if_ural.c revision 1.51 1 /* $NetBSD: if_ural.c,v 1.51 2016/11/25 12:56:29 skrll Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.51 2016/11/25 12:56:29 skrll Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111
112 Static int ural_alloc_tx_list(struct ural_softc *);
113 Static void ural_free_tx_list(struct ural_softc *);
114 Static int ural_alloc_rx_list(struct ural_softc *);
115 Static void ural_free_rx_list(struct ural_softc *);
116 Static int ural_media_change(struct ifnet *);
117 Static void ural_next_scan(void *);
118 Static void ural_task(void *);
119 Static int ural_newstate(struct ieee80211com *,
120 enum ieee80211_state, int);
121 Static int ural_rxrate(struct ural_rx_desc *);
122 Static void ural_txeof(struct usbd_xfer *, void *,
123 usbd_status);
124 Static void ural_rxeof(struct usbd_xfer *, void *,
125 usbd_status);
126 Static int ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_reset(struct ifnet *);
140 Static int ural_ioctl(struct ifnet *, u_long, void *);
141 Static void ural_set_testmode(struct ural_softc *);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_update_slot(struct ifnet *);
158 Static void ural_set_txpreamble(struct ural_softc *);
159 Static void ural_set_basicrates(struct ural_softc *);
160 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void ural_update_promisc(struct ural_softc *);
163 Static const char *ural_get_rf(int);
164 Static void ural_read_eeprom(struct ural_softc *);
165 Static int ural_bbp_init(struct ural_softc *);
166 Static void ural_set_txantenna(struct ural_softc *, int);
167 Static void ural_set_rxantenna(struct ural_softc *, int);
168 Static int ural_init(struct ifnet *);
169 Static void ural_stop(struct ifnet *, int);
170 Static void ural_amrr_start(struct ural_softc *,
171 struct ieee80211_node *);
172 Static void ural_amrr_timeout(void *);
173 Static void ural_amrr_update(struct usbd_xfer *, void *,
174 usbd_status status);
175
176 /*
177 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
178 */
179 static const struct ieee80211_rateset ural_rateset_11a =
180 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
181
182 static const struct ieee80211_rateset ural_rateset_11b =
183 { 4, { 2, 4, 11, 22 } };
184
185 static const struct ieee80211_rateset ural_rateset_11g =
186 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
187
188 /*
189 * Default values for MAC registers; values taken from the reference driver.
190 */
191 static const struct {
192 uint16_t reg;
193 uint16_t val;
194 } ural_def_mac[] = {
195 { RAL_TXRX_CSR5, 0x8c8d },
196 { RAL_TXRX_CSR6, 0x8b8a },
197 { RAL_TXRX_CSR7, 0x8687 },
198 { RAL_TXRX_CSR8, 0x0085 },
199 { RAL_MAC_CSR13, 0x1111 },
200 { RAL_MAC_CSR14, 0x1e11 },
201 { RAL_TXRX_CSR21, 0xe78f },
202 { RAL_MAC_CSR9, 0xff1d },
203 { RAL_MAC_CSR11, 0x0002 },
204 { RAL_MAC_CSR22, 0x0053 },
205 { RAL_MAC_CSR15, 0x0000 },
206 { RAL_MAC_CSR8, 0x0780 },
207 { RAL_TXRX_CSR19, 0x0000 },
208 { RAL_TXRX_CSR18, 0x005a },
209 { RAL_PHY_CSR2, 0x0000 },
210 { RAL_TXRX_CSR0, 0x1ec0 },
211 { RAL_PHY_CSR4, 0x000f }
212 };
213
214 /*
215 * Default values for BBP registers; values taken from the reference driver.
216 */
217 static const struct {
218 uint8_t reg;
219 uint8_t val;
220 } ural_def_bbp[] = {
221 { 3, 0x02 },
222 { 4, 0x19 },
223 { 14, 0x1c },
224 { 15, 0x30 },
225 { 16, 0xac },
226 { 17, 0x48 },
227 { 18, 0x18 },
228 { 19, 0xff },
229 { 20, 0x1e },
230 { 21, 0x08 },
231 { 22, 0x08 },
232 { 23, 0x08 },
233 { 24, 0x80 },
234 { 25, 0x50 },
235 { 26, 0x08 },
236 { 27, 0x23 },
237 { 30, 0x10 },
238 { 31, 0x2b },
239 { 32, 0xb9 },
240 { 34, 0x12 },
241 { 35, 0x50 },
242 { 39, 0xc4 },
243 { 40, 0x02 },
244 { 41, 0x60 },
245 { 53, 0x10 },
246 { 54, 0x18 },
247 { 56, 0x08 },
248 { 57, 0x10 },
249 { 58, 0x08 },
250 { 61, 0x60 },
251 { 62, 0x10 },
252 { 75, 0xff }
253 };
254
255 /*
256 * Default values for RF register R2 indexed by channel numbers.
