if_ural.c revision 1.44.14.7 1 /* $NetBSD: if_ural.c,v 1.44.14.7 2015/10/06 21:32:15 skrll Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.44.14.7 2015/10/06 21:32:15 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 #include <dev/usb/usbdevs.h>
65
66 #include <dev/usb/if_uralreg.h>
67 #include <dev/usb/if_uralvar.h>
68
69 #ifdef URAL_DEBUG
70 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
71 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
72 int ural_debug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno ural_devs[] = {
80 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
83 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
86 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
87 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
88 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
89 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
90 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
94 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
97 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
98 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
101 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
102 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
103 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
104 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
105 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
106 };
107
108 Static int ural_alloc_tx_list(struct ural_softc *);
109 Static void ural_free_tx_list(struct ural_softc *);
110 Static int ural_alloc_rx_list(struct ural_softc *);
111 Static void ural_free_rx_list(struct ural_softc *);
112 Static int ural_media_change(struct ifnet *);
113 Static void ural_next_scan(void *);
114 Static void ural_task(void *);
115 Static int ural_newstate(struct ieee80211com *,
116 enum ieee80211_state, int);
117 Static int ural_rxrate(struct ural_rx_desc *);
118 Static void ural_txeof(struct usbd_xfer *, void *,
119 usbd_status);
120 Static void ural_rxeof(struct usbd_xfer *, void *,
121 usbd_status);
122 Static int ural_ack_rate(struct ieee80211com *, int);
123 Static uint16_t ural_txtime(int, int, uint32_t);
124 Static uint8_t ural_plcp_signal(int);
125 Static void ural_setup_tx_desc(struct ural_softc *,
126 struct ural_tx_desc *, uint32_t, int, int);
127 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
128 struct ieee80211_node *);
129 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
130 struct ieee80211_node *);
131 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static void ural_start(struct ifnet *);
134 Static void ural_watchdog(struct ifnet *);
135 Static int ural_reset(struct ifnet *);
136 Static int ural_ioctl(struct ifnet *, u_long, void *);
137 Static void ural_set_testmode(struct ural_softc *);
138 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
139 int);
140 Static uint16_t ural_read(struct ural_softc *, uint16_t);
141 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
142 int);
143 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
144 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
145 int);
146 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
147 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
148 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
149 Static void ural_set_chan(struct ural_softc *,
150 struct ieee80211_channel *);
151 Static void ural_disable_rf_tune(struct ural_softc *);
152 Static void ural_enable_tsf_sync(struct ural_softc *);
153 Static void ural_update_slot(struct ifnet *);
154 Static void ural_set_txpreamble(struct ural_softc *);
155 Static void ural_set_basicrates(struct ural_softc *);
156 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
157 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
158 Static void ural_update_promisc(struct ural_softc *);
159 Static const char *ural_get_rf(int);
160 Static void ural_read_eeprom(struct ural_softc *);
161 Static int ural_bbp_init(struct ural_softc *);
162 Static void ural_set_txantenna(struct ural_softc *, int);
163 Static void ural_set_rxantenna(struct ural_softc *, int);
164 Static int ural_init(struct ifnet *);
165 Static void ural_stop(struct ifnet *, int);
166 Static void ural_amrr_start(struct ural_softc *,
167 struct ieee80211_node *);
168 Static void ural_amrr_timeout(void *);
169 Static void ural_amrr_update(struct usbd_xfer *, void *,
170 usbd_status status);
171
172 /*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175 static const struct ieee80211_rateset ural_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset ural_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset ural_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 /*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187 static const struct {
188 uint16_t reg;
189 uint16_t val;
190 } ural_def_mac[] = {
191 { RAL_TXRX_CSR5, 0x8c8d },
192 { RAL_TXRX_CSR6, 0x8b8a },
193 { RAL_TXRX_CSR7, 0x8687 },
194 { RAL_TXRX_CSR8, 0x0085 },
195 { RAL_MAC_CSR13, 0x1111 },
196 { RAL_MAC_CSR14, 0x1e11 },
197 { RAL_TXRX_CSR21, 0xe78f },
198 { RAL_MAC_CSR9, 0xff1d },
199 { RAL_MAC_CSR11, 0x0002 },
200 { RAL_MAC_CSR22, 0x0053 },
201 { RAL_MAC_CSR15, 0x0000 },
202 { RAL_MAC_CSR8, 0x0780 },
203 { RAL_TXRX_CSR19, 0x0000 },
204 { RAL_TXRX_CSR18, 0x005a },
205 { RAL_PHY_CSR2, 0x0000 },
206 { RAL_TXRX_CSR0, 0x1ec0 },
207 { RAL_PHY_CSR4, 0x000f }
208 };
209
210 /*
211 * Default values for BBP registers; values taken from the reference driver.
212 */
213 static const struct {
214 uint8_t reg;
215 uint8_t val;
216 } ural_def_bbp[] = {
217 { 3, 0x02 },
218 { 4, 0x19 },
219 { 14, 0x1c },
220 { 15, 0x30 },
221 { 16, 0xac },
222 { 17, 0x48 },
223 { 18, 0x18 },
224 { 19, 0xff },
225 { 20, 0x1e },
226 { 21, 0x08 },
227 { 22, 0x08 },
228 { 23, 0x08 },
229 { 24, 0x80 },
230 { 25, 0x50 },
231 { 26, 0x08 },
232 { 27, 0x23 },
233 { 30, 0x10 },
234 { 31, 0x2b },
235 { 32, 0xb9 },
236 { 34, 0x12 },
237 { 35, 0x50 },
238 { 39, 0xc4 },
239 { 40, 0x02 },
240 { 41, 0x60 },
241 { 53, 0x10 },
242 { 54, 0x18 },
243 { 56, 0x08 },
244 { 57, 0x10 },
245 { 58, 0x08 },
246 { 61, 0x60 },
247 { 62, 0x10 },
248 { 75, 0xff }
249 };
250
251 /*
252 * Default values for RF register R2 indexed by channel numbers.
253 */
254 static const uint32_t ural_rf2522_r2[] = {
255 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
256 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257 };
258
259 static const uint32_t ural_rf2523_r2[] = {
260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 };
263
264 static const uint32_t ural_rf2524_r2[] = {
265 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
266 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267 };
268
269 static const uint32_t ural_rf2525_r2[] = {
270 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
271 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272 };
273
274 static const uint32_t ural_rf2525_hi_r2[] = {
275 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
276 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277 };
278
279 static const uint32_t ural_rf2525e_r2[] = {
280 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
281 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282 };
283
284 static const uint32_t ural_rf2526_hi_r2[] = {
285 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
286 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287 };
288
289 static const uint32_t ural_rf2526_r2[] = {
290 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
291 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
292 };
293
294 /*
295 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
296 * values taken from the reference driver.
