if_ural.c revision 1.47 1 /* $NetBSD: if_ural.c,v 1.47 2016/05/26 05:01:12 ozaki-r Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.47 2016/05/26 05:01:12 ozaki-r Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 #include <dev/usb/usbdevs.h>
65
66 #include <dev/usb/if_uralreg.h>
67 #include <dev/usb/if_uralvar.h>
68
69 #ifdef URAL_DEBUG
70 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
71 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
72 int ural_debug = 0;
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77
78 /* various supported device vendors/products */
79 static const struct usb_devno ural_devs[] = {
80 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
81 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
82 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
83 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
84 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
85 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
86 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
87 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
88 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
89 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
90 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
91 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
92 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
93 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
94 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
95 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
96 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
97 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
98 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
99 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
100 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
101 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
102 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
103 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
104 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
105 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
106 };
107
108 Static int ural_alloc_tx_list(struct ural_softc *);
109 Static void ural_free_tx_list(struct ural_softc *);
110 Static int ural_alloc_rx_list(struct ural_softc *);
111 Static void ural_free_rx_list(struct ural_softc *);
112 Static int ural_media_change(struct ifnet *);
113 Static void ural_next_scan(void *);
114 Static void ural_task(void *);
115 Static int ural_newstate(struct ieee80211com *,
116 enum ieee80211_state, int);
117 Static int ural_rxrate(struct ural_rx_desc *);
118 Static void ural_txeof(struct usbd_xfer *, void *,
119 usbd_status);
120 Static void ural_rxeof(struct usbd_xfer *, void *,
121 usbd_status);
122 Static int ural_ack_rate(struct ieee80211com *, int);
123 Static uint16_t ural_txtime(int, int, uint32_t);
124 Static uint8_t ural_plcp_signal(int);
125 Static void ural_setup_tx_desc(struct ural_softc *,
126 struct ural_tx_desc *, uint32_t, int, int);
127 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
128 struct ieee80211_node *);
129 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
130 struct ieee80211_node *);
131 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static void ural_start(struct ifnet *);
134 Static void ural_watchdog(struct ifnet *);
135 Static int ural_reset(struct ifnet *);
136 Static int ural_ioctl(struct ifnet *, u_long, void *);
137 Static void ural_set_testmode(struct ural_softc *);
138 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
139 int);
140 Static uint16_t ural_read(struct ural_softc *, uint16_t);
141 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
142 int);
143 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
144 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
145 int);
146 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
147 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
148 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
149 Static void ural_set_chan(struct ural_softc *,
150 struct ieee80211_channel *);
151 Static void ural_disable_rf_tune(struct ural_softc *);
152 Static void ural_enable_tsf_sync(struct ural_softc *);
153 Static void ural_update_slot(struct ifnet *);
154 Static void ural_set_txpreamble(struct ural_softc *);
155 Static void ural_set_basicrates(struct ural_softc *);
156 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
157 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
158 Static void ural_update_promisc(struct ural_softc *);
159 Static const char *ural_get_rf(int);
160 Static void ural_read_eeprom(struct ural_softc *);
161 Static int ural_bbp_init(struct ural_softc *);
162 Static void ural_set_txantenna(struct ural_softc *, int);
163 Static void ural_set_rxantenna(struct ural_softc *, int);
164 Static int ural_init(struct ifnet *);
165 Static void ural_stop(struct ifnet *, int);
166 Static void ural_amrr_start(struct ural_softc *,
167 struct ieee80211_node *);
168 Static void ural_amrr_timeout(void *);
169 Static void ural_amrr_update(struct usbd_xfer *, void *,
170 usbd_status status);
171
172 /*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175 static const struct ieee80211_rateset ural_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset ural_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset ural_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 /*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187 static const struct {
188 uint16_t reg;
189 uint16_t val;
190 } ural_def_mac[] = {
191 { RAL_TXRX_CSR5, 0x8c8d },
192 { RAL_TXRX_CSR6, 0x8b8a },
193 { RAL_TXRX_CSR7, 0x8687 },
194 { RAL_TXRX_CSR8, 0x0085 },
195 { RAL_MAC_CSR13, 0x1111 },
196 { RAL_MAC_CSR14, 0x1e11 },
197 { RAL_TXRX_CSR21, 0xe78f },
198 { RAL_MAC_CSR9, 0xff1d },
199 { RAL_MAC_CSR11, 0x0002 },
200 { RAL_MAC_CSR22, 0x0053 },
201 { RAL_MAC_CSR15, 0x0000 },
202 { RAL_MAC_CSR8, 0x0780 },
203 { RAL_TXRX_CSR19, 0x0000 },
204 { RAL_TXRX_CSR18, 0x005a },
205 { RAL_PHY_CSR2, 0x0000 },
206 { RAL_TXRX_CSR0, 0x1ec0 },
207 { RAL_PHY_CSR4, 0x000f }
208 };
209
210 /*
211 * Default values for BBP registers; values taken from the reference driver.
212 */
213 static const struct {
214 uint8_t reg;
215 uint8_t val;
216 } ural_def_bbp[] = {
217 { 3, 0x02 },
218 { 4, 0x19 },
219 { 14, 0x1c },
220 { 15, 0x30 },
221 { 16, 0xac },
222 { 17, 0x48 },
223 { 18, 0x18 },
224 { 19, 0xff },
225 { 20, 0x1e },
226 { 21, 0x08 },
227 { 22, 0x08 },
228 { 23, 0x08 },
229 { 24, 0x80 },
230 { 25, 0x50 },
231 { 26, 0x08 },
232 { 27, 0x23 },
233 { 30, 0x10 },
234 { 31, 0x2b },
235 { 32, 0xb9 },
236 { 34, 0x12 },
237 { 35, 0x50 },
238 { 39, 0xc4 },
239 { 40, 0x02 },
240 { 41, 0x60 },
241 { 53, 0x10 },
242 { 54, 0x18 },
243 { 56, 0x08 },
244 { 57, 0x10 },
245 { 58, 0x08 },
246 { 61, 0x60 },
247 { 62, 0x10 },
248 { 75, 0xff }
249 };
250
251 /*
252 * Default values for RF register R2 indexed by channel numbers.
253 */
254 static const uint32_t ural_rf2522_r2[] = {
255 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
256 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257 };
258
259 static const uint32_t ural_rf2523_r2[] = {
260 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
261 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 };
263
264 static const uint32_t ural_rf2524_r2[] = {
265 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
266 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267 };
268
269 static const uint32_t ural_rf2525_r2[] = {
270 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
271 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272 };
273
274 static const uint32_t ural_rf2525_hi_r2[] = {
275 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
276 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277 };
278
279 static const uint32_t ural_rf2525e_r2[] = {
280 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
281 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282 };
283
284 static const uint32_t ural_rf2526_hi_r2[] = {
285 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
286 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287 };
288
289 static const uint32_t ural_rf2526_r2[] = {
290 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
291 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
292 };
293
294 /*
295 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
296 * values taken from the reference driver.
