if_ural.c revision 1.44.14.1 1 /* $NetBSD: if_ural.c,v 1.44.14.1 2014/12/02 09:00:33 skrll Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.44.14.1 2014/12/02 09:00:33 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42 #include <sys/intr.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_uralreg.h>
68 #include <dev/usb/if_uralvar.h>
69
70 #ifdef URAL_DEBUG
71 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
72 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
73 int ural_debug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78
79 /* various supported device vendors/products */
80 static const struct usb_devno ural_devs[] = {
81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
82 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
83 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
86 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
87 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
88 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
89 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
90 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
97 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
98 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
101 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
102 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
103 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
104 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
105 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
106 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
107 };
108
109 Static int ural_alloc_tx_list(struct ural_softc *);
110 Static void ural_free_tx_list(struct ural_softc *);
111 Static int ural_alloc_rx_list(struct ural_softc *);
112 Static void ural_free_rx_list(struct ural_softc *);
113 Static int ural_media_change(struct ifnet *);
114 Static void ural_next_scan(void *);
115 Static void ural_task(void *);
116 Static int ural_newstate(struct ieee80211com *,
117 enum ieee80211_state, int);
118 Static int ural_rxrate(struct ural_rx_desc *);
119 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
120 usbd_status);
121 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
122 usbd_status);
123 Static int ural_ack_rate(struct ieee80211com *, int);
124 Static uint16_t ural_txtime(int, int, uint32_t);
125 Static uint8_t ural_plcp_signal(int);
126 Static void ural_setup_tx_desc(struct ural_softc *,
127 struct ural_tx_desc *, uint32_t, int, int);
128 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
129 struct ieee80211_node *);
130 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
131 struct ieee80211_node *);
132 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
133 struct ieee80211_node *);
134 Static void ural_start(struct ifnet *);
135 Static void ural_watchdog(struct ifnet *);
136 Static int ural_reset(struct ifnet *);
137 Static int ural_ioctl(struct ifnet *, u_long, void *);
138 Static void ural_set_testmode(struct ural_softc *);
139 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
140 int);
141 Static uint16_t ural_read(struct ural_softc *, uint16_t);
142 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
143 int);
144 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
145 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
148 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
149 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
150 Static void ural_set_chan(struct ural_softc *,
151 struct ieee80211_channel *);
152 Static void ural_disable_rf_tune(struct ural_softc *);
153 Static void ural_enable_tsf_sync(struct ural_softc *);
154 Static void ural_update_slot(struct ifnet *);
155 Static void ural_set_txpreamble(struct ural_softc *);
156 Static void ural_set_basicrates(struct ural_softc *);
157 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
158 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
159 Static void ural_update_promisc(struct ural_softc *);
160 Static const char *ural_get_rf(int);
161 Static void ural_read_eeprom(struct ural_softc *);
162 Static int ural_bbp_init(struct ural_softc *);
163 Static void ural_set_txantenna(struct ural_softc *, int);
164 Static void ural_set_rxantenna(struct ural_softc *, int);
165 Static int ural_init(struct ifnet *);
166 Static void ural_stop(struct ifnet *, int);
167 Static void ural_amrr_start(struct ural_softc *,
168 struct ieee80211_node *);
169 Static void ural_amrr_timeout(void *);
170 Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
171 usbd_status status);
172
173 /*
174 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
175 */
176 static const struct ieee80211_rateset ural_rateset_11a =
177 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
178
179 static const struct ieee80211_rateset ural_rateset_11b =
180 { 4, { 2, 4, 11, 22 } };
181
182 static const struct ieee80211_rateset ural_rateset_11g =
183 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
184
185 /*
186 * Default values for MAC registers; values taken from the reference driver.
187 */
188 static const struct {
189 uint16_t reg;
190 uint16_t val;
191 } ural_def_mac[] = {
192 { RAL_TXRX_CSR5, 0x8c8d },
193 { RAL_TXRX_CSR6, 0x8b8a },
194 { RAL_TXRX_CSR7, 0x8687 },
195 { RAL_TXRX_CSR8, 0x0085 },
196 { RAL_MAC_CSR13, 0x1111 },
197 { RAL_MAC_CSR14, 0x1e11 },
198 { RAL_TXRX_CSR21, 0xe78f },
199 { RAL_MAC_CSR9, 0xff1d },
200 { RAL_MAC_CSR11, 0x0002 },
201 { RAL_MAC_CSR22, 0x0053 },
202 { RAL_MAC_CSR15, 0x0000 },
203 { RAL_MAC_CSR8, 0x0780 },
204 { RAL_TXRX_CSR19, 0x0000 },
205 { RAL_TXRX_CSR18, 0x005a },
206 { RAL_PHY_CSR2, 0x0000 },
207 { RAL_TXRX_CSR0, 0x1ec0 },
208 { RAL_PHY_CSR4, 0x000f }
209 };
210
211 /*
212 * Default values for BBP registers; values taken from the reference driver.
213 */
214 static const struct {
215 uint8_t reg;
216 uint8_t val;
217 } ural_def_bbp[] = {
218 { 3, 0x02 },
219 { 4, 0x19 },
220 { 14, 0x1c },
221 { 15, 0x30 },
222 { 16, 0xac },
223 { 17, 0x48 },
224 { 18, 0x18 },
225 { 19, 0xff },
226 { 20, 0x1e },
227 { 21, 0x08 },
228 { 22, 0x08 },
229 { 23, 0x08 },
230 { 24, 0x80 },
231 { 25, 0x50 },
232 { 26, 0x08 },
233 { 27, 0x23 },
234 { 30, 0x10 },
235 { 31, 0x2b },
236 { 32, 0xb9 },
237 { 34, 0x12 },
238 { 35, 0x50 },
239 { 39, 0xc4 },
240 { 40, 0x02 },
241 { 41, 0x60 },
242 { 53, 0x10 },
243 { 54, 0x18 },
244 { 56, 0x08 },
245 { 57, 0x10 },
246 { 58, 0x08 },
247 { 61, 0x60 },
248 { 62, 0x10 },
249 { 75, 0xff }
250 };
251
252 /*
253 * Default values for RF register R2 indexed by channel numbers.
254 */
255 static const uint32_t ural_rf2522_r2[] = {
256 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
257 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
258 };
259
260 static const uint32_t ural_rf2523_r2[] = {
261 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
262 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 };
264
265 static const uint32_t ural_rf2524_r2[] = {
266 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
267 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
268 };
269
270 static const uint32_t ural_rf2525_r2[] = {
271 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
272 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
273 };
274
275 static const uint32_t ural_rf2525_hi_r2[] = {
276 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
277 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
278 };
279
280 static const uint32_t ural_rf2525e_r2[] = {
281 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
282 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
283 };
284
285 static const uint32_t ural_rf2526_hi_r2[] = {
286 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
287 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
288 };
289
290 static const uint32_t ural_rf2526_r2[] = {
291 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
292 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
293 };
294
295 /*
296 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
297 * values taken from the reference driver.