257 */
258 static const uint32_t ural_rf2522_r2[] = {
259 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
260 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
261 };
262
263 static const uint32_t ural_rf2523_r2[] = {
264 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
265 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
266 };
267
268 static const uint32_t ural_rf2524_r2[] = {
269 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
270 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
271 };
272
273 static const uint32_t ural_rf2525_r2[] = {
274 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
275 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
276 };
277
278 static const uint32_t ural_rf2525_hi_r2[] = {
279 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
280 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
281 };
282
283 static const uint32_t ural_rf2525e_r2[] = {
284 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
285 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
286 };
287
288 static const uint32_t ural_rf2526_hi_r2[] = {
289 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
290 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
291 };
292
293 static const uint32_t ural_rf2526_r2[] = {
294 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
295 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
296 };
297
298 /*
299 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
300 * values taken from the reference driver.
301 */
302 static const struct {
303 uint8_t chan;
304 uint32_t r1;
305 uint32_t r2;
306 uint32_t r4;
307 } ural_rf5222[] = {
308 { 1, 0x08808, 0x0044d, 0x00282 },
309 { 2, 0x08808, 0x0044e, 0x00282 },
310 { 3, 0x08808, 0x0044f, 0x00282 },
311 { 4, 0x08808, 0x00460, 0x00282 },
312 { 5, 0x08808, 0x00461, 0x00282 },
313 { 6, 0x08808, 0x00462, 0x00282 },
314 { 7, 0x08808, 0x00463, 0x00282 },
315 { 8, 0x08808, 0x00464, 0x00282 },
316 { 9, 0x08808, 0x00465, 0x00282 },
317 { 10, 0x08808, 0x00466, 0x00282 },
318 { 11, 0x08808, 0x00467, 0x00282 },
319 { 12, 0x08808, 0x00468, 0x00282 },
320 { 13, 0x08808, 0x00469, 0x00282 },
321 { 14, 0x08808, 0x0046b, 0x00286 },
322
323 { 36, 0x08804, 0x06225, 0x00287 },
324 { 40, 0x08804, 0x06226, 0x00287 },
325 { 44, 0x08804, 0x06227, 0x00287 },
326 { 48, 0x08804, 0x06228, 0x00287 },
327 { 52, 0x08804, 0x06229, 0x00287 },
328 { 56, 0x08804, 0x0622a, 0x00287 },
329 { 60, 0x08804, 0x0622b, 0x00287 },
330 { 64, 0x08804, 0x0622c, 0x00287 },
331
332 { 100, 0x08804, 0x02200, 0x00283 },
333 { 104, 0x08804, 0x02201, 0x00283 },
334 { 108, 0x08804, 0x02202, 0x00283 },
335 { 112, 0x08804, 0x02203, 0x00283 },
336 { 116, 0x08804, 0x02204, 0x00283 },
337 { 120, 0x08804, 0x02205, 0x00283 },
338 { 124, 0x08804, 0x02206, 0x00283 },
339 { 128, 0x08804, 0x02207, 0x00283 },
340 { 132, 0x08804, 0x02208, 0x00283 },
341 { 136, 0x08804, 0x02209, 0x00283 },
342 { 140, 0x08804, 0x0220a, 0x00283 },
343
344 { 149, 0x08808, 0x02429, 0x00281 },
345 { 153, 0x08808, 0x0242b, 0x00281 },
346 { 157, 0x08808, 0x0242d, 0x00281 },
347 { 161, 0x08808, 0x0242f, 0x00281 }
348 };
349
350 int ural_match(device_t, cfdata_t, void *);
351 void ural_attach(device_t, device_t, void *);
352 int ural_detach(device_t, int);
353 int ural_activate(device_t, enum devact);
354 extern struct cfdriver ural_cd;
355 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
356 ural_detach, ural_activate);
357
358 int
359 ural_match(device_t parent, cfdata_t match, void *aux)
360 {
361 struct usb_attach_arg *uaa = aux;
362
363 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
364 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
365 }
366
367 void
368 ural_attach(device_t parent, device_t self, void *aux)
369 {
370 struct ural_softc *sc = device_private(self);
371 struct usb_attach_arg *uaa = aux;
372 struct ieee80211com *ic = &sc->sc_ic;
373 struct ifnet *ifp = &sc->sc_if;
374 usb_interface_descriptor_t *id;
375 usb_endpoint_descriptor_t *ed;
376 usbd_status error;
377 char *devinfop;
378 int i;
379
380 sc->sc_dev = self;
381 sc->sc_udev = uaa->uaa_device;
382
383 aprint_naive("\n");
384 aprint_normal("\n");
385
386 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
387 aprint_normal_dev(self, "%s\n", devinfop);
388 usbd_devinfo_free(devinfop);
389
390 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
391 if (error != 0) {
392 aprint_error_dev(self, "failed to set configuration"
393 ", err=%s\n", usbd_errstr(error));
394 return;
395 }
396
397 /* get the first interface handle */
398 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
399 &sc->sc_iface);
400 if (error != 0) {
401 aprint_error_dev(self, "could not get interface handle\n");
402 return;
403 }
404
405 /*
406 * Find endpoints.