297 */
298 static const struct {
299 uint8_t chan;
300 uint32_t r1;
301 uint32_t r2;
302 uint32_t r4;
303 } ural_rf5222[] = {
304 { 1, 0x08808, 0x0044d, 0x00282 },
305 { 2, 0x08808, 0x0044e, 0x00282 },
306 { 3, 0x08808, 0x0044f, 0x00282 },
307 { 4, 0x08808, 0x00460, 0x00282 },
308 { 5, 0x08808, 0x00461, 0x00282 },
309 { 6, 0x08808, 0x00462, 0x00282 },
310 { 7, 0x08808, 0x00463, 0x00282 },
311 { 8, 0x08808, 0x00464, 0x00282 },
312 { 9, 0x08808, 0x00465, 0x00282 },
313 { 10, 0x08808, 0x00466, 0x00282 },
314 { 11, 0x08808, 0x00467, 0x00282 },
315 { 12, 0x08808, 0x00468, 0x00282 },
316 { 13, 0x08808, 0x00469, 0x00282 },
317 { 14, 0x08808, 0x0046b, 0x00286 },
318
319 { 36, 0x08804, 0x06225, 0x00287 },
320 { 40, 0x08804, 0x06226, 0x00287 },
321 { 44, 0x08804, 0x06227, 0x00287 },
322 { 48, 0x08804, 0x06228, 0x00287 },
323 { 52, 0x08804, 0x06229, 0x00287 },
324 { 56, 0x08804, 0x0622a, 0x00287 },
325 { 60, 0x08804, 0x0622b, 0x00287 },
326 { 64, 0x08804, 0x0622c, 0x00287 },
327
328 { 100, 0x08804, 0x02200, 0x00283 },
329 { 104, 0x08804, 0x02201, 0x00283 },
330 { 108, 0x08804, 0x02202, 0x00283 },
331 { 112, 0x08804, 0x02203, 0x00283 },
332 { 116, 0x08804, 0x02204, 0x00283 },
333 { 120, 0x08804, 0x02205, 0x00283 },
334 { 124, 0x08804, 0x02206, 0x00283 },
335 { 128, 0x08804, 0x02207, 0x00283 },
336 { 132, 0x08804, 0x02208, 0x00283 },
337 { 136, 0x08804, 0x02209, 0x00283 },
338 { 140, 0x08804, 0x0220a, 0x00283 },
339
340 { 149, 0x08808, 0x02429, 0x00281 },
341 { 153, 0x08808, 0x0242b, 0x00281 },
342 { 157, 0x08808, 0x0242d, 0x00281 },
343 { 161, 0x08808, 0x0242f, 0x00281 }
344 };
345
346 int ural_match(device_t, cfdata_t, void *);
347 void ural_attach(device_t, device_t, void *);
348 int ural_detach(device_t, int);
349 int ural_activate(device_t, enum devact);
350 extern struct cfdriver ural_cd;
351 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
352
353 int
354 ural_match(device_t parent, cfdata_t match, void *aux)
355 {
356 struct usb_attach_arg *uaa = aux;
357
358 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
359 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
360 }
361
362 void
363 ural_attach(device_t parent, device_t self, void *aux)
364 {
365 struct ural_softc *sc = device_private(self);
366 struct usb_attach_arg *uaa = aux;
367 struct ieee80211com *ic = &sc->sc_ic;
368 struct ifnet *ifp = &sc->sc_if;
369 usb_interface_descriptor_t *id;
370 usb_endpoint_descriptor_t *ed;
371 usbd_status error;
372 char *devinfop;
373 int i;
374
375 sc->sc_dev = self;
376 sc->sc_udev = uaa->uaa_device;
377
378 aprint_naive("\n");
379 aprint_normal("\n");
380
381 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
382 aprint_normal_dev(self, "%s\n", devinfop);
383 usbd_devinfo_free(devinfop);
384
385 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
386 if (error != 0) {
387 aprint_error_dev(self, "failed to set configuration"
388 ", err=%s\n", usbd_errstr(error));
389 return;
390 }
391
392 /* get the first interface handle */
393 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
394 &sc->sc_iface);
395 if (error != 0) {
396 aprint_error_dev(self, "could not get interface handle\n");
397 return;
398 }
399
400 /*
401 * Find endpoints.
402 */
403 id = usbd_get_interface_descriptor(sc->sc_iface);
404
405 sc->sc_rx_no = sc->sc_tx_no = -1;
406 for (i = 0; i < id->bNumEndpoints; i++) {
407 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 if (ed == NULL) {
409 aprint_error_dev(self,
410 "no endpoint descriptor for %d\n", i);
411 return;
412 }
413
414 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 sc->sc_rx_no = ed->bEndpointAddress;
417 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 sc->sc_tx_no = ed->bEndpointAddress;
420 }
421 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 aprint_error_dev(self, "missing endpoint\n");
423 return;
424 }
425
426 usb_init_task(&sc->sc_task, ural_task, sc, 0);
427 callout_init(&sc->sc_scan_ch, 0);
428 sc->amrr.amrr_min_success_threshold = 1;
429 sc->amrr.amrr_max_success_threshold = 15;
430 callout_init(&sc->sc_amrr_ch, 0);
431
432 /* retrieve RT2570 rev. no */
433 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
434
435 /* retrieve MAC address and various other things from EEPROM */
436 ural_read_eeprom(sc);
437
438 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
439 sc->asic_rev, ural_get_rf(sc->rf_rev));
440
441 ifp->if_softc = sc;
442 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = ural_init;
445 ifp->if_ioctl = ural_ioctl;
446 ifp->if_start = ural_start;
447 ifp->if_watchdog = ural_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450
451 ic->ic_ifp = ifp;
452 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
453 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
454 ic->ic_state = IEEE80211_S_INIT;
455
456 /* set device capabilities */
457 ic->ic_caps =
458 IEEE80211_C_IBSS | /* IBSS mode supported */
459 IEEE80211_C_MONITOR | /* monitor mode supported */
460 IEEE80211_C_HOSTAP | /* HostAp mode supported */
461 IEEE80211_C_TXPMGT | /* tx power management */
462 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
463 IEEE80211_C_SHSLOT | /* short slot time supported */
464 IEEE80211_C_WPA; /* 802.11i */
465
466 if (sc->rf_rev == RAL_RF_5222) {
467 /* set supported .11a rates */
468 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
469
470 /* set supported .11a channels */
471 for (i = 36; i <= 64; i += 4) {
472 ic->ic_channels[i].ic_freq =
473 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
474 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
475 }
476 for (i = 100; i <= 140; i += 4) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 }
481 for (i = 149; i <= 161; i += 4) {
482 ic->ic_channels[i].ic_freq =
483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 }
486 }
487
488 /* set supported .11b and .11g rates */
489 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
490 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
491
492 /* set supported .11b and .11g channels (1 through 14) */
493 for (i = 1; i <= 14; i++) {
494 ic->ic_channels[i].ic_freq =
495 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
496 ic->ic_channels[i].ic_flags =
497 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
498 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
499 }
500
501 if_attach(ifp);
502 ieee80211_ifattach(ic);
503 ic->ic_reset = ural_reset;
504
505 /* override state transition machine */
506 sc->sc_newstate = ic->ic_newstate;
507 ic->ic_newstate = ural_newstate;
508 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509
510 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
511 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
514 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
518 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 sc->sc_dev);
525
526 if (!pmf_device_register(self, NULL, NULL))
527 aprint_error_dev(self, "couldn't establish power handler\n");
528
529 return;
530 }
531
532 int
533 ural_detach(device_t self, int flags)
534 {
535 struct ural_softc *sc = device_private(self);
536 struct ieee80211com *ic = &sc->sc_ic;
537 struct ifnet *ifp = &sc->sc_if;
538 int s;
539
540 pmf_device_deregister(self);
541
542 s = splusb();
543
544 ural_stop(ifp, 1);
545 usb_rem_task(sc->sc_udev, &sc->sc_task);
546 callout_stop(&sc->sc_scan_ch);
547 callout_stop(&sc->sc_amrr_ch);
548
549 if (sc->amrr_xfer != NULL) {
550 usbd_destroy_xfer(sc->amrr_xfer);
551 sc->amrr_xfer = NULL;
552 }
553
554 if (sc->sc_rx_pipeh != NULL) {
555 usbd_abort_pipe(sc->sc_rx_pipeh);
556 usbd_close_pipe(sc->sc_rx_pipeh);
557 }
558
559 if (sc->sc_tx_pipeh != NULL) {
560 usbd_abort_pipe(sc->sc_tx_pipeh);
561 usbd_close_pipe(sc->sc_tx_pipeh);
562 }
563
564 bpf_detach(ifp);
565 ieee80211_ifdetach(ic);
566 if_detach(ifp);
567
568 splx(s);
569
570 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
571 sc->sc_dev);
572
573 return 0;
574 }
575
576 Static int
577 ural_alloc_tx_list(struct ural_softc *sc)
578 {
579 struct ural_tx_data *data;
580 int i, error;
581
582 sc->tx_queued = 0;
583
584 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
585 data = &sc->tx_data[i];
586
587 data->sc = sc;
588 error = usbd_create_xfer(sc->sc_tx_pipeh,
589 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
