if_ural.c revision 1.44.14.3 1 /* $NetBSD: if_ural.c,v 1.44.14.3 2015/03/19 17:26:43 skrll Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.44.14.3 2015/03/19 17:26:43 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 #include <dev/usb/usbdevs.h>
65
66 #include <dev/usb/if_uralreg.h>
67 #include <dev/usb/if_uralvar.h>
68
69 #ifdef URAL_DEBUG
70 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
71 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
72 int ural_debug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno ural_devs[] = {
80 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
83 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
86 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
87 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
88 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
89 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
90 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
94 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
97 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
98 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
101 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
102 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
103 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
104 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
105 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
106 };
107
108 Static int ural_alloc_tx_list(struct ural_softc *);
109 Static void ural_free_tx_list(struct ural_softc *);
110 Static int ural_alloc_rx_list(struct ural_softc *);
111 Static void ural_free_rx_list(struct ural_softc *);
112 Static int ural_media_change(struct ifnet *);
113 Static void ural_next_scan(void *);
114 Static void ural_task(void *);
115 Static int ural_newstate(struct ieee80211com *,
116 enum ieee80211_state, int);
117 Static int ural_rxrate(struct ural_rx_desc *);
118 Static void ural_txeof(struct usbd_xfer *, void *,
119 usbd_status);
120 Static void ural_rxeof(struct usbd_xfer *, void *,
121 usbd_status);
122 Static int ural_ack_rate(struct ieee80211com *, int);
123 Static uint16_t ural_txtime(int, int, uint32_t);
124 Static uint8_t ural_plcp_signal(int);
125 Static void ural_setup_tx_desc(struct ural_softc *,
126 struct ural_tx_desc *, uint32_t, int, int);
127 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
128 struct ieee80211_node *);
129 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
130 struct ieee80211_node *);
131 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static void ural_start(struct ifnet *);
134 Static void ural_watchdog(struct ifnet *);
135 Static int ural_reset(struct ifnet *);
136 Static int ural_ioctl(struct ifnet *, u_long, void *);
137 Static void ural_set_testmode(struct ural_softc *);
138 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
139 int);
140 Static uint16_t ural_read(struct ural_softc *, uint16_t);
141 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
142 int);
143 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
144 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
145 int);
146 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
147 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
148 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
149 Static void ural_set_chan(struct ural_softc *,
150 struct ieee80211_channel *);
151 Static void ural_disable_rf_tune(struct ural_softc *);
152 Static void ural_enable_tsf_sync(struct ural_softc *);
153 Static void ural_update_slot(struct ifnet *);
154 Static void ural_set_txpreamble(struct ural_softc *);
155 Static void ural_set_basicrates(struct ural_softc *);
156 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
157 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
158 Static void ural_update_promisc(struct ural_softc *);
159 Static const char *ural_get_rf(int);
160 Static void ural_read_eeprom(struct ural_softc *);
161 Static int ural_bbp_init(struct ural_softc *);
162 Static void ural_set_txantenna(struct ural_softc *, int);
163 Static void ural_set_rxantenna(struct ural_softc *, int);
164 Static int ural_init(struct ifnet *);
165 Static void ural_stop(struct ifnet *, int);
166 Static void ural_amrr_start(struct ural_softc *,
167 struct ieee80211_node *);
168 Static void ural_amrr_timeout(void *);
169 Static void ural_amrr_update(struct usbd_xfer *, void *,
170 usbd_status status);
171
172 /*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175 static const struct ieee80211_rateset ural_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset ural_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset ural_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 /*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187 static const struct {
188 uint16_t reg;
189 uint16_t val;
190 } ural_def_mac[] = {
191 { RAL_TXRX_CSR5, 0x8c8d },
192 { RAL_TXRX_CSR6, 0x8b8a },
193 { RAL_TXRX_CSR7, 0x8687 },
194 { RAL_TXRX_CSR8, 0x0085 },
195 { RAL_MAC_CSR13, 0x1111 },
196 { RAL_MAC_CSR14, 0x1e11 },
197 { RAL_TXRX_CSR21, 0xe78f },
198 { RAL_MAC_CSR9, 0xff1d },
199 { RAL_MAC_CSR11, 0x0002 },
200 { RAL_MAC_CSR22, 0x0053 },
201 { RAL_MAC_CSR15, 0x0000 },
202 { RAL_MAC_CSR8, 0x0780 },
203 { RAL_TXRX_CSR19, 0x0000 },
204 { RAL_TXRX_CSR18, 0x005a },
205 { RAL_PHY_CSR2, 0x0000 },
206 { RAL_TXRX_CSR0, 0x1ec0 },
207 { RAL_PHY_CSR4, 0x000f }
208 };
209
210 /*
211 * Default values for BBP registers; values taken from the reference driver.
212 */
213 static const struct {
214 uint8_t reg;
215 uint8_t val;
216 } ural_def_bbp[] = {
217 { 3, 0x02 },
218 { 4, 0x19 },
219 { 14, 0x1c },
220 { 15, 0x30 },
221 { 16, 0xac },
222 { 17, 0x48 },
223 { 18, 0x18 },
224 { 19, 0xff },
225 { 20, 0x1e },
226 { 21, 0x08 },
227 { 22, 0x08 },
228 { 23, 0x08 },
229 { 24, 0x80 },
230 { 25, 0x50 },
231 { 26, 0x08 },
232 { 27, 0x23 },
233 { 30, 0x10 },
234 { 31, 0x2b },
235 { 32, 0xb9 },
236 { 34, 0x12 },
237 { 35, 0x50 },
238 { 39, 0xc4 },
239 { 40, 0x02 },
240 { 41, 0x60 },
241 { 53, 0x10 },
242 { 54, 0x18 },
243 { 56, 0x08 },
244 { 57, 0x10 },
245 { 58, 0x08 },
246 { 61, 0x60 },
247 { 62, 0x10 },
248 { 75, 0xff }
249 };
250
251 /*
252 * Default values for RF register R2 indexed by channel numbers.
253 */
254 static const uint32_t ural_rf2522_r2[] = {
255 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
256 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257 };
258
259 static const uint32_t ural_rf2523_r2[] = {
260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 };
263
264 static const uint32_t ural_rf2524_r2[] = {
265 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
266 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267 };
268
269 static const uint32_t ural_rf2525_r2[] = {
270 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
271 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272 };
273
274 static const uint32_t ural_rf2525_hi_r2[] = {
275 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
276 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277 };
278
279 static const uint32_t ural_rf2525e_r2[] = {
280 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
281 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282 };
283
284 static const uint32_t ural_rf2526_hi_r2[] = {
285 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
286 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287 };
288
289 static const uint32_t ural_rf2526_r2[] = {
290 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
291 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
292 };
293
294 /*
295 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
296 * values taken from the reference driver.