407 */
408 id = usbd_get_interface_descriptor(sc->sc_iface);
409
410 sc->sc_rx_no = sc->sc_tx_no = -1;
411 for (i = 0; i < id->bNumEndpoints; i++) {
412 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
413 if (ed == NULL) {
414 aprint_error_dev(self,
415 "no endpoint descriptor for %d\n", i);
416 return;
417 }
418
419 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
420 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
421 sc->sc_rx_no = ed->bEndpointAddress;
422 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
423 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
424 sc->sc_tx_no = ed->bEndpointAddress;
425 }
426 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
427 aprint_error_dev(self, "missing endpoint\n");
428 return;
429 }
430
431 usb_init_task(&sc->sc_task, ural_task, sc, 0);
432 callout_init(&sc->sc_scan_ch, 0);
433 sc->amrr.amrr_min_success_threshold = 1;
434 sc->amrr.amrr_max_success_threshold = 15;
435 callout_init(&sc->sc_amrr_ch, 0);
436
437 /* retrieve RT2570 rev. no */
438 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
439
440 /* retrieve MAC address and various other things from EEPROM */
441 ural_read_eeprom(sc);
442
443 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
444 sc->asic_rev, ural_get_rf(sc->rf_rev));
445
446 ifp->if_softc = sc;
447 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
448 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449 ifp->if_init = ural_init;
450 ifp->if_ioctl = ural_ioctl;
451 ifp->if_start = ural_start;
452 ifp->if_watchdog = ural_watchdog;
453 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
454 IFQ_SET_READY(&ifp->if_snd);
455
456 ic->ic_ifp = ifp;
457 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
458 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
459 ic->ic_state = IEEE80211_S_INIT;
460
461 /* set device capabilities */
462 ic->ic_caps =
463 IEEE80211_C_IBSS | /* IBSS mode supported */
464 IEEE80211_C_MONITOR | /* monitor mode supported */
465 IEEE80211_C_HOSTAP | /* HostAp mode supported */
466 IEEE80211_C_TXPMGT | /* tx power management */
467 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
468 IEEE80211_C_SHSLOT | /* short slot time supported */
469 IEEE80211_C_WPA; /* 802.11i */
470
471 if (sc->rf_rev == RAL_RF_5222) {
472 /* set supported .11a rates */
473 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
474
475 /* set supported .11a channels */
476 for (i = 36; i <= 64; i += 4) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
479 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
480 }
481 for (i = 100; i <= 140; i += 4) {
482 ic->ic_channels[i].ic_freq =
483 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
484 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
485 }
486 for (i = 149; i <= 161; i += 4) {
487 ic->ic_channels[i].ic_freq =
488 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
489 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
490 }
491 }
492
493 /* set supported .11b and .11g rates */
494 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
495 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
496
497 /* set supported .11b and .11g channels (1 through 14) */
498 for (i = 1; i <= 14; i++) {
499 ic->ic_channels[i].ic_freq =
500 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
501 ic->ic_channels[i].ic_flags =
502 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
503 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
504 }
505
506 if_attach(ifp);
507 ieee80211_ifattach(ic);
508 ic->ic_reset = ural_reset;
509
510 /* override state transition machine */
511 sc->sc_newstate = ic->ic_newstate;
512 ic->ic_newstate = ural_newstate;
513 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
514
515 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
516 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
517
518 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
519 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
520 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
521
522 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
523 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
524 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
525
526 ieee80211_announce(ic);
527
528 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
529
530 if (!pmf_device_register(self, NULL, NULL))
531 aprint_error_dev(self, "couldn't establish power handler\n");
532
533 return;
534 }
535
536 int
537 ural_detach(device_t self, int flags)
538 {
539 struct ural_softc *sc = device_private(self);
540 struct ieee80211com *ic = &sc->sc_ic;
541 struct ifnet *ifp = &sc->sc_if;
542 int s;
543
544 pmf_device_deregister(self);
545
546 s = splusb();
547
548 ural_stop(ifp, 1);
549 usb_rem_task(sc->sc_udev, &sc->sc_task);
550 callout_stop(&sc->sc_scan_ch);
551 callout_stop(&sc->sc_amrr_ch);
552
553 bpf_detach(ifp);
554 ieee80211_ifdetach(ic);
555 if_detach(ifp);
556
557 splx(s);
558
559 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
560
561 return 0;
562 }
563
564 Static int
565 ural_alloc_tx_list(struct ural_softc *sc)
566 {
567 struct ural_tx_data *data;
568 int i, error;
569
570 sc->tx_queued = 0;
571
572 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
573 data = &sc->tx_data[i];
574
575 data->sc = sc;
576 error = usbd_create_xfer(sc->sc_tx_pipeh,
577 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
578 &data->xfer);
579 if (error) {
580 printf("%s: could not allocate tx xfer\n",
