if_ural.c revision 1.5 1 /* $NetBSD: if_ural.c,v 1.5 2005/07/12 12:51:03 drochner Exp $ */
2 /* $OpenBSD: if_ral.c,v 1.38 2005/07/07 08:33:22 jsg Exp $ */
3 /* $FreeBSD: src/sys/dev/usb/if_ural.c,v 1.9 2005/07/08 19:19:06 damien Exp $ */
4
5 /*-
6 * Copyright (c) 2005
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2500USB chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.5 2005/07/12 12:51:03 drochner Exp $");
29
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <machine/bus.h>
44 #include <machine/endian.h>
45 #include <machine/intr.h>
46
47 #if NBPFILTER > 0
48 #include <net/bpf.h>
49 #endif
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
95 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
97 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
108 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
109 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
110 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
111 };
112
113 Static int ural_alloc_tx_list(struct ural_softc *);
114 Static void ural_free_tx_list(struct ural_softc *);
115 Static int ural_alloc_rx_list(struct ural_softc *);
116 Static void ural_free_rx_list(struct ural_softc *);
117 Static int ural_key_alloc(struct ieee80211com *,
118 const struct ieee80211_key *);
119 Static int ural_media_change(struct ifnet *);
120 Static void ural_next_scan(void *);
121 Static void ural_task(void *);
122 Static int ural_newstate(struct ieee80211com *,
123 enum ieee80211_state, int);
124 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
125 usbd_status);
126 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
127 usbd_status);
128 Static int ural_ack_rate(int);
129 Static uint16_t ural_txtime(int, int, uint32_t);
130 Static uint8_t ural_plcp_signal(int);
131 Static void ural_setup_tx_desc(struct ural_softc *,
132 struct ural_tx_desc *, uint32_t, int, int);
133 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
138 struct ieee80211_node *);
139 Static void ural_start(struct ifnet *);
140 Static void ural_watchdog(struct ifnet *);
141 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
158 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
159 Static void ural_update_promisc(struct ural_softc *);
160 Static const char *ural_get_rf(int);
161 Static void ural_read_eeprom(struct ural_softc *);
162 Static int ural_bbp_init(struct ural_softc *);
163 Static void ural_set_txantenna(struct ural_softc *, int);
164 Static void ural_set_rxantenna(struct ural_softc *, int);
165 Static int ural_init(struct ifnet *);
166 Static void ural_stop(struct ifnet *, int);
167
168 /*
169 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
170 */
171 static const struct ieee80211_rateset ural_rateset_11a =
172 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
173
174 static const struct ieee80211_rateset ural_rateset_11b =
175 { 4, { 2, 4, 11, 22 } };
176
177 static const struct ieee80211_rateset ural_rateset_11g =
178 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
179
180 /*
181 * Default values for MAC registers; values taken from the reference driver.
182 */
183 static const struct {
184 uint16_t reg;
185 uint16_t val;
186 } ural_def_mac[] = {
187 { RAL_TXRX_CSR5, 0x8c8d },
188 { RAL_TXRX_CSR6, 0x8b8a },
189 { RAL_TXRX_CSR7, 0x8687 },
190 { RAL_TXRX_CSR8, 0x0085 },
191 { RAL_MAC_CSR13, 0x1111 },
192 { RAL_MAC_CSR14, 0x1e11 },
193 { RAL_TXRX_CSR21, 0xe78f },
194 { RAL_MAC_CSR9, 0xff1d },
195 { RAL_MAC_CSR11, 0x0002 },
196 { RAL_MAC_CSR22, 0x0053 },
197 { RAL_MAC_CSR15, 0x0000 },
198 { RAL_MAC_CSR8, 0x0780 },
199 { RAL_TXRX_CSR19, 0x0000 },
200 { RAL_TXRX_CSR18, 0x005a },
201 { RAL_PHY_CSR2, 0x0000 },
202 { RAL_TXRX_CSR0, 0x1ec0 },
203 { RAL_PHY_CSR4, 0x000f }
204 };
205
206 /*
207 * Default values for BBP registers; values taken from the reference driver.
208 */
209 static const struct {
210 uint8_t reg;
211 uint8_t val;
212 } ural_def_bbp[] = {
213 { 3, 0x02 },
214 { 4, 0x19 },
215 { 14, 0x1c },
216 { 15, 0x30 },
217 { 16, 0xac },
218 { 17, 0x48 },
219 { 18, 0x18 },
220 { 19, 0xff },
221 { 20, 0x1e },
222 { 21, 0x08 },
223 { 22, 0x08 },
224 { 23, 0x08 },
225 { 24, 0x80 },
226 { 25, 0x50 },
227 { 26, 0x08 },
228 { 27, 0x23 },
229 { 30, 0x10 },
230 { 31, 0x2b },
231 { 32, 0xb9 },
232 { 34, 0x12 },
233 { 35, 0x50 },
234 { 39, 0xc4 },
235 { 40, 0x02 },
236 { 41, 0x60 },
237 { 53, 0x10 },
238 { 54, 0x18 },
239 { 56, 0x08 },
240 { 57, 0x10 },
241 { 58, 0x08 },
242 { 61, 0x60 },
243 { 62, 0x10 },
244 { 75, 0xff }
245 };
246
247 /*
248 * Default values for RF register R2 indexed by channel numbers.
249 */
250 static const uint32_t ural_rf2522_r2[] = {
251 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
252 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
253 };
254
255 static const uint32_t ural_rf2523_r2[] = {
256 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
257 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
258 };
259
260 static const uint32_t ural_rf2524_r2[] = {
261 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
262 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
263 };
264
265 static const uint32_t ural_rf2525_r2[] = {
266 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
267 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
268 };
269
270 static const uint32_t ural_rf2525_hi_r2[] = {
271 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
272 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
273 };
274
275 static const uint32_t ural_rf2525e_r2[] = {
276 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
277 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
278 };
279
280 static const uint32_t ural_rf2526_hi_r2[] = {
281 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
282 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
283 };
284
285 static const uint32_t ural_rf2526_r2[] = {
286 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
287 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
288 };
289
290 /*
291 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
292 * values taken from the reference driver.