297 */
298 static const struct {
299 uint8_t chan;
300 uint32_t r1;
301 uint32_t r2;
302 uint32_t r4;
303 } ural_rf5222[] = {
304 { 1, 0x08808, 0x0044d, 0x00282 },
305 { 2, 0x08808, 0x0044e, 0x00282 },
306 { 3, 0x08808, 0x0044f, 0x00282 },
307 { 4, 0x08808, 0x00460, 0x00282 },
308 { 5, 0x08808, 0x00461, 0x00282 },
309 { 6, 0x08808, 0x00462, 0x00282 },
310 { 7, 0x08808, 0x00463, 0x00282 },
311 { 8, 0x08808, 0x00464, 0x00282 },
312 { 9, 0x08808, 0x00465, 0x00282 },
313 { 10, 0x08808, 0x00466, 0x00282 },
314 { 11, 0x08808, 0x00467, 0x00282 },
315 { 12, 0x08808, 0x00468, 0x00282 },
316 { 13, 0x08808, 0x00469, 0x00282 },
317 { 14, 0x08808, 0x0046b, 0x00286 },
318
319 { 36, 0x08804, 0x06225, 0x00287 },
320 { 40, 0x08804, 0x06226, 0x00287 },
321 { 44, 0x08804, 0x06227, 0x00287 },
322 { 48, 0x08804, 0x06228, 0x00287 },
323 { 52, 0x08804, 0x06229, 0x00287 },
324 { 56, 0x08804, 0x0622a, 0x00287 },
325 { 60, 0x08804, 0x0622b, 0x00287 },
326 { 64, 0x08804, 0x0622c, 0x00287 },
327
328 { 100, 0x08804, 0x02200, 0x00283 },
329 { 104, 0x08804, 0x02201, 0x00283 },
330 { 108, 0x08804, 0x02202, 0x00283 },
331 { 112, 0x08804, 0x02203, 0x00283 },
332 { 116, 0x08804, 0x02204, 0x00283 },
333 { 120, 0x08804, 0x02205, 0x00283 },
334 { 124, 0x08804, 0x02206, 0x00283 },
335 { 128, 0x08804, 0x02207, 0x00283 },
336 { 132, 0x08804, 0x02208, 0x00283 },
337 { 136, 0x08804, 0x02209, 0x00283 },
338 { 140, 0x08804, 0x0220a, 0x00283 },
339
340 { 149, 0x08808, 0x02429, 0x00281 },
341 { 153, 0x08808, 0x0242b, 0x00281 },
342 { 157, 0x08808, 0x0242d, 0x00281 },
343 { 161, 0x08808, 0x0242f, 0x00281 }
344 };
345
346 int ural_match(device_t, cfdata_t, void *);
347 void ural_attach(device_t, device_t, void *);
348 int ural_detach(device_t, int);
349 int ural_activate(device_t, enum devact);
350 extern struct cfdriver ural_cd;
351 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
352
353 int
354 ural_match(device_t parent, cfdata_t match, void *aux)
355 {
356 struct usb_attach_arg *uaa = aux;
357
358 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
359 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
360 }
361
362 void
363 ural_attach(device_t parent, device_t self, void *aux)
364 {
365 struct ural_softc *sc = device_private(self);
366 struct usb_attach_arg *uaa = aux;
367 struct ieee80211com *ic = &sc->sc_ic;
368 struct ifnet *ifp = &sc->sc_if;
369 usb_interface_descriptor_t *id;
370 usb_endpoint_descriptor_t *ed;
371 usbd_status error;
372 char *devinfop;
373 int i;
374
375 sc->sc_dev = self;
376 sc->sc_udev = uaa->device;
377
378 aprint_naive("\n");
379 aprint_normal("\n");
380
381 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
382 aprint_normal_dev(self, "%s\n", devinfop);
383 usbd_devinfo_free(devinfop);
384
385 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
386 if (error != 0) {
387 aprint_error_dev(self, "failed to set configuration"
388 ", err=%s\n", usbd_errstr(error));
389 return;
390 }
391
392 /* get the first interface handle */
393 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
394 &sc->sc_iface);
395 if (error != 0) {
396 aprint_error_dev(self, "could not get interface handle\n");
397 return;
398 }
399
400 /*
401 * Find endpoints.
402 */
403 id = usbd_get_interface_descriptor(sc->sc_iface);
404
405 sc->sc_rx_no = sc->sc_tx_no = -1;
406 for (i = 0; i < id->bNumEndpoints; i++) {
407 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 if (ed == NULL) {
409 aprint_error_dev(self,
410 "no endpoint descriptor for %d\n", i);
411 return;
412 }
413
414 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 sc->sc_rx_no = ed->bEndpointAddress;
417 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 sc->sc_tx_no = ed->bEndpointAddress;
420 }
421 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 aprint_error_dev(self, "missing endpoint\n");
423 return;
424 }
425
426 usb_init_task(&sc->sc_task, ural_task, sc, 0);
427 callout_init(&sc->sc_scan_ch, 0);
428 sc->amrr.amrr_min_success_threshold = 1;
429 sc->amrr.amrr_max_success_threshold = 15;
430 callout_init(&sc->sc_amrr_ch, 0);
431
432 /* retrieve RT2570 rev. no */
433 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
434
435 /* retrieve MAC address and various other things from EEPROM */
436 ural_read_eeprom(sc);
437
438 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
439 sc->asic_rev, ural_get_rf(sc->rf_rev));
440
441 ifp->if_softc = sc;
442 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = ural_init;
445 ifp->if_ioctl = ural_ioctl;
446 ifp->if_start = ural_start;
447 ifp->if_watchdog = ural_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450
451 ic->ic_ifp = ifp;
452 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
453 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
454 ic->ic_state = IEEE80211_S_INIT;
455
456 /* set device capabilities */
457 ic->ic_caps =
458 IEEE80211_C_IBSS | /* IBSS mode supported */
459 IEEE80211_C_MONITOR | /* monitor mode supported */
460 IEEE80211_C_HOSTAP | /* HostAp mode supported */
461 IEEE80211_C_TXPMGT | /* tx power management */
462 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
463 IEEE80211_C_SHSLOT | /* short slot time supported */
464 IEEE80211_C_WPA; /* 802.11i */
465
466 if (sc->rf_rev == RAL_RF_5222) {
467 /* set supported .11a rates */
468 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
469
470 /* set supported .11a channels */
471 for (i = 36; i <= 64; i += 4) {
472 ic->ic_channels[i].ic_freq =
473 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
474 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
475 }
476 for (i = 100; i <= 140; i += 4) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 }
481 for (i = 149; i <= 161; i += 4) {
482 ic->ic_channels[i].ic_freq =
483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 }
486 }
487
488 /* set supported .11b and .11g rates */
489 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
490 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
491
492 /* set supported .11b and .11g channels (1 through 14) */
493 for (i = 1; i <= 14; i++) {
494 ic->ic_channels[i].ic_freq =
495 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
496 ic->ic_channels[i].ic_flags =
497 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
498 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
499 }
500
501 if_attach(ifp);
502 ieee80211_ifattach(ic);
503 ic->ic_reset = ural_reset;
504
505 /* override state transition machine */
506 sc->sc_newstate = ic->ic_newstate;
507 ic->ic_newstate = ural_newstate;
508 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509
510 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
511 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
514 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517 sc->sc_txtap_len = sizeof sc->sc_txtapu;
518 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 sc->sc_dev);
525
526 return;
527 }
528
529 int
530 ural_detach(device_t self, int flags)
531 {
532 struct ural_softc *sc = device_private(self);
533 struct ieee80211com *ic = &sc->sc_ic;
534 struct ifnet *ifp = &sc->sc_if;
535 int s;
536
537 s = splusb();
538
539 ural_stop(ifp, 1);
540 usb_rem_task(sc->sc_udev, &sc->sc_task);
541 callout_stop(&sc->sc_scan_ch);
542 callout_stop(&sc->sc_amrr_ch);
543
544 if (sc->amrr_xfer != NULL) {
545 usbd_free_xfer(sc->amrr_xfer);
546 sc->amrr_xfer = NULL;
547 }
548
549 if (sc->sc_rx_pipeh != NULL) {
550 usbd_abort_pipe(sc->sc_rx_pipeh);
551 usbd_close_pipe(sc->sc_rx_pipeh);
552 }
553
554 if (sc->sc_tx_pipeh != NULL) {
555 usbd_abort_pipe(sc->sc_tx_pipeh);
556 usbd_close_pipe(sc->sc_tx_pipeh);
557 }
558
559 bpf_detach(ifp);
560 ieee80211_ifdetach(ic);
561 if_detach(ifp);
562
563 splx(s);
564
565 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
566 sc->sc_dev);
567
568 return 0;
569 }
570
571 Static int
572 ural_alloc_tx_list(struct ural_softc *sc)
573 {
574 struct ural_tx_data *data;
575 int i, error;
576
577 sc->tx_queued = 0;
578
579 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
580 data = &sc->tx_data[i];
581
582 data->sc = sc;
583
584 data->xfer = usbd_alloc_xfer(sc->sc_udev);
585 if (data->xfer == NULL) {
586 printf("%s: could not allocate tx xfer\n",
587 device_xname(sc->sc_dev));
588 error = ENOMEM;
589 goto fail;
590 }
591
592 data->buf = usbd_alloc_buffer(data->xfer,
593 RAL_TX_DESC_SIZE + MCLBYTES);
594 if (data->buf == NULL) {