581 device_xname(sc->sc_dev));
582 goto fail;
583 }
584
585 data->buf = usbd_get_buffer(data->xfer);
586 }
587
588 return 0;
589
590 fail: ural_free_tx_list(sc);
591 return error;
592 }
593
594 Static void
595 ural_free_tx_list(struct ural_softc *sc)
596 {
597 struct ural_tx_data *data;
598 int i;
599
600 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
601 data = &sc->tx_data[i];
602
603 if (data->xfer != NULL) {
604 usbd_destroy_xfer(data->xfer);
605 data->xfer = NULL;
606 }
607
608 if (data->ni != NULL) {
609 ieee80211_free_node(data->ni);
610 data->ni = NULL;
611 }
612 }
613 }
614
615 Static int
616 ural_alloc_rx_list(struct ural_softc *sc)
617 {
618 struct ural_rx_data *data;
619 int i, error;
620
621 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
622 data = &sc->rx_data[i];
623
624 data->sc = sc;
625
626 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
627 USBD_SHORT_XFER_OK, 0, &data->xfer);
628 if (error) {
629 printf("%s: could not allocate rx xfer\n",
630 device_xname(sc->sc_dev));
631 goto fail;
632 }
633
634 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 if (data->m == NULL) {
636 printf("%s: could not allocate rx mbuf\n",
637 device_xname(sc->sc_dev));
638 error = ENOMEM;
639 goto fail;
640 }
641
642 MCLGET(data->m, M_DONTWAIT);
643 if (!(data->m->m_flags & M_EXT)) {
644 printf("%s: could not allocate rx mbuf cluster\n",
645 device_xname(sc->sc_dev));
646 error = ENOMEM;
647 goto fail;
648 }
649
650 data->buf = mtod(data->m, uint8_t *);
651 }
652
653 return 0;
654
655 fail: ural_free_tx_list(sc);
656 return error;
657 }
658
659 Static void
660 ural_free_rx_list(struct ural_softc *sc)
661 {
662 struct ural_rx_data *data;
663 int i;
664
665 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
666 data = &sc->rx_data[i];
667
668 if (data->xfer != NULL) {
669 usbd_destroy_xfer(data->xfer);
670 data->xfer = NULL;
671 }
672
673 if (data->m != NULL) {
674 m_freem(data->m);
675 data->m = NULL;
676 }
677 }
678 }
679
680 Static int
681 ural_media_change(struct ifnet *ifp)
682 {
683 int error;
684
685 error = ieee80211_media_change(ifp);
686 if (error != ENETRESET)
687 return error;
688
689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 ural_init(ifp);
691
692 return 0;
693 }
694
695 /*
696 * This function is called periodically (every 200ms) during scanning to
697 * switch from one channel to another.
698 */
699 Static void
700 ural_next_scan(void *arg)
701 {
702 struct ural_softc *sc = arg;
703 struct ieee80211com *ic = &sc->sc_ic;
704
705 if (ic->ic_state == IEEE80211_S_SCAN)
706 ieee80211_next_scan(ic);
707 }
708
709 Static void
710 ural_task(void *arg)
711 {
712 struct ural_softc *sc = arg;
713 struct ieee80211com *ic = &sc->sc_ic;
714 enum ieee80211_state ostate;
715 struct ieee80211_node *ni;
716 struct mbuf *m;
717
718 ostate = ic->ic_state;
719
720 switch (sc->sc_state) {
721 case IEEE80211_S_INIT:
722 if (ostate == IEEE80211_S_RUN) {
723 /* abort TSF synchronization */
724 ural_write(sc, RAL_TXRX_CSR19, 0);
725
726 /* force tx led to stop blinking */
727 ural_write(sc, RAL_MAC_CSR20, 0);
728 }
729 break;
730
731 case IEEE80211_S_SCAN:
732 ural_set_chan(sc, ic->ic_curchan);
733 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
734 break;
735
736 case IEEE80211_S_AUTH:
737 ural_set_chan(sc, ic->ic_curchan);
738 break;
739
740 case IEEE80211_S_ASSOC:
741 ural_set_chan(sc, ic->ic_curchan);
742 break;
743
744 case IEEE80211_S_RUN:
745 ural_set_chan(sc, ic->ic_curchan);
746
747 ni = ic->ic_bss;
748
749 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
750 ural_update_slot(ic->ic_ifp);
751 ural_set_txpreamble(sc);
752 ural_set_basicrates(sc);
753 ural_set_bssid(sc, ni->ni_bssid);
754 }
755
756 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
757 ic->ic_opmode == IEEE80211_M_IBSS) {
758 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
759 if (m == NULL) {
760 printf("%s: could not allocate beacon\n",
761 device_xname(sc->sc_dev));
762 return;
763 }
764
765 if (ural_tx_bcn(sc, m, ni) != 0) {
766 m_freem(m);
767 printf("%s: could not send beacon\n",
768 device_xname(sc->sc_dev));
769 return;
770 }
771
772 /* beacon is no longer needed */
773 m_freem(m);
774 }
775
776 /* make tx led blink on tx (controlled by ASIC) */
777 ural_write(sc, RAL_MAC_CSR20, 1);
778
779 if (ic->ic_opmode != IEEE80211_M_MONITOR)
780 ural_enable_tsf_sync(sc);
781
782 /* enable automatic rate adaptation in STA mode */
783 if (ic->ic_opmode == IEEE80211_M_STA &&
784 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
785 ural_amrr_start(sc, ni);
786
787 break;
788 }
789
790 sc->sc_newstate(ic, sc->sc_state, -1);
791 }
792
793 Static int
794 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
795 int arg)
796 {
797 struct ural_softc *sc = ic->ic_ifp->if_softc;
798
799 usb_rem_task(sc->sc_udev, &sc->sc_task);
800 callout_stop(&sc->sc_scan_ch);
801 callout_stop(&sc->sc_amrr_ch);
802
803 /* do it in a process context */
804 sc->sc_state = nstate;
805 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
806
807 return 0;
808 }
809
810 /* quickly determine if a given rate is CCK or OFDM */
811 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
812
813 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
814 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
815
816 #define RAL_SIFS 10 /* us */
817
818 #define RAL_RXTX_TURNAROUND 5 /* us */
819
820 /*
821 * This function is only used by the Rx radiotap code.