297 */
298 static const struct {
299 uint8_t chan;
300 uint32_t r1;
301 uint32_t r2;
302 uint32_t r4;
303 } ural_rf5222[] = {
304 { 1, 0x08808, 0x0044d, 0x00282 },
305 { 2, 0x08808, 0x0044e, 0x00282 },
306 { 3, 0x08808, 0x0044f, 0x00282 },
307 { 4, 0x08808, 0x00460, 0x00282 },
308 { 5, 0x08808, 0x00461, 0x00282 },
309 { 6, 0x08808, 0x00462, 0x00282 },
310 { 7, 0x08808, 0x00463, 0x00282 },
311 { 8, 0x08808, 0x00464, 0x00282 },
312 { 9, 0x08808, 0x00465, 0x00282 },
313 { 10, 0x08808, 0x00466, 0x00282 },
314 { 11, 0x08808, 0x00467, 0x00282 },
315 { 12, 0x08808, 0x00468, 0x00282 },
316 { 13, 0x08808, 0x00469, 0x00282 },
317 { 14, 0x08808, 0x0046b, 0x00286 },
318
319 { 36, 0x08804, 0x06225, 0x00287 },
320 { 40, 0x08804, 0x06226, 0x00287 },
321 { 44, 0x08804, 0x06227, 0x00287 },
322 { 48, 0x08804, 0x06228, 0x00287 },
323 { 52, 0x08804, 0x06229, 0x00287 },
324 { 56, 0x08804, 0x0622a, 0x00287 },
325 { 60, 0x08804, 0x0622b, 0x00287 },
326 { 64, 0x08804, 0x0622c, 0x00287 },
327
328 { 100, 0x08804, 0x02200, 0x00283 },
329 { 104, 0x08804, 0x02201, 0x00283 },
330 { 108, 0x08804, 0x02202, 0x00283 },
331 { 112, 0x08804, 0x02203, 0x00283 },
332 { 116, 0x08804, 0x02204, 0x00283 },
333 { 120, 0x08804, 0x02205, 0x00283 },
334 { 124, 0x08804, 0x02206, 0x00283 },
335 { 128, 0x08804, 0x02207, 0x00283 },
336 { 132, 0x08804, 0x02208, 0x00283 },
337 { 136, 0x08804, 0x02209, 0x00283 },
338 { 140, 0x08804, 0x0220a, 0x00283 },
339
340 { 149, 0x08808, 0x02429, 0x00281 },
341 { 153, 0x08808, 0x0242b, 0x00281 },
342 { 157, 0x08808, 0x0242d, 0x00281 },
343 { 161, 0x08808, 0x0242f, 0x00281 }
344 };
345
346 int ural_match(device_t, cfdata_t, void *);
347 void ural_attach(device_t, device_t, void *);
348 int ural_detach(device_t, int);
349 int ural_activate(device_t, enum devact);
350 extern struct cfdriver ural_cd;
351 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach, ural_detach, ural_activate);
352
353 int
354 ural_match(device_t parent, cfdata_t match, void *aux)
355 {
356 struct usb_attach_arg *uaa = aux;
357
358 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
359 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
360 }
361
362 void
363 ural_attach(device_t parent, device_t self, void *aux)
364 {
365 struct ural_softc *sc = device_private(self);
366 struct usb_attach_arg *uaa = aux;
367 struct ieee80211com *ic = &sc->sc_ic;
368 struct ifnet *ifp = &sc->sc_if;
369 usb_interface_descriptor_t *id;
370 usb_endpoint_descriptor_t *ed;
371 usbd_status error;
372 char *devinfop;
373 int i;
374
375 sc->sc_dev = self;
376 sc->sc_udev = uaa->uaa_device;
377
378 aprint_naive("\n");
379 aprint_normal("\n");
380
381 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
382 aprint_normal_dev(self, "%s\n", devinfop);
383 usbd_devinfo_free(devinfop);
384
385 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
386 if (error != 0) {
387 aprint_error_dev(self, "failed to set configuration"
388 ", err=%s\n", usbd_errstr(error));
389 return;
390 }
391
392 /* get the first interface handle */
393 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
394 &sc->sc_iface);
395 if (error != 0) {
396 aprint_error_dev(self, "could not get interface handle\n");
397 return;
398 }
399
400 /*
401 * Find endpoints.
402 */
403 id = usbd_get_interface_descriptor(sc->sc_iface);
404
405 sc->sc_rx_no = sc->sc_tx_no = -1;
406 for (i = 0; i < id->bNumEndpoints; i++) {
407 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
408 if (ed == NULL) {
409 aprint_error_dev(self,
410 "no endpoint descriptor for %d\n", i);
411 return;
412 }
413
414 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
415 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
416 sc->sc_rx_no = ed->bEndpointAddress;
417 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
418 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
419 sc->sc_tx_no = ed->bEndpointAddress;
420 }
421 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
422 aprint_error_dev(self, "missing endpoint\n");
423 return;
424 }
425
426 usb_init_task(&sc->sc_task, ural_task, sc, 0);
427 callout_init(&sc->sc_scan_ch, 0);
428 sc->amrr.amrr_min_success_threshold = 1;
429 sc->amrr.amrr_max_success_threshold = 15;
430 callout_init(&sc->sc_amrr_ch, 0);
431
432 /* retrieve RT2570 rev. no */
433 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
434
435 /* retrieve MAC address and various other things from EEPROM */
436 ural_read_eeprom(sc);
437
438 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
439 sc->asic_rev, ural_get_rf(sc->rf_rev));
440
441 ifp->if_softc = sc;
442 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
443 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
444 ifp->if_init = ural_init;
445 ifp->if_ioctl = ural_ioctl;
446 ifp->if_start = ural_start;
447 ifp->if_watchdog = ural_watchdog;
448 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
449 IFQ_SET_READY(&ifp->if_snd);
450
451 ic->ic_ifp = ifp;
452 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
453 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
454 ic->ic_state = IEEE80211_S_INIT;
455
456 /* set device capabilities */
457 ic->ic_caps =
458 IEEE80211_C_IBSS | /* IBSS mode supported */
459 IEEE80211_C_MONITOR | /* monitor mode supported */
460 IEEE80211_C_HOSTAP | /* HostAp mode supported */
461 IEEE80211_C_TXPMGT | /* tx power management */
462 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
463 IEEE80211_C_SHSLOT | /* short slot time supported */
464 IEEE80211_C_WPA; /* 802.11i */
465
466 if (sc->rf_rev == RAL_RF_5222) {
467 /* set supported .11a rates */
468 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
469
470 /* set supported .11a channels */
471 for (i = 36; i <= 64; i += 4) {
472 ic->ic_channels[i].ic_freq =
473 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
474 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
475 }
476 for (i = 100; i <= 140; i += 4) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 }
481 for (i = 149; i <= 161; i += 4) {
482 ic->ic_channels[i].ic_freq =
483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 }
486 }
487
488 /* set supported .11b and .11g rates */
489 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
490 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
491
492 /* set supported .11b and .11g channels (1 through 14) */
493 for (i = 1; i <= 14; i++) {
494 ic->ic_channels[i].ic_freq =
495 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
496 ic->ic_channels[i].ic_flags =
497 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
498 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
499 }
500
501 if_attach(ifp);
502 ieee80211_ifattach(ic);
503 ic->ic_reset = ural_reset;
504
505 /* override state transition machine */
506 sc->sc_newstate = ic->ic_newstate;
507 ic->ic_newstate = ural_newstate;
508 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
509
510 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
511 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
512
513 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
514 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
515 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
516
517 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
518 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
519 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
520
521 ieee80211_announce(ic);
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
524 sc->sc_dev);
525
526 if (!pmf_device_register(self, NULL, NULL))
527 aprint_error_dev(self, "couldn't establish power handler\n");
528
529 return;
530 }
531
532 int
533 ural_detach(device_t self, int flags)
534 {
535 struct ural_softc *sc = device_private(self);
536 struct ieee80211com *ic = &sc->sc_ic;
537 struct ifnet *ifp = &sc->sc_if;
538 int s;
539
540 pmf_device_deregister(self);
541
542 s = splusb();
543
544 ural_stop(ifp, 1);
545 usb_rem_task(sc->sc_udev, &sc->sc_task);
546 callout_stop(&sc->sc_scan_ch);
547 callout_stop(&sc->sc_amrr_ch);
548
549 bpf_detach(ifp);
550 ieee80211_ifdetach(ic);
551 if_detach(ifp);
552
553 splx(s);
554
555 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
556 sc->sc_dev);
557
558 return 0;
559 }
560
561 Static int
562 ural_alloc_tx_list(struct ural_softc *sc)
563 {
564 struct ural_tx_data *data;
565 int i, error;
566
567 sc->tx_queued = 0;
568
569 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
570 data = &sc->tx_data[i];