595 printf("%s: could not allocate tx buffer\n",
596 device_xname(sc->sc_dev));
597 error = ENOMEM;
598 goto fail;
599 }
600 }
601
602 return 0;
603
604 fail: ural_free_tx_list(sc);
605 return error;
606 }
607
608 Static void
609 ural_free_tx_list(struct ural_softc *sc)
610 {
611 struct ural_tx_data *data;
612 int i;
613
614 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
615 data = &sc->tx_data[i];
616
617 if (data->xfer != NULL) {
618 usbd_free_xfer(data->xfer);
619 data->xfer = NULL;
620 }
621
622 if (data->ni != NULL) {
623 ieee80211_free_node(data->ni);
624 data->ni = NULL;
625 }
626 }
627 }
628
629 Static int
630 ural_alloc_rx_list(struct ural_softc *sc)
631 {
632 struct ural_rx_data *data;
633 int i, error;
634
635 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
636 data = &sc->rx_data[i];
637
638 data->sc = sc;
639
640 data->xfer = usbd_alloc_xfer(sc->sc_udev);
641 if (data->xfer == NULL) {
642 printf("%s: could not allocate rx xfer\n",
643 device_xname(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647
648 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
649 printf("%s: could not allocate rx buffer\n",
650 device_xname(sc->sc_dev));
651 error = ENOMEM;
652 goto fail;
653 }
654
655 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
656 if (data->m == NULL) {
657 printf("%s: could not allocate rx mbuf\n",
658 device_xname(sc->sc_dev));
659 error = ENOMEM;
660 goto fail;
661 }
662
663 MCLGET(data->m, M_DONTWAIT);
664 if (!(data->m->m_flags & M_EXT)) {
665 printf("%s: could not allocate rx mbuf cluster\n",
666 device_xname(sc->sc_dev));
667 error = ENOMEM;
668 goto fail;
669 }
670
671 data->buf = mtod(data->m, uint8_t *);
672 }
673
674 return 0;
675
676 fail: ural_free_tx_list(sc);
677 return error;
678 }
679
680 Static void
681 ural_free_rx_list(struct ural_softc *sc)
682 {
683 struct ural_rx_data *data;
684 int i;
685
686 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
687 data = &sc->rx_data[i];
688
689 if (data->xfer != NULL) {
690 usbd_free_xfer(data->xfer);
691 data->xfer = NULL;
692 }
693
694 if (data->m != NULL) {
695 m_freem(data->m);
696 data->m = NULL;
697 }
698 }
699 }
700
701 Static int
702 ural_media_change(struct ifnet *ifp)
703 {
704 int error;
705
706 error = ieee80211_media_change(ifp);
707 if (error != ENETRESET)
708 return error;
709
710 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
711 ural_init(ifp);
712
713 return 0;
714 }
715
716 /*
717 * This function is called periodically (every 200ms) during scanning to
718 * switch from one channel to another.
719 */
720 Static void
721 ural_next_scan(void *arg)
722 {
723 struct ural_softc *sc = arg;
724 struct ieee80211com *ic = &sc->sc_ic;
725
726 if (ic->ic_state == IEEE80211_S_SCAN)
727 ieee80211_next_scan(ic);
728 }
729
730 Static void
731 ural_task(void *arg)
732 {
733 struct ural_softc *sc = arg;
734 struct ieee80211com *ic = &sc->sc_ic;
735 enum ieee80211_state ostate;
736 struct ieee80211_node *ni;
737 struct mbuf *m;
738
739 ostate = ic->ic_state;
740
741 switch (sc->sc_state) {
742 case IEEE80211_S_INIT:
743 if (ostate == IEEE80211_S_RUN) {
744 /* abort TSF synchronization */
745 ural_write(sc, RAL_TXRX_CSR19, 0);
746
747 /* force tx led to stop blinking */
748 ural_write(sc, RAL_MAC_CSR20, 0);
749 }
750 break;
751
752 case IEEE80211_S_SCAN:
753 ural_set_chan(sc, ic->ic_curchan);
754 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
755 break;
756
757 case IEEE80211_S_AUTH:
758 ural_set_chan(sc, ic->ic_curchan);
759 break;
760
761 case IEEE80211_S_ASSOC:
762 ural_set_chan(sc, ic->ic_curchan);
763 break;
764
765 case IEEE80211_S_RUN:
766 ural_set_chan(sc, ic->ic_curchan);
767
768 ni = ic->ic_bss;
769
770 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
771 ural_update_slot(ic->ic_ifp);
772 ural_set_txpreamble(sc);
773 ural_set_basicrates(sc);
774 ural_set_bssid(sc, ni->ni_bssid);
775 }
776
777 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
778 ic->ic_opmode == IEEE80211_M_IBSS) {
779 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
780 if (m == NULL) {
781 printf("%s: could not allocate beacon\n",
782 device_xname(sc->sc_dev));
783 return;
784 }
785
786 if (ural_tx_bcn(sc, m, ni) != 0) {
787 m_freem(m);
788 printf("%s: could not send beacon\n",
789 device_xname(sc->sc_dev));
790 return;
791 }
792
793 /* beacon is no longer needed */
794 m_freem(m);
795 }
796
797 /* make tx led blink on tx (controlled by ASIC) */
798 ural_write(sc, RAL_MAC_CSR20, 1);
799
800 if (ic->ic_opmode != IEEE80211_M_MONITOR)
801 ural_enable_tsf_sync(sc);
802
803 /* enable automatic rate adaptation in STA mode */
804 if (ic->ic_opmode == IEEE80211_M_STA &&
805 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
806 ural_amrr_start(sc, ni);
807
808 break;
809 }
810
811 sc->sc_newstate(ic, sc->sc_state, -1);
812 }
813
814 Static int
815 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
816 int arg)
817 {
818 struct ural_softc *sc = ic->ic_ifp->if_softc;
819
820 usb_rem_task(sc->sc_udev, &sc->sc_task);
821 callout_stop(&sc->sc_scan_ch);
822 callout_stop(&sc->sc_amrr_ch);
823
824 /* do it in a process context */
825 sc->sc_state = nstate;
826 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
827
828 return 0;
829 }
830
831 /* quickly determine if a given rate is CCK or OFDM */
832 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
833
834 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
835 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
836
837 #define RAL_SIFS 10 /* us */
838
839 #define RAL_RXTX_TURNAROUND 5 /* us */
840
841 /*
842 * This function is only used by the Rx radiotap code.
843 */
844 Static int
845 ural_rxrate(struct ural_rx_desc *desc)
846 {
847 if (le32toh(desc->flags) & RAL_RX_OFDM) {
848 /* reverse function of ural_plcp_signal */
849 switch (desc->rate) {
850 case 0xb: return 12;
851 case 0xf: return 18;
852 case 0xa: return 24;
853 case 0xe: return 36;
854 case 0x9: return 48;
855 case 0xd: return 72;
856 case 0x8: return 96;
857 case 0xc: return 108;
858 }
859 } else {
860 if (desc->rate == 10)
861 return 2;
862 if (desc->rate == 20)
863 return 4;
864 if (desc->rate == 55)
865 return 11;
866 if (desc->rate == 110)
867 return 22;
868 }
869 return 2; /* should not get there */
870 }
871
872 Static void
873 ural_txeof(struct usbd_xfer *xfer, void * priv,
874 usbd_status status)
875 {
876 struct ural_tx_data *data = priv;
877 struct ural_softc *sc = data->sc;
878 struct ifnet *ifp = &sc->sc_if;
879 int s;
880
881 if (status != USBD_NORMAL_COMPLETION) {
882 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
883 return;
884
885 printf("%s: could not transmit buffer: %s\n",
886 device_xname(sc->sc_dev), usbd_errstr(status));
887
888 if (status == USBD_STALLED)
889 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
890
891 ifp->if_oerrors++;
892 return;
893 }
894
895 s = splnet();
896
897 m_freem(data->m);
898 data->m = NULL;
899 ieee80211_free_node(data->ni);
900 data->ni = NULL;
901
902 sc->tx_queued--;
903 ifp->if_opackets++;
904
905 DPRINTFN(10, ("tx done\n"));
906
907 sc->sc_tx_timer = 0;
908 ifp->if_flags &= ~IFF_OACTIVE;
909 ural_start(ifp);
910
911 splx(s);
912 }
913
914 Static void
915 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
916 {
917 struct ural_rx_data *data = priv;
918 struct ural_softc *sc = data->sc;
919 struct ieee80211com *ic = &sc->sc_ic;
920 struct ifnet *ifp = &sc->sc_if;
921 struct ural_rx_desc *desc;
922 struct ieee80211_frame *wh;
923 struct ieee80211_node *ni;
924 struct mbuf *mnew, *m;
925 int s, len;
926
927 if (status != USBD_NORMAL_COMPLETION) {
928 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
929 return;
930
931 if (status == USBD_STALLED)
932 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
933 goto skip;
934 }
935
936 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
937
938 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
939 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
940 len));
941 ifp->if_ierrors++;
942 goto skip;
943 }
944
945 /* rx descriptor is located at the end */
946 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
947
948 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
949 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
950 /*
951 * This should not happen since we did not request to receive
952 * those frames when we filled RAL_TXRX_CSR2.