293 */
294 static const struct {
295 uint8_t chan;
296 uint32_t r1;
297 uint32_t r2;
298 uint32_t r4;
299 } ural_rf5222[] = {
300 /* channels in the 2.4GHz band */
301 { 1, 0x08808, 0x0044d, 0x00282 },
302 { 2, 0x08808, 0x0044e, 0x00282 },
303 { 3, 0x08808, 0x0044f, 0x00282 },
304 { 4, 0x08808, 0x00460, 0x00282 },
305 { 5, 0x08808, 0x00461, 0x00282 },
306 { 6, 0x08808, 0x00462, 0x00282 },
307 { 7, 0x08808, 0x00463, 0x00282 },
308 { 8, 0x08808, 0x00464, 0x00282 },
309 { 9, 0x08808, 0x00465, 0x00282 },
310 { 10, 0x08808, 0x00466, 0x00282 },
311 { 11, 0x08808, 0x00467, 0x00282 },
312 { 12, 0x08808, 0x00468, 0x00282 },
313 { 13, 0x08808, 0x00469, 0x00282 },
314 { 14, 0x08808, 0x0046b, 0x00286 },
315
316 /* channels in the 5.2GHz band */
317 { 36, 0x08804, 0x06225, 0x00287 },
318 { 40, 0x08804, 0x06226, 0x00287 },
319 { 44, 0x08804, 0x06227, 0x00287 },
320 { 48, 0x08804, 0x06228, 0x00287 },
321 { 52, 0x08804, 0x06229, 0x00287 },
322 { 56, 0x08804, 0x0622a, 0x00287 },
323 { 60, 0x08804, 0x0622b, 0x00287 },
324 { 64, 0x08804, 0x0622c, 0x00287 },
325
326 { 100, 0x08804, 0x02200, 0x00283 },
327 { 104, 0x08804, 0x02201, 0x00283 },
328 { 108, 0x08804, 0x02202, 0x00283 },
329 { 112, 0x08804, 0x02203, 0x00283 },
330 { 116, 0x08804, 0x02204, 0x00283 },
331 { 120, 0x08804, 0x02205, 0x00283 },
332 { 124, 0x08804, 0x02206, 0x00283 },
333 { 128, 0x08804, 0x02207, 0x00283 },
334 { 132, 0x08804, 0x02208, 0x00283 },
335 { 136, 0x08804, 0x02209, 0x00283 },
336 { 140, 0x08804, 0x0220a, 0x00283 },
337
338 { 149, 0x08808, 0x02429, 0x00281 },
339 { 153, 0x08808, 0x0242b, 0x00281 },
340 { 157, 0x08808, 0x0242d, 0x00281 },
341 { 161, 0x08808, 0x0242f, 0x00281 }
342 };
343
344 USB_DECLARE_DRIVER(ural);
345
346 USB_MATCH(ural)
347 {
348 USB_MATCH_START(ural, uaa);
349
350 if (uaa->iface != NULL)
351 return UMATCH_NONE;
352
353 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
354 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
355 }
356
357 USB_ATTACH(ural)
358 {
359 USB_ATTACH_START(ural, sc, uaa);
360 struct ieee80211com *ic = &sc->sc_ic;
361 struct ifnet *ifp = &sc->sc_if;
362 usb_interface_descriptor_t *id;
363 usb_endpoint_descriptor_t *ed;
364 usbd_status error;
365 char *devinfop;
366 int i;
367
368 sc->sc_udev = uaa->device;
369
370 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
371 USB_ATTACH_SETUP;
372 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
373 usbd_devinfo_free(devinfop);
374
375 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
376 printf("%s: could not set configuration no\n",
377 USBDEVNAME(sc->sc_dev));
378 USB_ATTACH_ERROR_RETURN;
379 }
380
381 /* get the first interface handle */
382 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
383 &sc->sc_iface);
384 if (error != 0) {
385 printf("%s: could not get interface handle\n",
386 USBDEVNAME(sc->sc_dev));
387 USB_ATTACH_ERROR_RETURN;
388 }
389
390 /*
391 * Find endpoints.
392 */
393 id = usbd_get_interface_descriptor(sc->sc_iface);
394
395 sc->sc_rx_no = sc->sc_tx_no = -1;
396 for (i = 0; i < id->bNumEndpoints; i++) {
397 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
398 if (ed == NULL) {
399 printf("%s: no endpoint descriptor for iface %d\n",
400 USBDEVNAME(sc->sc_dev), i);
401 USB_ATTACH_ERROR_RETURN;
402 }
403
404 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
405 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
406 sc->sc_rx_no = ed->bEndpointAddress;
407 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
408 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
409 sc->sc_tx_no = ed->bEndpointAddress;
410 }
411 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
412 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
413 USB_ATTACH_ERROR_RETURN;
414 }
415
416 usb_init_task(&sc->sc_task, ural_task, sc);
417 callout_init(&sc->scan_ch);
418
419 /* retrieve RT2570 rev. no */
420 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
421
422 /* retrieve MAC address and various other things from EEPROM */
423 ural_read_eeprom(sc);
424
425 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n",
426 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev),
427 ether_sprintf(ic->ic_myaddr));
428
429 ic->ic_ifp = ifp;
430 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
431 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
432 ic->ic_state = IEEE80211_S_INIT;
433
434 /* set device capabilities */
435 ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
436 IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
437 IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
438
439 if (sc->rf_rev == RAL_RF_5222) {
440 /* set supported .11a rates */
441 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
442
443 /* set supported .11a channels */
444 for (i = 36; i <= 64; i += 4) {
445 ic->ic_channels[i].ic_freq =
446 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
447 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
448 }
449 for (i = 100; i <= 140; i += 4) {
450 ic->ic_channels[i].ic_freq =
451 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
452 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
453 }
454 for (i = 149; i <= 161; i += 4) {
455 ic->ic_channels[i].ic_freq =
456 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
457 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
458 }
459 }
460
461 /* set supported .11b and .11g rates */
462 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
463 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
464
465 /* set supported .11b and .11g channels (1 through 14) */
466 for (i = 1; i <= 14; i++) {
467 ic->ic_channels[i].ic_freq =
468 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
469 ic->ic_channels[i].ic_flags =
470 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
471 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
472 }
473
474 ifp->if_softc = sc;
475 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
476 ifp->if_init = ural_init;
477 ifp->if_stop = ural_stop;
478 ifp->if_ioctl = ural_ioctl;
479 ifp->if_start = ural_start;
480 ifp->if_watchdog = ural_watchdog;
481 IFQ_SET_READY(&ifp->if_snd);
482 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
483
484 if_attach(ifp);
485 ieee80211_ifattach(ic);
486
487 /* override state transition machine */
488 sc->sc_newstate = ic->ic_newstate;
489 ic->ic_newstate = ural_newstate;
490 ic->ic_crypto.cs_key_alloc = ural_key_alloc;
491 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
492
493 #if NBPFILTER > 0
494 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
495 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
496
497 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
498 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
499 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
500
501 sc->sc_txtap_len = sizeof sc->sc_txtapu;
502 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
503 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
504 #endif
505
506 ieee80211_announce(ic);
507
508 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
509 USBDEV(sc->sc_dev));
510
511 USB_ATTACH_SUCCESS_RETURN;
512 }
513
514 USB_DETACH(ural)
515 {
516 USB_DETACH_START(ural, sc);
517 struct ieee80211com *ic = &sc->sc_ic;
518 struct ifnet *ifp = &sc->sc_if;
519 int s;
520
521 s = splusb();
522
523 usb_rem_task(sc->sc_udev, &sc->sc_task);
524 callout_stop(&sc->scan_ch);
525
526 if (sc->sc_rx_pipeh != NULL) {
527 usbd_abort_pipe(sc->sc_rx_pipeh);
528 usbd_close_pipe(sc->sc_rx_pipeh);
529 }
530
531 if (sc->sc_tx_pipeh != NULL) {
532 usbd_abort_pipe(sc->sc_tx_pipeh);
533 usbd_close_pipe(sc->sc_tx_pipeh);
534 }
535
536 ural_free_rx_list(sc);
537 ural_free_tx_list(sc);
538
539 #if NBPFILTER > 0
540 bpfdetach(ifp);
541 #endif
542 ieee80211_ifdetach(ic);
543 if_detach(ifp);
544
545 splx(s);
546
547 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
548 USBDEV(sc->sc_dev));
549
550 return 0;
551 }
552
553 Static int