571
572 data->sc = sc;
573 error = usbd_create_xfer(sc->sc_tx_pipeh,
574 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
575 &data->xfer);
576 if (error) {
577 printf("%s: could not allocate tx xfer\n",
578 device_xname(sc->sc_dev));
579 goto fail;
580 }
581
582 data->buf = usbd_get_buffer(data->xfer);
583 }
584
585 return 0;
586
587 fail: ural_free_tx_list(sc);
588 return error;
589 }
590
591 Static void
592 ural_free_tx_list(struct ural_softc *sc)
593 {
594 struct ural_tx_data *data;
595 int i;
596
597 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
598 data = &sc->tx_data[i];
599
600 if (data->xfer != NULL) {
601 usbd_destroy_xfer(data->xfer);
602 data->xfer = NULL;
603 }
604
605 if (data->ni != NULL) {
606 ieee80211_free_node(data->ni);
607 data->ni = NULL;
608 }
609 }
610 }
611
612 Static int
613 ural_alloc_rx_list(struct ural_softc *sc)
614 {
615 struct ural_rx_data *data;
616 int i, error;
617
618 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
619 data = &sc->rx_data[i];
620
621 data->sc = sc;
622
623 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
624 USBD_SHORT_XFER_OK, 0, &data->xfer);
625 if (error) {
626 printf("%s: could not allocate rx xfer\n",
627 device_xname(sc->sc_dev));
628 goto fail;
629 }
630
631 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 if (data->m == NULL) {
633 printf("%s: could not allocate rx mbuf\n",
634 device_xname(sc->sc_dev));
635 error = ENOMEM;
636 goto fail;
637 }
638
639 MCLGET(data->m, M_DONTWAIT);
640 if (!(data->m->m_flags & M_EXT)) {
641 printf("%s: could not allocate rx mbuf cluster\n",
642 device_xname(sc->sc_dev));
643 error = ENOMEM;
644 goto fail;
645 }
646
647 data->buf = mtod(data->m, uint8_t *);
648 }
649
650 return 0;
651
652 fail: ural_free_tx_list(sc);
653 return error;
654 }
655
656 Static void
657 ural_free_rx_list(struct ural_softc *sc)
658 {
659 struct ural_rx_data *data;
660 int i;
661
662 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
663 data = &sc->rx_data[i];
664
665 if (data->xfer != NULL) {
666 usbd_destroy_xfer(data->xfer);
667 data->xfer = NULL;
668 }
669
670 if (data->m != NULL) {
671 m_freem(data->m);
672 data->m = NULL;
673 }
674 }
675 }
676
677 Static int
678 ural_media_change(struct ifnet *ifp)
679 {
680 int error;
681
682 error = ieee80211_media_change(ifp);
683 if (error != ENETRESET)
684 return error;
685
686 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
687 ural_init(ifp);
688
689 return 0;
690 }
691
692 /*
693 * This function is called periodically (every 200ms) during scanning to
694 * switch from one channel to another.
695 */
696 Static void
697 ural_next_scan(void *arg)
698 {
699 struct ural_softc *sc = arg;
700 struct ieee80211com *ic = &sc->sc_ic;
701
702 if (ic->ic_state == IEEE80211_S_SCAN)
703 ieee80211_next_scan(ic);
704 }
705
706 Static void
707 ural_task(void *arg)
708 {
709 struct ural_softc *sc = arg;
710 struct ieee80211com *ic = &sc->sc_ic;
711 enum ieee80211_state ostate;
712 struct ieee80211_node *ni;
713 struct mbuf *m;
714
715 ostate = ic->ic_state;
716
717 switch (sc->sc_state) {
718 case IEEE80211_S_INIT:
719 if (ostate == IEEE80211_S_RUN) {
720 /* abort TSF synchronization */
721 ural_write(sc, RAL_TXRX_CSR19, 0);
722
723 /* force tx led to stop blinking */
724 ural_write(sc, RAL_MAC_CSR20, 0);
725 }
726 break;
727
728 case IEEE80211_S_SCAN:
729 ural_set_chan(sc, ic->ic_curchan);
730 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
731 break;
732
733 case IEEE80211_S_AUTH:
734 ural_set_chan(sc, ic->ic_curchan);
735 break;
736
737 case IEEE80211_S_ASSOC:
738 ural_set_chan(sc, ic->ic_curchan);
739 break;
740
741 case IEEE80211_S_RUN:
742 ural_set_chan(sc, ic->ic_curchan);
743
744 ni = ic->ic_bss;
745
746 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
747 ural_update_slot(ic->ic_ifp);
748 ural_set_txpreamble(sc);
749 ural_set_basicrates(sc);
750 ural_set_bssid(sc, ni->ni_bssid);
751 }
752
753 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
754 ic->ic_opmode == IEEE80211_M_IBSS) {
755 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
756 if (m == NULL) {
757 printf("%s: could not allocate beacon\n",
758 device_xname(sc->sc_dev));
759 return;
760 }
761
762 if (ural_tx_bcn(sc, m, ni) != 0) {
763 m_freem(m);
764 printf("%s: could not send beacon\n",
765 device_xname(sc->sc_dev));
766 return;
767 }
768
769 /* beacon is no longer needed */
770 m_freem(m);
771 }
772
773 /* make tx led blink on tx (controlled by ASIC) */
774 ural_write(sc, RAL_MAC_CSR20, 1);
775
776 if (ic->ic_opmode != IEEE80211_M_MONITOR)
777 ural_enable_tsf_sync(sc);
778
779 /* enable automatic rate adaptation in STA mode */
780 if (ic->ic_opmode == IEEE80211_M_STA &&
781 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
782 ural_amrr_start(sc, ni);
783
784 break;
785 }
786
787 sc->sc_newstate(ic, sc->sc_state, -1);
788 }
789
790 Static int
791 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
792 int arg)
793 {
794 struct ural_softc *sc = ic->ic_ifp->if_softc;
795
796 usb_rem_task(sc->sc_udev, &sc->sc_task);
797 callout_stop(&sc->sc_scan_ch);
798 callout_stop(&sc->sc_amrr_ch);
799
800 /* do it in a process context */
801 sc->sc_state = nstate;
802 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
803
804 return 0;
805 }
806
807 /* quickly determine if a given rate is CCK or OFDM */
808 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
809
810 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
811 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
812
813 #define RAL_SIFS 10 /* us */
814
815 #define RAL_RXTX_TURNAROUND 5 /* us */
816
817 /*
818 * This function is only used by the Rx radiotap code.
819 */
820 Static int
821 ural_rxrate(struct ural_rx_desc *desc)
822 {
823 if (le32toh(desc->flags) & RAL_RX_OFDM) {
824 /* reverse function of ural_plcp_signal */
825 switch (desc->rate) {
826 case 0xb: return 12;
827 case 0xf: return 18;
828 case 0xa: return 24;
829 case 0xe: return 36;
830 case 0x9: return 48;
831 case 0xd: return 72;
832 case 0x8: return 96;
833 case 0xc: return 108;
834 }
835 } else {
836 if (desc->rate == 10)
837 return 2;
838 if (desc->rate == 20)
839 return 4;
840 if (desc->rate == 55)
841 return 11;
842 if (desc->rate == 110)
843 return 22;
844 }
845 return 2; /* should not get there */
846 }
847
848 Static void
849 ural_txeof(struct usbd_xfer *xfer, void * priv,
850 usbd_status status)
851 {
852 struct ural_tx_data *data = priv;
853 struct ural_softc *sc = data->sc;
854 struct ifnet *ifp = &sc->sc_if;
855 int s;
856
857 if (status != USBD_NORMAL_COMPLETION) {
858 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
859 return;
860
861 printf("%s: could not transmit buffer: %s\n",
862 device_xname(sc->sc_dev), usbd_errstr(status));
863
864 if (status == USBD_STALLED)
865 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
866
867 ifp->if_oerrors++;
868 return;
869 }
870
871 s = splnet();
872
873 m_freem(data->m);
874 data->m = NULL;
875 ieee80211_free_node(data->ni);
876 data->ni = NULL;
877
878 sc->tx_queued--;
879 ifp->if_opackets++;
880
881 DPRINTFN(10, ("tx done\n"));
882
883 sc->sc_tx_timer = 0;
884 ifp->if_flags &= ~IFF_OACTIVE;
885 ural_start(ifp);
886
887 splx(s);
888 }
889
890 Static void
891 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
892 {
893 struct ural_rx_data *data = priv;
894 struct ural_softc *sc = data->sc;
895 struct ieee80211com *ic = &sc->sc_ic;
896 struct ifnet *ifp = &sc->sc_if;
897 struct ural_rx_desc *desc;
898 struct ieee80211_frame *wh;
899 struct ieee80211_node *ni;
900 struct mbuf *mnew, *m;
901 int s, len;
902
903 if (status != USBD_NORMAL_COMPLETION) {
904 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
905 return;
906
907 if (status == USBD_STALLED)
908 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
909 goto skip;
910 }
911
912 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
913
914 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
915 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
916 len));
917 ifp->if_ierrors++;
918 goto skip;
919 }
920
921 /* rx descriptor is located at the end */
922 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
923
924 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
925 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
926 /*
927 * This should not happen since we did not request to receive
928 * those frames when we filled RAL_TXRX_CSR2.