953 */
954 DPRINTFN(5, ("PHY or CRC error\n"));
955 ifp->if_ierrors++;
956 goto skip;
957 }
958
959 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
960 if (mnew == NULL) {
961 ifp->if_ierrors++;
962 goto skip;
963 }
964
965 MCLGET(mnew, M_DONTWAIT);
966 if (!(mnew->m_flags & M_EXT)) {
967 ifp->if_ierrors++;
968 m_freem(mnew);
969 goto skip;
970 }
971
972 m = data->m;
973 data->m = mnew;
974 data->buf = mtod(data->m, uint8_t *);
975
976 /* finalize mbuf */
977 m->m_pkthdr.rcvif = ifp;
978 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
979 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
980
981 s = splnet();
982
983 if (sc->sc_drvbpf != NULL) {
984 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
985
986 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
987 tap->wr_rate = ural_rxrate(desc);
988 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
989 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
990 tap->wr_antenna = sc->rx_ant;
991 tap->wr_antsignal = desc->rssi;
992
993 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
994 }
995
996 wh = mtod(m, struct ieee80211_frame *);
997 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
998
999 /* send the frame to the 802.11 layer */
1000 ieee80211_input(ic, m, ni, desc->rssi, 0);
1001
1002 /* node is no longer needed */
1003 ieee80211_free_node(ni);
1004
1005 splx(s);
1006
1007 DPRINTFN(15, ("rx done\n"));
1008
1009 skip: /* setup a new transfer */
1010 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
1011 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1012 usbd_transfer(xfer);
1013 }
1014
1015 /*
1016 * Return the expected ack rate for a frame transmitted at rate `rate'.
1017 * XXX: this should depend on the destination node basic rate set.
1018 */
1019 Static int
1020 ural_ack_rate(struct ieee80211com *ic, int rate)
1021 {
1022 switch (rate) {
1023 /* CCK rates */
1024 case 2:
1025 return 2;
1026 case 4:
1027 case 11:
1028 case 22:
1029 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1030
1031 /* OFDM rates */
1032 case 12:
1033 case 18:
1034 return 12;
1035 case 24:
1036 case 36:
1037 return 24;
1038 case 48:
1039 case 72:
1040 case 96:
1041 case 108:
1042 return 48;
1043 }
1044
1045 /* default to 1Mbps */
1046 return 2;
1047 }
1048
1049 /*
1050 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1051 * The function automatically determines the operating mode depending on the
1052 * given rate. `flags' indicates whether short preamble is in use or not.
1053 */
1054 Static uint16_t
1055 ural_txtime(int len, int rate, uint32_t flags)
1056 {
1057 uint16_t txtime;
1058
1059 if (RAL_RATE_IS_OFDM(rate)) {
1060 /* IEEE Std 802.11g-2003, pp. 37 */
1061 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1062 txtime = 16 + 4 + 4 * txtime + 6;
1063 } else {
1064 /* IEEE Std 802.11b-1999, pp. 28 */
1065 txtime = (16 * len + rate - 1) / rate;
1066 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1067 txtime += 72 + 24;
1068 else
1069 txtime += 144 + 48;
1070 }
1071 return txtime;
1072 }
1073
1074 Static uint8_t
1075 ural_plcp_signal(int rate)
1076 {
1077 switch (rate) {
1078 /* CCK rates (returned values are device-dependent) */
1079 case 2: return 0x0;
1080 case 4: return 0x1;
1081 case 11: return 0x2;
1082 case 22: return 0x3;
1083
1084 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1085 case 12: return 0xb;
1086 case 18: return 0xf;
1087 case 24: return 0xa;
1088 case 36: return 0xe;
1089 case 48: return 0x9;
1090 case 72: return 0xd;
1091 case 96: return 0x8;
1092 case 108: return 0xc;
1093
1094 /* unsupported rates (should not get there) */
1095 default: return 0xff;
1096 }
1097 }
1098
1099 Static void
1100 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1101 uint32_t flags, int len, int rate)
1102 {
1103 struct ieee80211com *ic = &sc->sc_ic;
1104 uint16_t plcp_length;
1105 int remainder;
1106
1107 desc->flags = htole32(flags);
1108 desc->flags |= htole32(RAL_TX_NEWSEQ);
1109 desc->flags |= htole32(len << 16);
1110
1111 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1112 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1113
1114 /* setup PLCP fields */
1115 desc->plcp_signal = ural_plcp_signal(rate);
1116 desc->plcp_service = 4;
1117
1118 len += IEEE80211_CRC_LEN;
1119 if (RAL_RATE_IS_OFDM(rate)) {
1120 desc->flags |= htole32(RAL_TX_OFDM);
1121
1122 plcp_length = len & 0xfff;
1123 desc->plcp_length_hi = plcp_length >> 6;
1124 desc->plcp_length_lo = plcp_length & 0x3f;
1125 } else {
1126 plcp_length = (16 * len + rate - 1) / rate;
1127 if (rate == 22) {
1128 remainder = (16 * len) % 22;
1129 if (remainder != 0 && remainder < 7)
1130 desc->plcp_service |= RAL_PLCP_LENGEXT;
1131 }
1132 desc->plcp_length_hi = plcp_length >> 8;
1133 desc->plcp_length_lo = plcp_length & 0xff;
1134
1135 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1136 desc->plcp_signal |= 0x08;
1137 }
1138
1139 desc->iv = 0;
1140 desc->eiv = 0;
1141 }
1142
1143 #define RAL_TX_TIMEOUT 5000
1144
1145 Static int
1146 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1147 {
1148 struct ural_tx_desc *desc;
1149 struct usbd_xfer *xfer;
1150 uint8_t cmd = 0;
1151 usbd_status error;
1152 uint8_t *buf;
1153 int xferlen, rate;
1154
1155 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1156
1157 xfer = usbd_alloc_xfer(sc->sc_udev);
1158 if (xfer == NULL)
1159 return ENOMEM;
1160
1161 /* xfer length needs to be a multiple of two! */
1162 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1163
1164 buf = usbd_alloc_buffer(xfer, xferlen);
1165 if (buf == NULL) {
1166 usbd_free_xfer(xfer);
1167 return ENOMEM;
1168 }
1169
1170 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1171 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1172
1173 error = usbd_sync_transfer(xfer);
1174 if (error != 0) {
1175 usbd_free_xfer(xfer);
1176 return error;
1177 }
1178
1179 desc = (struct ural_tx_desc *)buf;
1180
1181 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1182 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1183 m0->m_pkthdr.len, rate);
1184
1185 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1186 m0->m_pkthdr.len, rate, xferlen));
1187
1188 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1189 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1190
1191 error = usbd_sync_transfer(xfer);
1192 usbd_free_xfer(xfer);
1193
1194 return error;
1195 }
1196
1197 Static int
1198 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1199 {
1200 struct ieee80211com *ic = &sc->sc_ic;
1201 struct ural_tx_desc *desc;
1202 struct ural_tx_data *data;
1203 struct ieee80211_frame *wh;
1204 struct ieee80211_key *k;
1205 uint32_t flags = 0;
1206 uint16_t dur;
1207 usbd_status error;
1208 int xferlen, rate;
1209
1210 data = &sc->tx_data[0];
1211 desc = (struct ural_tx_desc *)data->buf;
1212
1213 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1214
1215 wh = mtod(m0, struct ieee80211_frame *);
1216
1217 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1218 k = ieee80211_crypto_encap(ic, ni, m0);
1219 if (k == NULL) {
1220 m_freem(m0);
1221 return ENOBUFS;
1222 }
1223 }
1224
1225 data->m = m0;
1226 data->ni = ni;
1227
1228 wh = mtod(m0, struct ieee80211_frame *);
1229
1230 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1231 flags |= RAL_TX_ACK;
1232
1233 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1234 *(uint16_t *)wh->i_dur = htole16(dur);
1235
1236 /* tell hardware to add timestamp for probe responses */
1237 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1238 IEEE80211_FC0_TYPE_MGT &&
1239 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1240 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1241 flags |= RAL_TX_TIMESTAMP;
1242 }
1243
1244 if (sc->sc_drvbpf != NULL) {
1245 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1246
1247 tap->wt_flags = 0;
1248 tap->wt_rate = rate;
1249 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1250 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1251 tap->wt_antenna = sc->tx_ant;
1252
1253 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1254 }
1255
1256 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1257 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1258
1259 /* align end on a 2-bytes boundary */
1260 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1261
1262 /*
1263 * No space left in the last URB to store the extra 2 bytes, force
1264 * sending of another URB.