822 */
823 Static int
824 ural_rxrate(struct ural_rx_desc *desc)
825 {
826 if (le32toh(desc->flags) & RAL_RX_OFDM) {
827 /* reverse function of ural_plcp_signal */
828 switch (desc->rate) {
829 case 0xb: return 12;
830 case 0xf: return 18;
831 case 0xa: return 24;
832 case 0xe: return 36;
833 case 0x9: return 48;
834 case 0xd: return 72;
835 case 0x8: return 96;
836 case 0xc: return 108;
837 }
838 } else {
839 if (desc->rate == 10)
840 return 2;
841 if (desc->rate == 20)
842 return 4;
843 if (desc->rate == 55)
844 return 11;
845 if (desc->rate == 110)
846 return 22;
847 }
848 return 2; /* should not get there */
849 }
850
851 Static void
852 ural_txeof(struct usbd_xfer *xfer, void * priv,
853 usbd_status status)
854 {
855 struct ural_tx_data *data = priv;
856 struct ural_softc *sc = data->sc;
857 struct ifnet *ifp = &sc->sc_if;
858 int s;
859
860 if (status != USBD_NORMAL_COMPLETION) {
861 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
862 return;
863
864 printf("%s: could not transmit buffer: %s\n",
865 device_xname(sc->sc_dev), usbd_errstr(status));
866
867 if (status == USBD_STALLED)
868 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
869
870 ifp->if_oerrors++;
871 return;
872 }
873
874 s = splnet();
875
876 m_freem(data->m);
877 data->m = NULL;
878 ieee80211_free_node(data->ni);
879 data->ni = NULL;
880
881 sc->tx_queued--;
882 ifp->if_opackets++;
883
884 DPRINTFN(10, ("tx done\n"));
885
886 sc->sc_tx_timer = 0;
887 ifp->if_flags &= ~IFF_OACTIVE;
888 ural_start(ifp);
889
890 splx(s);
891 }
892
893 Static void
894 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
895 {
896 struct ural_rx_data *data = priv;
897 struct ural_softc *sc = data->sc;
898 struct ieee80211com *ic = &sc->sc_ic;
899 struct ifnet *ifp = &sc->sc_if;
900 struct ural_rx_desc *desc;
901 struct ieee80211_frame *wh;
902 struct ieee80211_node *ni;
903 struct mbuf *mnew, *m;
904 int s, len;
905
906 if (status != USBD_NORMAL_COMPLETION) {
907 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
908 return;
909
910 if (status == USBD_STALLED)
911 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
912 goto skip;
913 }
914
915 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
916
917 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
918 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
919 len));
920 ifp->if_ierrors++;
921 goto skip;
922 }
923
924 /* rx descriptor is located at the end */
925 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
926
927 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
928 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
929 /*
930 * This should not happen since we did not request to receive
931 * those frames when we filled RAL_TXRX_CSR2.
932 */
933 DPRINTFN(5, ("PHY or CRC error\n"));
934 ifp->if_ierrors++;
935 goto skip;
936 }
937
938 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
939 if (mnew == NULL) {
940 ifp->if_ierrors++;
941 goto skip;
942 }
943
944 MCLGET(mnew, M_DONTWAIT);
945 if (!(mnew->m_flags & M_EXT)) {
946 ifp->if_ierrors++;
947 m_freem(mnew);
948 goto skip;
949 }
950
951 m = data->m;
952 data->m = mnew;
953 data->buf = mtod(data->m, uint8_t *);
954
955 /* finalize mbuf */
956 m_set_rcvif(m, ifp);
957 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
958 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
959
960 s = splnet();
961
962 if (sc->sc_drvbpf != NULL) {
963 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
964
965 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
966 tap->wr_rate = ural_rxrate(desc);
967 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
968 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
969 tap->wr_antenna = sc->rx_ant;
970 tap->wr_antsignal = desc->rssi;
971
972 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
973 }
974
975 wh = mtod(m, struct ieee80211_frame *);
976 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
977
978 /* send the frame to the 802.11 layer */
979 ieee80211_input(ic, m, ni, desc->rssi, 0);
980
981 /* node is no longer needed */
982 ieee80211_free_node(ni);
983
984 splx(s);
985
986 DPRINTFN(15, ("rx done\n"));
987
988 skip: /* setup a new transfer */
989 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
990 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
991 usbd_transfer(xfer);
992 }
993
994 /*
995 * Return the expected ack rate for a frame transmitted at rate `rate'.