298 */
299 static const struct {
300 uint8_t chan;
301 uint32_t r1;
302 uint32_t r2;
303 uint32_t r4;
304 } ural_rf5222[] = {
305 { 1, 0x08808, 0x0044d, 0x00282 },
306 { 2, 0x08808, 0x0044e, 0x00282 },
307 { 3, 0x08808, 0x0044f, 0x00282 },
308 { 4, 0x08808, 0x00460, 0x00282 },
309 { 5, 0x08808, 0x00461, 0x00282 },
310 { 6, 0x08808, 0x00462, 0x00282 },
311 { 7, 0x08808, 0x00463, 0x00282 },
312 { 8, 0x08808, 0x00464, 0x00282 },
313 { 9, 0x08808, 0x00465, 0x00282 },
314 { 10, 0x08808, 0x00466, 0x00282 },
315 { 11, 0x08808, 0x00467, 0x00282 },
316 { 12, 0x08808, 0x00468, 0x00282 },
317 { 13, 0x08808, 0x00469, 0x00282 },
318 { 14, 0x08808, 0x0046b, 0x00286 },
319
320 { 36, 0x08804, 0x06225, 0x00287 },
321 { 40, 0x08804, 0x06226, 0x00287 },
322 { 44, 0x08804, 0x06227, 0x00287 },
323 { 48, 0x08804, 0x06228, 0x00287 },
324 { 52, 0x08804, 0x06229, 0x00287 },
325 { 56, 0x08804, 0x0622a, 0x00287 },
326 { 60, 0x08804, 0x0622b, 0x00287 },
327 { 64, 0x08804, 0x0622c, 0x00287 },
328
329 { 100, 0x08804, 0x02200, 0x00283 },
330 { 104, 0x08804, 0x02201, 0x00283 },
331 { 108, 0x08804, 0x02202, 0x00283 },
332 { 112, 0x08804, 0x02203, 0x00283 },
333 { 116, 0x08804, 0x02204, 0x00283 },
334 { 120, 0x08804, 0x02205, 0x00283 },
335 { 124, 0x08804, 0x02206, 0x00283 },
336 { 128, 0x08804, 0x02207, 0x00283 },
337 { 132, 0x08804, 0x02208, 0x00283 },
338 { 136, 0x08804, 0x02209, 0x00283 },
339 { 140, 0x08804, 0x0220a, 0x00283 },
340
341 { 149, 0x08808, 0x02429, 0x00281 },
342 { 153, 0x08808, 0x0242b, 0x00281 },
343 { 157, 0x08808, 0x0242d, 0x00281 },
344 { 161, 0x08808, 0x0242f, 0x00281 }
345 };
346
347 int ural_match(device_t, cfdata_t, void *);
348 void ural_attach(device_t, device_t, void *);
349 int ural_detach(device_t, int);
350 int ural_activate(device_t, enum devact);
351 extern struct cfdriver ural_cd;
352 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
353
354 int
355 ural_match(device_t parent, cfdata_t match, void *aux)
356 {
357 struct usb_attach_arg *uaa = aux;
358
359 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
360 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
361 }
362
363 void
364 ural_attach(device_t parent, device_t self, void *aux)
365 {
366 struct ural_softc *sc = device_private(self);
367 struct usb_attach_arg *uaa = aux;
368 struct ieee80211com *ic = &sc->sc_ic;
369 struct ifnet *ifp = &sc->sc_if;
370 usb_interface_descriptor_t *id;
371 usb_endpoint_descriptor_t *ed;
372 usbd_status error;
373 char *devinfop;
374 int i;
375
376 sc->sc_dev = self;
377 sc->sc_udev = uaa->device;
378
379 aprint_naive("\n");
380 aprint_normal("\n");
381
382 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
383 aprint_normal_dev(self, "%s\n", devinfop);
384 usbd_devinfo_free(devinfop);
385
386 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
387 if (error != 0) {
388 aprint_error_dev(self, "failed to set configuration"
389 ", err=%s\n", usbd_errstr(error));
390 return;
391 }
392
393 /* get the first interface handle */
394 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
395 &sc->sc_iface);
396 if (error != 0) {
397 aprint_error_dev(self, "could not get interface handle\n");
398 return;
399 }
400
401 /*
402 * Find endpoints.
403 */
404 id = usbd_get_interface_descriptor(sc->sc_iface);
405
406 sc->sc_rx_no = sc->sc_tx_no = -1;
407 for (i = 0; i < id->bNumEndpoints; i++) {
408 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
409 if (ed == NULL) {
410 aprint_error_dev(self,
411 "no endpoint descriptor for %d\n", i);
412 return;
413 }
414
415 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
416 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
417 sc->sc_rx_no = ed->bEndpointAddress;
418 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
419 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
420 sc->sc_tx_no = ed->bEndpointAddress;
421 }
422 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
423 aprint_error_dev(self, "missing endpoint\n");
424 return;
425 }
426
427 usb_init_task(&sc->sc_task, ural_task, sc, 0);
428 callout_init(&sc->sc_scan_ch, 0);
429 sc->amrr.amrr_min_success_threshold = 1;
430 sc->amrr.amrr_max_success_threshold = 15;
431 callout_init(&sc->sc_amrr_ch, 0);
432
433 /* retrieve RT2570 rev. no */
434 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
435
436 /* retrieve MAC address and various other things from EEPROM */
437 ural_read_eeprom(sc);
438
439 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
440 sc->asic_rev, ural_get_rf(sc->rf_rev));
441
442 ifp->if_softc = sc;
443 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
444 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
445 ifp->if_init = ural_init;
446 ifp->if_ioctl = ural_ioctl;
447 ifp->if_start = ural_start;
448 ifp->if_watchdog = ural_watchdog;
449 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
450 IFQ_SET_READY(&ifp->if_snd);
451
452 ic->ic_ifp = ifp;
453 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
454 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
455 ic->ic_state = IEEE80211_S_INIT;
456
457 /* set device capabilities */
458 ic->ic_caps =
459 IEEE80211_C_IBSS | /* IBSS mode supported */
460 IEEE80211_C_MONITOR | /* monitor mode supported */
461 IEEE80211_C_HOSTAP | /* HostAp mode supported */
462 IEEE80211_C_TXPMGT | /* tx power management */
463 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
464 IEEE80211_C_SHSLOT | /* short slot time supported */
465 IEEE80211_C_WPA; /* 802.11i */
466
467 if (sc->rf_rev == RAL_RF_5222) {
468 /* set supported .11a rates */
469 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
470
471 /* set supported .11a channels */
472 for (i = 36; i <= 64; i += 4) {
473 ic->ic_channels[i].ic_freq =
474 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
475 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
476 }
477 for (i = 100; i <= 140; i += 4) {
478 ic->ic_channels[i].ic_freq =
479 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
480 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
481 }
482 for (i = 149; i <= 161; i += 4) {
483 ic->ic_channels[i].ic_freq =
484 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
485 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
486 }
487 }
488
489 /* set supported .11b and .11g rates */
490 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
491 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
492
493 /* set supported .11b and .11g channels (1 through 14) */
494 for (i = 1; i <= 14; i++) {
495 ic->ic_channels[i].ic_freq =
496 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
497 ic->ic_channels[i].ic_flags =
498 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
499 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
500 }
501
502 if_attach(ifp);
503 ieee80211_ifattach(ic);
504 ic->ic_reset = ural_reset;
505
506 /* override state transition machine */
507 sc->sc_newstate = ic->ic_newstate;
508 ic->ic_newstate = ural_newstate;
509 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
510
511 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
512 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
513
514 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
515 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
516 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
517
518 sc->sc_txtap_len = sizeof sc->sc_txtapu;
519 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
520 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
521
522 ieee80211_announce(ic);
523
524 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
525 sc->sc_dev);
526
527 return;
528 }
529
530 int
531 ural_detach(device_t self, int flags)
532 {
533 struct ural_softc *sc = device_private(self);
534 struct ieee80211com *ic = &sc->sc_ic;
535 struct ifnet *ifp = &sc->sc_if;
536 int s;
537
538 s = splusb();
539
540 ural_stop(ifp, 1);
541 usb_rem_task(sc->sc_udev, &sc->sc_task);
542 callout_stop(&sc->sc_scan_ch);
543 callout_stop(&sc->sc_amrr_ch);
544
545 if (sc->amrr_xfer != NULL) {
546 usbd_free_xfer(sc->amrr_xfer);
547 sc->amrr_xfer = NULL;
548 }
549
550 if (sc->sc_rx_pipeh != NULL) {
551 usbd_abort_pipe(sc->sc_rx_pipeh);
552 usbd_close_pipe(sc->sc_rx_pipeh);
553 }
554
555 if (sc->sc_tx_pipeh != NULL) {
556 usbd_abort_pipe(sc->sc_tx_pipeh);
557 usbd_close_pipe(sc->sc_tx_pipeh);
558 }
559
560 bpf_detach(ifp);
561 ieee80211_ifdetach(ic);
562 if_detach(ifp);
563
564 splx(s);
565
566 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
567 sc->sc_dev);
568
569 return 0;
570 }
571
572 Static int
573 ural_alloc_tx_list(struct ural_softc *sc)
574 {
575 struct ural_tx_data *data;
576 int i, error;
577
578 sc->tx_queued = 0;
579
580 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
581 data = &sc->tx_data[i];