1265 */
1266 if ((xferlen % 64) == 0)
1267 xferlen += 2;
1268
1269 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1270 m0->m_pkthdr.len, rate, xferlen));
1271
1272 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1273 xferlen, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT,
1274 ural_txeof);
1275
1276 error = usbd_transfer(data->xfer);
1277 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1278 m_freem(m0);
1279 return error;
1280 }
1281
1282 sc->tx_queued++;
1283
1284 return 0;
1285 }
1286
1287 Static int
1288 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1289 {
1290 struct ieee80211com *ic = &sc->sc_ic;
1291 struct ural_tx_desc *desc;
1292 struct ural_tx_data *data;
1293 struct ieee80211_frame *wh;
1294 struct ieee80211_key *k;
1295 uint32_t flags = 0;
1296 uint16_t dur;
1297 usbd_status error;
1298 int xferlen, rate;
1299
1300 wh = mtod(m0, struct ieee80211_frame *);
1301
1302 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1303 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1304 else
1305 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1306
1307 rate &= IEEE80211_RATE_VAL;
1308
1309 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1310 k = ieee80211_crypto_encap(ic, ni, m0);
1311 if (k == NULL) {
1312 m_freem(m0);
1313 return ENOBUFS;
1314 }
1315
1316 /* packet header may have moved, reset our local pointer */
1317 wh = mtod(m0, struct ieee80211_frame *);
1318 }
1319
1320 data = &sc->tx_data[0];
1321 desc = (struct ural_tx_desc *)data->buf;
1322
1323 data->m = m0;
1324 data->ni = ni;
1325
1326 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1327 flags |= RAL_TX_ACK;
1328 flags |= RAL_TX_RETRY(7);
1329
1330 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1331 ic->ic_flags) + RAL_SIFS;
1332 *(uint16_t *)wh->i_dur = htole16(dur);
1333 }
1334
1335 if (sc->sc_drvbpf != NULL) {
1336 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1337
1338 tap->wt_flags = 0;
1339 tap->wt_rate = rate;
1340 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1341 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1342 tap->wt_antenna = sc->tx_ant;
1343
1344 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1345 }
1346
1347 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1348 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1349
1350 /* align end on a 2-bytes boundary */
1351 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1352
1353 /*
1354 * No space left in the last URB to store the extra 2 bytes, force
1355 * sending of another URB.
1356 */
1357 if ((xferlen % 64) == 0)
1358 xferlen += 2;
1359
1360 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1361 m0->m_pkthdr.len, rate, xferlen));
1362
1363 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1364 xferlen, USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT,
1365 ural_txeof);
1366
1367 error = usbd_transfer(data->xfer);
1368 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1369 return error;
1370
1371 sc->tx_queued++;
1372
1373 return 0;
1374 }
1375
1376 Static void
1377 ural_start(struct ifnet *ifp)
1378 {
1379 struct ural_softc *sc = ifp->if_softc;
1380 struct ieee80211com *ic = &sc->sc_ic;
1381 struct mbuf *m0;
1382 struct ether_header *eh;
1383 struct ieee80211_node *ni;
1384
1385 for (;;) {
1386 IF_POLL(&ic->ic_mgtq, m0);
1387 if (m0 != NULL) {
1388 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1389 ifp->if_flags |= IFF_OACTIVE;
1390 break;
1391 }
1392 IF_DEQUEUE(&ic->ic_mgtq, m0);
1393
1394 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1395 m0->m_pkthdr.rcvif = NULL;
1396 bpf_mtap3(ic->ic_rawbpf, m0);
1397 if (ural_tx_mgt(sc, m0, ni) != 0)
1398 break;
1399
1400 } else {
1401 if (ic->ic_state != IEEE80211_S_RUN)
1402 break;
1403 IFQ_DEQUEUE(&ifp->if_snd, m0);
1404 if (m0 == NULL)
1405 break;
1406 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1407 IF_PREPEND(&ifp->if_snd, m0);
1408 ifp->if_flags |= IFF_OACTIVE;
1409 break;
1410 }
1411
1412 if (m0->m_len < sizeof (struct ether_header) &&
1413 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1414 continue;
1415
1416 eh = mtod(m0, struct ether_header *);
1417 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1418 if (ni == NULL) {
1419 m_freem(m0);
1420 continue;
1421 }
1422 bpf_mtap(ifp, m0);
1423 m0 = ieee80211_encap(ic, m0, ni);
1424 if (m0 == NULL) {
1425 ieee80211_free_node(ni);
1426 continue;
1427 }
1428 bpf_mtap3(ic->ic_rawbpf, m0);
1429 if (ural_tx_data(sc, m0, ni) != 0) {
1430 ieee80211_free_node(ni);
1431 ifp->if_oerrors++;
1432 break;
1433 }
1434 }
1435
1436 sc->sc_tx_timer = 5;
1437 ifp->if_timer = 1;
1438 }
1439 }
1440
1441 Static void
1442 ural_watchdog(struct ifnet *ifp)
1443 {
1444 struct ural_softc *sc = ifp->if_softc;
1445 struct ieee80211com *ic = &sc->sc_ic;
1446
1447 ifp->if_timer = 0;
1448
1449 if (sc->sc_tx_timer > 0) {
1450 if (--sc->sc_tx_timer == 0) {
1451 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1452 /*ural_init(sc); XXX needs a process context! */
1453 ifp->if_oerrors++;
1454 return;
1455 }
1456 ifp->if_timer = 1;
1457 }
1458
1459 ieee80211_watchdog(ic);
1460 }
1461
1462 /*
1463 * This function allows for fast channel switching in monitor mode (used by
1464 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1465 * generate a new beacon frame.