996 * XXX: this should depend on the destination node basic rate set.
997 */
998 Static int
999 ural_ack_rate(struct ieee80211com *ic, int rate)
1000 {
1001 switch (rate) {
1002 /* CCK rates */
1003 case 2:
1004 return 2;
1005 case 4:
1006 case 11:
1007 case 22:
1008 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1009
1010 /* OFDM rates */
1011 case 12:
1012 case 18:
1013 return 12;
1014 case 24:
1015 case 36:
1016 return 24;
1017 case 48:
1018 case 72:
1019 case 96:
1020 case 108:
1021 return 48;
1022 }
1023
1024 /* default to 1Mbps */
1025 return 2;
1026 }
1027
1028 /*
1029 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1030 * The function automatically determines the operating mode depending on the
1031 * given rate. `flags' indicates whether short preamble is in use or not.
1032 */
1033 Static uint16_t
1034 ural_txtime(int len, int rate, uint32_t flags)
1035 {
1036 uint16_t txtime;
1037
1038 if (RAL_RATE_IS_OFDM(rate)) {
1039 /* IEEE Std 802.11g-2003, pp. 37 */
1040 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1041 txtime = 16 + 4 + 4 * txtime + 6;
1042 } else {
1043 /* IEEE Std 802.11b-1999, pp. 28 */
1044 txtime = (16 * len + rate - 1) / rate;
1045 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1046 txtime += 72 + 24;
1047 else
1048 txtime += 144 + 48;
1049 }
1050 return txtime;
1051 }
1052
1053 Static uint8_t
1054 ural_plcp_signal(int rate)
1055 {
1056 switch (rate) {
1057 /* CCK rates (returned values are device-dependent) */
1058 case 2: return 0x0;
1059 case 4: return 0x1;
1060 case 11: return 0x2;
1061 case 22: return 0x3;
1062
1063 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1064 case 12: return 0xb;
1065 case 18: return 0xf;
1066 case 24: return 0xa;
1067 case 36: return 0xe;
1068 case 48: return 0x9;
1069 case 72: return 0xd;
1070 case 96: return 0x8;
1071 case 108: return 0xc;
1072
1073 /* unsupported rates (should not get there) */
1074 default: return 0xff;
1075 }
1076 }
1077
1078 Static void
1079 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1080 uint32_t flags, int len, int rate)
1081 {
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 uint16_t plcp_length;
1084 int remainder;
1085
1086 desc->flags = htole32(flags);
1087 desc->flags |= htole32(RAL_TX_NEWSEQ);
1088 desc->flags |= htole32(len << 16);
1089
1090 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1091 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1092
1093 /* setup PLCP fields */
1094 desc->plcp_signal = ural_plcp_signal(rate);
1095 desc->plcp_service = 4;
1096
1097 len += IEEE80211_CRC_LEN;
1098 if (RAL_RATE_IS_OFDM(rate)) {
1099 desc->flags |= htole32(RAL_TX_OFDM);
1100
1101 plcp_length = len & 0xfff;
1102 desc->plcp_length_hi = plcp_length >> 6;
1103 desc->plcp_length_lo = plcp_length & 0x3f;
1104 } else {
1105 plcp_length = (16 * len + rate - 1) / rate;
1106 if (rate == 22) {
1107 remainder = (16 * len) % 22;
1108 if (remainder != 0 && remainder < 7)
1109 desc->plcp_service |= RAL_PLCP_LENGEXT;
1110 }
1111 desc->plcp_length_hi = plcp_length >> 8;
1112 desc->plcp_length_lo = plcp_length & 0xff;
1113
1114 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1115 desc->plcp_signal |= 0x08;
1116 }
1117
1118 desc->iv = 0;
1119 desc->eiv = 0;
1120 }
1121
1122 #define RAL_TX_TIMEOUT 5000
1123
1124 Static int
1125 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1126 {
1127 struct ural_tx_desc *desc;
1128 struct usbd_xfer *xfer;
1129 uint8_t cmd = 0;
1130 usbd_status error;
1131 uint8_t *buf;
1132 int xferlen, rate;
1133
1134 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1135
1136 /* xfer length needs to be a multiple of two! */
1137 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1138
1139 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1140 USBD_FORCE_SHORT_XFER, 0, &xfer);
1141 if (error)
1142 return error;
1143
1144 buf = usbd_get_buffer(xfer);
1145
1146 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1147 RAL_TX_TIMEOUT, NULL);
1148
1149 error = usbd_sync_transfer(xfer);
1150 if (error != 0) {
1151 usbd_destroy_xfer(xfer);
1152 return error;
1153 }
1154
1155 desc = (struct ural_tx_desc *)buf;
1156
1157 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1158 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1159 m0->m_pkthdr.len, rate);
1160
1161 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1162 m0->m_pkthdr.len, rate, xferlen));
1163
1164 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1165 RAL_TX_TIMEOUT, NULL);
1166
1167 error = usbd_sync_transfer(xfer);
1168 usbd_destroy_xfer(xfer);
1169
1170 return error;