590 &data->xfer);
591 if (error) {
592 printf("%s: could not allocate tx xfer\n",
593 device_xname(sc->sc_dev));
594 goto fail;
595 }
596
597 data->buf = usbd_get_buffer(data->xfer);
598 }
599
600 return 0;
601
602 fail: ural_free_tx_list(sc);
603 return error;
604 }
605
606 Static void
607 ural_free_tx_list(struct ural_softc *sc)
608 {
609 struct ural_tx_data *data;
610 int i;
611
612 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
613 data = &sc->tx_data[i];
614
615 if (data->xfer != NULL) {
616 usbd_destroy_xfer(data->xfer);
617 data->xfer = NULL;
618 }
619
620 if (data->ni != NULL) {
621 ieee80211_free_node(data->ni);
622 data->ni = NULL;
623 }
624 }
625 }
626
627 Static int
628 ural_alloc_rx_list(struct ural_softc *sc)
629 {
630 struct ural_rx_data *data;
631 int i, error;
632
633 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
634 data = &sc->rx_data[i];
635
636 data->sc = sc;
637
638 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
639 USBD_SHORT_XFER_OK, 0, &data->xfer);
640 if (error) {
641 printf("%s: could not allocate rx xfer\n",
642 device_xname(sc->sc_dev));
643 goto fail;
644 }
645
646 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
647 if (data->m == NULL) {
648 printf("%s: could not allocate rx mbuf\n",
649 device_xname(sc->sc_dev));
650 error = ENOMEM;
651 goto fail;
652 }
653
654 MCLGET(data->m, M_DONTWAIT);
655 if (!(data->m->m_flags & M_EXT)) {
656 printf("%s: could not allocate rx mbuf cluster\n",
657 device_xname(sc->sc_dev));
658 error = ENOMEM;
659 goto fail;
660 }
661
662 data->buf = mtod(data->m, uint8_t *);
663 }
664
665 return 0;
666
667 fail: ural_free_tx_list(sc);
668 return error;
669 }
670
671 Static void
672 ural_free_rx_list(struct ural_softc *sc)
673 {
674 struct ural_rx_data *data;
675 int i;
676
677 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
678 data = &sc->rx_data[i];
679
680 if (data->xfer != NULL) {
681 usbd_destroy_xfer(data->xfer);
682 data->xfer = NULL;
683 }
684
685 if (data->m != NULL) {
686 m_freem(data->m);
687 data->m = NULL;
688 }
689 }
690 }
691
692 Static int
693 ural_media_change(struct ifnet *ifp)
694 {
695 int error;
696
697 error = ieee80211_media_change(ifp);
698 if (error != ENETRESET)
699 return error;
700
701 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
702 ural_init(ifp);
703
704 return 0;
705 }
706
707 /*
708 * This function is called periodically (every 200ms) during scanning to
709 * switch from one channel to another.
710 */
711 Static void
712 ural_next_scan(void *arg)
713 {
714 struct ural_softc *sc = arg;
715 struct ieee80211com *ic = &sc->sc_ic;
716
717 if (ic->ic_state == IEEE80211_S_SCAN)
718 ieee80211_next_scan(ic);
719 }
720
721 Static void
722 ural_task(void *arg)
723 {
724 struct ural_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726 enum ieee80211_state ostate;
727 struct ieee80211_node *ni;
728 struct mbuf *m;
729
730 ostate = ic->ic_state;
731
732 switch (sc->sc_state) {
733 case IEEE80211_S_INIT:
734 if (ostate == IEEE80211_S_RUN) {
735 /* abort TSF synchronization */
736 ural_write(sc, RAL_TXRX_CSR19, 0);
737
738 /* force tx led to stop blinking */
739 ural_write(sc, RAL_MAC_CSR20, 0);
740 }
741 break;
742
743 case IEEE80211_S_SCAN:
744 ural_set_chan(sc, ic->ic_curchan);
745 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
746 break;
747
748 case IEEE80211_S_AUTH:
749 ural_set_chan(sc, ic->ic_curchan);
750 break;
751
752 case IEEE80211_S_ASSOC:
753 ural_set_chan(sc, ic->ic_curchan);
754 break;
755
756 case IEEE80211_S_RUN:
757 ural_set_chan(sc, ic->ic_curchan);
758
759 ni = ic->ic_bss;
760
761 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
762 ural_update_slot(ic->ic_ifp);
763 ural_set_txpreamble(sc);
764 ural_set_basicrates(sc);
765 ural_set_bssid(sc, ni->ni_bssid);
766 }
767
768 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
769 ic->ic_opmode == IEEE80211_M_IBSS) {
770 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
771 if (m == NULL) {
772 printf("%s: could not allocate beacon\n",
773 device_xname(sc->sc_dev));
774 return;
775 }
776
777 if (ural_tx_bcn(sc, m, ni) != 0) {
778 m_freem(m);
779 printf("%s: could not send beacon\n",
780 device_xname(sc->sc_dev));
781 return;
782 }
783
784 /* beacon is no longer needed */
785 m_freem(m);
786 }
787
788 /* make tx led blink on tx (controlled by ASIC) */
789 ural_write(sc, RAL_MAC_CSR20, 1);
790
791 if (ic->ic_opmode != IEEE80211_M_MONITOR)
792 ural_enable_tsf_sync(sc);
793
794 /* enable automatic rate adaptation in STA mode */
795 if (ic->ic_opmode == IEEE80211_M_STA &&
796 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
797 ural_amrr_start(sc, ni);
798
799 break;
800 }
801
802 sc->sc_newstate(ic, sc->sc_state, -1);
803 }
804
805 Static int
806 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
807 int arg)
808 {
809 struct ural_softc *sc = ic->ic_ifp->if_softc;
810
811 usb_rem_task(sc->sc_udev, &sc->sc_task);
812 callout_stop(&sc->sc_scan_ch);
813 callout_stop(&sc->sc_amrr_ch);
814
815 /* do it in a process context */
816 sc->sc_state = nstate;
817 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
818
819 return 0;
820 }
821
822 /* quickly determine if a given rate is CCK or OFDM */
823 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
824
825 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
826 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
827
828 #define RAL_SIFS 10 /* us */
829
830 #define RAL_RXTX_TURNAROUND 5 /* us */
831
832 /*
833 * This function is only used by the Rx radiotap code.
834 */
835 Static int
836 ural_rxrate(struct ural_rx_desc *desc)
837 {
838 if (le32toh(desc->flags) & RAL_RX_OFDM) {
839 /* reverse function of ural_plcp_signal */
840 switch (desc->rate) {
841 case 0xb: return 12;
842 case 0xf: return 18;
843 case 0xa: return 24;
844 case 0xe: return 36;
845 case 0x9: return 48;
846 case 0xd: return 72;
847 case 0x8: return 96;
848 case 0xc: return 108;
849 }
850 } else {
851 if (desc->rate == 10)
852 return 2;
853 if (desc->rate == 20)
854 return 4;
855 if (desc->rate == 55)
856 return 11;
857 if (desc->rate == 110)
858 return 22;
859 }
860 return 2; /* should not get there */
861 }
862
863 Static void
864 ural_txeof(struct usbd_xfer *xfer, void * priv,
865 usbd_status status)
866 {
867 struct ural_tx_data *data = priv;
868 struct ural_softc *sc = data->sc;
869 struct ifnet *ifp = &sc->sc_if;
870 int s;
871
872 if (status != USBD_NORMAL_COMPLETION) {
873 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
874 return;
875
876 printf("%s: could not transmit buffer: %s\n",
877 device_xname(sc->sc_dev), usbd_errstr(status));
878
879 if (status == USBD_STALLED)
880 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
881
882 ifp->if_oerrors++;
883 return;
884 }
885
886 s = splnet();
887
888 m_freem(data->m);
889 data->m = NULL;
890 ieee80211_free_node(data->ni);
891 data->ni = NULL;
892
893 sc->tx_queued--;
894 ifp->if_opackets++;
895
896 DPRINTFN(10, ("tx done\n"));
897
898 sc->sc_tx_timer = 0;
899 ifp->if_flags &= ~IFF_OACTIVE;
900 ural_start(ifp);
901
902 splx(s);
903 }
904
905 Static void
906 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
907 {
908 struct ural_rx_data *data = priv;
909 struct ural_softc *sc = data->sc;
910 struct ieee80211com *ic = &sc->sc_ic;
911 struct ifnet *ifp = &sc->sc_if;
912 struct ural_rx_desc *desc;
913 struct ieee80211_frame *wh;
914 struct ieee80211_node *ni;
915 struct mbuf *mnew, *m;
916 int s, len;
917
918 if (status != USBD_NORMAL_COMPLETION) {
919 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
920 return;
921
922 if (status == USBD_STALLED)
923 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
924 goto skip;
925 }
926
927 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
928
929 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
930 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
931 len));
932 ifp->if_ierrors++;
933 goto skip;
934 }
935
936 /* rx descriptor is located at the end */
937 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
938
939 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
940 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
941 /*
942 * This should not happen since we did not request to receive
943 * those frames when we filled RAL_TXRX_CSR2.