582
583 data->sc = sc;
584
585 data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 if (data->xfer == NULL) {
587 printf("%s: could not allocate tx xfer\n",
588 device_xname(sc->sc_dev));
589 error = ENOMEM;
590 goto fail;
591 }
592
593 data->buf = usbd_alloc_buffer(data->xfer,
594 RAL_TX_DESC_SIZE + MCLBYTES);
595 if (data->buf == NULL) {
596 printf("%s: could not allocate tx buffer\n",
597 device_xname(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601 }
602
603 return 0;
604
605 fail: ural_free_tx_list(sc);
606 return error;
607 }
608
609 Static void
610 ural_free_tx_list(struct ural_softc *sc)
611 {
612 struct ural_tx_data *data;
613 int i;
614
615 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
616 data = &sc->tx_data[i];
617
618 if (data->xfer != NULL) {
619 usbd_free_xfer(data->xfer);
620 data->xfer = NULL;
621 }
622
623 if (data->ni != NULL) {
624 ieee80211_free_node(data->ni);
625 data->ni = NULL;
626 }
627 }
628 }
629
630 Static int
631 ural_alloc_rx_list(struct ural_softc *sc)
632 {
633 struct ural_rx_data *data;
634 int i, error;
635
636 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
637 data = &sc->rx_data[i];
638
639 data->sc = sc;
640
641 data->xfer = usbd_alloc_xfer(sc->sc_udev);
642 if (data->xfer == NULL) {
643 printf("%s: could not allocate rx xfer\n",
644 device_xname(sc->sc_dev));
645 error = ENOMEM;
646 goto fail;
647 }
648
649 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
650 printf("%s: could not allocate rx buffer\n",
651 device_xname(sc->sc_dev));
652 error = ENOMEM;
653 goto fail;
654 }
655
656 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
657 if (data->m == NULL) {
658 printf("%s: could not allocate rx mbuf\n",
659 device_xname(sc->sc_dev));
660 error = ENOMEM;
661 goto fail;
662 }
663
664 MCLGET(data->m, M_DONTWAIT);
665 if (!(data->m->m_flags & M_EXT)) {
666 printf("%s: could not allocate rx mbuf cluster\n",
667 device_xname(sc->sc_dev));
668 error = ENOMEM;
669 goto fail;
670 }
671
672 data->buf = mtod(data->m, uint8_t *);
673 }
674
675 return 0;
676
677 fail: ural_free_tx_list(sc);
678 return error;
679 }
680
681 Static void
682 ural_free_rx_list(struct ural_softc *sc)
683 {
684 struct ural_rx_data *data;
685 int i;
686
687 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
688 data = &sc->rx_data[i];
689
690 if (data->xfer != NULL) {
691 usbd_free_xfer(data->xfer);
692 data->xfer = NULL;
693 }
694
695 if (data->m != NULL) {
696 m_freem(data->m);
697 data->m = NULL;
698 }
699 }
700 }
701
702 Static int
703 ural_media_change(struct ifnet *ifp)
704 {
705 int error;
706
707 error = ieee80211_media_change(ifp);
708 if (error != ENETRESET)
709 return error;
710
711 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 ural_init(ifp);
713
714 return 0;
715 }
716
717 /*
718 * This function is called periodically (every 200ms) during scanning to
719 * switch from one channel to another.
720 */
721 Static void
722 ural_next_scan(void *arg)
723 {
724 struct ural_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726
727 if (ic->ic_state == IEEE80211_S_SCAN)
728 ieee80211_next_scan(ic);
729 }
730
731 Static void
732 ural_task(void *arg)
733 {
734 struct ural_softc *sc = arg;
735 struct ieee80211com *ic = &sc->sc_ic;
736 enum ieee80211_state ostate;
737 struct ieee80211_node *ni;
738 struct mbuf *m;
739
740 ostate = ic->ic_state;
741
742 switch (sc->sc_state) {
743 case IEEE80211_S_INIT:
744 if (ostate == IEEE80211_S_RUN) {
745 /* abort TSF synchronization */
746 ural_write(sc, RAL_TXRX_CSR19, 0);
747
748 /* force tx led to stop blinking */
749 ural_write(sc, RAL_MAC_CSR20, 0);
750 }
751 break;
752
753 case IEEE80211_S_SCAN:
754 ural_set_chan(sc, ic->ic_curchan);
755 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
756 break;
757
758 case IEEE80211_S_AUTH:
759 ural_set_chan(sc, ic->ic_curchan);
760 break;
761
762 case IEEE80211_S_ASSOC:
763 ural_set_chan(sc, ic->ic_curchan);
764 break;
765
766 case IEEE80211_S_RUN:
767 ural_set_chan(sc, ic->ic_curchan);
768
769 ni = ic->ic_bss;
770
771 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
772 ural_update_slot(ic->ic_ifp);
773 ural_set_txpreamble(sc);
774 ural_set_basicrates(sc);
775 ural_set_bssid(sc, ni->ni_bssid);
776 }
777
778 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
779 ic->ic_opmode == IEEE80211_M_IBSS) {
780 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
781 if (m == NULL) {
782 printf("%s: could not allocate beacon\n",
783 device_xname(sc->sc_dev));
784 return;
785 }
786
787 if (ural_tx_bcn(sc, m, ni) != 0) {
788 m_freem(m);
789 printf("%s: could not send beacon\n",
790 device_xname(sc->sc_dev));
791 return;
792 }
793
794 /* beacon is no longer needed */
795 m_freem(m);
796 }
797
798 /* make tx led blink on tx (controlled by ASIC) */
799 ural_write(sc, RAL_MAC_CSR20, 1);
800
801 if (ic->ic_opmode != IEEE80211_M_MONITOR)
802 ural_enable_tsf_sync(sc);
803
804 /* enable automatic rate adaptation in STA mode */
805 if (ic->ic_opmode == IEEE80211_M_STA &&
806 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
807 ural_amrr_start(sc, ni);
808
809 break;
810 }
811
812 sc->sc_newstate(ic, sc->sc_state, -1);
813 }
814
815 Static int
816 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
817 int arg)
818 {
819 struct ural_softc *sc = ic->ic_ifp->if_softc;
820
821 usb_rem_task(sc->sc_udev, &sc->sc_task);
822 callout_stop(&sc->sc_scan_ch);
823 callout_stop(&sc->sc_amrr_ch);
824
825 /* do it in a process context */
826 sc->sc_state = nstate;
827 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
828
829 return 0;
830 }
831
832 /* quickly determine if a given rate is CCK or OFDM */
833 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
834
835 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
836 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
837
838 #define RAL_SIFS 10 /* us */
839
840 #define RAL_RXTX_TURNAROUND 5 /* us */
841
842 /*
843 * This function is only used by the Rx radiotap code.
844 */
845 Static int
846 ural_rxrate(struct ural_rx_desc *desc)
847 {
848 if (le32toh(desc->flags) & RAL_RX_OFDM) {
849 /* reverse function of ural_plcp_signal */
850 switch (desc->rate) {
851 case 0xb: return 12;
852 case 0xf: return 18;
853 case 0xa: return 24;
854 case 0xe: return 36;
855 case 0x9: return 48;
856 case 0xd: return 72;
857 case 0x8: return 96;
858 case 0xc: return 108;
859 }
860 } else {
861 if (desc->rate == 10)
862 return 2;
863 if (desc->rate == 20)
864 return 4;
865 if (desc->rate == 55)
866 return 11;
867 if (desc->rate == 110)
868 return 22;
869 }
870 return 2; /* should not get there */
871 }
872
873 Static void
874 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv,
875 usbd_status status)
876 {
877 struct ural_tx_data *data = priv;
878 struct ural_softc *sc = data->sc;
879 struct ifnet *ifp = &sc->sc_if;
880 int s;
881
882 if (status != USBD_NORMAL_COMPLETION) {
883 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
884 return;
885
886 printf("%s: could not transmit buffer: %s\n",
887 device_xname(sc->sc_dev), usbd_errstr(status));
888
889 if (status == USBD_STALLED)
890 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
891
892 ifp->if_oerrors++;
893 return;
894 }
895
896 s = splnet();
897
898 m_freem(data->m);
899 data->m = NULL;
900 ieee80211_free_node(data->ni);
901 data->ni = NULL;
902
903 sc->tx_queued--;
904 ifp->if_opackets++;
905
906 DPRINTFN(10, ("tx done\n"));
907
908 sc->sc_tx_timer = 0;
909 ifp->if_flags &= ~IFF_OACTIVE;
910 ural_start(ifp);
911
912 splx(s);
913 }
914
915 Static void
916 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
917 {
918 struct ural_rx_data *data = priv;
919 struct ural_softc *sc = data->sc;
920 struct ieee80211com *ic = &sc->sc_ic;
921 struct ifnet *ifp = &sc->sc_if;
922 struct ural_rx_desc *desc;
923 struct ieee80211_frame *wh;
924 struct ieee80211_node *ni;
925 struct mbuf *mnew, *m;
926 int s, len;
927
928 if (status != USBD_NORMAL_COMPLETION) {
929 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
930 return;
931
932 if (status == USBD_STALLED)
933 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
934 goto skip;
935 }
936
937 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
938
939 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
940 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
941 len));
942 ifp->if_ierrors++;
943 goto skip;
944 }
945
946 /* rx descriptor is located at the end */
947 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
948
949 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
950 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
951 /*
952 * This should not happen since we did not request to receive
953 * those frames when we filled RAL_TXRX_CSR2.