1466 */
1467 Static int
1468 ural_reset(struct ifnet *ifp)
1469 {
1470 struct ural_softc *sc = ifp->if_softc;
1471 struct ieee80211com *ic = &sc->sc_ic;
1472
1473 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1474 return ENETRESET;
1475
1476 ural_set_chan(sc, ic->ic_curchan);
1477
1478 return 0;
1479 }
1480
1481 Static int
1482 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1483 {
1484 #define IS_RUNNING(ifp) \
1485 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1486
1487 struct ural_softc *sc = ifp->if_softc;
1488 struct ieee80211com *ic = &sc->sc_ic;
1489 int s, error = 0;
1490
1491 s = splnet();
1492
1493 switch (cmd) {
1494 case SIOCSIFFLAGS:
1495 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1496 break;
1497 /* XXX re-use ether_ioctl() */
1498 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1499 case IFF_UP|IFF_RUNNING:
1500 ural_update_promisc(sc);
1501 break;
1502 case IFF_UP:
1503 ural_init(ifp);
1504 break;
1505 case IFF_RUNNING:
1506 ural_stop(ifp, 1);
1507 break;
1508 case 0:
1509 break;
1510 }
1511 break;
1512
1513 case SIOCADDMULTI:
1514 case SIOCDELMULTI:
1515 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1516 error = 0;
1517 }
1518 break;
1519
1520 default:
1521 error = ieee80211_ioctl(ic, cmd, data);
1522 }
1523
1524 if (error == ENETRESET) {
1525 if (IS_RUNNING(ifp) &&
1526 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1527 ural_init(ifp);
1528 error = 0;
1529 }
1530
1531 splx(s);
1532
1533 return error;
1534 #undef IS_RUNNING
1535 }
1536
1537 Static void
1538 ural_set_testmode(struct ural_softc *sc)
1539 {
1540 usb_device_request_t req;
1541 usbd_status error;
1542
1543 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1544 req.bRequest = RAL_VENDOR_REQUEST;
1545 USETW(req.wValue, 4);
1546 USETW(req.wIndex, 1);
1547 USETW(req.wLength, 0);
1548
1549 error = usbd_do_request(sc->sc_udev, &req, NULL);
1550 if (error != 0) {
1551 printf("%s: could not set test mode: %s\n",
1552 device_xname(sc->sc_dev), usbd_errstr(error));
1553 }
1554 }
1555
1556 Static void
1557 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1558 {
1559 usb_device_request_t req;
1560 usbd_status error;
1561
1562 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1563 req.bRequest = RAL_READ_EEPROM;
1564 USETW(req.wValue, 0);
1565 USETW(req.wIndex, addr);
1566 USETW(req.wLength, len);
1567
1568 error = usbd_do_request(sc->sc_udev, &req, buf);
1569 if (error != 0) {
1570 printf("%s: could not read EEPROM: %s\n",
1571 device_xname(sc->sc_dev), usbd_errstr(error));
1572 }
1573 }
1574
1575 Static uint16_t
1576 ural_read(struct ural_softc *sc, uint16_t reg)
1577 {
1578 usb_device_request_t req;
1579 usbd_status error;
1580 uint16_t val;
1581
1582 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1583 req.bRequest = RAL_READ_MAC;
1584 USETW(req.wValue, 0);
1585 USETW(req.wIndex, reg);
1586 USETW(req.wLength, sizeof (uint16_t));
1587
1588 error = usbd_do_request(sc->sc_udev, &req, &val);
1589 if (error != 0) {
1590 printf("%s: could not read MAC register: %s\n",
1591 device_xname(sc->sc_dev), usbd_errstr(error));
1592 return 0;
1593 }
1594
1595 return le16toh(val);
1596 }
1597
1598 Static void
1599 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1600 {
1601 usb_device_request_t req;
1602 usbd_status error;
1603
1604 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1605 req.bRequest = RAL_READ_MULTI_MAC;
1606 USETW(req.wValue, 0);
1607 USETW(req.wIndex, reg);
1608 USETW(req.wLength, len);
1609
1610 error = usbd_do_request(sc->sc_udev, &req, buf);
1611 if (error != 0) {
1612 printf("%s: could not read MAC register: %s\n",
1613 device_xname(sc->sc_dev), usbd_errstr(error));
1614 }
1615 }
1616
1617 Static void
1618 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1619 {
1620 usb_device_request_t req;
1621 usbd_status error;
1622
1623 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1624 req.bRequest = RAL_WRITE_MAC;
1625 USETW(req.wValue, val);
1626 USETW(req.wIndex, reg);
1627 USETW(req.wLength, 0);
1628
1629 error = usbd_do_request(sc->sc_udev, &req, NULL);
1630 if (error != 0) {
1631 printf("%s: could not write MAC register: %s\n",
1632 device_xname(sc->sc_dev), usbd_errstr(error));
1633 }
1634 }
1635
1636 Static void
1637 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1638 {
1639 usb_device_request_t req;
1640 usbd_status error;
1641
1642 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1643 req.bRequest = RAL_WRITE_MULTI_MAC;
1644 USETW(req.wValue, 0);
1645 USETW(req.wIndex, reg);
1646 USETW(req.wLength, len);
1647
1648 error = usbd_do_request(sc->sc_udev, &req, buf);
1649 if (error != 0) {
1650 printf("%s: could not write MAC register: %s\n",
1651 device_xname(sc->sc_dev), usbd_errstr(error));
1652 }
1653 }
1654
1655 Static void
1656 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1657 {
1658 uint16_t tmp;
1659 int ntries;
1660
1661 for (ntries = 0; ntries < 5; ntries++) {
1662 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1663 break;
1664 }
1665 if (ntries == 5) {
1666 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1667 return;
1668 }
1669
1670 tmp = reg << 8 | val;
1671 ural_write(sc, RAL_PHY_CSR7, tmp);
1672 }
1673
1674 Static uint8_t
1675 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1676 {
1677 uint16_t val;
1678 int ntries;
1679
1680 val = RAL_BBP_WRITE | reg << 8;
1681 ural_write(sc, RAL_PHY_CSR7, val);
1682
1683 for (ntries = 0; ntries < 5; ntries++) {
1684 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1685 break;
1686 }
1687 if (ntries == 5) {
1688 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1689 return 0;
1690 }
1691
1692 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1693 }
1694
1695 Static void
1696 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1697 {
1698 uint32_t tmp;
1699 int ntries;
1700
1701 for (ntries = 0; ntries < 5; ntries++) {
1702 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1703 break;
1704 }
1705 if (ntries == 5) {
1706 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1707 return;
1708 }
1709
1710 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1711 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1712 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1713
1714 /* remember last written value in sc */
1715 sc->rf_regs[reg] = val;
1716
1717 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1718 }
1719
1720 Static void
1721 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1722 {
1723 struct ieee80211com *ic = &sc->sc_ic;
1724 uint8_t power, tmp;
1725 u_int i, chan;
1726
1727 chan = ieee80211_chan2ieee(ic, c);
1728 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1729 return;
1730
1731 if (IEEE80211_IS_CHAN_2GHZ(c))
1732 power = min(sc->txpow[chan - 1], 31);
1733 else
1734 power = 31;
1735
1736 /* adjust txpower using ifconfig settings */
1737 power -= (100 - ic->ic_txpowlimit) / 8;
1738
1739 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1740
1741 switch (sc->rf_rev) {
1742 case RAL_RF_2522:
1743 ural_rf_write(sc, RAL_RF1, 0x00814);
1744 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1745 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1746 break;
1747
1748 case RAL_RF_2523:
1749 ural_rf_write(sc, RAL_RF1, 0x08804);
1750 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1751 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1752 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1753 break;
1754
1755 case RAL_RF_2524:
1756 ural_rf_write(sc, RAL_RF1, 0x0c808);
1757 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1759 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1760 break;
1761
1762 case RAL_RF_2525:
1763 ural_rf_write(sc, RAL_RF1, 0x08808);
1764 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1765 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1766 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1767
1768 ural_rf_write(sc, RAL_RF1, 0x08808);
1769 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1770 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1771 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1772 break;
1773
1774 case RAL_RF_2525E:
1775 ural_rf_write(sc, RAL_RF1, 0x08808);
1776 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1777 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1778 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1779 break;
1780
1781 case RAL_RF_2526:
1782 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1783 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1784 ural_rf_write(sc, RAL_RF1, 0x08804);
1785
1786 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1787 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1788 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1789 break;
1790
1791 /* dual-band RF */
1792 case RAL_RF_5222:
1793 for (i = 0; ural_rf5222[i].chan != chan; i++);
1794
1795 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1796 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1797 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1798 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1799 break;
1800 }
1801
1802 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1803 ic->ic_state != IEEE80211_S_SCAN) {
1804 /* set Japan filter bit for channel 14 */
1805 tmp = ural_bbp_read(sc, 70);
1806
1807 tmp &= ~RAL_JAPAN_FILTER;
1808 if (chan == 14)
1809 tmp |= RAL_JAPAN_FILTER;
1810
1811 ural_bbp_write(sc, 70, tmp);
1812
1813 /* clear CRC errors */
1814 ural_read(sc, RAL_STA_CSR0);
1815
1816 DELAY(10000);
1817 ural_disable_rf_tune(sc);
1818 }
1819 }
1820
1821 /*
1822 * Disable RF auto-tuning.