554 ural_alloc_tx_list(struct ural_softc *sc)
555 {
556 struct ural_tx_data *data;
557 int i, error;
558
559 sc->tx_queued = 0;
560
561 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
562 data = &sc->tx_data[i];
563
564 data->sc = sc;
565
566 data->xfer = usbd_alloc_xfer(sc->sc_udev);
567 if (data->xfer == NULL) {
568 printf("%s: could not allocate tx xfer\n",
569 USBDEVNAME(sc->sc_dev));
570 error = ENOMEM;
571 goto fail;
572 }
573
574 data->buf = usbd_alloc_buffer(data->xfer,
575 RAL_TX_DESC_SIZE + MCLBYTES);
576 if (data->buf == NULL) {
577 printf("%s: could not allocate tx buffer\n",
578 USBDEVNAME(sc->sc_dev));
579 error = ENOMEM;
580 goto fail;
581 }
582 }
583
584 return 0;
585
586 fail: ural_free_tx_list(sc);
587 return error;
588 }
589
590 Static void
591 ural_free_tx_list(struct ural_softc *sc)
592 {
593 struct ural_tx_data *data;
594 int i;
595
596 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
597 data = &sc->tx_data[i];
598
599 if (data->xfer != NULL) {
600 usbd_free_xfer(data->xfer);
601 data->xfer = NULL;
602 }
603
604 if (data->ni != NULL) {
605 ieee80211_free_node(data->ni);
606 data->ni = NULL;
607 }
608 }
609 }
610
611 Static int
612 ural_alloc_rx_list(struct ural_softc *sc)
613 {
614 struct ural_rx_data *data;
615 int i, error;
616
617 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
618 data = &sc->rx_data[i];
619
620 data->sc = sc;
621
622 data->xfer = usbd_alloc_xfer(sc->sc_udev);
623 if (data->xfer == NULL) {
624 printf("%s: could not allocate rx xfer\n",
625 USBDEVNAME(sc->sc_dev));
626 error = ENOMEM;
627 goto fail;
628 }
629
630 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
631 printf("%s: could not allocate rx buffer\n",
632 USBDEVNAME(sc->sc_dev));
633 error = ENOMEM;
634 goto fail;
635 }
636
637 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
638 if (data->m == NULL) {
639 printf("%s: could not allocate rx mbuf\n",
640 USBDEVNAME(sc->sc_dev));
641 error = ENOMEM;
642 goto fail;
643 }
644
645 MCLGET(data->m, M_DONTWAIT);
646 if (!(data->m->m_flags & M_EXT)) {
647 printf("%s: could not allocate rx mbuf cluster\n",
648 USBDEVNAME(sc->sc_dev));
649 error = ENOMEM;
650 goto fail;
651 }
652
653 data->buf = mtod(data->m, uint8_t *);
654 }
655
656 return 0;
657
658 fail: ural_free_tx_list(sc);
659 return error;
660 }
661
662 Static void
663 ural_free_rx_list(struct ural_softc *sc)
664 {
665 struct ural_rx_data *data;
666 int i;
667
668 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
669 data = &sc->rx_data[i];
670
671 if (data->xfer != NULL) {
672 usbd_free_xfer(data->xfer);
673 data->xfer = NULL;
674 }
675
676 if (data->m != NULL) {
677 m_freem(data->m);
678 data->m = NULL;
679 }
680 }
681 }
682
683 Static int
684 ural_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
685 {
686 if (k >= ic->ic_nw_keys && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
687 return k - ic->ic_nw_keys;
688
689 return IEEE80211_KEYIX_NONE;
690 }
691
692 Static int
693 ural_media_change(struct ifnet *ifp)
694 {
695 int error;
696
697 error = ieee80211_media_change(ifp);
698 if (error != ENETRESET)
699 return error;
700
701 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
702 ural_init(ifp);
703
704 return 0;
705 }
706
707 /*
708 * This function is called periodically (every 200ms) during scanning to
709 * switch from one channel to another.
710 */
711 Static void
712 ural_next_scan(void *arg)
713 {
714 struct ural_softc *sc = arg;
715 struct ieee80211com *ic = &sc->sc_ic;
716
717 if (ic->ic_state == IEEE80211_S_SCAN)
718 ieee80211_next_scan(ic);
719 }
720
721 Static void
722 ural_task(void *arg)
723 {
724 struct ural_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726 enum ieee80211_state ostate;
727 struct mbuf *m;
728
729 ostate = ic->ic_state;
730
731 switch (sc->sc_state) {
732 case IEEE80211_S_INIT:
733 if (ostate == IEEE80211_S_RUN) {
734 /* abort TSF synchronization */
735 ural_write(sc, RAL_TXRX_CSR19, 0);
736
737 /* force tx led to stop blinking */
738 ural_write(sc, RAL_MAC_CSR20, 0);
739 }
740 break;
741
742 case IEEE80211_S_SCAN:
743 ural_set_chan(sc, ic->ic_bss->ni_chan);
744 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
745 break;
746
747 case IEEE80211_S_AUTH:
748 ural_set_chan(sc, ic->ic_bss->ni_chan);
749 break;
750
751 case IEEE80211_S_ASSOC:
752 ural_set_chan(sc, ic->ic_bss->ni_chan);
753 break;
754
755 case IEEE80211_S_RUN:
756 ural_set_chan(sc, ic->ic_bss->ni_chan);
757
758 if (ic->ic_opmode != IEEE80211_M_MONITOR)
759 ural_set_bssid(sc, ic->ic_bss->ni_bssid);
760
761 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
762 ic->ic_opmode == IEEE80211_M_IBSS) {
763 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
764 if (m == NULL) {
765 printf("%s: could not allocate beacon\n",
766 USBDEVNAME(sc->sc_dev));
767 return;
768 }
769
770 if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) {
771 m_freem(m);
772 printf("%s: could not transmit beacon\n",
773 USBDEVNAME(sc->sc_dev));
774 return;
775 }
776
777 /* beacon is no longer needed */
778 m_freem(m);
779 }
780
781 /* make tx led blink on tx (controlled by ASIC) */
782 ural_write(sc, RAL_MAC_CSR20, 1);
783
784 if (ic->ic_opmode != IEEE80211_M_MONITOR)
785 ural_enable_tsf_sync(sc);
786 break;
787 }
788
789 sc->sc_newstate(ic, sc->sc_state, -1);
790 }
791
792 Static int
793 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
794 {
795 struct ural_softc *sc = ic->ic_ifp->if_softc;
796
797 usb_rem_task(sc->sc_udev, &sc->sc_task);
798 callout_stop(&sc->scan_ch);
799
800 /* do it in a process context */
801 sc->sc_state = nstate;
802 usb_add_task(sc->sc_udev, &sc->sc_task);
803
804 return 0;
805 }
806
807 /* quickly determine if a given rate is CCK or OFDM */
808 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
809
810 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
811 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
812 #define RAL_SIFS 10
813
814 Static void
815 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
816 {
817 struct ural_tx_data *data = priv;
818 struct ural_softc *sc = data->sc;
819 struct ifnet *ifp = &sc->sc_if;
820 int s;
821
822 if (status != USBD_NORMAL_COMPLETION) {
823 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
824 return;
825
826 printf("%s: could not transmit buffer: %s\n",
827 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
828
829 if (status == USBD_STALLED)
830 usbd_clear_endpoint_stall(sc->sc_tx_pipeh);
831
832 ifp->if_oerrors++;
833 return;
834 }
835
836 s = splnet();
837
838 m_freem(data->m);
839 data->m = NULL;
840 ieee80211_free_node(data->ni);
841 data->ni = NULL;
842
843 sc->tx_queued--;
844 ifp->if_opackets++;
845
846 DPRINTFN(10, ("tx done\n"));
847
848 sc->sc_tx_timer = 0;
849 ifp->if_flags &= ~IFF_OACTIVE;
850 ural_start(ifp);
851
852 splx(s);
853 }
854
855 Static void
856 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
857 {
858 struct ural_rx_data *data = priv;
859 struct ural_softc *sc = data->sc;
860 struct ieee80211com *ic = &sc->sc_ic;
861 struct ifnet *ifp = &sc->sc_if;
862 struct ural_rx_desc *desc;
863 struct ieee80211_frame_min *wh;
864 struct ieee80211_node *ni;
865 struct mbuf *m;
866 int s, len;
867
868 if (status != USBD_NORMAL_COMPLETION) {
869 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
870 return;
871
872 if (status == USBD_STALLED)
873 usbd_clear_endpoint_stall(sc->sc_rx_pipeh);
874 goto skip;
875 }
876
877 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
878
879 if (len < RAL_RX_DESC_SIZE) {
880 printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len);
881 ifp->if_ierrors++;
882 goto skip;
883 }
884
885 /* rx descriptor is located at the end */
886 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
887
888 if (le32toh(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
889 /*
890 * This should not happen since we did not request to receive
891 * those frames when we filled RAL_TXRX_CSR2.