954 */
955 DPRINTFN(5, ("PHY or CRC error\n"));
956 ifp->if_ierrors++;
957 goto skip;
958 }
959
960 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
961 if (mnew == NULL) {
962 ifp->if_ierrors++;
963 goto skip;
964 }
965
966 MCLGET(mnew, M_DONTWAIT);
967 if (!(mnew->m_flags & M_EXT)) {
968 ifp->if_ierrors++;
969 m_freem(mnew);
970 goto skip;
971 }
972
973 m = data->m;
974 data->m = mnew;
975 data->buf = mtod(data->m, uint8_t *);
976
977 /* finalize mbuf */
978 m->m_pkthdr.rcvif = ifp;
979 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
980 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
981
982 s = splnet();
983
984 if (sc->sc_drvbpf != NULL) {
985 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
986
987 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
988 tap->wr_rate = ural_rxrate(desc);
989 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
990 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
991 tap->wr_antenna = sc->rx_ant;
992 tap->wr_antsignal = desc->rssi;
993
994 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
995 }
996
997 wh = mtod(m, struct ieee80211_frame *);
998 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
999
1000 /* send the frame to the 802.11 layer */
1001 ieee80211_input(ic, m, ni, desc->rssi, 0);
1002
1003 /* node is no longer needed */
1004 ieee80211_free_node(ni);
1005
1006 splx(s);
1007
1008 DPRINTFN(15, ("rx done\n"));
1009
1010 skip: /* setup a new transfer */
1011 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1012 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1013 usbd_transfer(xfer);
1014 }
1015
1016 /*
1017 * Return the expected ack rate for a frame transmitted at rate `rate'.
1018 * XXX: this should depend on the destination node basic rate set.
1019 */
1020 Static int
1021 ural_ack_rate(struct ieee80211com *ic, int rate)
1022 {
1023 switch (rate) {
1024 /* CCK rates */
1025 case 2:
1026 return 2;
1027 case 4:
1028 case 11:
1029 case 22:
1030 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1031
1032 /* OFDM rates */
1033 case 12:
1034 case 18:
1035 return 12;
1036 case 24:
1037 case 36:
1038 return 24;
1039 case 48:
1040 case 72:
1041 case 96:
1042 case 108:
1043 return 48;
1044 }
1045
1046 /* default to 1Mbps */
1047 return 2;
1048 }
1049
1050 /*
1051 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1052 * The function automatically determines the operating mode depending on the
1053 * given rate. `flags' indicates whether short preamble is in use or not.
1054 */
1055 Static uint16_t
1056 ural_txtime(int len, int rate, uint32_t flags)
1057 {
1058 uint16_t txtime;
1059
1060 if (RAL_RATE_IS_OFDM(rate)) {
1061 /* IEEE Std 802.11g-2003, pp. 37 */
1062 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1063 txtime = 16 + 4 + 4 * txtime + 6;
1064 } else {
1065 /* IEEE Std 802.11b-1999, pp. 28 */
1066 txtime = (16 * len + rate - 1) / rate;
1067 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1068 txtime += 72 + 24;
1069 else
1070 txtime += 144 + 48;
1071 }
1072 return txtime;
1073 }
1074
1075 Static uint8_t
1076 ural_plcp_signal(int rate)
1077 {
1078 switch (rate) {
1079 /* CCK rates (returned values are device-dependent) */
1080 case 2: return 0x0;
1081 case 4: return 0x1;
1082 case 11: return 0x2;
1083 case 22: return 0x3;
1084
1085 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1086 case 12: return 0xb;
1087 case 18: return 0xf;
1088 case 24: return 0xa;
1089 case 36: return 0xe;
1090 case 48: return 0x9;
1091 case 72: return 0xd;
1092 case 96: return 0x8;
1093 case 108: return 0xc;
1094
1095 /* unsupported rates (should not get there) */
1096 default: return 0xff;
1097 }
1098 }
1099
1100 Static void
1101 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1102 uint32_t flags, int len, int rate)
1103 {
1104 struct ieee80211com *ic = &sc->sc_ic;
1105 uint16_t plcp_length;
1106 int remainder;
1107
1108 desc->flags = htole32(flags);
1109 desc->flags |= htole32(RAL_TX_NEWSEQ);
1110 desc->flags |= htole32(len << 16);
1111
1112 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1113 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1114
1115 /* setup PLCP fields */
1116 desc->plcp_signal = ural_plcp_signal(rate);
1117 desc->plcp_service = 4;
1118
1119 len += IEEE80211_CRC_LEN;
1120 if (RAL_RATE_IS_OFDM(rate)) {
1121 desc->flags |= htole32(RAL_TX_OFDM);
1122
1123 plcp_length = len & 0xfff;
1124 desc->plcp_length_hi = plcp_length >> 6;
1125 desc->plcp_length_lo = plcp_length & 0x3f;
1126 } else {
1127 plcp_length = (16 * len + rate - 1) / rate;
1128 if (rate == 22) {
1129 remainder = (16 * len) % 22;
1130 if (remainder != 0 && remainder < 7)
1131 desc->plcp_service |= RAL_PLCP_LENGEXT;
1132 }
1133 desc->plcp_length_hi = plcp_length >> 8;
1134 desc->plcp_length_lo = plcp_length & 0xff;
1135
1136 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1137 desc->plcp_signal |= 0x08;
1138 }
1139
1140 desc->iv = 0;
1141 desc->eiv = 0;
1142 }
1143
1144 #define RAL_TX_TIMEOUT 5000
1145
1146 Static int
1147 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1148 {
1149 struct ural_tx_desc *desc;
1150 usbd_xfer_handle xfer;
1151 uint8_t cmd = 0;
1152 usbd_status error;
1153 uint8_t *buf;
1154 int xferlen, rate;
1155
1156 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1157
1158 xfer = usbd_alloc_xfer(sc->sc_udev);
1159 if (xfer == NULL)
1160 return ENOMEM;
1161
1162 /* xfer length needs to be a multiple of two! */
1163 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1164
1165 buf = usbd_alloc_buffer(xfer, xferlen);
1166 if (buf == NULL) {
1167 usbd_free_xfer(xfer);
1168 return ENOMEM;
1169 }
1170
1171 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1172 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1173
1174 error = usbd_sync_transfer(xfer);
1175 if (error != 0) {
1176 usbd_free_xfer(xfer);
1177 return error;
1178 }
1179
1180 desc = (struct ural_tx_desc *)buf;
1181
1182 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1183 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1184 m0->m_pkthdr.len, rate);
1185
1186 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1187 m0->m_pkthdr.len, rate, xferlen));
1188
1189 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1190 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1191
1192 error = usbd_sync_transfer(xfer);
1193 usbd_free_xfer(xfer);
1194
1195 return error;
1196 }
1197
1198 Static int
1199 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1200 {
1201 struct ieee80211com *ic = &sc->sc_ic;
1202 struct ural_tx_desc *desc;
1203 struct ural_tx_data *data;
1204 struct ieee80211_frame *wh;
1205 struct ieee80211_key *k;
1206 uint32_t flags = 0;
1207 uint16_t dur;
1208 usbd_status error;
1209 int xferlen, rate;
1210
1211 data = &sc->tx_data[0];
1212 desc = (struct ural_tx_desc *)data->buf;
1213
1214 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1215
1216 wh = mtod(m0, struct ieee80211_frame *);
1217
1218 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1219 k = ieee80211_crypto_encap(ic, ni, m0);
1220 if (k == NULL) {
1221 m_freem(m0);
1222 return ENOBUFS;
1223 }
1224 }
1225
1226 data->m = m0;
1227 data->ni = ni;
1228
1229 wh = mtod(m0, struct ieee80211_frame *);
1230
1231 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1232 flags |= RAL_TX_ACK;
1233
1234 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1235 *(uint16_t *)wh->i_dur = htole16(dur);
1236
1237 /* tell hardware to add timestamp for probe responses */
1238 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1239 IEEE80211_FC0_TYPE_MGT &&
1240 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1241 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1242 flags |= RAL_TX_TIMESTAMP;
1243 }
1244
1245 if (sc->sc_drvbpf != NULL) {
1246 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1247
1248 tap->wt_flags = 0;
1249 tap->wt_rate = rate;
1250 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1251 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1252 tap->wt_antenna = sc->tx_ant;
1253
1254 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1255 }
1256
1257 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1258 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1259
1260 /* align end on a 2-bytes boundary */
1261 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1262
1263 /*
1264 * No space left in the last URB to store the extra 2 bytes, force
1265 * sending of another URB.