944 */
945 DPRINTFN(5, ("PHY or CRC error\n"));
946 ifp->if_ierrors++;
947 goto skip;
948 }
949
950 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
951 if (mnew == NULL) {
952 ifp->if_ierrors++;
953 goto skip;
954 }
955
956 MCLGET(mnew, M_DONTWAIT);
957 if (!(mnew->m_flags & M_EXT)) {
958 ifp->if_ierrors++;
959 m_freem(mnew);
960 goto skip;
961 }
962
963 m = data->m;
964 data->m = mnew;
965 data->buf = mtod(data->m, uint8_t *);
966
967 /* finalize mbuf */
968 m->m_pkthdr.rcvif = ifp;
969 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
970 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
971
972 s = splnet();
973
974 if (sc->sc_drvbpf != NULL) {
975 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
976
977 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
978 tap->wr_rate = ural_rxrate(desc);
979 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
980 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
981 tap->wr_antenna = sc->rx_ant;
982 tap->wr_antsignal = desc->rssi;
983
984 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
985 }
986
987 wh = mtod(m, struct ieee80211_frame *);
988 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
989
990 /* send the frame to the 802.11 layer */
991 ieee80211_input(ic, m, ni, desc->rssi, 0);
992
993 /* node is no longer needed */
994 ieee80211_free_node(ni);
995
996 splx(s);
997
998 DPRINTFN(15, ("rx done\n"));
999
1000 skip: /* setup a new transfer */
1001 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
1002 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
1003 usbd_transfer(xfer);
1004 }
1005
1006 /*
1007 * Return the expected ack rate for a frame transmitted at rate `rate'.
1008 * XXX: this should depend on the destination node basic rate set.
1009 */
1010 Static int
1011 ural_ack_rate(struct ieee80211com *ic, int rate)
1012 {
1013 switch (rate) {
1014 /* CCK rates */
1015 case 2:
1016 return 2;
1017 case 4:
1018 case 11:
1019 case 22:
1020 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1021
1022 /* OFDM rates */
1023 case 12:
1024 case 18:
1025 return 12;
1026 case 24:
1027 case 36:
1028 return 24;
1029 case 48:
1030 case 72:
1031 case 96:
1032 case 108:
1033 return 48;
1034 }
1035
1036 /* default to 1Mbps */
1037 return 2;
1038 }
1039
1040 /*
1041 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1042 * The function automatically determines the operating mode depending on the
1043 * given rate. `flags' indicates whether short preamble is in use or not.
1044 */
1045 Static uint16_t
1046 ural_txtime(int len, int rate, uint32_t flags)
1047 {
1048 uint16_t txtime;
1049
1050 if (RAL_RATE_IS_OFDM(rate)) {
1051 /* IEEE Std 802.11g-2003, pp. 37 */
1052 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1053 txtime = 16 + 4 + 4 * txtime + 6;
1054 } else {
1055 /* IEEE Std 802.11b-1999, pp. 28 */
1056 txtime = (16 * len + rate - 1) / rate;
1057 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1058 txtime += 72 + 24;
1059 else
1060 txtime += 144 + 48;
1061 }
1062 return txtime;
1063 }
1064
1065 Static uint8_t
1066 ural_plcp_signal(int rate)
1067 {
1068 switch (rate) {
1069 /* CCK rates (returned values are device-dependent) */
1070 case 2: return 0x0;
1071 case 4: return 0x1;
1072 case 11: return 0x2;
1073 case 22: return 0x3;
1074
1075 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1076 case 12: return 0xb;
1077 case 18: return 0xf;
1078 case 24: return 0xa;
1079 case 36: return 0xe;
1080 case 48: return 0x9;
1081 case 72: return 0xd;
1082 case 96: return 0x8;
1083 case 108: return 0xc;
1084
1085 /* unsupported rates (should not get there) */
1086 default: return 0xff;
1087 }
1088 }
1089
1090 Static void
1091 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1092 uint32_t flags, int len, int rate)
1093 {
1094 struct ieee80211com *ic = &sc->sc_ic;
1095 uint16_t plcp_length;
1096 int remainder;
1097
1098 desc->flags = htole32(flags);
1099 desc->flags |= htole32(RAL_TX_NEWSEQ);
1100 desc->flags |= htole32(len << 16);
1101
1102 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1103 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1104
1105 /* setup PLCP fields */
1106 desc->plcp_signal = ural_plcp_signal(rate);
1107 desc->plcp_service = 4;
1108
1109 len += IEEE80211_CRC_LEN;
1110 if (RAL_RATE_IS_OFDM(rate)) {
1111 desc->flags |= htole32(RAL_TX_OFDM);
1112
1113 plcp_length = len & 0xfff;
1114 desc->plcp_length_hi = plcp_length >> 6;
1115 desc->plcp_length_lo = plcp_length & 0x3f;
1116 } else {
1117 plcp_length = (16 * len + rate - 1) / rate;
1118 if (rate == 22) {
1119 remainder = (16 * len) % 22;
1120 if (remainder != 0 && remainder < 7)
1121 desc->plcp_service |= RAL_PLCP_LENGEXT;
1122 }
1123 desc->plcp_length_hi = plcp_length >> 8;
1124 desc->plcp_length_lo = plcp_length & 0xff;
1125
1126 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1127 desc->plcp_signal |= 0x08;
1128 }
1129
1130 desc->iv = 0;
1131 desc->eiv = 0;
1132 }
1133
1134 #define RAL_TX_TIMEOUT 5000
1135
1136 Static int
1137 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1138 {
1139 struct ural_tx_desc *desc;
1140 struct usbd_xfer *xfer;
1141 uint8_t cmd = 0;
1142 usbd_status error;
1143 uint8_t *buf;
1144 int xferlen, rate;
1145
1146 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1147
1148 /* xfer length needs to be a multiple of two! */
1149 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1150
1151 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1152 USBD_FORCE_SHORT_XFER, 0, &xfer);
1153 if (error)
1154 return error;
1155
1156 buf = usbd_get_buffer(xfer);
1157
1158 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1159 RAL_TX_TIMEOUT, NULL);
1160
1161 error = usbd_sync_transfer(xfer);
1162 if (error != 0) {
1163 usbd_destroy_xfer(xfer);
1164 return error;
1165 }
1166
1167 desc = (struct ural_tx_desc *)buf;
1168
1169 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1170 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1171 m0->m_pkthdr.len, rate);
1172
1173 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1174 m0->m_pkthdr.len, rate, xferlen));
1175
1176 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1177 RAL_TX_TIMEOUT, NULL);
1178
1179 error = usbd_sync_transfer(xfer);
1180 usbd_destroy_xfer(xfer);
1181
1182 return error;
1183 }
1184
1185 Static int
1186 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1187 {
1188 struct ieee80211com *ic = &sc->sc_ic;
1189 struct ural_tx_desc *desc;
1190 struct ural_tx_data *data;
1191 struct ieee80211_frame *wh;
1192 struct ieee80211_key *k;
1193 uint32_t flags = 0;
1194 uint16_t dur;
1195 usbd_status error;
1196 int xferlen, rate;
1197
1198 data = &sc->tx_data[0];
1199 desc = (struct ural_tx_desc *)data->buf;
1200
1201 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1202
1203 wh = mtod(m0, struct ieee80211_frame *);
1204
1205 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1206 k = ieee80211_crypto_encap(ic, ni, m0);
1207 if (k == NULL) {
1208 m_freem(m0);
1209 return ENOBUFS;
1210 }
1211 }
1212
1213 data->m = m0;
1214 data->ni = ni;
1215
1216 wh = mtod(m0, struct ieee80211_frame *);
1217
1218 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1219 flags |= RAL_TX_ACK;
1220
1221 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1222 *(uint16_t *)wh->i_dur = htole16(dur);
1223
1224 /* tell hardware to add timestamp for probe responses */
1225 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1226 IEEE80211_FC0_TYPE_MGT &&
1227 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1228 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1229 flags |= RAL_TX_TIMESTAMP;
1230 }
1231
1232 if (sc->sc_drvbpf != NULL) {
1233 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1234
1235 tap->wt_flags = 0;
1236 tap->wt_rate = rate;
1237 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1238 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1239 tap->wt_antenna = sc->tx_ant;
1240
1241 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1242 }
1243
1244 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1245 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1246
1247 /* align end on a 2-bytes boundary */
1248 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1249
1250 /*
1251 * No space left in the last URB to store the extra 2 bytes, force
1252 * sending of another URB.