929 */
930 DPRINTFN(5, ("PHY or CRC error\n"));
931 ifp->if_ierrors++;
932 goto skip;
933 }
934
935 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
936 if (mnew == NULL) {
937 ifp->if_ierrors++;
938 goto skip;
939 }
940
941 MCLGET(mnew, M_DONTWAIT);
942 if (!(mnew->m_flags & M_EXT)) {
943 ifp->if_ierrors++;
944 m_freem(mnew);
945 goto skip;
946 }
947
948 m = data->m;
949 data->m = mnew;
950 data->buf = mtod(data->m, uint8_t *);
951
952 /* finalize mbuf */
953 m->m_pkthdr.rcvif = ifp;
954 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
955 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
956
957 s = splnet();
958
959 if (sc->sc_drvbpf != NULL) {
960 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
961
962 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
963 tap->wr_rate = ural_rxrate(desc);
964 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
965 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
966 tap->wr_antenna = sc->rx_ant;
967 tap->wr_antsignal = desc->rssi;
968
969 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
970 }
971
972 wh = mtod(m, struct ieee80211_frame *);
973 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
974
975 /* send the frame to the 802.11 layer */
976 ieee80211_input(ic, m, ni, desc->rssi, 0);
977
978 /* node is no longer needed */
979 ieee80211_free_node(ni);
980
981 splx(s);
982
983 DPRINTFN(15, ("rx done\n"));
984
985 skip: /* setup a new transfer */
986 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
987 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
988 usbd_transfer(xfer);
989 }
990
991 /*
992 * Return the expected ack rate for a frame transmitted at rate `rate'.
993 * XXX: this should depend on the destination node basic rate set.
994 */
995 Static int
996 ural_ack_rate(struct ieee80211com *ic, int rate)
997 {
998 switch (rate) {
999 /* CCK rates */
1000 case 2:
1001 return 2;
1002 case 4:
1003 case 11:
1004 case 22:
1005 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1006
1007 /* OFDM rates */
1008 case 12:
1009 case 18:
1010 return 12;
1011 case 24:
1012 case 36:
1013 return 24;
1014 case 48:
1015 case 72:
1016 case 96:
1017 case 108:
1018 return 48;
1019 }
1020
1021 /* default to 1Mbps */
1022 return 2;
1023 }
1024
1025 /*
1026 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1027 * The function automatically determines the operating mode depending on the
1028 * given rate. `flags' indicates whether short preamble is in use or not.
1029 */
1030 Static uint16_t
1031 ural_txtime(int len, int rate, uint32_t flags)
1032 {
1033 uint16_t txtime;
1034
1035 if (RAL_RATE_IS_OFDM(rate)) {
1036 /* IEEE Std 802.11g-2003, pp. 37 */
1037 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1038 txtime = 16 + 4 + 4 * txtime + 6;
1039 } else {
1040 /* IEEE Std 802.11b-1999, pp. 28 */
1041 txtime = (16 * len + rate - 1) / rate;
1042 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1043 txtime += 72 + 24;
1044 else
1045 txtime += 144 + 48;
1046 }
1047 return txtime;
1048 }
1049
1050 Static uint8_t
1051 ural_plcp_signal(int rate)
1052 {
1053 switch (rate) {
1054 /* CCK rates (returned values are device-dependent) */
1055 case 2: return 0x0;
1056 case 4: return 0x1;
1057 case 11: return 0x2;
1058 case 22: return 0x3;
1059
1060 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1061 case 12: return 0xb;
1062 case 18: return 0xf;
1063 case 24: return 0xa;
1064 case 36: return 0xe;
1065 case 48: return 0x9;
1066 case 72: return 0xd;
1067 case 96: return 0x8;
1068 case 108: return 0xc;
1069
1070 /* unsupported rates (should not get there) */
1071 default: return 0xff;
1072 }
1073 }
1074
1075 Static void
1076 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1077 uint32_t flags, int len, int rate)
1078 {
1079 struct ieee80211com *ic = &sc->sc_ic;
1080 uint16_t plcp_length;
1081 int remainder;
1082
1083 desc->flags = htole32(flags);
1084 desc->flags |= htole32(RAL_TX_NEWSEQ);
1085 desc->flags |= htole32(len << 16);
1086
1087 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1088 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1089
1090 /* setup PLCP fields */
1091 desc->plcp_signal = ural_plcp_signal(rate);
1092 desc->plcp_service = 4;
1093
1094 len += IEEE80211_CRC_LEN;
1095 if (RAL_RATE_IS_OFDM(rate)) {
1096 desc->flags |= htole32(RAL_TX_OFDM);
1097
1098 plcp_length = len & 0xfff;
1099 desc->plcp_length_hi = plcp_length >> 6;
1100 desc->plcp_length_lo = plcp_length & 0x3f;
1101 } else {
1102 plcp_length = (16 * len + rate - 1) / rate;
1103 if (rate == 22) {
1104 remainder = (16 * len) % 22;
1105 if (remainder != 0 && remainder < 7)
1106 desc->plcp_service |= RAL_PLCP_LENGEXT;
1107 }
1108 desc->plcp_length_hi = plcp_length >> 8;
1109 desc->plcp_length_lo = plcp_length & 0xff;
1110
1111 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1112 desc->plcp_signal |= 0x08;
1113 }
1114
1115 desc->iv = 0;
1116 desc->eiv = 0;
1117 }
1118
1119 #define RAL_TX_TIMEOUT 5000
1120
1121 Static int
1122 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1123 {
1124 struct ural_tx_desc *desc;
1125 struct usbd_xfer *xfer;
1126 uint8_t cmd = 0;
1127 usbd_status error;
1128 uint8_t *buf;
1129 int xferlen, rate;
1130
1131 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1132
1133 /* xfer length needs to be a multiple of two! */
1134 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1135
1136 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1137 USBD_FORCE_SHORT_XFER, 0, &xfer);
1138 if (error)
1139 return error;
1140
1141 buf = usbd_get_buffer(xfer);
1142
1143 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1144 RAL_TX_TIMEOUT, NULL);
1145
1146 error = usbd_sync_transfer(xfer);
1147 if (error != 0) {
1148 usbd_destroy_xfer(xfer);
1149 return error;
1150 }
1151
1152 desc = (struct ural_tx_desc *)buf;
1153
1154 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1155 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1156 m0->m_pkthdr.len, rate);
1157
1158 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1159 m0->m_pkthdr.len, rate, xferlen));
1160
1161 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1162 RAL_TX_TIMEOUT, NULL);
1163
1164 error = usbd_sync_transfer(xfer);
1165 usbd_destroy_xfer(xfer);
1166
1167 return error;
1168 }
1169
1170 Static int
1171 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1172 {
1173 struct ieee80211com *ic = &sc->sc_ic;
1174 struct ural_tx_desc *desc;
1175 struct ural_tx_data *data;
1176 struct ieee80211_frame *wh;
1177 struct ieee80211_key *k;
1178 uint32_t flags = 0;
1179 uint16_t dur;
1180 usbd_status error;
1181 int xferlen, rate;
1182
1183 data = &sc->tx_data[0];
1184 desc = (struct ural_tx_desc *)data->buf;
1185
1186 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1187
1188 wh = mtod(m0, struct ieee80211_frame *);
1189
1190 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1191 k = ieee80211_crypto_encap(ic, ni, m0);
1192 if (k == NULL) {
1193 m_freem(m0);
1194 return ENOBUFS;
1195 }
1196 }
1197
1198 data->m = m0;
1199 data->ni = ni;
1200
1201 wh = mtod(m0, struct ieee80211_frame *);
1202
1203 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1204 flags |= RAL_TX_ACK;
1205
1206 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1207 *(uint16_t *)wh->i_dur = htole16(dur);
1208
1209 /* tell hardware to add timestamp for probe responses */
1210 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1211 IEEE80211_FC0_TYPE_MGT &&
1212 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1213 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1214 flags |= RAL_TX_TIMESTAMP;
1215 }
1216
1217 if (sc->sc_drvbpf != NULL) {
1218 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1219
1220 tap->wt_flags = 0;
1221 tap->wt_rate = rate;
1222 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1223 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1224 tap->wt_antenna = sc->tx_ant;
1225
1226 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1227 }
1228
1229 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1230 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1231
1232 /* align end on a 2-bytes boundary */
1233 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1234
1235 /*
1236 * No space left in the last URB to store the extra 2 bytes, force
1237 * sending of another URB.