1823 */
1824 Static void
1825 ural_disable_rf_tune(struct ural_softc *sc)
1826 {
1827 uint32_t tmp;
1828
1829 if (sc->rf_rev != RAL_RF_2523) {
1830 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1831 ural_rf_write(sc, RAL_RF1, tmp);
1832 }
1833
1834 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1835 ural_rf_write(sc, RAL_RF3, tmp);
1836
1837 DPRINTFN(2, ("disabling RF autotune\n"));
1838 }
1839
1840 /*
1841 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1842 * synchronization.
1843 */
1844 Static void
1845 ural_enable_tsf_sync(struct ural_softc *sc)
1846 {
1847 struct ieee80211com *ic = &sc->sc_ic;
1848 uint16_t logcwmin, preload, tmp;
1849
1850 /* first, disable TSF synchronization */
1851 ural_write(sc, RAL_TXRX_CSR19, 0);
1852
1853 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1854 ural_write(sc, RAL_TXRX_CSR18, tmp);
1855
1856 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1857 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1858 tmp = logcwmin << 12 | preload;
1859 ural_write(sc, RAL_TXRX_CSR20, tmp);
1860
1861 /* finally, enable TSF synchronization */
1862 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1863 if (ic->ic_opmode == IEEE80211_M_STA)
1864 tmp |= RAL_ENABLE_TSF_SYNC(1);
1865 else
1866 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1867 ural_write(sc, RAL_TXRX_CSR19, tmp);
1868
1869 DPRINTF(("enabling TSF synchronization\n"));
1870 }
1871
1872 Static void
1873 ural_update_slot(struct ifnet *ifp)
1874 {
1875 struct ural_softc *sc = ifp->if_softc;
1876 struct ieee80211com *ic = &sc->sc_ic;
1877 uint16_t slottime, sifs, eifs;
1878
1879 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1880
1881 /*
1882 * These settings may sound a bit inconsistent but this is what the
1883 * reference driver does.
1884 */
1885 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1886 sifs = 16 - RAL_RXTX_TURNAROUND;
1887 eifs = 364;
1888 } else {
1889 sifs = 10 - RAL_RXTX_TURNAROUND;
1890 eifs = 64;
1891 }
1892
1893 ural_write(sc, RAL_MAC_CSR10, slottime);
1894 ural_write(sc, RAL_MAC_CSR11, sifs);
1895 ural_write(sc, RAL_MAC_CSR12, eifs);
1896 }
1897
1898 Static void
1899 ural_set_txpreamble(struct ural_softc *sc)
1900 {
1901 uint16_t tmp;
1902
1903 tmp = ural_read(sc, RAL_TXRX_CSR10);
1904
1905 tmp &= ~RAL_SHORT_PREAMBLE;
1906 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1907 tmp |= RAL_SHORT_PREAMBLE;
1908
1909 ural_write(sc, RAL_TXRX_CSR10, tmp);
1910 }
1911
1912 Static void
1913 ural_set_basicrates(struct ural_softc *sc)
1914 {
1915 struct ieee80211com *ic = &sc->sc_ic;
1916
1917 /* update basic rate set */
1918 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1919 /* 11b basic rates: 1, 2Mbps */
1920 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1921 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1922 /* 11a basic rates: 6, 12, 24Mbps */
1923 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1924 } else {
1925 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1926 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1927 }
1928 }
1929
1930 Static void
1931 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1932 {
1933 uint16_t tmp;
1934
1935 tmp = bssid[0] | bssid[1] << 8;
1936 ural_write(sc, RAL_MAC_CSR5, tmp);
1937
1938 tmp = bssid[2] | bssid[3] << 8;
1939 ural_write(sc, RAL_MAC_CSR6, tmp);
1940
1941 tmp = bssid[4] | bssid[5] << 8;
1942 ural_write(sc, RAL_MAC_CSR7, tmp);
1943
1944 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1945 }
1946
1947 Static void
1948 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1949 {
1950 uint16_t tmp;
1951
1952 tmp = addr[0] | addr[1] << 8;
1953 ural_write(sc, RAL_MAC_CSR2, tmp);
1954
1955 tmp = addr[2] | addr[3] << 8;
1956 ural_write(sc, RAL_MAC_CSR3, tmp);
1957
1958 tmp = addr[4] | addr[5] << 8;
1959 ural_write(sc, RAL_MAC_CSR4, tmp);
1960
1961 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1962 }
1963
1964 Static void
1965 ural_update_promisc(struct ural_softc *sc)
1966 {
1967 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1968 uint32_t tmp;
1969
1970 tmp = ural_read(sc, RAL_TXRX_CSR2);
1971
1972 tmp &= ~RAL_DROP_NOT_TO_ME;
1973 if (!(ifp->if_flags & IFF_PROMISC))
1974 tmp |= RAL_DROP_NOT_TO_ME;
1975
1976 ural_write(sc, RAL_TXRX_CSR2, tmp);
1977
1978 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1979 "entering" : "leaving"));
1980 }
1981
1982 Static const char *
1983 ural_get_rf(int rev)
1984 {
1985 switch (rev) {
1986 case RAL_RF_2522: return "RT2522";
1987 case RAL_RF_2523: return "RT2523";
1988 case RAL_RF_2524: return "RT2524";
1989 case RAL_RF_2525: return "RT2525";
1990 case RAL_RF_2525E: return "RT2525e";
1991 case RAL_RF_2526: return "RT2526";
1992 case RAL_RF_5222: return "RT5222";
1993 default: return "unknown";
1994 }
1995 }
1996
1997 Static void
1998 ural_read_eeprom(struct ural_softc *sc)
1999 {
2000 struct ieee80211com *ic = &sc->sc_ic;
2001 uint16_t val;
2002
2003 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
2004 val = le16toh(val);
2005 sc->rf_rev = (val >> 11) & 0x7;
2006 sc->hw_radio = (val >> 10) & 0x1;
2007 sc->led_mode = (val >> 6) & 0x7;
2008 sc->rx_ant = (val >> 4) & 0x3;
2009 sc->tx_ant = (val >> 2) & 0x3;
2010 sc->nb_ant = val & 0x3;
2011
2012 /* read MAC address */
2013 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
2014
2015 /* read default values for BBP registers */
2016 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2017
2018 /* read Tx power for all b/g channels */
2019 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2020 }
2021
2022 Static int
2023 ural_bbp_init(struct ural_softc *sc)
2024 {
2025 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2026 int i, ntries;
2027
2028 /* wait for BBP to be ready */
2029 for (ntries = 0; ntries < 100; ntries++) {
2030 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2031 break;
2032 DELAY(1000);
2033 }
2034 if (ntries == 100) {
2035 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2036 return EIO;
2037 }
2038
2039 /* initialize BBP registers to default values */
2040 for (i = 0; i < N(ural_def_bbp); i++)
2041 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2042
2043 #if 0
2044 /* initialize BBP registers to values stored in EEPROM */
2045 for (i = 0; i < 16; i++) {
2046 if (sc->bbp_prom[i].reg == 0xff)
2047 continue;
2048 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2049 }
2050 #endif
2051
2052 return 0;
2053 #undef N
2054 }
2055
2056 Static void
2057 ural_set_txantenna(struct ural_softc *sc, int antenna)
2058 {
2059 uint16_t tmp;
2060 uint8_t tx;
2061
2062 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2063 if (antenna == 1)
2064 tx |= RAL_BBP_ANTA;
2065 else if (antenna == 2)
2066 tx |= RAL_BBP_ANTB;
2067 else
2068 tx |= RAL_BBP_DIVERSITY;
2069
2070 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2071 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2072 sc->rf_rev == RAL_RF_5222)
2073 tx |= RAL_BBP_FLIPIQ;
2074
2075 ural_bbp_write(sc, RAL_BBP_TX, tx);
2076
2077 /* update values in PHY_CSR5 and PHY_CSR6 */
2078 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2079 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2080
2081 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2082 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2083 }
2084
2085 Static void
2086 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2087 {
2088 uint8_t rx;
2089
2090 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2091 if (antenna == 1)
2092 rx |= RAL_BBP_ANTA;
2093 else if (antenna == 2)
2094 rx |= RAL_BBP_ANTB;
2095 else
2096 rx |= RAL_BBP_DIVERSITY;
2097
2098 /* need to force no I/Q flip for RF 2525e and 2526 */
2099 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2100 rx &= ~RAL_BBP_FLIPIQ;
2101
2102 ural_bbp_write(sc, RAL_BBP_RX, rx);
2103 }
2104
2105 Static int
2106 ural_init(struct ifnet *ifp)
2107 {
2108 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2109 struct ural_softc *sc = ifp->if_softc;
2110 struct ieee80211com *ic = &sc->sc_ic;
2111 struct ieee80211_key *wk;
2112 struct ural_rx_data *data;
2113 uint16_t tmp;
2114 usbd_status error;
2115 int i, ntries;
2116
2117 ural_set_testmode(sc);
2118 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2119
2120 ural_stop(ifp, 0);
2121
2122 /* initialize MAC registers to default values */
2123 for (i = 0; i < N(ural_def_mac); i++)
2124 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2125
2126 /* wait for BBP and RF to wake up (this can take a long time!) */
2127 for (ntries = 0; ntries < 100; ntries++) {
2128 tmp = ural_read(sc, RAL_MAC_CSR17);
2129 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2130 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2131 break;
2132 DELAY(1000);
2133 }
2134 if (ntries == 100) {
2135 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2136 device_xname(sc->sc_dev));
2137 error = EIO;
2138 goto fail;
2139 }
2140
2141 /* we're ready! */
2142 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2143
2144 /* set basic rate set (will be updated later) */
2145 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2146
2147 error = ural_bbp_init(sc);
2148 if (error != 0)
2149 goto fail;
2150
2151 /* set default BSS channel */
2152 ural_set_chan(sc, ic->ic_curchan);
2153
2154 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2155 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2156
2157 ural_set_txantenna(sc, sc->tx_ant);
2158 ural_set_rxantenna(sc, sc->rx_ant);
2159
2160 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2161 ural_set_macaddr(sc, ic->ic_myaddr);
2162
2163 /*
2164 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2165 */
2166 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2167 wk = &ic->ic_crypto.cs_nw_keys[i];
2168 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2169 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2170 }
2171
2172 /*
2173 * Allocate xfer for AMRR statistics requests.