1253 */
1254 if ((xferlen % 64) == 0)
1255 xferlen += 2;
1256
1257 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1258 m0->m_pkthdr.len, rate, xferlen));
1259
1260 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1261 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1262
1263 error = usbd_transfer(data->xfer);
1264 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1265 m_freem(m0);
1266 return error;
1267 }
1268
1269 sc->tx_queued++;
1270
1271 return 0;
1272 }
1273
1274 Static int
1275 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1276 {
1277 struct ieee80211com *ic = &sc->sc_ic;
1278 struct ural_tx_desc *desc;
1279 struct ural_tx_data *data;
1280 struct ieee80211_frame *wh;
1281 struct ieee80211_key *k;
1282 uint32_t flags = 0;
1283 uint16_t dur;
1284 usbd_status error;
1285 int xferlen, rate;
1286
1287 wh = mtod(m0, struct ieee80211_frame *);
1288
1289 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1290 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1291 else
1292 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1293
1294 rate &= IEEE80211_RATE_VAL;
1295
1296 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1297 k = ieee80211_crypto_encap(ic, ni, m0);
1298 if (k == NULL) {
1299 m_freem(m0);
1300 return ENOBUFS;
1301 }
1302
1303 /* packet header may have moved, reset our local pointer */
1304 wh = mtod(m0, struct ieee80211_frame *);
1305 }
1306
1307 data = &sc->tx_data[0];
1308 desc = (struct ural_tx_desc *)data->buf;
1309
1310 data->m = m0;
1311 data->ni = ni;
1312
1313 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1314 flags |= RAL_TX_ACK;
1315 flags |= RAL_TX_RETRY(7);
1316
1317 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1318 ic->ic_flags) + RAL_SIFS;
1319 *(uint16_t *)wh->i_dur = htole16(dur);
1320 }
1321
1322 if (sc->sc_drvbpf != NULL) {
1323 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1324
1325 tap->wt_flags = 0;
1326 tap->wt_rate = rate;
1327 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1328 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1329 tap->wt_antenna = sc->tx_ant;
1330
1331 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1332 }
1333
1334 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1335 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1336
1337 /* align end on a 2-bytes boundary */
1338 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1339
1340 /*
1341 * No space left in the last URB to store the extra 2 bytes, force
1342 * sending of another URB.
1343 */
1344 if ((xferlen % 64) == 0)
1345 xferlen += 2;
1346
1347 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1348 m0->m_pkthdr.len, rate, xferlen));
1349 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1350 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1351
1352 error = usbd_transfer(data->xfer);
1353 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1354 return error;
1355
1356 sc->tx_queued++;
1357
1358 return 0;
1359 }
1360
1361 Static void
1362 ural_start(struct ifnet *ifp)
1363 {
1364 struct ural_softc *sc = ifp->if_softc;
1365 struct ieee80211com *ic = &sc->sc_ic;
1366 struct mbuf *m0;
1367 struct ether_header *eh;
1368 struct ieee80211_node *ni;
1369
1370 for (;;) {
1371 IF_POLL(&ic->ic_mgtq, m0);
1372 if (m0 != NULL) {
1373 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1374 ifp->if_flags |= IFF_OACTIVE;
1375 break;
1376 }
1377 IF_DEQUEUE(&ic->ic_mgtq, m0);
1378
1379 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1380 m0->m_pkthdr.rcvif = NULL;
1381 bpf_mtap3(ic->ic_rawbpf, m0);
1382 if (ural_tx_mgt(sc, m0, ni) != 0)
1383 break;
1384
1385 } else {
1386 if (ic->ic_state != IEEE80211_S_RUN)
1387 break;
1388 IFQ_DEQUEUE(&ifp->if_snd, m0);
1389 if (m0 == NULL)
1390 break;
1391 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1392 IF_PREPEND(&ifp->if_snd, m0);
1393 ifp->if_flags |= IFF_OACTIVE;
1394 break;
1395 }
1396
1397 if (m0->m_len < sizeof(struct ether_header) &&
1398 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1399 continue;
1400
1401 eh = mtod(m0, struct ether_header *);
1402 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1403 if (ni == NULL) {
1404 m_freem(m0);
1405 continue;
1406 }
1407 bpf_mtap(ifp, m0);
1408 m0 = ieee80211_encap(ic, m0, ni);
1409 if (m0 == NULL) {
1410 ieee80211_free_node(ni);
1411 continue;
1412 }
1413 bpf_mtap3(ic->ic_rawbpf, m0);
1414 if (ural_tx_data(sc, m0, ni) != 0) {
1415 ieee80211_free_node(ni);
1416 ifp->if_oerrors++;
1417 break;
1418 }
1419 }
1420
1421 sc->sc_tx_timer = 5;
1422 ifp->if_timer = 1;
1423 }
1424 }
1425
1426 Static void
1427 ural_watchdog(struct ifnet *ifp)
1428 {
1429 struct ural_softc *sc = ifp->if_softc;
1430 struct ieee80211com *ic = &sc->sc_ic;
1431
1432 ifp->if_timer = 0;
1433
1434 if (sc->sc_tx_timer > 0) {
1435 if (--sc->sc_tx_timer == 0) {
1436 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1437 /*ural_init(sc); XXX needs a process context! */
1438 ifp->if_oerrors++;
1439 return;
1440 }
1441 ifp->if_timer = 1;
1442 }
1443
1444 ieee80211_watchdog(ic);
1445 }
1446
1447 /*
1448 * This function allows for fast channel switching in monitor mode (used by
1449 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1450 * generate a new beacon frame.