1171 }
1172
1173 Static int
1174 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1175 {
1176 struct ieee80211com *ic = &sc->sc_ic;
1177 struct ural_tx_desc *desc;
1178 struct ural_tx_data *data;
1179 struct ieee80211_frame *wh;
1180 struct ieee80211_key *k;
1181 uint32_t flags = 0;
1182 uint16_t dur;
1183 usbd_status error;
1184 int xferlen, rate;
1185
1186 data = &sc->tx_data[0];
1187 desc = (struct ural_tx_desc *)data->buf;
1188
1189 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1190
1191 wh = mtod(m0, struct ieee80211_frame *);
1192
1193 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1194 k = ieee80211_crypto_encap(ic, ni, m0);
1195 if (k == NULL) {
1196 m_freem(m0);
1197 return ENOBUFS;
1198 }
1199 }
1200
1201 data->m = m0;
1202 data->ni = ni;
1203
1204 wh = mtod(m0, struct ieee80211_frame *);
1205
1206 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1207 flags |= RAL_TX_ACK;
1208
1209 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1210 *(uint16_t *)wh->i_dur = htole16(dur);
1211
1212 /* tell hardware to add timestamp for probe responses */
1213 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1214 IEEE80211_FC0_TYPE_MGT &&
1215 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1216 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1217 flags |= RAL_TX_TIMESTAMP;
1218 }
1219
1220 if (sc->sc_drvbpf != NULL) {
1221 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1222
1223 tap->wt_flags = 0;
1224 tap->wt_rate = rate;
1225 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1226 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1227 tap->wt_antenna = sc->tx_ant;
1228
1229 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1230 }
1231
1232 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1233 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1234
1235 /* align end on a 2-bytes boundary */
1236 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1237
1238 /*
1239 * No space left in the last URB to store the extra 2 bytes, force
1240 * sending of another URB.
1241 */
1242 if ((xferlen % 64) == 0)
1243 xferlen += 2;
1244
1245 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1246 m0->m_pkthdr.len, rate, xferlen));
1247
1248 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1249 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1250
1251 error = usbd_transfer(data->xfer);
1252 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1253 m_freem(m0);
1254 return error;
1255 }
1256
1257 sc->tx_queued++;
1258
1259 return 0;
1260 }
1261
1262 Static int
1263 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1264 {
1265 struct ieee80211com *ic = &sc->sc_ic;
1266 struct ural_tx_desc *desc;
1267 struct ural_tx_data *data;
1268 struct ieee80211_frame *wh;
1269 struct ieee80211_key *k;
1270 uint32_t flags = 0;
1271 uint16_t dur;
1272 usbd_status error;
1273 int xferlen, rate;
1274
1275 wh = mtod(m0, struct ieee80211_frame *);
1276
1277 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1278 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1279 else
1280 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1281
1282 rate &= IEEE80211_RATE_VAL;
1283
1284 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1285 k = ieee80211_crypto_encap(ic, ni, m0);
1286 if (k == NULL) {
1287 m_freem(m0);
1288 return ENOBUFS;
1289 }
1290
1291 /* packet header may have moved, reset our local pointer */
1292 wh = mtod(m0, struct ieee80211_frame *);
1293 }
1294
1295 data = &sc->tx_data[0];
1296 desc = (struct ural_tx_desc *)data->buf;
1297
1298 data->m = m0;
1299 data->ni = ni;
1300
1301 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1302 flags |= RAL_TX_ACK;
1303 flags |= RAL_TX_RETRY(7);
1304
1305 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1306 ic->ic_flags) + RAL_SIFS;
1307 *(uint16_t *)wh->i_dur = htole16(dur);
1308 }
1309
1310 if (sc->sc_drvbpf != NULL) {
1311 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1312
1313 tap->wt_flags = 0;
1314 tap->wt_rate = rate;
1315 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1316 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1317 tap->wt_antenna = sc->tx_ant;
1318
1319 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1320 }
1321
1322 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1323 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1324
1325 /* align end on a 2-bytes boundary */
1326 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1327
1328 /*
1329 * No space left in the last URB to store the extra 2 bytes, force
1330 * sending of another URB.