892 */
893 DPRINTFN(5, ("PHY or CRC error\n"));
894 ifp->if_ierrors++;
895 goto skip;
896 }
897
898 /* finalize mbuf */
899 m = data->m;
900 m->m_pkthdr.rcvif = ifp;
901 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
902 m->m_flags |= M_HASFCS; /* hardware appends FCS */
903
904 s = splnet();
905
906 #if NBPFILTER > 0
907 if (sc->sc_drvbpf != NULL) {
908 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
909
910 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
911 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
912 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
913 tap->wr_antenna = sc->rx_ant;
914 tap->wr_antsignal = desc->rssi;
915
916 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
917 }
918 #endif
919
920 wh = mtod(m, struct ieee80211_frame_min *);
921 ni = ieee80211_find_rxnode(ic, wh);
922
923 /* send the frame to the 802.11 layer */
924 ieee80211_input(ic, m, ni, desc->rssi, 0);
925
926 /* node is no longer needed */
927 ieee80211_free_node(ni);
928
929 splx(s);
930
931 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
932 if (data->m == NULL) {
933 printf("%s: could not allocate rx mbuf\n",
934 USBDEVNAME(sc->sc_dev));
935 return;
936 }
937
938 MCLGET(data->m, M_DONTWAIT);
939 if (!(data->m->m_flags & M_EXT)) {
940 printf("%s: could not allocate rx mbuf cluster\n",
941 USBDEVNAME(sc->sc_dev));
942 m_freem(data->m);
943 data->m = NULL;
944 return;
945 }
946
947 data->buf = mtod(data->m, uint8_t *);
948
949 DPRINTFN(15, ("rx done\n"));
950
951 skip: /* setup a new transfer */
952 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
953 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
954 usbd_transfer(xfer);
955 }
956
957 /*
958 * Return the expected ack rate for a frame transmitted at rate `rate'.
959 * XXX: this should depend on the destination node basic rate set.
960 */
961 Static int
962 ural_ack_rate(int rate)
963 {
964 switch (rate) {
965 /* CCK rates */
966 case 2:
967 return 2;
968 case 4:
969 case 11:
970 case 22:
971 return 4;
972
973 /* OFDM rates */
974 case 12:
975 case 18:
976 return 12;
977 case 24:
978 case 36:
979 return 24;
980 case 48:
981 case 72:
982 case 96:
983 case 108:
984 return 48;
985 }
986
987 /* default to 1Mbps */
988 return 2;
989 }
990
991 /*
992 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
993 * The function automatically determines the operating mode depending on the
994 * given rate. `flags' indicates whether short preamble is in use or not.
995 */
996 Static uint16_t
997 ural_txtime(int len, int rate, uint32_t flags)
998 {
999 uint16_t txtime;
1000 int ceil, dbps;
1001
1002 if (RAL_RATE_IS_OFDM(rate)) {
1003 /*
1004 * OFDM TXTIME calculation.
1005 * From IEEE Std 802.11a-1999, pp. 37.
1006 */
1007 dbps = rate * 2; /* data bits per OFDM symbol */
1008
1009 ceil = (16 + 8 * len + 6) / dbps;
1010 if ((16 + 8 * len + 6) % dbps != 0)
1011 ceil++;
1012
1013 txtime = 16 + 4 + 4 * ceil + 6;
1014 } else {
1015 /*
1016 * High Rate TXTIME calculation.
1017 * From IEEE Std 802.11b-1999, pp. 28.
1018 */
1019 ceil = (8 * len * 2) / rate;
1020 if ((8 * len * 2) % rate != 0)
1021 ceil++;
1022
1023 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1024 txtime = 72 + 24 + ceil;
1025 else
1026 txtime = 144 + 48 + ceil;
1027 }
1028
1029 return txtime;
1030 }
1031
1032 Static uint8_t
1033 ural_plcp_signal(int rate)
1034 {
1035 switch (rate) {
1036 /* CCK rates (returned values are device-dependent) */
1037 case 2: return 0x0;
1038 case 4: return 0x1;
1039 case 11: return 0x2;
1040 case 22: return 0x3;
1041
1042 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1043 case 12: return 0xb;
1044 case 18: return 0xf;
1045 case 24: return 0xa;
1046 case 36: return 0xe;
1047 case 48: return 0x9;
1048 case 72: return 0xd;
1049 case 96: return 0x8;
1050 case 108: return 0xc;
1051
1052 /* unsupported rates (should not get there) */
1053 default: return 0xff;
1054 }
1055 }
1056
1057 Static void
1058 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1059 uint32_t flags, int len, int rate)
1060 {
1061 struct ieee80211com *ic = &sc->sc_ic;
1062 uint16_t plcp_length;
1063 int remainder;
1064
1065 desc->flags = htole32(flags);
1066 desc->flags |= htole32(RAL_TX_NEWSEQ);
1067 desc->flags |= htole32(len << 16);
1068
1069 if (RAL_RATE_IS_OFDM(rate))
1070 desc->flags |= htole32(RAL_TX_OFDM);
1071
1072 desc->wme = htole16(RAL_LOGCWMAX(5) | RAL_LOGCWMIN(3) | RAL_AIFSN(2));
1073 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1074
1075 /*
1076 * Fill PLCP fields.
1077 */
1078 desc->plcp_service = 4;
1079
1080 len += 4; /* account for FCS */
1081 if (RAL_RATE_IS_OFDM(rate)) {
1082 /*
1083 * PLCP length field (LENGTH).
1084 * From IEEE Std 802.11a-1999, pp. 14.
1085 */
1086 plcp_length = len & 0xfff;
1087 desc->plcp_length = htole16((plcp_length >> 6) << 8 |
1088 (plcp_length & 0x3f));
1089 } else {
1090 /*
1091 * Long PLCP LENGTH field.
1092 * From IEEE Std 802.11b-1999, pp. 16.