1266 */
1267 if ((xferlen % 64) == 0)
1268 xferlen += 2;
1269
1270 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1271 m0->m_pkthdr.len, rate, xferlen));
1272
1273 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1274 xferlen, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT,
1275 ural_txeof);
1276
1277 error = usbd_transfer(data->xfer);
1278 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1279 m_freem(m0);
1280 return error;
1281 }
1282
1283 sc->tx_queued++;
1284
1285 return 0;
1286 }
1287
1288 Static int
1289 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1290 {
1291 struct ieee80211com *ic = &sc->sc_ic;
1292 struct ural_tx_desc *desc;
1293 struct ural_tx_data *data;
1294 struct ieee80211_frame *wh;
1295 struct ieee80211_key *k;
1296 uint32_t flags = 0;
1297 uint16_t dur;
1298 usbd_status error;
1299 int xferlen, rate;
1300
1301 wh = mtod(m0, struct ieee80211_frame *);
1302
1303 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1304 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1305 else
1306 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1307
1308 rate &= IEEE80211_RATE_VAL;
1309
1310 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1311 k = ieee80211_crypto_encap(ic, ni, m0);
1312 if (k == NULL) {
1313 m_freem(m0);
1314 return ENOBUFS;
1315 }
1316
1317 /* packet header may have moved, reset our local pointer */
1318 wh = mtod(m0, struct ieee80211_frame *);
1319 }
1320
1321 data = &sc->tx_data[0];
1322 desc = (struct ural_tx_desc *)data->buf;
1323
1324 data->m = m0;
1325 data->ni = ni;
1326
1327 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1328 flags |= RAL_TX_ACK;
1329 flags |= RAL_TX_RETRY(7);
1330
1331 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1332 ic->ic_flags) + RAL_SIFS;
1333 *(uint16_t *)wh->i_dur = htole16(dur);
1334 }
1335
1336 if (sc->sc_drvbpf != NULL) {
1337 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1338
1339 tap->wt_flags = 0;
1340 tap->wt_rate = rate;
1341 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1342 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1343 tap->wt_antenna = sc->tx_ant;
1344
1345 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1346 }
1347
1348 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1349 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1350
1351 /* align end on a 2-bytes boundary */
1352 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1353
1354 /*
1355 * No space left in the last URB to store the extra 2 bytes, force
1356 * sending of another URB.
1357 */
1358 if ((xferlen % 64) == 0)
1359 xferlen += 2;
1360
1361 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1362 m0->m_pkthdr.len, rate, xferlen));
1363
1364 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1365 xferlen, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT,
1366 ural_txeof);
1367
1368 error = usbd_transfer(data->xfer);
1369 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1370 return error;
1371
1372 sc->tx_queued++;
1373
1374 return 0;
1375 }
1376
1377 Static void
1378 ural_start(struct ifnet *ifp)
1379 {
1380 struct ural_softc *sc = ifp->if_softc;
1381 struct ieee80211com *ic = &sc->sc_ic;
1382 struct mbuf *m0;
1383 struct ether_header *eh;
1384 struct ieee80211_node *ni;
1385
1386 for (;;) {
1387 IF_POLL(&ic->ic_mgtq, m0);
1388 if (m0 != NULL) {
1389 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1390 ifp->if_flags |= IFF_OACTIVE;
1391 break;
1392 }
1393 IF_DEQUEUE(&ic->ic_mgtq, m0);
1394
1395 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1396 m0->m_pkthdr.rcvif = NULL;
1397 bpf_mtap3(ic->ic_rawbpf, m0);
1398 if (ural_tx_mgt(sc, m0, ni) != 0)
1399 break;
1400
1401 } else {
1402 if (ic->ic_state != IEEE80211_S_RUN)
1403 break;
1404 IFQ_DEQUEUE(&ifp->if_snd, m0);
1405 if (m0 == NULL)
1406 break;
1407 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1408 IF_PREPEND(&ifp->if_snd, m0);
1409 ifp->if_flags |= IFF_OACTIVE;
1410 break;
1411 }
1412
1413 if (m0->m_len < sizeof (struct ether_header) &&
1414 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1415 continue;
1416
1417 eh = mtod(m0, struct ether_header *);
1418 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1419 if (ni == NULL) {
1420 m_freem(m0);
1421 continue;
1422 }
1423 bpf_mtap(ifp, m0);
1424 m0 = ieee80211_encap(ic, m0, ni);
1425 if (m0 == NULL) {
1426 ieee80211_free_node(ni);
1427 continue;
1428 }
1429 bpf_mtap3(ic->ic_rawbpf, m0);
1430 if (ural_tx_data(sc, m0, ni) != 0) {
1431 ieee80211_free_node(ni);
1432 ifp->if_oerrors++;
1433 break;
1434 }
1435 }
1436
1437 sc->sc_tx_timer = 5;
1438 ifp->if_timer = 1;
1439 }
1440 }
1441
1442 Static void
1443 ural_watchdog(struct ifnet *ifp)
1444 {
1445 struct ural_softc *sc = ifp->if_softc;
1446 struct ieee80211com *ic = &sc->sc_ic;
1447
1448 ifp->if_timer = 0;
1449
1450 if (sc->sc_tx_timer > 0) {
1451 if (--sc->sc_tx_timer == 0) {
1452 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1453 /*ural_init(sc); XXX needs a process context! */
1454 ifp->if_oerrors++;
1455 return;
1456 }
1457 ifp->if_timer = 1;
1458 }
1459
1460 ieee80211_watchdog(ic);
1461 }
1462
1463 /*
1464 * This function allows for fast channel switching in monitor mode (used by
1465 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1466 * generate a new beacon frame.
