, RAL_MAC_CSR1, 0);
2283
2284 if (sc->amrr_xfer != NULL) {
2285 usbd_free_xfer(sc->amrr_xfer);
2286 sc->amrr_xfer = NULL;
2287 }
2288
2289 if (sc->sc_rx_pipeh != NULL) {
2290 usbd_abort_pipe(sc->sc_rx_pipeh);
2291 usbd_close_pipe(sc->sc_rx_pipeh);
2292 sc->sc_rx_pipeh = NULL;
2293 }
2294
2295 if (sc->sc_tx_pipeh != NULL) {
2296 usbd_abort_pipe(sc->sc_tx_pipeh);
2297 usbd_close_pipe(sc->sc_tx_pipeh);
2298 sc->sc_tx_pipeh = NULL;
2299 }
2300
2301 ural_free_rx_list(sc);
2302 ural_free_tx_list(sc);
2303 }
2304
2305 int
2306 ural_activate(device_t self, enum devact act)
2307 {
2308 struct ural_softc *sc = device_private(self);
2309
2310 switch (act) {
2311 case DVACT_DEACTIVATE:
2312 if_deactivate(&sc->sc_if);
2313 return 0;
2314 default:
2315 return EOPNOTSUPP;
2316 }
2317 }
2318
2319 Static void
2320 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2321 {
2322 int i;
2323
2324 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2325 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2326
2327 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2328
2329 /* set rate to some reasonable initial value */
2330 for (i = ni->ni_rates.rs_nrates - 1;
2331 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2332 i--);
2333 ni->ni_txrate = i;
2334
2335 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2336 }
2337
2338 Static void
2339 ural_amrr_timeout(void *arg)
2340 {
2341 struct ural_softc *sc = (struct ural_softc *)arg;
2342 usb_device_request_t req;
2343 int s;
2344
2345 s = splusb();
2346
2347 /*
2348 * Asynchronously read statistic registers (cleared by read).
2349 */
2350 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2351 req.bRequest = RAL_READ_MULTI_MAC;
2352 USETW(req.wValue, 0);
2353 USETW(req.wIndex, RAL_STA_CSR0);
2354 USETW(req.wLength, sizeof sc->sta);
2355
2356 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2357 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2358 ural_amrr_update);
2359 (void)usbd_transfer(sc->amrr_xfer);
2360
2361 splx(s);
2362 }
2363
2364 Static void
2365 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2366 usbd_status status)
2367 {
2368 struct ural_softc *sc = (struct ural_softc *)priv;
2369 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2370
2371 if (status != USBD_NORMAL_COMPLETION) {
2372 printf("%s: could not retrieve Tx statistics - "
2373 "cancelling automatic rate control\n",
2374 device_xname(sc->sc_dev));
2375 return;
2376 }
2377
2378 /* count TX retry-fail as Tx errors */
2379 ifp->if_oerrors += sc->sta[9];
2380
2381 sc->amn.amn_retrycnt =
2382 sc->sta[7] + /* TX one-retry ok count */
2383 sc->sta[8] + /* TX more-retry ok count */
2384 sc->sta[9]; /* TX retry-fail count */
2385
2386 sc->amn.amn_txcnt =
2387 sc->amn.amn_retrycnt +
2388 sc->sta[6]; /* TX no-retry ok count */
2389
2390 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2391
2392 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2393 }
2394