1093 */
1094 plcp_length = (8 * len * 2) / rate;
1095 remainder = (8 * len * 2) % rate;
1096 if (remainder != 0) {
1097 if (rate == 22 && (rate - remainder) / 16 != 0)
1098 desc->plcp_service |= RAL_PLCP_LENGEXT;
1099 plcp_length++;
1100 }
1101 desc->plcp_length = htole16(plcp_length);
1102 }
1103
1104 desc->plcp_signal = ural_plcp_signal(rate);
1105 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1106 desc->plcp_signal |= 0x08;
1107
1108 desc->iv = 0;
1109 desc->eiv = 0;
1110 }
1111
1112 #define RAL_TX_TIMEOUT 5000
1113
1114 Static int
1115 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1116 {
1117 struct ural_tx_desc *desc;
1118 usbd_xfer_handle xfer;
1119 usbd_status error;
1120 uint8_t cmd = 0;
1121 uint8_t *buf;
1122 int xferlen, rate;
1123
1124 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1125
1126 xfer = usbd_alloc_xfer(sc->sc_udev);
1127 if (xfer == NULL)
1128 return ENOMEM;
1129
1130 /* xfer length needs to be a multiple of two! */
1131 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1132
1133 buf = usbd_alloc_buffer(xfer, xferlen);
1134 if (buf == NULL) {
1135 usbd_free_xfer(xfer);
1136 return ENOMEM;
1137 }
1138
1139 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1140 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1141
1142 error = usbd_sync_transfer(xfer);
1143 if (error != 0) {
1144 usbd_free_xfer(xfer);
1145 return error;
1146 }
1147
1148 desc = (struct ural_tx_desc *)buf;
1149
1150 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1151 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1152 m0->m_pkthdr.len, rate);
1153
1154 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155 m0->m_pkthdr.len, rate, xferlen));
1156
1157 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1158 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1159
1160 error = usbd_sync_transfer(xfer);
1161 usbd_free_xfer(xfer);
1162
1163 return error;
1164 }
1165
1166 Static int
1167 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1168 {
1169 struct ieee80211com *ic = &sc->sc_ic;
1170 struct ural_tx_desc *desc;
1171 struct ural_tx_data *data;
1172 struct ieee80211_frame *wh;
1173 uint32_t flags = 0;
1174 uint16_t dur;
1175 usbd_status error;
1176 int xferlen, rate;
1177
1178 data = &sc->tx_data[0];
1179 desc = (struct ural_tx_desc *)data->buf;
1180
1181 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1182
1183 #if NBPFILTER > 0
1184 if (sc->sc_drvbpf != NULL) {
1185 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1186
1187 tap->wt_flags = 0;
1188 tap->wt_rate = rate;
1189 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1190 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1191 tap->wt_antenna = sc->tx_ant;
1192
1193 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1194 }
1195 #endif
1196
1197 data->m = m0;
1198 data->ni = ni;
1199
1200 wh = mtod(m0, struct ieee80211_frame *);
1201
1202 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1203 flags |= RAL_TX_ACK;
1204
1205 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1206 *(uint16_t *)wh->i_dur = htole16(dur);
1207
1208 /* tell hardware to add timestamp for probe responses */
1209 if ((wh->i_fc[0] &
1210 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1211 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1212 flags |= RAL_TX_TIMESTAMP;
1213 }
1214
1215 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1216 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1217
1218 /* xfer length needs to be a multiple of two! */
1219 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1220
1221 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1222 m0->m_pkthdr.len, rate, xferlen));
1223
1224 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1225 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1226
1227 error = usbd_transfer(data->xfer);
1228 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1229 m_freem(m0);
1230 return error;
1231 }
1232
1233 sc->tx_queued++;
1234
1235 return 0;
1236 }
1237
1238 Static int
1239 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1240 {
1241 struct ieee80211com *ic = &sc->sc_ic;
1242 struct ieee80211_rateset *rs;
1243 struct ural_tx_desc *desc;
1244 struct ural_tx_data *data;
1245 struct ieee80211_frame *wh;
1246 struct ieee80211_key *k;
1247 uint32_t flags = 0;
1248 uint16_t dur;
1249 usbd_status error;
1250 int xferlen, rate;
1251
1252 wh = mtod(m0, struct ieee80211_frame *);
1253
1254 /* XXX this should be reworked! */
1255 if (ic->ic_fixed_rate != -1) {
1256 if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1257 rs = &ic->ic_sup_rates[ic->ic_curmode];
1258 else
1259 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1260
1261 rate = rs->rs_rates[ic->ic_fixed_rate];
1262 } else {
1263 rs = &ni->ni_rates;
1264 rate = rs->rs_rates[ni->ni_txrate];
1265 }
1266 rate &= IEEE80211_RATE_VAL;
1267
1268 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1269 k = ieee80211_crypto_encap(ic, ni, m0);
1270 if (k == NULL) {
1271 m_freem(m0);
1272 return ENOBUFS;
1273 }
1274
1275 /* packet header may have moved, reset our local pointer */
1276 wh = mtod(m0, struct ieee80211_frame *);
1277 }
1278
1279 #if NBPFILTER > 0
1280 if (sc->sc_drvbpf != NULL) {
1281 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1282
1283 tap->wt_flags = 0;
1284 tap->wt_rate = rate;
1285 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1286 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1287 tap->wt_antenna = sc->tx_ant;
1288
1289 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1290 }
1291 #endif
1292
1293 data = &sc->tx_data[0];
1294 desc = (struct ural_tx_desc *)data->buf;
1295
1296 data->m = m0;
1297 data->ni = ni;
1298
1299 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1300 flags |= RAL_TX_ACK;
1301 flags |= RAL_TX_RETRY(7);
1302
1303 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(rate),
1304 ic->ic_flags) + RAL_SIFS;
1305 *(uint16_t *)wh->i_dur = htole16(dur);
1306 }
1307
1308 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1309 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1310
1311 /* xfer length needs to be a multiple of two! */
1312 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1313
1314 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1315 m0->m_pkthdr.len, rate, xferlen));
1316
1317 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1318 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1319
1320 error = usbd_transfer(data->xfer);
1321 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1322 m_freem(m0);
1323 return error;
1324 }
1325
1326 sc->tx_queued++;
1327
1328 return 0;
1329 }
1330
1331 Static void
1332 ural_start(struct ifnet *ifp)
1333 {
1334 struct ural_softc *sc = ifp->if_softc;
1335 struct ieee80211com *ic = &sc->sc_ic;
1336 struct ether_header *eh;
1337 struct ieee80211_node *ni;
1338 struct mbuf *m0;
1339
1340 for (;;) {
1341 IF_POLL(&ic->ic_mgtq, m0);
1342 if (m0 != NULL) {
1343 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1344 ifp->if_flags |= IFF_OACTIVE;
1345 break;
1346 }
1347 IF_DEQUEUE(&ic->ic_mgtq, m0);
1348
1349 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1350 m0->m_pkthdr.rcvif = NULL;
1351 #if NBPFILTER > 0
1352 if (ic->ic_rawbpf != NULL)
1353 bpf_mtap(ic->ic_rawbpf, m0);
1354 #endif
1355 if (ural_tx_mgt(sc, m0, ni) != 0)
1356 break;
1357
1358 } else {
1359 if (ic->ic_state != IEEE80211_S_RUN)
1360 break;
1361 IFQ_DEQUEUE(&ifp->if_snd, m0);
1362 if (m0 == NULL)
1363 break;
1364 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1365 IF_PREPEND(&ifp->if_snd, m0);
1366 ifp->if_flags |= IFF_OACTIVE;
1367 break;
1368 }
1369
1370 if (m0->m_len < sizeof (struct ether_header) &&
1371 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1372 continue;
1373
1374 eh = mtod(m0, struct ether_header *);
1375 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1376 if (ni == NULL) {
1377 m_freem(m0);
1378 continue;
1379 }
1380 #if NBPFILTER > 0
1381 if (ifp->if_bpf != NULL)
1382 bpf_mtap(ifp->if_bpf, m0);
1383 #endif
1384 m0 = ieee80211_encap(ic, m0, ni);
1385 if (m0 == NULL) {
1386 ieee80211_free_node(ni);
1387 continue;
1388 }
1389 #if NBPFILTER > 0
1390 if (ic->ic_rawbpf != NULL)
1391 bpf_mtap(ic->ic_rawbpf, m0);
1392 #endif
1393 if (ural_tx_data(sc, m0, ni) != 0) {
1394 ieee80211_free_node(ni);
1395 ifp->if_oerrors++;
1396 break;
1397 }
1398 }
1399
1400 sc->sc_tx_timer = 5;
1401 ifp->if_timer = 1;
1402 }
1403 }
1404
1405 Static void
1406 ural_watchdog(struct ifnet *ifp)
1407 {
1408 struct ural_softc *sc = ifp->if_softc;
1409 struct ieee80211com *ic = &sc->sc_ic;
1410
1411 ifp->if_timer = 0;
1412
1413 if (sc->sc_tx_timer > 0) {
1414 if (--sc->sc_tx_timer == 0) {
1415 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1416 /*ural_init(ifp); XXX needs a process context! */
1417 ifp->if_oerrors++;
1418 return;
1419 }
1420 ifp->if_timer = 1;
1421 }
1422
1423 ieee80211_watchdog(ic);
1424 }
1425
1426 Static int
1427 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1428 {
1429 struct ural_softc *sc = ifp->if_softc;
1430 struct ieee80211com *ic = &sc->sc_ic;
1431 struct ifreq *ifr;
1432 int s, error = 0;
1433
1434 s = splnet();
1435
1436 switch (cmd) {
1437 case SIOCSIFFLAGS:
1438 if (ifp->if_flags & IFF_UP) {
1439 if (ifp->if_flags & IFF_RUNNING)
1440 ural_update_promisc(sc);
1441 else
1442 ural_init(ifp);
1443 } else {
1444 if (ifp->if_flags & IFF_RUNNING)
1445 ural_stop(ifp, 1);
1446 }
1447 break;
1448
1449 case SIOCADDMULTI:
1450 case SIOCDELMULTI:
1451 ifr = (struct ifreq *)data;
1452 error = (cmd == SIOCADDMULTI) ?