1238 */
1239 if ((xferlen % 64) == 0)
1240 xferlen += 2;
1241
1242 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1243 m0->m_pkthdr.len, rate, xferlen));
1244
1245 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1246 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1247
1248 error = usbd_transfer(data->xfer);
1249 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1250 m_freem(m0);
1251 return error;
1252 }
1253
1254 sc->tx_queued++;
1255
1256 return 0;
1257 }
1258
1259 Static int
1260 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1261 {
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct ural_tx_desc *desc;
1264 struct ural_tx_data *data;
1265 struct ieee80211_frame *wh;
1266 struct ieee80211_key *k;
1267 uint32_t flags = 0;
1268 uint16_t dur;
1269 usbd_status error;
1270 int xferlen, rate;
1271
1272 wh = mtod(m0, struct ieee80211_frame *);
1273
1274 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1275 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1276 else
1277 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1278
1279 rate &= IEEE80211_RATE_VAL;
1280
1281 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1282 k = ieee80211_crypto_encap(ic, ni, m0);
1283 if (k == NULL) {
1284 m_freem(m0);
1285 return ENOBUFS;
1286 }
1287
1288 /* packet header may have moved, reset our local pointer */
1289 wh = mtod(m0, struct ieee80211_frame *);
1290 }
1291
1292 data = &sc->tx_data[0];
1293 desc = (struct ural_tx_desc *)data->buf;
1294
1295 data->m = m0;
1296 data->ni = ni;
1297
1298 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1299 flags |= RAL_TX_ACK;
1300 flags |= RAL_TX_RETRY(7);
1301
1302 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1303 ic->ic_flags) + RAL_SIFS;
1304 *(uint16_t *)wh->i_dur = htole16(dur);
1305 }
1306
1307 if (sc->sc_drvbpf != NULL) {
1308 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1309
1310 tap->wt_flags = 0;
1311 tap->wt_rate = rate;
1312 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1313 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1314 tap->wt_antenna = sc->tx_ant;
1315
1316 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1317 }
1318
1319 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1320 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1321
1322 /* align end on a 2-bytes boundary */
1323 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1324
1325 /*
1326 * No space left in the last URB to store the extra 2 bytes, force
1327 * sending of another URB.
1328 */
1329 if ((xferlen % 64) == 0)
1330 xferlen += 2;
1331
1332 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1333 m0->m_pkthdr.len, rate, xferlen));
1334 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1335 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1336
1337 error = usbd_transfer(data->xfer);
1338 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1339 return error;
1340
1341 sc->tx_queued++;
1342
1343 return 0;
1344 }
1345
1346 Static void
1347 ural_start(struct ifnet *ifp)
1348 {
1349 struct ural_softc *sc = ifp->if_softc;
1350 struct ieee80211com *ic = &sc->sc_ic;
1351 struct mbuf *m0;
1352 struct ether_header *eh;
1353 struct ieee80211_node *ni;
1354
1355 for (;;) {
1356 IF_POLL(&ic->ic_mgtq, m0);
1357 if (m0 != NULL) {
1358 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1359 ifp->if_flags |= IFF_OACTIVE;
1360 break;
1361 }
1362 IF_DEQUEUE(&ic->ic_mgtq, m0);
1363
1364 ni = M_GETCTX(m0, struct ieee80211_node *);
1365 m0->m_pkthdr.rcvif = NULL;
1366 bpf_mtap3(ic->ic_rawbpf, m0);
1367 if (ural_tx_mgt(sc, m0, ni) != 0)
1368 break;
1369
1370 } else {
1371 if (ic->ic_state != IEEE80211_S_RUN)
1372 break;
1373 IFQ_DEQUEUE(&ifp->if_snd, m0);
1374 if (m0 == NULL)
1375 break;
1376 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1377 IF_PREPEND(&ifp->if_snd, m0);
1378 ifp->if_flags |= IFF_OACTIVE;
1379 break;
1380 }
1381
1382 if (m0->m_len < sizeof(struct ether_header) &&
1383 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1384 continue;
1385
1386 eh = mtod(m0, struct ether_header *);
1387 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1388 if (ni == NULL) {
1389 m_freem(m0);
1390 continue;
1391 }
1392 bpf_mtap(ifp, m0);
1393 m0 = ieee80211_encap(ic, m0, ni);
1394 if (m0 == NULL) {
1395 ieee80211_free_node(ni);
1396 continue;
1397 }
1398 bpf_mtap3(ic->ic_rawbpf, m0);
1399 if (ural_tx_data(sc, m0, ni) != 0) {
1400 ieee80211_free_node(ni);
1401 ifp->if_oerrors++;
1402 break;
1403 }
1404 }
1405
1406 sc->sc_tx_timer = 5;
1407 ifp->if_timer = 1;
1408 }
1409 }
1410
1411 Static void
1412 ural_watchdog(struct ifnet *ifp)
1413 {
1414 struct ural_softc *sc = ifp->if_softc;
1415 struct ieee80211com *ic = &sc->sc_ic;
1416
1417 ifp->if_timer = 0;
1418
1419 if (sc->sc_tx_timer > 0) {
1420 if (--sc->sc_tx_timer == 0) {
1421 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1422 /*ural_init(sc); XXX needs a process context! */
1423 ifp->if_oerrors++;
1424 return;
1425 }
1426 ifp->if_timer = 1;
1427 }
1428
1429 ieee80211_watchdog(ic);
1430 }
1431
1432 /*
1433 * This function allows for fast channel switching in monitor mode (used by
1434 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1435 * generate a new beacon frame.