2174 */
2175 sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2176 if (sc->amrr_xfer == NULL) {
2177 printf("%s: could not allocate AMRR xfer\n",
2178 device_xname(sc->sc_dev));
2179 goto fail;
2180 }
2181
2182 /*
2183 * Open Tx and Rx USB bulk pipes.
2184 */
2185 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2186 &sc->sc_tx_pipeh);
2187 if (error != 0) {
2188 printf("%s: could not open Tx pipe: %s\n",
2189 device_xname(sc->sc_dev), usbd_errstr(error));
2190 goto fail;
2191 }
2192
2193 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2194 &sc->sc_rx_pipeh);
2195 if (error != 0) {
2196 printf("%s: could not open Rx pipe: %s\n",
2197 device_xname(sc->sc_dev), usbd_errstr(error));
2198 goto fail;
2199 }
2200
2201 /*
2202 * Allocate Tx and Rx xfer queues.
2203 */
2204 error = ural_alloc_tx_list(sc);
2205 if (error != 0) {
2206 printf("%s: could not allocate Tx list\n",
2207 device_xname(sc->sc_dev));
2208 goto fail;
2209 }
2210
2211 error = ural_alloc_rx_list(sc);
2212 if (error != 0) {
2213 printf("%s: could not allocate Rx list\n",
2214 device_xname(sc->sc_dev));
2215 goto fail;
2216 }
2217
2218 /*
2219 * Start up the receive pipe.
2220 */
2221 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2222 data = &sc->rx_data[i];
2223
2224 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2225 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2226 usbd_transfer(data->xfer);
2227 }
2228
2229 /* kick Rx */
2230 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2231 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2232 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2233 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2234 tmp |= RAL_DROP_TODS;
2235 if (!(ifp->if_flags & IFF_PROMISC))
2236 tmp |= RAL_DROP_NOT_TO_ME;
2237 }
2238 ural_write(sc, RAL_TXRX_CSR2, tmp);
2239
2240 ifp->if_flags &= ~IFF_OACTIVE;
2241 ifp->if_flags |= IFF_RUNNING;
2242
2243 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2244 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2245 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2246 } else
2247 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2248
2249 return 0;
2250
2251 fail: ural_stop(ifp, 1);
2252 return error;
2253 #undef N
2254 }
2255
2256 Static void
2257 ural_stop(struct ifnet *ifp, int disable)
2258 {
2259 struct ural_softc *sc = ifp->if_softc;
2260 struct ieee80211com *ic = &sc->sc_ic;
2261
2262 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2263
2264 sc->sc_tx_timer = 0;
2265 ifp->if_timer = 0;
2266 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2267
2268 /* disable Rx */
2269 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2270
2271 /* reset ASIC and BBP (but won't reset MAC registers!) */
2272 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2273 ural_write(sc, RAL_MAC_CSR1, 0);
2274
2275 if (sc->amrr_xfer != NULL) {
2276 usbd_free_xfer(sc->amrr_xfer);
2277 sc->amrr_xfer = NULL;
2278 }
2279
2280 if (sc->sc_rx_pipeh != NULL) {
2281 usbd_abort_pipe(sc->sc_rx_pipeh);
2282 usbd_close_pipe(sc->sc_rx_pipeh);
2283 sc->sc_rx_pipeh = NULL;
2284 }
2285
2286 if (sc->sc_tx_pipeh != NULL) {
2287 usbd_abort_pipe(sc->sc_tx_pipeh);
2288 usbd_close_pipe(sc->sc_tx_pipeh);
2289 sc->sc_tx_pipeh = NULL;
2290 }
2291
2292 ural_free_rx_list(sc);
2293 ural_free_tx_list(sc);
2294 }
2295
2296 int
2297 ural_activate(device_t self, enum devact act)
2298 {
2299 struct ural_softc *sc = device_private(self);
2300
2301 switch (act) {
2302 case DVACT_DEACTIVATE:
2303 if_deactivate(&sc->sc_if);
2304 return 0;
2305 default:
2306 return EOPNOTSUPP;
2307 }
2308 }
2309
2310 Static void
2311 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2312 {
2313 int i;
2314
2315 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2316 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2317
2318 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2319
2320 /* set rate to some reasonable initial value */
2321 for (i = ni->ni_rates.rs_nrates - 1;
2322 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2323 i--);
2324 ni->ni_txrate = i;
2325
2326 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2327 }
2328
2329 Static void
2330 ural_amrr_timeout(void *arg)
2331 {
2332 struct ural_softc *sc = (struct ural_softc *)arg;
2333 usb_device_request_t req;
2334 int s;
2335
2336 s = splusb();
2337
2338 /*
2339 * Asynchronously read statistic registers (cleared by read).
2340 */
2341 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2342 req.bRequest = RAL_READ_MULTI_MAC;
2343 USETW(req.wValue, 0);
2344 USETW(req.wIndex, RAL_STA_CSR0);
2345 USETW(req.wLength, sizeof sc->sta);
2346
2347 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2348 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2349 ural_amrr_update);
2350 (void)usbd_transfer(sc->amrr_xfer);
2351
2352 splx(s);
2353 }
2354
2355 Static void
2356 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2357 usbd_status status)
2358 {
2359 struct ural_softc *sc = (struct ural_softc *)priv;
2360 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2361
2362 if (status != USBD_NORMAL_COMPLETION) {
2363 printf("%s: could not retrieve Tx statistics - "
2364 "cancelling automatic rate control\n",
2365 device_xname(sc->sc_dev));
2366 return;
2367 }
2368
2369 /* count TX retry-fail as Tx errors */
2370 ifp->if_oerrors += sc->sta[9];
2371
2372 sc->amn.amn_retrycnt =
2373 sc->sta[7] + /* TX one-retry ok count */
2374 sc->sta[8] + /* TX more-retry ok count */
2375 sc->sta[9]; /* TX retry-fail count */
2376
2377 sc->amn.amn_txcnt =
2378 sc->amn.amn_retrycnt +
2379 sc->sta[6]; /* TX no-retry ok count */
2380
2381 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2382
2383 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2384 }
2385