1467 */
1468 Static int
1469 ural_reset(struct ifnet *ifp)
1470 {
1471 struct ural_softc *sc = ifp->if_softc;
1472 struct ieee80211com *ic = &sc->sc_ic;
1473
1474 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1475 return ENETRESET;
1476
1477 ural_set_chan(sc, ic->ic_curchan);
1478
1479 return 0;
1480 }
1481
1482 Static int
1483 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1484 {
1485 #define IS_RUNNING(ifp) \
1486 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1487
1488 struct ural_softc *sc = ifp->if_softc;
1489 struct ieee80211com *ic = &sc->sc_ic;
1490 int s, error = 0;
1491
1492 s = splnet();
1493
1494 switch (cmd) {
1495 case SIOCSIFFLAGS:
1496 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1497 break;
1498 /* XXX re-use ether_ioctl() */
1499 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1500 case IFF_UP|IFF_RUNNING:
1501 ural_update_promisc(sc);
1502 break;
1503 case IFF_UP:
1504 ural_init(ifp);
1505 break;
1506 case IFF_RUNNING:
1507 ural_stop(ifp, 1);
1508 break;
1509 case 0:
1510 break;
1511 }
1512 break;
1513
1514 case SIOCADDMULTI:
1515 case SIOCDELMULTI:
1516 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1517 error = 0;
1518 }
1519 break;
1520
1521 default:
1522 error = ieee80211_ioctl(ic, cmd, data);
1523 }
1524
1525 if (error == ENETRESET) {
1526 if (IS_RUNNING(ifp) &&
1527 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1528 ural_init(ifp);
1529 error = 0;
1530 }
1531
1532 splx(s);
1533
1534 return error;
1535 #undef IS_RUNNING
1536 }
1537
1538 Static void
1539 ural_set_testmode(struct ural_softc *sc)
1540 {
1541 usb_device_request_t req;
1542 usbd_status error;
1543
1544 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1545 req.bRequest = RAL_VENDOR_REQUEST;
1546 USETW(req.wValue, 4);
1547 USETW(req.wIndex, 1);
1548 USETW(req.wLength, 0);
1549
1550 error = usbd_do_request(sc->sc_udev, &req, NULL);
1551 if (error != 0) {
1552 printf("%s: could not set test mode: %s\n",
1553 device_xname(sc->sc_dev), usbd_errstr(error));
1554 }
1555 }
1556
1557 Static void
1558 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1559 {
1560 usb_device_request_t req;
1561 usbd_status error;
1562
1563 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1564 req.bRequest = RAL_READ_EEPROM;
1565 USETW(req.wValue, 0);
1566 USETW(req.wIndex, addr);
1567 USETW(req.wLength, len);
1568
1569 error = usbd_do_request(sc->sc_udev, &req, buf);
1570 if (error != 0) {
1571 printf("%s: could not read EEPROM: %s\n",
1572 device_xname(sc->sc_dev), usbd_errstr(error));
1573 }
1574 }
1575
1576 Static uint16_t
1577 ural_read(struct ural_softc *sc, uint16_t reg)
1578 {
1579 usb_device_request_t req;
1580 usbd_status error;
1581 uint16_t val;
1582
1583 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1584 req.bRequest = RAL_READ_MAC;
1585 USETW(req.wValue, 0);
1586 USETW(req.wIndex, reg);
1587 USETW(req.wLength, sizeof (uint16_t));
1588
1589 error = usbd_do_request(sc->sc_udev, &req, &val);
1590 if (error != 0) {
1591 printf("%s: could not read MAC register: %s\n",
1592 device_xname(sc->sc_dev), usbd_errstr(error));
1593 return 0;
1594 }
1595
1596 return le16toh(val);
1597 }
1598
1599 Static void
1600 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1601 {
1602 usb_device_request_t req;
1603 usbd_status error;
1604
1605 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1606 req.bRequest = RAL_READ_MULTI_MAC;
1607 USETW(req.wValue, 0);
1608 USETW(req.wIndex, reg);
1609 USETW(req.wLength, len);
1610
1611 error = usbd_do_request(sc->sc_udev, &req, buf);
1612 if (error != 0) {
1613 printf("%s: could not read MAC register: %s\n",
1614 device_xname(sc->sc_dev), usbd_errstr(error));
1615 }
1616 }
1617
1618 Static void
1619 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1620 {
1621 usb_device_request_t req;
1622 usbd_status error;
1623
1624 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1625 req.bRequest = RAL_WRITE_MAC;
1626 USETW(req.wValue, val);
1627 USETW(req.wIndex, reg);
1628 USETW(req.wLength, 0);
1629
1630 error = usbd_do_request(sc->sc_udev, &req, NULL);
1631 if (error != 0) {
1632 printf("%s: could not write MAC register: %s\n",
1633 device_xname(sc->sc_dev), usbd_errstr(error));
1634 }
1635 }
1636
1637 Static void
1638 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1639 {
1640 usb_device_request_t req;
1641 usbd_status error;
1642
1643 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1644 req.bRequest = RAL_WRITE_MULTI_MAC;
1645 USETW(req.wValue, 0);
1646 USETW(req.wIndex, reg);
1647 USETW(req.wLength, len);
1648
1649 error = usbd_do_request(sc->sc_udev, &req, buf);
1650 if (error != 0) {
1651 printf("%s: could not write MAC register: %s\n",
1652 device_xname(sc->sc_dev), usbd_errstr(error));
1653 }
1654 }
1655
1656 Static void
1657 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1658 {
1659 uint16_t tmp;
1660 int ntries;
1661
1662 for (ntries = 0; ntries < 5; ntries++) {
1663 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1664 break;
1665 }
1666 if (ntries == 5) {
1667 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1668 return;
1669 }
1670
1671 tmp = reg << 8 | val;
1672 ural_write(sc, RAL_PHY_CSR7, tmp);
1673 }
1674
1675 Static uint8_t
1676 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1677 {
1678 uint16_t val;
1679 int ntries;
1680
1681 val = RAL_BBP_WRITE | reg << 8;
1682 ural_write(sc, RAL_PHY_CSR7, val);
1683
1684 for (ntries = 0; ntries < 5; ntries++) {
1685 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1686 break;
1687 }
1688 if (ntries == 5) {
1689 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1690 return 0;
1691 }
1692
1693 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1694 }
1695
1696 Static void
1697 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1698 {
1699 uint32_t tmp;
1700 int ntries;
1701
1702 for (ntries = 0; ntries < 5; ntries++) {
1703 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1704 break;
1705 }
1706 if (ntries == 5) {
1707 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1708 return;
1709 }
1710
1711 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1712 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1713 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1714
1715 /* remember last written value in sc */
1716 sc->rf_regs[reg] = val;
1717
1718 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1719 }
1720
1721 Static void
1722 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1723 {
1724 struct ieee80211com *ic = &sc->sc_ic;
1725 uint8_t power, tmp;
1726 u_int i, chan;
1727
1728 chan = ieee80211_chan2ieee(ic, c);
1729 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1730 return;
1731
1732 if (IEEE80211_IS_CHAN_2GHZ(c))
1733 power = min(sc->txpow[chan - 1], 31);
1734 else
1735 power = 31;
1736
1737 /* adjust txpower using ifconfig settings */
1738 power -= (100 - ic->ic_txpowlimit) / 8;
1739
1740 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1741
1742 switch (sc->rf_rev) {
1743 case RAL_RF_2522:
1744 ural_rf_write(sc, RAL_RF1, 0x00814);
1745 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1747 break;
1748
1749 case RAL_RF_2523:
1750 ural_rf_write(sc, RAL_RF1, 0x08804);
1751 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1752 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1753 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1754 break;
1755
1756 case RAL_RF_2524:
1757 ural_rf_write(sc, RAL_RF1, 0x0c808);
1758 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1759 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1760 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1761 break;
1762
1763 case RAL_RF_2525:
1764 ural_rf_write(sc, RAL_RF1, 0x08808);
1765 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1766 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1767 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1768
1769 ural_rf_write(sc, RAL_RF1, 0x08808);
1770 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1771 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1772 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1773 break;
1774
1775 case RAL_RF_2525E:
1776 ural_rf_write(sc, RAL_RF1, 0x08808);
1777 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1778 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1779 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1780 break;
1781
1782 case RAL_RF_2526:
1783 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1784 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1785 ural_rf_write(sc, RAL_RF1, 0x08804);
1786
1787 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1788 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1789 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1790 break;
1791
1792 /* dual-band RF */
1793 case RAL_RF_5222:
1794 for (i = 0; ural_rf5222[i].chan != chan; i++);
1795
1796 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1797 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1798 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1799 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1800 break;
1801 }
1802
1803 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1804 ic->ic_state != IEEE80211_S_SCAN) {
1805 /* set Japan filter bit for channel 14 */
1806 tmp = ural_bbp_read(sc, 70);
1807
1808 tmp &= ~RAL_JAPAN_FILTER;
1809 if (chan == 14)
1810 tmp |= RAL_JAPAN_FILTER;
1811
1812 ural_bbp_write(sc, 70, tmp);
1813
1814 /* clear CRC errors */
1815 ural_read(sc, RAL_STA_CSR0);
1816
1817 DELAY(10000);
1818 ural_disable_rf_tune(sc);
1819 }
1820 }
1821
1822 /*
1823 * Disable RF auto-tuning.