1436 */
1437 Static int
1438 ural_reset(struct ifnet *ifp)
1439 {
1440 struct ural_softc *sc = ifp->if_softc;
1441 struct ieee80211com *ic = &sc->sc_ic;
1442
1443 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1444 return ENETRESET;
1445
1446 ural_set_chan(sc, ic->ic_curchan);
1447
1448 return 0;
1449 }
1450
1451 Static int
1452 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1453 {
1454 #define IS_RUNNING(ifp) \
1455 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1456
1457 struct ural_softc *sc = ifp->if_softc;
1458 struct ieee80211com *ic = &sc->sc_ic;
1459 int s, error = 0;
1460
1461 s = splnet();
1462
1463 switch (cmd) {
1464 case SIOCSIFFLAGS:
1465 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1466 break;
1467 /* XXX re-use ether_ioctl() */
1468 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1469 case IFF_UP|IFF_RUNNING:
1470 ural_update_promisc(sc);
1471 break;
1472 case IFF_UP:
1473 ural_init(ifp);
1474 break;
1475 case IFF_RUNNING:
1476 ural_stop(ifp, 1);
1477 break;
1478 case 0:
1479 break;
1480 }
1481 break;
1482
1483 case SIOCADDMULTI:
1484 case SIOCDELMULTI:
1485 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1486 error = 0;
1487 }
1488 break;
1489
1490 default:
1491 error = ieee80211_ioctl(ic, cmd, data);
1492 }
1493
1494 if (error == ENETRESET) {
1495 if (IS_RUNNING(ifp) &&
1496 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1497 ural_init(ifp);
1498 error = 0;
1499 }
1500
1501 splx(s);
1502
1503 return error;
1504 #undef IS_RUNNING
1505 }
1506
1507 Static void
1508 ural_set_testmode(struct ural_softc *sc)
1509 {
1510 usb_device_request_t req;
1511 usbd_status error;
1512
1513 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1514 req.bRequest = RAL_VENDOR_REQUEST;
1515 USETW(req.wValue, 4);
1516 USETW(req.wIndex, 1);
1517 USETW(req.wLength, 0);
1518
1519 error = usbd_do_request(sc->sc_udev, &req, NULL);
1520 if (error != 0) {
1521 printf("%s: could not set test mode: %s\n",
1522 device_xname(sc->sc_dev), usbd_errstr(error));
1523 }
1524 }
1525
1526 Static void
1527 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1528 {
1529 usb_device_request_t req;
1530 usbd_status error;
1531
1532 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1533 req.bRequest = RAL_READ_EEPROM;
1534 USETW(req.wValue, 0);
1535 USETW(req.wIndex, addr);
1536 USETW(req.wLength, len);
1537
1538 error = usbd_do_request(sc->sc_udev, &req, buf);
1539 if (error != 0) {
1540 printf("%s: could not read EEPROM: %s\n",
1541 device_xname(sc->sc_dev), usbd_errstr(error));
1542 }
1543 }
1544
1545 Static uint16_t
1546 ural_read(struct ural_softc *sc, uint16_t reg)
1547 {
1548 usb_device_request_t req;
1549 usbd_status error;
1550 uint16_t val;
1551
1552 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1553 req.bRequest = RAL_READ_MAC;
1554 USETW(req.wValue, 0);
1555 USETW(req.wIndex, reg);
1556 USETW(req.wLength, sizeof(uint16_t));
1557
1558 error = usbd_do_request(sc->sc_udev, &req, &val);
1559 if (error != 0) {
1560 printf("%s: could not read MAC register: %s\n",
1561 device_xname(sc->sc_dev), usbd_errstr(error));
1562 return 0;
1563 }
1564
1565 return le16toh(val);
1566 }
1567
1568 Static void
1569 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1570 {
1571 usb_device_request_t req;
1572 usbd_status error;
1573
1574 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1575 req.bRequest = RAL_READ_MULTI_MAC;
1576 USETW(req.wValue, 0);
1577 USETW(req.wIndex, reg);
1578 USETW(req.wLength, len);
1579
1580 error = usbd_do_request(sc->sc_udev, &req, buf);
1581 if (error != 0) {
1582 printf("%s: could not read MAC register: %s\n",
1583 device_xname(sc->sc_dev), usbd_errstr(error));
1584 }
1585 }
1586
1587 Static void
1588 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1589 {
1590 usb_device_request_t req;
1591 usbd_status error;
1592
1593 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1594 req.bRequest = RAL_WRITE_MAC;
1595 USETW(req.wValue, val);
1596 USETW(req.wIndex, reg);
1597 USETW(req.wLength, 0);
1598
1599 error = usbd_do_request(sc->sc_udev, &req, NULL);
1600 if (error != 0) {
1601 printf("%s: could not write MAC register: %s\n",
1602 device_xname(sc->sc_dev), usbd_errstr(error));
1603 }
1604 }
1605
1606 Static void
1607 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1608 {
1609 usb_device_request_t req;
1610 usbd_status error;
1611
1612 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1613 req.bRequest = RAL_WRITE_MULTI_MAC;
1614 USETW(req.wValue, 0);
1615 USETW(req.wIndex, reg);
1616 USETW(req.wLength, len);
1617
1618 error = usbd_do_request(sc->sc_udev, &req, buf);
1619 if (error != 0) {
1620 printf("%s: could not write MAC register: %s\n",
1621 device_xname(sc->sc_dev), usbd_errstr(error));
1622 }
1623 }
1624
1625 Static void
1626 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1627 {
1628 uint16_t tmp;
1629 int ntries;
1630
1631 for (ntries = 0; ntries < 5; ntries++) {
1632 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1633 break;
1634 }
1635 if (ntries == 5) {
1636 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1637 return;
1638 }
1639
1640 tmp = reg << 8 | val;
1641 ural_write(sc, RAL_PHY_CSR7, tmp);
1642 }
1643
1644 Static uint8_t
1645 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1646 {
1647 uint16_t val;
1648 int ntries;
1649
1650 val = RAL_BBP_WRITE | reg << 8;
1651 ural_write(sc, RAL_PHY_CSR7, val);
1652
1653 for (ntries = 0; ntries < 5; ntries++) {
1654 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1655 break;
1656 }
1657 if (ntries == 5) {
1658 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1659 return 0;
1660 }
1661
1662 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1663 }
1664
1665 Static void
1666 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1667 {
1668 uint32_t tmp;
1669 int ntries;
1670
1671 for (ntries = 0; ntries < 5; ntries++) {
1672 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1673 break;
1674 }
1675 if (ntries == 5) {
1676 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1677 return;
1678 }
1679
1680 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1681 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1682 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1683
1684 /* remember last written value in sc */
1685 sc->rf_regs[reg] = val;
1686
1687 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1688 }
1689
1690 Static void
1691 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1692 {
1693 struct ieee80211com *ic = &sc->sc_ic;
1694 uint8_t power, tmp;
1695 u_int i, chan;
1696
1697 chan = ieee80211_chan2ieee(ic, c);
1698 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1699 return;
1700
1701 if (IEEE80211_IS_CHAN_2GHZ(c))
1702 power = min(sc->txpow[chan - 1], 31);
1703 else
1704 power = 31;
1705
1706 /* adjust txpower using ifconfig settings */
1707 power -= (100 - ic->ic_txpowlimit) / 8;
1708
1709 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1710
1711 switch (sc->rf_rev) {
1712 case RAL_RF_2522:
1713 ural_rf_write(sc, RAL_RF1, 0x00814);
1714 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1715 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1716 break;
1717
1718 case RAL_RF_2523:
1719 ural_rf_write(sc, RAL_RF1, 0x08804);
1720 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1721 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1722 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1723 break;
1724
1725 case RAL_RF_2524:
1726 ural_rf_write(sc, RAL_RF1, 0x0c808);
1727 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1728 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1729 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1730 break;
1731
1732 case RAL_RF_2525:
1733 ural_rf_write(sc, RAL_RF1, 0x08808);
1734 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1735 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1736 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1737
1738 ural_rf_write(sc, RAL_RF1, 0x08808);
1739 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1740 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1741 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1742 break;
1743
1744 case RAL_RF_2525E:
1745 ural_rf_write(sc, RAL_RF1, 0x08808);
1746 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1747 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1748 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1749 break;
1750
1751 case RAL_RF_2526:
1752 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1753 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1754 ural_rf_write(sc, RAL_RF1, 0x08804);
1755
1756 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1757 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1758 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1759 break;
1760
1761 /* dual-band RF */
1762 case RAL_RF_5222:
1763 for (i = 0; ural_rf5222[i].chan != chan; i++);
1764
1765 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1766 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1767 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1768 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1769 break;
1770 }
1771
1772 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1773 ic->ic_state != IEEE80211_S_SCAN) {
1774 /* set Japan filter bit for channel 14 */
1775 tmp = ural_bbp_read(sc, 70);
1776
1777 tmp &= ~RAL_JAPAN_FILTER;
1778 if (chan == 14)
1779 tmp |= RAL_JAPAN_FILTER;
1780
1781 ural_bbp_write(sc, 70, tmp);
1782
1783 /* clear CRC errors */
1784 ural_read(sc, RAL_STA_CSR0);
1785
1786 DELAY(10000);
1787 ural_disable_rf_tune(sc);
1788 }
1789 }
1790
1791 /*
1792 * Disable RF auto-tuning.