1453 ether_addmulti(ifr, &sc->sc_ec) :
1454 ether_delmulti(ifr, &sc->sc_ec);
1455
1456 if (error == ENETRESET)
1457 error = 0;
1458 break;
1459
1460 case SIOCS80211CHANNEL:
1461 /*
1462 * This allows for fast channel switching in monitor mode
1463 * (used by kismet). In IBSS mode, we must explicitly reset
1464 * the interface to generate a new beacon frame.
1465 */
1466 error = ieee80211_ioctl(ic, cmd, data);
1467 if (error == ENETRESET &&
1468 ic->ic_opmode == IEEE80211_M_MONITOR) {
1469 ural_set_chan(sc, ic->ic_ibss_chan);
1470 error = 0;
1471 }
1472 break;
1473
1474 default:
1475 error = ieee80211_ioctl(ic, cmd, data);
1476 }
1477
1478 if (error == ENETRESET) {
1479 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1480 (IFF_UP | IFF_RUNNING))
1481 ural_init(ifp);
1482 error = 0;
1483 }
1484
1485 splx(s);
1486
1487 return error;
1488 }
1489
1490 Static void
1491 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1492 {
1493 usb_device_request_t req;
1494 usbd_status error;
1495
1496 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1497 req.bRequest = RAL_READ_EEPROM;
1498 USETW(req.wValue, 0);
1499 USETW(req.wIndex, addr);
1500 USETW(req.wLength, len);
1501
1502 error = usbd_do_request(sc->sc_udev, &req, buf);
1503 if (error != 0) {
1504 printf("%s: could not read EEPROM: %s\n",
1505 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1506 }
1507 }
1508
1509 Static uint16_t
1510 ural_read(struct ural_softc *sc, uint16_t reg)
1511 {
1512 usb_device_request_t req;
1513 usbd_status error;
1514 uint16_t val;
1515
1516 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1517 req.bRequest = RAL_READ_MAC;
1518 USETW(req.wValue, 0);
1519 USETW(req.wIndex, reg);
1520 USETW(req.wLength, sizeof (uint16_t));
1521
1522 error = usbd_do_request(sc->sc_udev, &req, &val);
1523 if (error != 0) {
1524 printf("%s: could not read MAC register: %s\n",
1525 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1526 return 0;
1527 }
1528
1529 return le16toh(val);
1530 }
1531
1532 Static void
1533 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1534 {
1535 usb_device_request_t req;
1536 usbd_status error;
1537
1538 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1539 req.bRequest = RAL_READ_MULTI_MAC;
1540 USETW(req.wValue, 0);
1541 USETW(req.wIndex, reg);
1542 USETW(req.wLength, len);
1543
1544 error = usbd_do_request(sc->sc_udev, &req, buf);
1545 if (error != 0) {
1546 printf("%s: could not read MAC register: %s\n",
1547 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1548 return;
1549 }
1550 }
1551
1552 Static void
1553 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1554 {
1555 usb_device_request_t req;
1556 usbd_status error;
1557
1558 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1559 req.bRequest = RAL_WRITE_MAC;
1560 USETW(req.wValue, val);
1561 USETW(req.wIndex, reg);
1562 USETW(req.wLength, 0);
1563
1564 error = usbd_do_request(sc->sc_udev, &req, NULL);
1565 if (error != 0) {
1566 printf("%s: could not write MAC register: %s\n",
1567 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1568 }
1569 }
1570
1571 Static void
1572 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1573 {
1574 usb_device_request_t req;
1575 usbd_status error;
1576
1577 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1578 req.bRequest = RAL_WRITE_MULTI_MAC;
1579 USETW(req.wValue, 0);
1580 USETW(req.wIndex, reg);
1581 USETW(req.wLength, len);
1582
1583 error = usbd_do_request(sc->sc_udev, &req, buf);
1584 if (error != 0) {
1585 printf("%s: could not write MAC register: %s\n",
1586 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1587 }
1588 }
1589
1590 Static void
1591 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1592 {
1593 uint16_t tmp;
1594 int ntries;
1595
1596 for (ntries = 0; ntries < 5; ntries++) {
1597 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1598 break;
1599 }
1600 if (ntries == 5) {
1601 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1602 return;
1603 }
1604
1605 tmp = reg << 8 | val;
1606 ural_write(sc, RAL_PHY_CSR7, tmp);
1607 }
1608
1609 Static uint8_t
1610 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1611 {
1612 uint16_t val;
1613 int ntries;
1614
1615 val = RAL_BBP_WRITE | reg << 8;
1616 ural_write(sc, RAL_PHY_CSR7, val);
1617
1618 for (ntries = 0; ntries < 5; ntries++) {
1619 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1620 break;
1621 }
1622 if (ntries == 5) {
1623 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1624 return 0;
1625 }
1626
1627 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1628 }
1629
1630 Static void
1631 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1632 {
1633 uint32_t tmp;
1634 int ntries;
1635
1636 for (ntries = 0; ntries < 5; ntries++) {
1637 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1638 break;
1639 }
1640 if (ntries == 5) {
1641 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1642 return;
1643 }
1644
1645 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1646 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1647 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1648
1649 /* remember last written value in sc */
1650 sc->rf_regs[reg] = val;
1651
1652 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1653 }
1654
1655 Static void
1656 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1657 {
1658 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1659 struct ieee80211com *ic = &sc->sc_ic;
1660 uint8_t power, tmp;
1661 u_int i, chan;
1662
1663 chan = ieee80211_chan2ieee(ic, c);
1664 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1665 return;
1666
1667 if (IEEE80211_IS_CHAN_2GHZ(c))
1668 power = min(sc->txpow[chan - 1], 31);
1669 else
1670 power = 31;
1671
1672 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1673
1674 switch (sc->rf_rev) {
1675 case RAL_RF_2522:
1676 ural_rf_write(sc, RAL_RF1, 0x00814);
1677 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1678 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1679 break;
1680
1681 case RAL_RF_2523:
1682 ural_rf_write(sc, RAL_RF1, 0x08804);
1683 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1684 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1685 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1686 break;
1687
1688 case RAL_RF_2524:
1689 ural_rf_write(sc, RAL_RF1, 0x0c808);
1690 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1691 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1692 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1693 break;
1694
1695 case RAL_RF_2525:
1696 ural_rf_write(sc, RAL_RF1, 0x08808);