1824 */
1825 Static void
1826 ural_disable_rf_tune(struct ural_softc *sc)
1827 {
1828 uint32_t tmp;
1829
1830 if (sc->rf_rev != RAL_RF_2523) {
1831 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1832 ural_rf_write(sc, RAL_RF1, tmp);
1833 }
1834
1835 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1836 ural_rf_write(sc, RAL_RF3, tmp);
1837
1838 DPRINTFN(2, ("disabling RF autotune\n"));
1839 }
1840
1841 /*
1842 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1843 * synchronization.
1844 */
1845 Static void
1846 ural_enable_tsf_sync(struct ural_softc *sc)
1847 {
1848 struct ieee80211com *ic = &sc->sc_ic;
1849 uint16_t logcwmin, preload, tmp;
1850
1851 /* first, disable TSF synchronization */
1852 ural_write(sc, RAL_TXRX_CSR19, 0);
1853
1854 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1855 ural_write(sc, RAL_TXRX_CSR18, tmp);
1856
1857 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1858 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1859 tmp = logcwmin << 12 | preload;
1860 ural_write(sc, RAL_TXRX_CSR20, tmp);
1861
1862 /* finally, enable TSF synchronization */
1863 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1864 if (ic->ic_opmode == IEEE80211_M_STA)
1865 tmp |= RAL_ENABLE_TSF_SYNC(1);
1866 else
1867 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1868 ural_write(sc, RAL_TXRX_CSR19, tmp);
1869
1870 DPRINTF(("enabling TSF synchronization\n"));
1871 }
1872
1873 Static void
1874 ural_update_slot(struct ifnet *ifp)
1875 {
1876 struct ural_softc *sc = ifp->if_softc;
1877 struct ieee80211com *ic = &sc->sc_ic;
1878 uint16_t slottime, sifs, eifs;
1879
1880 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1881
1882 /*
1883 * These settings may sound a bit inconsistent but this is what the
1884 * reference driver does.
1885 */
1886 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1887 sifs = 16 - RAL_RXTX_TURNAROUND;
1888 eifs = 364;
1889 } else {
1890 sifs = 10 - RAL_RXTX_TURNAROUND;
1891 eifs = 64;
1892 }
1893
1894 ural_write(sc, RAL_MAC_CSR10, slottime);
1895 ural_write(sc, RAL_MAC_CSR11, sifs);
1896 ural_write(sc, RAL_MAC_CSR12, eifs);
1897 }
1898
1899 Static void
1900 ural_set_txpreamble(struct ural_softc *sc)
1901 {
1902 uint16_t tmp;
1903
1904 tmp = ural_read(sc, RAL_TXRX_CSR10);
1905
1906 tmp &= ~RAL_SHORT_PREAMBLE;
1907 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1908 tmp |= RAL_SHORT_PREAMBLE;
1909
1910 ural_write(sc, RAL_TXRX_CSR10, tmp);
1911 }
1912
1913 Static void
1914 ural_set_basicrates(struct ural_softc *sc)
1915 {
1916 struct ieee80211com *ic = &sc->sc_ic;
1917
1918 /* update basic rate set */
1919 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1920 /* 11b basic rates: 1, 2Mbps */
1921 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1922 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1923 /* 11a basic rates: 6, 12, 24Mbps */
1924 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1925 } else {
1926 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1927 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1928 }
1929 }
1930
1931 Static void
1932 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1933 {
1934 uint16_t tmp;
1935
1936 tmp = bssid[0] | bssid[1] << 8;
1937 ural_write(sc, RAL_MAC_CSR5, tmp);
1938
1939 tmp = bssid[2] | bssid[3] << 8;
1940 ural_write(sc, RAL_MAC_CSR6, tmp);
1941
1942 tmp = bssid[4] | bssid[5] << 8;
1943 ural_write(sc, RAL_MAC_CSR7, tmp);
1944
1945 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1946 }
1947
1948 Static void
1949 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1950 {
1951 uint16_t tmp;
1952
1953 tmp = addr[0] | addr[1] << 8;
1954 ural_write(sc, RAL_MAC_CSR2, tmp);
1955
1956 tmp = addr[2] | addr[3] << 8;
1957 ural_write(sc, RAL_MAC_CSR3, tmp);
1958
1959 tmp = addr[4] | addr[5] << 8;
1960 ural_write(sc, RAL_MAC_CSR4, tmp);
1961
1962 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1963 }
1964
1965 Static void
1966 ural_update_promisc(struct ural_softc *sc)
1967 {
1968 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1969 uint32_t tmp;
1970
1971 tmp = ural_read(sc, RAL_TXRX_CSR2);
1972
1973 tmp &= ~RAL_DROP_NOT_TO_ME;
1974 if (!(ifp->if_flags & IFF_PROMISC))
1975 tmp |= RAL_DROP_NOT_TO_ME;
1976
1977 ural_write(sc, RAL_TXRX_CSR2, tmp);
1978
1979 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1980 "entering" : "leaving"));
1981 }
1982
1983 Static const char *
1984 ural_get_rf(int rev)
1985 {
1986 switch (rev) {
1987 case RAL_RF_2522: return "RT2522";
1988 case RAL_RF_2523: return "RT2523";
1989 case RAL_RF_2524: return "RT2524";
1990 case RAL_RF_2525: return "RT2525";
1991 case RAL_RF_2525E: return "RT2525e";
1992 case RAL_RF_2526: return "RT2526";
1993 case RAL_RF_5222: return "RT5222";
1994 default: return "unknown";
1995 }
1996 }
1997
1998 Static void
1999 ural_read_eeprom(struct ural_softc *sc)
2000 {
2001 struct ieee80211com *ic = &sc->sc_ic;
2002 uint16_t val;
2003
2004 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2005 val = le16toh(val);
2006 sc->rf_rev = (val >> 11) & 0x7;
2007 sc->hw_radio = (val >> 10) & 0x1;
2008 sc->led_mode = (val >> 6) & 0x7;
2009 sc->rx_ant = (val >> 4) & 0x3;
2010 sc->tx_ant = (val >> 2) & 0x3;
2011 sc->nb_ant = val & 0x3;
2012
2013 /* read MAC address */
2014 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2015
2016 /* read default values for BBP registers */
2017 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2018
2019 /* read Tx power for all b/g channels */
2020 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2021 }
2022
2023 Static int
2024 ural_bbp_init(struct ural_softc *sc)
2025 {
2026 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2027 int i, ntries;
2028
2029 /* wait for BBP to be ready */
2030 for (ntries = 0; ntries < 100; ntries++) {
2031 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2032 break;
2033 DELAY(1000);
2034 }
2035 if (ntries == 100) {
2036 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2037 return EIO;
2038 }
2039
2040 /* initialize BBP registers to default values */
2041 for (i = 0; i < N(ural_def_bbp); i++)
2042 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2043
2044 #if 0
2045 /* initialize BBP registers to values stored in EEPROM */
2046 for (i = 0; i < 16; i++) {
2047 if (sc->bbp_prom[i].reg == 0xff)
2048 continue;
2049 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2050 }
2051 #endif
2052
2053 return 0;
2054 #undef N
2055 }
2056
2057 Static void
2058 ural_set_txantenna(struct ural_softc *sc, int antenna)
2059 {
2060 uint16_t tmp;
2061 uint8_t tx;
2062
2063 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2064 if (antenna == 1)
2065 tx |= RAL_BBP_ANTA;
2066 else if (antenna == 2)
2067 tx |= RAL_BBP_ANTB;
2068 else
2069 tx |= RAL_BBP_DIVERSITY;
2070
2071 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2072 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2073 sc->rf_rev == RAL_RF_5222)
2074 tx |= RAL_BBP_FLIPIQ;
2075
2076 ural_bbp_write(sc, RAL_BBP_TX, tx);
2077
2078 /* update values in PHY_CSR5 and PHY_CSR6 */
2079 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2080 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2081
2082 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2083 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2084 }
2085
2086 Static void
2087 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2088 {
2089 uint8_t rx;
2090
2091 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2092 if (antenna == 1)
2093 rx |= RAL_BBP_ANTA;
2094 else if (antenna == 2)
2095 rx |= RAL_BBP_ANTB;
2096 else
2097 rx |= RAL_BBP_DIVERSITY;
2098
2099 /* need to force no I/Q flip for RF 2525e and 2526 */
2100 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2101 rx &= ~RAL_BBP_FLIPIQ;
2102
2103 ural_bbp_write(sc, RAL_BBP_RX, rx);
2104 }
2105
2106 Static int
2107 ural_init(struct ifnet *ifp)
2108 {
2109 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2110 struct ural_softc *sc = ifp->if_softc;
2111 struct ieee80211com *ic = &sc->sc_ic;
2112 struct ieee80211_key *wk;
2113 struct ural_rx_data *data;
2114 uint16_t tmp;
2115 usbd_status error;
2116 int i, ntries;
2117
2118 ural_set_testmode(sc);
2119 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2120
2121 ural_stop(ifp, 0);
2122
2123 /* initialize MAC registers to default values */
2124 for (i = 0; i < N(ural_def_mac); i++)
2125 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2126
2127 /* wait for BBP and RF to wake up (this can take a long time!) */
2128 for (ntries = 0; ntries < 100; ntries++) {
2129 tmp = ural_read(sc, RAL_MAC_CSR17);
2130 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2131 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2132 break;
2133 DELAY(1000);
2134 }
2135 if (ntries == 100) {
2136 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2137 device_xname(sc->sc_dev));
2138 error = EIO;
2139 goto fail;
2140 }
2141
2142 /* we're ready! */
2143 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2144
2145 /* set basic rate set (will be updated later) */
2146 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2147
2148 error = ural_bbp_init(sc);
2149 if (error != 0)
2150 goto fail;
2151
2152 /* set default BSS channel */
2153 ural_set_chan(sc, ic->ic_curchan);
2154
2155 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2156 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2157
2158 ural_set_txantenna(sc, sc->tx_ant);
2159 ural_set_rxantenna(sc, sc->rx_ant);
2160
2161 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2162 ural_set_macaddr(sc, ic->ic_myaddr);
2163
2164 /*
2165 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2166 */
2167 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2168 wk = &ic->ic_crypto.cs_nw_keys[i];
2169 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2170 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2171 }
2172
2173 /*
2174 * Allocate xfer for AMRR statistics requests.