1793 */
1794 Static void
1795 ural_disable_rf_tune(struct ural_softc *sc)
1796 {
1797 uint32_t tmp;
1798
1799 if (sc->rf_rev != RAL_RF_2523) {
1800 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1801 ural_rf_write(sc, RAL_RF1, tmp);
1802 }
1803
1804 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1805 ural_rf_write(sc, RAL_RF3, tmp);
1806
1807 DPRINTFN(2, ("disabling RF autotune\n"));
1808 }
1809
1810 /*
1811 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1812 * synchronization.
1813 */
1814 Static void
1815 ural_enable_tsf_sync(struct ural_softc *sc)
1816 {
1817 struct ieee80211com *ic = &sc->sc_ic;
1818 uint16_t logcwmin, preload, tmp;
1819
1820 /* first, disable TSF synchronization */
1821 ural_write(sc, RAL_TXRX_CSR19, 0);
1822
1823 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1824 ural_write(sc, RAL_TXRX_CSR18, tmp);
1825
1826 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1827 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1828 tmp = logcwmin << 12 | preload;
1829 ural_write(sc, RAL_TXRX_CSR20, tmp);
1830
1831 /* finally, enable TSF synchronization */
1832 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1833 if (ic->ic_opmode == IEEE80211_M_STA)
1834 tmp |= RAL_ENABLE_TSF_SYNC(1);
1835 else
1836 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1837 ural_write(sc, RAL_TXRX_CSR19, tmp);
1838
1839 DPRINTF(("enabling TSF synchronization\n"));
1840 }
1841
1842 Static void
1843 ural_update_slot(struct ifnet *ifp)
1844 {
1845 struct ural_softc *sc = ifp->if_softc;
1846 struct ieee80211com *ic = &sc->sc_ic;
1847 uint16_t slottime, sifs, eifs;
1848
1849 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1850
1851 /*
1852 * These settings may sound a bit inconsistent but this is what the
1853 * reference driver does.
1854 */
1855 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1856 sifs = 16 - RAL_RXTX_TURNAROUND;
1857 eifs = 364;
1858 } else {
1859 sifs = 10 - RAL_RXTX_TURNAROUND;
1860 eifs = 64;
1861 }
1862
1863 ural_write(sc, RAL_MAC_CSR10, slottime);
1864 ural_write(sc, RAL_MAC_CSR11, sifs);
1865 ural_write(sc, RAL_MAC_CSR12, eifs);
1866 }
1867
1868 Static void
1869 ural_set_txpreamble(struct ural_softc *sc)
1870 {
1871 uint16_t tmp;
1872
1873 tmp = ural_read(sc, RAL_TXRX_CSR10);
1874
1875 tmp &= ~RAL_SHORT_PREAMBLE;
1876 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1877 tmp |= RAL_SHORT_PREAMBLE;
1878
1879 ural_write(sc, RAL_TXRX_CSR10, tmp);
1880 }
1881
1882 Static void
1883 ural_set_basicrates(struct ural_softc *sc)
1884 {
1885 struct ieee80211com *ic = &sc->sc_ic;
1886
1887 /* update basic rate set */
1888 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1889 /* 11b basic rates: 1, 2Mbps */
1890 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1891 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1892 /* 11a basic rates: 6, 12, 24Mbps */
1893 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1894 } else {
1895 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1896 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1897 }
1898 }
1899
1900 Static void
1901 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1902 {
1903 uint16_t tmp;
1904
1905 tmp = bssid[0] | bssid[1] << 8;
1906 ural_write(sc, RAL_MAC_CSR5, tmp);
1907
1908 tmp = bssid[2] | bssid[3] << 8;
1909 ural_write(sc, RAL_MAC_CSR6, tmp);
1910
1911 tmp = bssid[4] | bssid[5] << 8;
1912 ural_write(sc, RAL_MAC_CSR7, tmp);
1913
1914 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1915 }
1916
1917 Static void
1918 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1919 {
1920 uint16_t tmp;
1921
1922 tmp = addr[0] | addr[1] << 8;
1923 ural_write(sc, RAL_MAC_CSR2, tmp);
1924
1925 tmp = addr[2] | addr[3] << 8;
1926 ural_write(sc, RAL_MAC_CSR3, tmp);
1927
1928 tmp = addr[4] | addr[5] << 8;
1929 ural_write(sc, RAL_MAC_CSR4, tmp);
1930
1931 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1932 }
1933
1934 Static void
1935 ural_update_promisc(struct ural_softc *sc)
1936 {
1937 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1938 uint32_t tmp;
1939
1940 tmp = ural_read(sc, RAL_TXRX_CSR2);
1941
1942 tmp &= ~RAL_DROP_NOT_TO_ME;
1943 if (!(ifp->if_flags & IFF_PROMISC))
1944 tmp |= RAL_DROP_NOT_TO_ME;
1945
1946 ural_write(sc, RAL_TXRX_CSR2, tmp);
1947
1948 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1949 "entering" : "leaving"));
1950 }
1951
1952 Static const char *
1953 ural_get_rf(int rev)
1954 {
1955 switch (rev) {
1956 case RAL_RF_2522: return "RT2522";
1957 case RAL_RF_2523: return "RT2523";
1958 case RAL_RF_2524: return "RT2524";
1959 case RAL_RF_2525: return "RT2525";
1960 case RAL_RF_2525E: return "RT2525e";
1961 case RAL_RF_2526: return "RT2526";
1962 case RAL_RF_5222: return "RT5222";
1963 default: return "unknown";
1964 }
1965 }
1966
1967 Static void
1968 ural_read_eeprom(struct ural_softc *sc)
1969 {
1970 struct ieee80211com *ic = &sc->sc_ic;
1971 uint16_t val;
1972
1973 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1974 val = le16toh(val);
1975 sc->rf_rev = (val >> 11) & 0x7;
1976 sc->hw_radio = (val >> 10) & 0x1;
1977 sc->led_mode = (val >> 6) & 0x7;
1978 sc->rx_ant = (val >> 4) & 0x3;
1979 sc->tx_ant = (val >> 2) & 0x3;
1980 sc->nb_ant = val & 0x3;
1981
1982 /* read MAC address */
1983 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1984
1985 /* read default values for BBP registers */
1986 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1987
1988 /* read Tx power for all b/g channels */
1989 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1990 }
1991
1992 Static int
1993 ural_bbp_init(struct ural_softc *sc)
1994 {
1995 int i, ntries;
1996
1997 /* wait for BBP to be ready */
1998 for (ntries = 0; ntries < 100; ntries++) {
1999 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2000 break;
2001 DELAY(1000);
2002 }
2003 if (ntries == 100) {
2004 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2005 return EIO;
2006 }
2007
2008 /* initialize BBP registers to default values */
2009 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2010 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2011
2012 #if 0
2013 /* initialize BBP registers to values stored in EEPROM */
2014 for (i = 0; i < 16; i++) {
2015 if (sc->bbp_prom[i].reg == 0xff)
2016 continue;
2017 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2018 }
2019 #endif
2020
2021 return 0;
2022 }
2023
2024 Static void
2025 ural_set_txantenna(struct ural_softc *sc, int antenna)
2026 {
2027 uint16_t tmp;
2028 uint8_t tx;
2029
2030 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2031 if (antenna == 1)
2032 tx |= RAL_BBP_ANTA;
2033 else if (antenna == 2)
2034 tx |= RAL_BBP_ANTB;
2035 else
2036 tx |= RAL_BBP_DIVERSITY;
2037
2038 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2039 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2040 sc->rf_rev == RAL_RF_5222)
2041 tx |= RAL_BBP_FLIPIQ;
2042
2043 ural_bbp_write(sc, RAL_BBP_TX, tx);
2044
2045 /* update values in PHY_CSR5 and PHY_CSR6 */
2046 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2047 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2048
2049 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2050 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2051 }
2052
2053 Static void
2054 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2055 {
2056 uint8_t rx;
2057
2058 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2059 if (antenna == 1)
2060 rx |= RAL_BBP_ANTA;
2061 else if (antenna == 2)
2062 rx |= RAL_BBP_ANTB;
2063 else
2064 rx |= RAL_BBP_DIVERSITY;
2065
2066 /* need to force no I/Q flip for RF 2525e and 2526 */
2067 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2068 rx &= ~RAL_BBP_FLIPIQ;
2069
2070 ural_bbp_write(sc, RAL_BBP_RX, rx);
2071 }
2072
2073 Static int
2074 ural_init(struct ifnet *ifp)
2075 {
2076 struct ural_softc *sc = ifp->if_softc;
2077 struct ieee80211com *ic = &sc->sc_ic;
2078 struct ieee80211_key *wk;
2079 uint16_t tmp;
2080 usbd_status error;
2081 int i, ntries;
2082
2083 ural_set_testmode(sc);
2084 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2085
2086 ural_stop(ifp, 0);
2087
2088 /* initialize MAC registers to default values */
2089 for (i = 0; i < __arraycount(ural_def_mac); i++)
2090 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2091
2092 /* wait for BBP and RF to wake up (this can take a long time!) */
2093 for (ntries = 0; ntries < 100; ntries++) {
2094 tmp = ural_read(sc, RAL_MAC_CSR17);
2095 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2096 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2097 break;
2098 DELAY(1000);
2099 }
2100 if (ntries == 100) {
2101 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2102 device_xname(sc->sc_dev));
2103 error = EIO;
2104 goto fail;
2105 }
2106
2107 /* we're ready! */
2108 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2109
2110 /* set basic rate set (will be updated later) */
2111 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2112
2113 error = ural_bbp_init(sc);
2114 if (error != 0)
2115 goto fail;
2116
2117 /* set default BSS channel */
2118 ural_set_chan(sc, ic->ic_curchan);
2119
2120 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2121 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2122
2123 ural_set_txantenna(sc, sc->tx_ant);
2124 ural_set_rxantenna(sc, sc->rx_ant);
2125
2126 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2127 ural_set_macaddr(sc, ic->ic_myaddr);
2128
2129 /*
2130 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2131 */
2132 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2133 wk = &ic->ic_crypto.cs_nw_keys[i];
2134 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2135 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2136 }
2137
2138 /*
2139 * Allocate xfer for AMRR statistics requests.