1451 */
1452 Static int
1453 ural_reset(struct ifnet *ifp)
1454 {
1455 struct ural_softc *sc = ifp->if_softc;
1456 struct ieee80211com *ic = &sc->sc_ic;
1457
1458 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1459 return ENETRESET;
1460
1461 ural_set_chan(sc, ic->ic_curchan);
1462
1463 return 0;
1464 }
1465
1466 Static int
1467 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1468 {
1469 #define IS_RUNNING(ifp) \
1470 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1471
1472 struct ural_softc *sc = ifp->if_softc;
1473 struct ieee80211com *ic = &sc->sc_ic;
1474 int s, error = 0;
1475
1476 s = splnet();
1477
1478 switch (cmd) {
1479 case SIOCSIFFLAGS:
1480 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1481 break;
1482 /* XXX re-use ether_ioctl() */
1483 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1484 case IFF_UP|IFF_RUNNING:
1485 ural_update_promisc(sc);
1486 break;
1487 case IFF_UP:
1488 ural_init(ifp);
1489 break;
1490 case IFF_RUNNING:
1491 ural_stop(ifp, 1);
1492 break;
1493 case 0:
1494 break;
1495 }
1496 break;
1497
1498 case SIOCADDMULTI:
1499 case SIOCDELMULTI:
1500 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1501 error = 0;
1502 }
1503 break;
1504
1505 default:
1506 error = ieee80211_ioctl(ic, cmd, data);
1507 }
1508
1509 if (error == ENETRESET) {
1510 if (IS_RUNNING(ifp) &&
1511 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1512 ural_init(ifp);
1513 error = 0;
1514 }
1515
1516 splx(s);
1517
1518 return error;
1519 #undef IS_RUNNING
1520 }
1521
1522 Static void
1523 ural_set_testmode(struct ural_softc *sc)
1524 {
1525 usb_device_request_t req;
1526 usbd_status error;
1527
1528 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1529 req.bRequest = RAL_VENDOR_REQUEST;
1530 USETW(req.wValue, 4);
1531 USETW(req.wIndex, 1);
1532 USETW(req.wLength, 0);
1533
1534 error = usbd_do_request(sc->sc_udev, &req, NULL);
1535 if (error != 0) {
1536 printf("%s: could not set test mode: %s\n",
1537 device_xname(sc->sc_dev), usbd_errstr(error));
1538 }
1539 }
1540
1541 Static void
1542 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1543 {
1544 usb_device_request_t req;
1545 usbd_status error;
1546
1547 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1548 req.bRequest = RAL_READ_EEPROM;
1549 USETW(req.wValue, 0);
1550 USETW(req.wIndex, addr);
1551 USETW(req.wLength, len);
1552
1553 error = usbd_do_request(sc->sc_udev, &req, buf);
1554 if (error != 0) {
1555 printf("%s: could not read EEPROM: %s\n",
1556 device_xname(sc->sc_dev), usbd_errstr(error));
1557 }
1558 }
1559
1560 Static uint16_t
1561 ural_read(struct ural_softc *sc, uint16_t reg)
1562 {
1563 usb_device_request_t req;
1564 usbd_status error;
1565 uint16_t val;
1566
1567 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1568 req.bRequest = RAL_READ_MAC;
1569 USETW(req.wValue, 0);
1570 USETW(req.wIndex, reg);
1571 USETW(req.wLength, sizeof(uint16_t));
1572
1573 error = usbd_do_request(sc->sc_udev, &req, &val);
1574 if (error != 0) {
1575 printf("%s: could not read MAC register: %s\n",
1576 device_xname(sc->sc_dev), usbd_errstr(error));
1577 return 0;
1578 }
1579
1580 return le16toh(val);
1581 }
1582
1583 Static void
1584 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1585 {
1586 usb_device_request_t req;
1587 usbd_status error;
1588
1589 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1590 req.bRequest = RAL_READ_MULTI_MAC;
1591 USETW(req.wValue, 0);
1592 USETW(req.wIndex, reg);
1593 USETW(req.wLength, len);
1594
1595 error = usbd_do_request(sc->sc_udev, &req, buf);
1596 if (error != 0) {
1597 printf("%s: could not read MAC register: %s\n",
1598 device_xname(sc->sc_dev), usbd_errstr(error));
1599 }
1600 }
1601
1602 Static void
1603 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1604 {
1605 usb_device_request_t req;
1606 usbd_status error;
1607
1608 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 req.bRequest = RAL_WRITE_MAC;
1610 USETW(req.wValue, val);
1611 USETW(req.wIndex, reg);
1612 USETW(req.wLength, 0);
1613
1614 error = usbd_do_request(sc->sc_udev, &req, NULL);
1615 if (error != 0) {
1616 printf("%s: could not write MAC register: %s\n",
1617 device_xname(sc->sc_dev), usbd_errstr(error));
1618 }
1619 }
1620
1621 Static void
1622 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1623 {
1624 usb_device_request_t req;
1625 usbd_status error;
1626
1627 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1628 req.bRequest = RAL_WRITE_MULTI_MAC;
1629 USETW(req.wValue, 0);
1630 USETW(req.wIndex, reg);
1631 USETW(req.wLength, len);
1632
1633 error = usbd_do_request(sc->sc_udev, &req, buf);
1634 if (error != 0) {
1635 printf("%s: could not write MAC register: %s\n",
1636 device_xname(sc->sc_dev), usbd_errstr(error));
1637 }
1638 }
1639
1640 Static void
1641 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1642 {
1643 uint16_t tmp;
1644 int ntries;
1645
1646 for (ntries = 0; ntries < 5; ntries++) {
1647 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1648 break;
1649 }
1650 if (ntries == 5) {
1651 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1652 return;
1653 }
1654
1655 tmp = reg << 8 | val;
1656 ural_write(sc, RAL_PHY_CSR7, tmp);
1657 }
1658
1659 Static uint8_t
1660 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1661 {
1662 uint16_t val;
1663 int ntries;
1664
1665 val = RAL_BBP_WRITE | reg << 8;
1666 ural_write(sc, RAL_PHY_CSR7, val);
1667
1668 for (ntries = 0; ntries < 5; ntries++) {
1669 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1670 break;
1671 }
1672 if (ntries == 5) {
1673 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1674 return 0;
1675 }
1676
1677 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1678 }
1679
1680 Static void
1681 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1682 {
1683 uint32_t tmp;
1684 int ntries;
1685
1686 for (ntries = 0; ntries < 5; ntries++) {
1687 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1688 break;
1689 }
1690 if (ntries == 5) {
1691 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1692 return;
1693 }
1694
1695 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1696 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1697 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1698
1699 /* remember last written value in sc */
1700 sc->rf_regs[reg] = val;
1701
1702 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1703 }
1704
1705 Static void
1706 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1707 {
1708 struct ieee80211com *ic = &sc->sc_ic;
1709 uint8_t power, tmp;
1710 u_int i, chan;
1711
1712 chan = ieee80211_chan2ieee(ic, c);
1713 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1714 return;
1715
1716 if (IEEE80211_IS_CHAN_2GHZ(c))
1717 power = min(sc->txpow[chan - 1], 31);
1718 else
1719 power = 31;
1720
1721 /* adjust txpower using ifconfig settings */
1722 power -= (100 - ic->ic_txpowlimit) / 8;
1723
1724 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1725
1726 switch (sc->rf_rev) {
1727 case RAL_RF_2522:
1728 ural_rf_write(sc, RAL_RF1, 0x00814);
1729 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1730 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 break;
1732
1733 case RAL_RF_2523:
1734 ural_rf_write(sc, RAL_RF1, 0x08804);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1737 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 break;
1739
1740 case RAL_RF_2524:
1741 ural_rf_write(sc, RAL_RF1, 0x0c808);
1742 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1743 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1744 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 break;
1746
1747 case RAL_RF_2525:
1748 ural_rf_write(sc, RAL_RF1, 0x08808);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1752
1753 ural_rf_write(sc, RAL_RF1, 0x08808);
1754 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1755 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1756 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1757 break;
1758
1759 case RAL_RF_2525E:
1760 ural_rf_write(sc, RAL_RF1, 0x08808);
1761 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1762 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1763 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1764 break;
1765
1766 case RAL_RF_2526:
1767 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1768 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1769 ural_rf_write(sc, RAL_RF1, 0x08804);
1770
1771 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1772 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1773 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1774 break;
1775
1776 /* dual-band RF */
1777 case RAL_RF_5222:
1778 for (i = 0; ural_rf5222[i].chan != chan; i++);
1779
1780 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1781 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1782 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1783 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1784 break;
1785 }
1786
1787 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1788 ic->ic_state != IEEE80211_S_SCAN) {
1789 /* set Japan filter bit for channel 14 */
1790 tmp = ural_bbp_read(sc, 70);
1791
1792 tmp &= ~RAL_JAPAN_FILTER;
1793 if (chan == 14)
1794 tmp |= RAL_JAPAN_FILTER;
1795
1796 ural_bbp_write(sc, 70, tmp);
1797
1798 /* clear CRC errors */
1799 ural_read(sc, RAL_STA_CSR0);
1800
1801 DELAY(10000);
1802 ural_disable_rf_tune(sc);
1803 }
1804 }
1805
1806 /*
1807 * Disable RF auto-tuning.