1697 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1698 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1699 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1700
1701 ural_rf_write(sc, RAL_RF1, 0x08808);
1702 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1703 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1704 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1705 break;
1706
1707 case RAL_RF_2525E:
1708 ural_rf_write(sc, RAL_RF1, 0x08808);
1709 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1710 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1711 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1712 break;
1713
1714 case RAL_RF_2526:
1715 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1716 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1717 ural_rf_write(sc, RAL_RF1, 0x08804);
1718
1719 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1720 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1721 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1722 break;
1723
1724 /* dual-band RF */
1725 case RAL_RF_5222:
1726 for (i = 0; i < N(ural_rf5222); i++)
1727 if (ural_rf5222[i].chan == chan)
1728 break;
1729
1730 if (i < N(ural_rf5222)) {
1731 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1732 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1733 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1734 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1735 }
1736 break;
1737 }
1738
1739 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1740 ic->ic_state != IEEE80211_S_SCAN) {
1741 /* set Japan filter bit for channel 14 */
1742 tmp = ural_bbp_read(sc, 70);
1743
1744 tmp &= ~RAL_JAPAN_FILTER;
1745 if (chan == 14)
1746 tmp |= RAL_JAPAN_FILTER;
1747
1748 ural_bbp_write(sc, 70, tmp);
1749
1750 /* clear CRC errors */
1751 ural_read(sc, RAL_STA_CSR0);
1752
1753 DELAY(1000); /* RF needs a 1ms delay here */
1754 ural_disable_rf_tune(sc);
1755 }
1756 #undef N
1757 }
1758
1759 /*
1760 * Disable RF auto-tuning.
1761 */
1762 Static void
1763 ural_disable_rf_tune(struct ural_softc *sc)
1764 {
1765 uint32_t tmp;
1766
1767 if (sc->rf_rev != RAL_RF_2523) {
1768 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1769 ural_rf_write(sc, RAL_RF1, tmp);
1770 }
1771
1772 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1773 ural_rf_write(sc, RAL_RF3, tmp);
1774
1775 DPRINTFN(2, ("disabling RF autotune\n"));
1776 }
1777
1778 /*
1779 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1780 * synchronization.
1781 */
1782 Static void
1783 ural_enable_tsf_sync(struct ural_softc *sc)
1784 {
1785 struct ieee80211com *ic = &sc->sc_ic;
1786 uint16_t logcwmin, preload, tmp;
1787
1788 /* first, disable TSF synchronization */
1789 ural_write(sc, RAL_TXRX_CSR19, 0);
1790
1791 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1792 ural_write(sc, RAL_TXRX_CSR18, tmp);
1793
1794 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1795 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1796 tmp = logcwmin << 12 | preload;
1797 ural_write(sc, RAL_TXRX_CSR20, tmp);
1798
1799 /* finally, enable TSF synchronization */
1800 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1801 if (ic->ic_opmode == IEEE80211_M_STA)
1802 tmp |= RAL_ENABLE_TSF_SYNC(1);
1803 else
1804 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1805 ural_write(sc, RAL_TXRX_CSR19, tmp);
1806
1807 DPRINTF(("enabling TSF synchronization\n"));
1808 }
1809
1810 Static void
1811 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1812 {
1813 uint16_t tmp;
1814
1815 tmp = bssid[0] | bssid[1] << 8;
1816 ural_write(sc, RAL_MAC_CSR5, tmp);
1817
1818 tmp = bssid[2] | bssid[3] << 8;
1819 ural_write(sc, RAL_MAC_CSR6, tmp);
1820
1821 tmp = bssid[4] | bssid[5] << 8;
1822 ural_write(sc, RAL_MAC_CSR7, tmp);
1823
1824 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1825 }
1826
1827 Static void
1828 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1829 {
1830 uint16_t tmp;
1831
1832 tmp = addr[0] | addr[1] << 8;
1833 ural_write(sc, RAL_MAC_CSR2, tmp);
1834
1835 tmp = addr[2] | addr[3] << 8;
1836 ural_write(sc, RAL_MAC_CSR3, tmp);
1837
1838 tmp = addr[4] | addr[5] << 8;
1839 ural_write(sc, RAL_MAC_CSR4, tmp);
1840
1841 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1842 }
1843
1844 Static void
1845 ural_update_promisc(struct ural_softc *sc)
1846 {
1847 struct ifnet *ifp = &sc->sc_if;
1848 uint16_t tmp;
1849
1850 tmp = ural_read(sc, RAL_TXRX_CSR2);
1851
1852 tmp &= ~RAL_DROP_NOT_TO_ME;
1853 if (!(ifp->if_flags & IFF_PROMISC))
1854 tmp |= RAL_DROP_NOT_TO_ME;
1855
1856 ural_write(sc, RAL_TXRX_CSR2, tmp);
1857
1858 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1859 "entering" : "leaving"));
1860 }
1861
1862 Static const char *
1863 ural_get_rf(int rev)
1864 {
1865 switch (rev) {
1866 case RAL_RF_2522: return "RT2522";
1867 case RAL_RF_2523: return "RT2523";
1868 case RAL_RF_2524: return "RT2524";
1869 case RAL_RF_2525: return "RT2525";
1870 case RAL_RF_2525E: return "RT2525e";
1871 case RAL_RF_2526: return "RT2526";
1872 case RAL_RF_5222: return "RT5222";
1873 default: return "unknown";
1874 }
1875 }
1876
1877 Static void
1878 ural_read_eeprom(struct ural_softc *sc)
1879 {
1880 struct ieee80211com *ic = &sc->sc_ic;
1881 uint16_t val;
1882
1883 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1884 val = le16toh(val);
1885 sc->rf_rev = (val >> 11) & 0x7;
1886 sc->hw_radio = (val >> 10) & 0x1;
1887 sc->led_mode = (val >> 6) & 0x7;
1888 sc->rx_ant = (val >> 4) & 0x3;
1889 sc->tx_ant = (val >> 2) & 0x3;
1890 sc->nb_ant = val & 0x3;
1891
1892 /* read MAC address */
1893 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1894
1895 /* read default values for BBP registers */
1896 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1897
1898 /* read Tx power for all b/g channels */
1899 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1900 }
1901
1902 Static int
1903 ural_bbp_init(struct ural_softc *sc)
1904 {
1905 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1906 int i, ntries;
1907
1908 /* wait for BBP to be ready */
1909 for (ntries = 0; ntries < 100; ntries++) {
1910 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1911 break;
1912 DELAY(1000);
1913 }
1914 if (ntries == 100) {
1915 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
1916 return EIO;
1917 }
1918
1919 /* initialize BBP registers to default values */
1920 for (i = 0; i < N(ural_def_bbp); i++)
1921 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1922
1923 #if 0
1924 /* initialize BBP registers to values stored in EEPROM */
1925 for (i = 0; i < 16; i++) {
1926 if (sc->bbp_prom[i].reg == 0xff)
1927 continue;
1928 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1929 }
1930 #endif
1931
1932 return 0;
1933 #undef N