2140 */
2141 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2142 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2143 if (error) {
2144 printf("%s: could not allocate AMRR xfer\n",
2145 device_xname(sc->sc_dev));
2146 goto fail;
2147 }
2148
2149 /*
2150 * Open Tx and Rx USB bulk pipes.
2151 */
2152 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2153 &sc->sc_tx_pipeh);
2154 if (error != 0) {
2155 printf("%s: could not open Tx pipe: %s\n",
2156 device_xname(sc->sc_dev), usbd_errstr(error));
2157 goto fail;
2158 }
2159
2160 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2161 &sc->sc_rx_pipeh);
2162 if (error != 0) {
2163 printf("%s: could not open Rx pipe: %s\n",
2164 device_xname(sc->sc_dev), usbd_errstr(error));
2165 goto fail;
2166 }
2167
2168 /*
2169 * Allocate Tx and Rx xfer queues.
2170 */
2171 error = ural_alloc_tx_list(sc);
2172 if (error != 0) {
2173 printf("%s: could not allocate Tx list\n",
2174 device_xname(sc->sc_dev));
2175 goto fail;
2176 }
2177
2178 error = ural_alloc_rx_list(sc);
2179 if (error != 0) {
2180 printf("%s: could not allocate Rx list\n",
2181 device_xname(sc->sc_dev));
2182 goto fail;
2183 }
2184
2185 /*
2186 * Start up the receive pipe.
2187 */
2188 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2189 struct ural_rx_data *data = &sc->rx_data[i];
2190
2191 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2192 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2193 usbd_transfer(data->xfer);
2194 }
2195
2196 /* kick Rx */
2197 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2198 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2199 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2200 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2201 tmp |= RAL_DROP_TODS;
2202 if (!(ifp->if_flags & IFF_PROMISC))
2203 tmp |= RAL_DROP_NOT_TO_ME;
2204 }
2205 ural_write(sc, RAL_TXRX_CSR2, tmp);
2206
2207 ifp->if_flags &= ~IFF_OACTIVE;
2208 ifp->if_flags |= IFF_RUNNING;
2209
2210 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2211 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2212 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2213 } else
2214 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2215
2216 return 0;
2217
2218 fail: ural_stop(ifp, 1);
2219 return error;
2220 }
2221
2222 Static void
2223 ural_stop(struct ifnet *ifp, int disable)
2224 {
2225 struct ural_softc *sc = ifp->if_softc;
2226 struct ieee80211com *ic = &sc->sc_ic;
2227
2228 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2229
2230 sc->sc_tx_timer = 0;
2231 ifp->if_timer = 0;
2232 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2233
2234 /* disable Rx */
2235 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2236
2237 /* reset ASIC and BBP (but won't reset MAC registers!) */
2238 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2239 ural_write(sc, RAL_MAC_CSR1, 0);
2240
2241 if (sc->amrr_xfer != NULL) {
2242 usbd_destroy_xfer(sc->amrr_xfer);
2243 sc->amrr_xfer = NULL;
2244 }
2245
2246 if (sc->sc_rx_pipeh != NULL) {
2247 usbd_abort_pipe(sc->sc_rx_pipeh);
2248 }
2249
2250 if (sc->sc_tx_pipeh != NULL) {
2251 usbd_abort_pipe(sc->sc_tx_pipeh);
2252 }
2253
2254 ural_free_rx_list(sc);
2255 ural_free_tx_list(sc);
2256
2257 if (sc->sc_rx_pipeh != NULL) {
2258 usbd_close_pipe(sc->sc_rx_pipeh);
2259 sc->sc_rx_pipeh = NULL;
2260 }
2261
2262 if (sc->sc_tx_pipeh != NULL) {
2263 usbd_close_pipe(sc->sc_tx_pipeh);
2264 sc->sc_tx_pipeh = NULL;
2265 }
2266 }
2267
2268 int
2269 ural_activate(device_t self, enum devact act)
2270 {
2271 struct ural_softc *sc = device_private(self);
2272
2273 switch (act) {
2274 case DVACT_DEACTIVATE:
2275 if_deactivate(&sc->sc_if);
2276 return 0;
2277 default:
2278 return EOPNOTSUPP;
2279 }
2280 }
2281
2282 Static void
2283 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2284 {
2285 int i;
2286
2287 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2288 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2289
2290 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2291
2292 /* set rate to some reasonable initial value */
2293 for (i = ni->ni_rates.rs_nrates - 1;
2294 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2295 i--);
2296 ni->ni_txrate = i;
2297
2298 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2299 }
2300
2301 Static void
2302 ural_amrr_timeout(void *arg)
2303 {
2304 struct ural_softc *sc = (struct ural_softc *)arg;
2305 usb_device_request_t req;
2306 int s;
2307
2308 s = splusb();
2309
2310 /*
2311 * Asynchronously read statistic registers (cleared by read).
2312 */
2313 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2314 req.bRequest = RAL_READ_MULTI_MAC;
2315 USETW(req.wValue, 0);
2316 USETW(req.wIndex, RAL_STA_CSR0);
2317 USETW(req.wLength, sizeof(sc->sta));
2318
2319 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2320 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2321 ural_amrr_update);
2322 (void)usbd_transfer(sc->amrr_xfer);
2323
2324 splx(s);
2325 }
2326
2327 Static void
2328 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2329 usbd_status status)
2330 {
2331 struct ural_softc *sc = (struct ural_softc *)priv;
2332 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2333
2334 if (status != USBD_NORMAL_COMPLETION) {
2335 printf("%s: could not retrieve Tx statistics - "
2336 "cancelling automatic rate control\n",
2337 device_xname(sc->sc_dev));
2338 return;
2339 }
2340
2341 /* count TX retry-fail as Tx errors */
2342 ifp->if_oerrors += sc->sta[9];
2343
2344 sc->amn.amn_retrycnt =
2345 sc->sta[7] + /* TX one-retry ok count */
2346 sc->sta[8] + /* TX more-retry ok count */
2347 sc->sta[9]; /* TX retry-fail count */
2348
2349 sc->amn.amn_txcnt =
2350 sc->amn.amn_retrycnt +
2351 sc->sta[6]; /* TX no-retry ok count */
2352
2353 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2354
2355 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2356 }
2357