1808 */
1809 Static void
1810 ural_disable_rf_tune(struct ural_softc *sc)
1811 {
1812 uint32_t tmp;
1813
1814 if (sc->rf_rev != RAL_RF_2523) {
1815 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1816 ural_rf_write(sc, RAL_RF1, tmp);
1817 }
1818
1819 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1820 ural_rf_write(sc, RAL_RF3, tmp);
1821
1822 DPRINTFN(2, ("disabling RF autotune\n"));
1823 }
1824
1825 /*
1826 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1827 * synchronization.
1828 */
1829 Static void
1830 ural_enable_tsf_sync(struct ural_softc *sc)
1831 {
1832 struct ieee80211com *ic = &sc->sc_ic;
1833 uint16_t logcwmin, preload, tmp;
1834
1835 /* first, disable TSF synchronization */
1836 ural_write(sc, RAL_TXRX_CSR19, 0);
1837
1838 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1839 ural_write(sc, RAL_TXRX_CSR18, tmp);
1840
1841 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1842 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1843 tmp = logcwmin << 12 | preload;
1844 ural_write(sc, RAL_TXRX_CSR20, tmp);
1845
1846 /* finally, enable TSF synchronization */
1847 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1848 if (ic->ic_opmode == IEEE80211_M_STA)
1849 tmp |= RAL_ENABLE_TSF_SYNC(1);
1850 else
1851 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1852 ural_write(sc, RAL_TXRX_CSR19, tmp);
1853
1854 DPRINTF(("enabling TSF synchronization\n"));
1855 }
1856
1857 Static void
1858 ural_update_slot(struct ifnet *ifp)
1859 {
1860 struct ural_softc *sc = ifp->if_softc;
1861 struct ieee80211com *ic = &sc->sc_ic;
1862 uint16_t slottime, sifs, eifs;
1863
1864 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1865
1866 /*
1867 * These settings may sound a bit inconsistent but this is what the
1868 * reference driver does.
1869 */
1870 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1871 sifs = 16 - RAL_RXTX_TURNAROUND;
1872 eifs = 364;
1873 } else {
1874 sifs = 10 - RAL_RXTX_TURNAROUND;
1875 eifs = 64;
1876 }
1877
1878 ural_write(sc, RAL_MAC_CSR10, slottime);
1879 ural_write(sc, RAL_MAC_CSR11, sifs);
1880 ural_write(sc, RAL_MAC_CSR12, eifs);
1881 }
1882
1883 Static void
1884 ural_set_txpreamble(struct ural_softc *sc)
1885 {
1886 uint16_t tmp;
1887
1888 tmp = ural_read(sc, RAL_TXRX_CSR10);
1889
1890 tmp &= ~RAL_SHORT_PREAMBLE;
1891 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1892 tmp |= RAL_SHORT_PREAMBLE;
1893
1894 ural_write(sc, RAL_TXRX_CSR10, tmp);
1895 }
1896
1897 Static void
1898 ural_set_basicrates(struct ural_softc *sc)
1899 {
1900 struct ieee80211com *ic = &sc->sc_ic;
1901
1902 /* update basic rate set */
1903 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1904 /* 11b basic rates: 1, 2Mbps */
1905 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1906 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1907 /* 11a basic rates: 6, 12, 24Mbps */
1908 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1909 } else {
1910 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1911 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1912 }
1913 }
1914
1915 Static void
1916 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1917 {
1918 uint16_t tmp;
1919
1920 tmp = bssid[0] | bssid[1] << 8;
1921 ural_write(sc, RAL_MAC_CSR5, tmp);
1922
1923 tmp = bssid[2] | bssid[3] << 8;
1924 ural_write(sc, RAL_MAC_CSR6, tmp);
1925
1926 tmp = bssid[4] | bssid[5] << 8;
1927 ural_write(sc, RAL_MAC_CSR7, tmp);
1928
1929 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1930 }
1931
1932 Static void
1933 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1934 {
1935 uint16_t tmp;
1936
1937 tmp = addr[0] | addr[1] << 8;
1938 ural_write(sc, RAL_MAC_CSR2, tmp);
1939
1940 tmp = addr[2] | addr[3] << 8;
1941 ural_write(sc, RAL_MAC_CSR3, tmp);
1942
1943 tmp = addr[4] | addr[5] << 8;
1944 ural_write(sc, RAL_MAC_CSR4, tmp);
1945
1946 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1947 }
1948
1949 Static void
1950 ural_update_promisc(struct ural_softc *sc)
1951 {
1952 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1953 uint32_t tmp;
1954
1955 tmp = ural_read(sc, RAL_TXRX_CSR2);
1956
1957 tmp &= ~RAL_DROP_NOT_TO_ME;
1958 if (!(ifp->if_flags & IFF_PROMISC))
1959 tmp |= RAL_DROP_NOT_TO_ME;
1960
1961 ural_write(sc, RAL_TXRX_CSR2, tmp);
1962
1963 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1964 "entering" : "leaving"));
1965 }
1966
1967 Static const char *
1968 ural_get_rf(int rev)
1969 {
1970 switch (rev) {
1971 case RAL_RF_2522: return "RT2522";
1972 case RAL_RF_2523: return "RT2523";
1973 case RAL_RF_2524: return "RT2524";
1974 case RAL_RF_2525: return "RT2525";
1975 case RAL_RF_2525E: return "RT2525e";
1976 case RAL_RF_2526: return "RT2526";
1977 case RAL_RF_5222: return "RT5222";
1978 default: return "unknown";
1979 }
1980 }
1981
1982 Static void
1983 ural_read_eeprom(struct ural_softc *sc)
1984 {
1985 struct ieee80211com *ic = &sc->sc_ic;
1986 uint16_t val;
1987
1988 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1989 val = le16toh(val);
1990 sc->rf_rev = (val >> 11) & 0x7;
1991 sc->hw_radio = (val >> 10) & 0x1;
1992 sc->led_mode = (val >> 6) & 0x7;
1993 sc->rx_ant = (val >> 4) & 0x3;
1994 sc->tx_ant = (val >> 2) & 0x3;
1995 sc->nb_ant = val & 0x3;
1996
1997 /* read MAC address */
1998 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1999
2000 /* read default values for BBP registers */
2001 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2002
2003 /* read Tx power for all b/g channels */
2004 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
2005 }
2006
2007 Static int
2008 ural_bbp_init(struct ural_softc *sc)
2009 {
2010 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2011 int i, ntries;
2012
2013 /* wait for BBP to be ready */
2014 for (ntries = 0; ntries < 100; ntries++) {
2015 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2016 break;
2017 DELAY(1000);
2018 }
2019 if (ntries == 100) {
2020 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2021 return EIO;
2022 }
2023
2024 /* initialize BBP registers to default values */
2025 for (i = 0; i < N(ural_def_bbp); i++)
2026 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2027
2028 #if 0
2029 /* initialize BBP registers to values stored in EEPROM */
2030 for (i = 0; i < 16; i++) {
2031 if (sc->bbp_prom[i].reg == 0xff)
2032 continue;
2033 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2034 }
2035 #endif
2036
2037 return 0;
2038 #undef N
2039 }
2040
2041 Static void
2042 ural_set_txantenna(struct ural_softc *sc, int antenna)
2043 {
2044 uint16_t tmp;
2045 uint8_t tx;
2046
2047 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2048 if (antenna == 1)
2049 tx |= RAL_BBP_ANTA;
2050 else if (antenna == 2)
2051 tx |= RAL_BBP_ANTB;
2052 else
2053 tx |= RAL_BBP_DIVERSITY;
2054
2055 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2056 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2057 sc->rf_rev == RAL_RF_5222)
2058 tx |= RAL_BBP_FLIPIQ;
2059
2060 ural_bbp_write(sc, RAL_BBP_TX, tx);
2061
2062 /* update values in PHY_CSR5 and PHY_CSR6 */
2063 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2064 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2065
2066 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2067 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2068 }
2069
2070 Static void
2071 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2072 {
2073 uint8_t rx;
2074
2075 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2076 if (antenna == 1)
2077 rx |= RAL_BBP_ANTA;
2078 else if (antenna == 2)
2079 rx |= RAL_BBP_ANTB;
2080 else
2081 rx |= RAL_BBP_DIVERSITY;
2082
2083 /* need to force no I/Q flip for RF 2525e and 2526 */
2084 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2085 rx &= ~RAL_BBP_FLIPIQ;
2086
2087 ural_bbp_write(sc, RAL_BBP_RX, rx);
2088 }
2089
2090 Static int
2091 ural_init(struct ifnet *ifp)
2092 {
2093 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2094 struct ural_softc *sc = ifp->if_softc;
2095 struct ieee80211com *ic = &sc->sc_ic;
2096 struct ieee80211_key *wk;
2097 uint16_t tmp;
2098 usbd_status error;
2099 int i, ntries;
2100
2101 ural_set_testmode(sc);
2102 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2103
2104 ural_stop(ifp, 0);
2105
2106 /* initialize MAC registers to default values */
2107 for (i = 0; i < N(ural_def_mac); i++)
2108 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2109
2110 /* wait for BBP and RF to wake up (this can take a long time!) */
2111 for (ntries = 0; ntries < 100; ntries++) {
2112 tmp = ural_read(sc, RAL_MAC_CSR17);
2113 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2114 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2115 break;
2116 DELAY(1000);
2117 }
2118 if (ntries == 100) {
2119 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2120 device_xname(sc->sc_dev));
2121 error = EIO;
2122 goto fail;
2123 }
2124
2125 /* we're ready! */
2126 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2127
2128 /* set basic rate set (will be updated later) */
2129 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2130
2131 error = ural_bbp_init(sc);
2132 if (error != 0)
2133 goto fail;
2134
2135 /* set default BSS channel */
2136 ural_set_chan(sc, ic->ic_curchan);
2137
2138 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2139 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2140
2141 ural_set_txantenna(sc, sc->tx_ant);
2142 ural_set_rxantenna(sc, sc->rx_ant);
2143
2144 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2145 ural_set_macaddr(sc, ic->ic_myaddr);
2146
2147 /*
2148 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2149 */
2150 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2151 wk = &ic->ic_crypto.cs_nw_keys[i];
2152 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2153 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2154 }
2155
2156 /*
2157 * Allocate xfer for AMRR statistics requests.