1934 }
1935
1936 Static void
1937 ural_set_txantenna(struct ural_softc *sc, int antenna)
1938 {
1939 uint16_t tmp;
1940 uint8_t tx;
1941
1942 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1943 if (antenna == 1)
1944 tx |= RAL_BBP_ANTA;
1945 else if (antenna == 2)
1946 tx |= RAL_BBP_ANTB;
1947 else
1948 tx |= RAL_BBP_DIVERSITY;
1949
1950 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1951 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1952 sc->rf_rev == RAL_RF_5222)
1953 tx |= RAL_BBP_FLIPIQ;
1954
1955 ural_bbp_write(sc, RAL_BBP_TX, tx);
1956
1957 /* update flags in PHY_CSR5 and PHY_CSR6 too */
1958 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1959 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1960
1961 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1962 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1963 }
1964
1965 Static void
1966 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1967 {
1968 uint8_t rx;
1969
1970 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1971 if (antenna == 1)
1972 rx |= RAL_BBP_ANTA;
1973 else if (antenna == 2)
1974 rx |= RAL_BBP_ANTB;
1975 else
1976 rx |= RAL_BBP_DIVERSITY;
1977
1978 /* need to force no I/Q flip for RF 2525e and 2526 */
1979 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1980 rx &= ~RAL_BBP_FLIPIQ;
1981
1982 ural_bbp_write(sc, RAL_BBP_RX, rx);
1983 }
1984
1985 Static int
1986 ural_init(struct ifnet *ifp)
1987 {
1988 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1989 struct ural_softc *sc = ifp->if_softc;
1990 struct ieee80211com *ic = &sc->sc_ic;
1991 struct ieee80211_key *wk;
1992 struct ural_rx_data *data;
1993 uint16_t sta[11], tmp;
1994 usbd_status error;
1995 int i, ntries;
1996
1997 ural_stop(ifp, 0);
1998
1999 /* initialize MAC registers to default values */
2000 for (i = 0; i < N(ural_def_mac); i++)
2001 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2002
2003 /* wait for BBP and RF to wake up (this can take a long time!) */
2004 for (ntries = 0; ntries < 100; ntries++) {
2005 tmp = ural_read(sc, RAL_MAC_CSR17);
2006 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2007 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2008 break;
2009 DELAY(1000);
2010 }
2011 if (ntries == 100) {
2012 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2013 USBDEVNAME(sc->sc_dev));
2014 error = EIO;
2015 goto fail;
2016 }
2017
2018 /* we're ready! */
2019 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2020
2021 /* set supported basic rates (1, 2, 6, 12, 24) */
2022 ural_write(sc, RAL_TXRX_CSR11, 0x153);
2023
2024 error = ural_bbp_init(sc);
2025 if (error != 0)
2026 goto fail;
2027
2028 /* set default BSS channel */
2029 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2030 ural_set_chan(sc, ic->ic_bss->ni_chan);
2031
2032 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2033 ural_read_multi(sc, RAL_STA_CSR0, sta, sizeof sta);
2034
2035 ural_set_txantenna(sc, 1);
2036 ural_set_rxantenna(sc, 1);
2037
2038 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2039 ural_set_macaddr(sc, ic->ic_myaddr);
2040
2041 /*
2042 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2043 */
2044 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2045 wk = &ic->ic_nw_keys[i];
2046 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2047 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2048 }
2049
2050 /*
2051 * Open Tx and Rx USB bulk pipes.
2052 */
2053 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2054 &sc->sc_tx_pipeh);
2055 if (error != 0) {
2056 printf("%s: could not open Tx pipe: %s\n",
2057 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2058 goto fail;
2059 }
2060
2061 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2062 &sc->sc_rx_pipeh);
2063 if (error != 0) {
2064 printf("%s: could not open Rx pipe: %s\n",
2065 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2066 goto fail;
2067 }
2068
2069 /*
2070 * Allocate Tx and Rx xfer queues.
2071 */
2072 error = ural_alloc_tx_list(sc);
2073 if (error != 0) {
2074 printf("%s: could not allocate Tx list\n",
2075 USBDEVNAME(sc->sc_dev));
2076 goto fail;
2077 }
2078
2079 error = ural_alloc_rx_list(sc);
2080 if (error != 0) {
2081 printf("%s: could not allocate Rx list\n",
2082 USBDEVNAME(sc->sc_dev));
2083 goto fail;
2084 }
2085
2086 /*
2087 * Start up the receive pipe.
2088 */
2089 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2090 data = &sc->rx_data[i];
2091
2092 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2093 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2094 usbd_transfer(data->xfer);
2095 }
2096
2097 /* kick Rx */
2098 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2099 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2100 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2101 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2102 tmp |= RAL_DROP_TODS;
2103 if (!(ifp->if_flags & IFF_PROMISC))
2104 tmp |= RAL_DROP_NOT_TO_ME;
2105 }
2106 ural_write(sc, RAL_TXRX_CSR2, tmp);
2107
2108 ifp->if_flags &= ~IFF_OACTIVE;
2109 ifp->if_flags |= IFF_RUNNING;
2110
2111 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2112 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2113 else
2114 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2115
2116 return 0;
2117
2118 fail: ural_stop(ifp, 1);
2119 return error;
2120 #undef N
2121 }
2122
2123 Static void
2124 ural_stop(struct ifnet *ifp, int disable)
2125 {
2126 struct ural_softc *sc = ifp->if_softc;
2127 struct ieee80211com *ic = &sc->sc_ic;
2128
2129 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2130
2131 sc->sc_tx_timer = 0;
2132 ifp->if_timer = 0;
2133 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2134
2135 /* disable Rx */
2136 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2137
2138 /* reset ASIC and BBP (but won't reset MAC registers!) */
2139 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2140 ural_write(sc, RAL_MAC_CSR1, 0);
2141
2142 if (sc->sc_rx_pipeh != NULL) {
2143 usbd_abort_pipe(sc->sc_rx_pipeh);
2144 usbd_close_pipe(sc->sc_rx_pipeh);
2145 sc->sc_rx_pipeh = NULL;
2146 }
2147
2148 if (sc->sc_tx_pipeh != NULL) {
2149 usbd_abort_pipe(sc->sc_tx_pipeh);
2150 usbd_close_pipe(sc->sc_tx_pipeh);
2151 sc->sc_tx_pipeh = NULL;
2152 }
2153
2154 ural_free_rx_list(sc);
2155 ural_free_tx_list(sc);
2156 }
2157
2158 int
2159 ural_activate(device_ptr_t self, enum devact act)
2160 {
2161 struct ural_softc *sc = (struct ural_softc *)self;
2162
2163 switch (act) {
2164 case DVACT_ACTIVATE:
2165 return EOPNOTSUPP;
2166 break;
2167
2168 case DVACT_DEACTIVATE:
2169 if_deactivate(&sc->sc_if);
2170 break;
2171 }
2172
2173 return 0;
2174 }
2175