2175 */
2176 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2177 if (sc->amrr_xfer == NULL) {
2178 printf("%s: could not allocate AMRR xfer\n",
2179 device_xname(sc->sc_dev));
2180 goto fail;
2181 }
2182
2183 /*
2184 * Open Tx and Rx USB bulk pipes.
2185 */
2186 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2187 &sc->sc_tx_pipeh);
2188 if (error != 0) {
2189 printf("%s: could not open Tx pipe: %s\n",
2190 device_xname(sc->sc_dev), usbd_errstr(error));
2191 goto fail;
2192 }
2193
2194 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2195 &sc->sc_rx_pipeh);
2196 if (error != 0) {
2197 printf("%s: could not open Rx pipe: %s\n",
2198 device_xname(sc->sc_dev), usbd_errstr(error));
2199 goto fail;
2200 }
2201
2202 /*
2203 * Allocate Tx and Rx xfer queues.
2204 */
2205 error = ural_alloc_tx_list(sc);
2206 if (error != 0) {
2207 printf("%s: could not allocate Tx list\n",
2208 device_xname(sc->sc_dev));
2209 goto fail;
2210 }
2211
2212 error = ural_alloc_rx_list(sc);
2213 if (error != 0) {
2214 printf("%s: could not allocate Rx list\n",
2215 device_xname(sc->sc_dev));
2216 goto fail;
2217 }
2218
2219 /*
2220 * Start up the receive pipe.
2221 */
2222 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2223 data = &sc->rx_data[i];
2224
2225 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2226 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2227 usbd_transfer(data->xfer);
2228 }
2229
2230 /* kick Rx */
2231 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2232 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2233 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2234 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2235 tmp |= RAL_DROP_TODS;
2236 if (!(ifp->if_flags & IFF_PROMISC))
2237 tmp |= RAL_DROP_NOT_TO_ME;
2238 }
2239 ural_write(sc, RAL_TXRX_CSR2, tmp);
2240
2241 ifp->if_flags &= ~IFF_OACTIVE;
2242 ifp->if_flags |= IFF_RUNNING;
2243
2244 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2245 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2246 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2247 } else
2248 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2249
2250 return 0;
2251
2252 fail: ural_stop(ifp, 1);
2253 return error;
2254 #undef N
2255 }
2256
2257 Static void
2258 ural_stop(struct ifnet *ifp, int disable)
2259 {
2260 struct ural_softc *sc = ifp->if_softc;
2261 struct ieee80211com *ic = &sc->sc_ic;
2262
2263 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2264
2265 sc->sc_tx_timer = 0;
2266 ifp->if_timer = 0;
2267 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2268
2269 /* disable Rx */
2270 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2271
2272 /* reset ASIC and BBP (but won't reset MAC registers!) */
2273 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2274 ural_write(sc, RAL_MAC_CSR1, 0);
2275
2276 if (sc->amrr_xfer != NULL) {
2277 usbd_free_xfer(sc->amrr_xfer);
2278 sc->amrr_xfer = NULL;
2279 }
2280
2281 if (sc->sc_rx_pipeh != NULL) {
2282 usbd_abort_pipe(sc->sc_rx_pipeh);
2283 usbd_close_pipe(sc->sc_rx_pipeh);
2284 sc->sc_rx_pipeh = NULL;
2285 }
2286
2287 if (sc->sc_tx_pipeh != NULL) {
2288 usbd_abort_pipe(sc->sc_tx_pipeh);
2289 usbd_close_pipe(sc->sc_tx_pipeh);
2290 sc->sc_tx_pipeh = NULL;
2291 }
2292
2293 ural_free_rx_list(sc);
2294 ural_free_tx_list(sc);
2295 }
2296
2297 int
2298 ural_activate(device_t self, enum devact act)
2299 {
2300 struct ural_softc *sc = device_private(self);
2301
2302 switch (act) {
2303 case DVACT_DEACTIVATE:
2304 if_deactivate(&sc->sc_if);
2305 return 0;
2306 default:
2307 return EOPNOTSUPP;
2308 }
2309 }
2310
2311 Static void
2312 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2313 {
2314 int i;
2315
2316 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2317 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2318
2319 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2320
2321 /* set rate to some reasonable initial value */
2322 for (i = ni->ni_rates.rs_nrates - 1;
2323 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2324 i--);
2325 ni->ni_txrate = i;
2326
2327 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2328 }
2329
2330 Static void
2331 ural_amrr_timeout(void *arg)
2332 {
2333 struct ural_softc *sc = (struct ural_softc *)arg;
2334 usb_device_request_t req;
2335 int s;
2336
2337 s = splusb();
2338
2339 /*
2340 * Asynchronously read statistic registers (cleared by read).
2341 */
2342 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2343 req.bRequest = RAL_READ_MULTI_MAC;
2344 USETW(req.wValue, 0);
2345 USETW(req.wIndex, RAL_STA_CSR0);
2346 USETW(req.wLength, sizeof sc->sta);
2347
2348 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2349 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2350 ural_amrr_update);
2351 (void)usbd_transfer(sc->amrr_xfer);
2352
2353 splx(s);
2354 }
2355
2356 Static void
2357 ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2358 usbd_status status)
2359 {
2360 struct ural_softc *sc = (struct ural_softc *)priv;
2361 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2362
2363 if (status != USBD_NORMAL_COMPLETION) {
2364 printf("%s: could not retrieve Tx statistics - "
2365 "cancelling automatic rate control\n",
2366 device_xname(sc->sc_dev));
2367 return;
2368 }
2369
2370 /* count TX retry-fail as Tx errors */
2371 ifp->if_oerrors += sc->sta[9];
2372
2373 sc->amn.amn_retrycnt =
2374 sc->sta[7] + /* TX one-retry ok count */
2375 sc->sta[8] + /* TX more-retry ok count */
2376 sc->sta[9]; /* TX retry-fail count */
2377
2378 sc->amn.amn_txcnt =
2379 sc->amn.amn_retrycnt +
2380 sc->sta[6]; /* TX no-retry ok count */
2381
2382 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2383
2384 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2385 }
2386