2158 */
2159 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2160 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2161 if (error) {
2162 printf("%s: could not allocate AMRR xfer\n",
2163 device_xname(sc->sc_dev));
2164 goto fail;
2165 }
2166
2167 /*
2168 * Open Tx and Rx USB bulk pipes.
2169 */
2170 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2171 &sc->sc_tx_pipeh);
2172 if (error != 0) {
2173 printf("%s: could not open Tx pipe: %s\n",
2174 device_xname(sc->sc_dev), usbd_errstr(error));
2175 goto fail;
2176 }
2177
2178 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2179 &sc->sc_rx_pipeh);
2180 if (error != 0) {
2181 printf("%s: could not open Rx pipe: %s\n",
2182 device_xname(sc->sc_dev), usbd_errstr(error));
2183 goto fail;
2184 }
2185
2186 /*
2187 * Allocate Tx and Rx xfer queues.
2188 */
2189 error = ural_alloc_tx_list(sc);
2190 if (error != 0) {
2191 printf("%s: could not allocate Tx list\n",
2192 device_xname(sc->sc_dev));
2193 goto fail;
2194 }
2195
2196 error = ural_alloc_rx_list(sc);
2197 if (error != 0) {
2198 printf("%s: could not allocate Rx list\n",
2199 device_xname(sc->sc_dev));
2200 goto fail;
2201 }
2202
2203 /*
2204 * Start up the receive pipe.
2205 */
2206 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2207 struct ural_rx_data *data = &sc->rx_data[i];
2208
2209 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2210 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2211 usbd_transfer(data->xfer);
2212 }
2213
2214 /* kick Rx */
2215 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2216 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2218 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2219 tmp |= RAL_DROP_TODS;
2220 if (!(ifp->if_flags & IFF_PROMISC))
2221 tmp |= RAL_DROP_NOT_TO_ME;
2222 }
2223 ural_write(sc, RAL_TXRX_CSR2, tmp);
2224
2225 ifp->if_flags &= ~IFF_OACTIVE;
2226 ifp->if_flags |= IFF_RUNNING;
2227
2228 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2229 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2230 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2231 } else
2232 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2233
2234 return 0;
2235
2236 fail: ural_stop(ifp, 1);
2237 return error;
2238 #undef N
2239 }
2240
2241 Static void
2242 ural_stop(struct ifnet *ifp, int disable)
2243 {
2244 struct ural_softc *sc = ifp->if_softc;
2245 struct ieee80211com *ic = &sc->sc_ic;
2246
2247 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2248
2249 sc->sc_tx_timer = 0;
2250 ifp->if_timer = 0;
2251 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2252
2253 /* disable Rx */
2254 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2255
2256 /* reset ASIC and BBP (but won't reset MAC registers!) */
2257 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2258 ural_write(sc, RAL_MAC_CSR1, 0);
2259
2260 if (sc->amrr_xfer != NULL) {
2261 usbd_destroy_xfer(sc->amrr_xfer);
2262 sc->amrr_xfer = NULL;
2263 }
2264
2265 if (sc->sc_rx_pipeh != NULL) {
2266 usbd_abort_pipe(sc->sc_rx_pipeh);
2267 usbd_close_pipe(sc->sc_rx_pipeh);
2268 sc->sc_rx_pipeh = NULL;
2269 }
2270
2271 if (sc->sc_tx_pipeh != NULL) {
2272 usbd_abort_pipe(sc->sc_tx_pipeh);
2273 usbd_close_pipe(sc->sc_tx_pipeh);
2274 sc->sc_tx_pipeh = NULL;
2275 }
2276
2277 ural_free_rx_list(sc);
2278 ural_free_tx_list(sc);
2279 }
2280
2281 int
2282 ural_activate(device_t self, enum devact act)
2283 {
2284 struct ural_softc *sc = device_private(self);
2285
2286 switch (act) {
2287 case DVACT_DEACTIVATE:
2288 if_deactivate(&sc->sc_if);
2289 return 0;
2290 default:
2291 return EOPNOTSUPP;
2292 }
2293 }
2294
2295 Static void
2296 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2297 {
2298 int i;
2299
2300 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2301 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2302
2303 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2304
2305 /* set rate to some reasonable initial value */
2306 for (i = ni->ni_rates.rs_nrates - 1;
2307 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2308 i--);
2309 ni->ni_txrate = i;
2310
2311 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2312 }
2313
2314 Static void
2315 ural_amrr_timeout(void *arg)
2316 {
2317 struct ural_softc *sc = (struct ural_softc *)arg;
2318 usb_device_request_t req;
2319 int s;
2320
2321 s = splusb();
2322
2323 /*
2324 * Asynchronously read statistic registers (cleared by read).
2325 */
2326 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2327 req.bRequest = RAL_READ_MULTI_MAC;
2328 USETW(req.wValue, 0);
2329 USETW(req.wIndex, RAL_STA_CSR0);
2330 USETW(req.wLength, sizeof(sc->sta));
2331
2332 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2333 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2334 ural_amrr_update);
2335 (void)usbd_transfer(sc->amrr_xfer);
2336
2337 splx(s);
2338 }
2339
2340 Static void
2341 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2342 usbd_status status)
2343 {
2344 struct ural_softc *sc = (struct ural_softc *)priv;
2345 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2346
2347 if (status != USBD_NORMAL_COMPLETION) {
2348 printf("%s: could not retrieve Tx statistics - "
2349 "cancelling automatic rate control\n",
2350 device_xname(sc->sc_dev));
2351 return;
2352 }
2353
2354 /* count TX retry-fail as Tx errors */
2355 ifp->if_oerrors += sc->sta[9];
2356
2357 sc->amn.amn_retrycnt =
2358 sc->sta[7] + /* TX one-retry ok count */
2359 sc->sta[8] + /* TX more-retry ok count */
2360 sc->sta[9]; /* TX retry-fail count */
2361
2362 sc->amn.amn_txcnt =
2363 sc->amn.amn_retrycnt +
2364 sc->sta[6]; /* TX no-retry ok count */
2365
2366 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2367
2368 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2369 }
2370