1331 */
1332 if ((xferlen % 64) == 0)
1333 xferlen += 2;
1334
1335 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1336 m0->m_pkthdr.len, rate, xferlen));
1337 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1338 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1339
1340 error = usbd_transfer(data->xfer);
1341 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1342 return error;
1343
1344 sc->tx_queued++;
1345
1346 return 0;
1347 }
1348
1349 Static void
1350 ural_start(struct ifnet *ifp)
1351 {
1352 struct ural_softc *sc = ifp->if_softc;
1353 struct ieee80211com *ic = &sc->sc_ic;
1354 struct mbuf *m0;
1355 struct ether_header *eh;
1356 struct ieee80211_node *ni;
1357
1358 for (;;) {
1359 IF_POLL(&ic->ic_mgtq, m0);
1360 if (m0 != NULL) {
1361 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1362 ifp->if_flags |= IFF_OACTIVE;
1363 break;
1364 }
1365 IF_DEQUEUE(&ic->ic_mgtq, m0);
1366
1367 ni = M_GETCTX(m0, struct ieee80211_node *);
1368 M_CLEARCTX(m0);
1369 bpf_mtap3(ic->ic_rawbpf, m0);
1370 if (ural_tx_mgt(sc, m0, ni) != 0)
1371 break;
1372
1373 } else {
1374 if (ic->ic_state != IEEE80211_S_RUN)
1375 break;
1376 IFQ_DEQUEUE(&ifp->if_snd, m0);
1377 if (m0 == NULL)
1378 break;
1379 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1380 IF_PREPEND(&ifp->if_snd, m0);
1381 ifp->if_flags |= IFF_OACTIVE;
1382 break;
1383 }
1384
1385 if (m0->m_len < sizeof(struct ether_header) &&
1386 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1387 continue;
1388
1389 eh = mtod(m0, struct ether_header *);
1390 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1391 if (ni == NULL) {
1392 m_freem(m0);
1393 continue;
1394 }
1395 bpf_mtap(ifp, m0);
1396 m0 = ieee80211_encap(ic, m0, ni);
1397 if (m0 == NULL) {
1398 ieee80211_free_node(ni);
1399 continue;
1400 }
1401 bpf_mtap3(ic->ic_rawbpf, m0);
1402 if (ural_tx_data(sc, m0, ni) != 0) {
1403 ieee80211_free_node(ni);
1404 ifp->if_oerrors++;
1405 break;
1406 }
1407 }
1408
1409 sc->sc_tx_timer = 5;
1410 ifp->if_timer = 1;
1411 }
1412 }
1413
1414 Static void
1415 ural_watchdog(struct ifnet *ifp)
1416 {
1417 struct ural_softc *sc = ifp->if_softc;
1418 struct ieee80211com *ic = &sc->sc_ic;
1419
1420 ifp->if_timer = 0;
1421
1422 if (sc->sc_tx_timer > 0) {
1423 if (--sc->sc_tx_timer == 0) {
1424 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1425 /*ural_init(sc); XXX needs a process context! */
1426 ifp->if_oerrors++;
1427 return;
1428 }
1429 ifp->if_timer = 1;
1430 }
1431
1432 ieee80211_watchdog(ic);
1433 }
1434
1435 /*
1436 * This function allows for fast channel switching in monitor mode (used by
1437 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1438 * generate a new beacon frame.
1439 */
1440 Static int
1441 ural_reset(struct ifnet *ifp)
1442 {
1443 struct ural_softc *sc = ifp->if_softc;
1444 struct ieee80211com *ic = &sc->sc_ic;
1445
1446 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1447 return ENETRESET;
1448
1449 ural_set_chan(sc, ic->ic_curchan);
1450
1451 return 0;
1452 }
1453
1454 Static int
1455 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1456 {
1457 #define IS_RUNNING(ifp) \
1458 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1459
1460 struct ural_softc *sc = ifp->if_softc;
1461 struct ieee80211com *ic = &sc->sc_ic;
1462 int s, error = 0;
1463
1464 s = splnet();
1465
1466 switch (cmd) {
1467 case SIOCSIFFLAGS:
1468 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1469 break;
1470 /* XXX re-use ether_ioctl() */
1471 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1472 case IFF_UP|IFF_RUNNING:
1473 ural_update_promisc(sc);
1474 break;
1475 case IFF_UP:
1476 ural_init(ifp);
1477 break;
1478 case IFF_RUNNING:
1479 ural_stop(ifp, 1);
1480 break;
1481 case 0:
1482 break;
1483 }
1484 break;
1485
1486 case SIOCADDMULTI:
1487 case SIOCDELMULTI:
1488 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1489 error = 0;
1490 }
1491 break;
1492
1493 default:
1494 error = ieee80211_ioctl(ic, cmd, data);
1495 }
1496
1497 if (error == ENETRESET) {
1498 if (IS_RUNNING(ifp) &&
1499 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1500 ural_init(ifp);
1501 error = 0;
1502 }
1503
1504 splx(s);
1505
1506 return error;
1507 #undef IS_RUNNING
1508 }
1509
1510 Static void
1511 ural_set_testmode(struct ural_softc *sc)
1512 {
1513 usb_device_request_t req;
1514 usbd_status error;
1515
1516 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1517 req.bRequest = RAL_VENDOR_REQUEST;
1518 USETW(req.wValue, 4);
1519 USETW(req.wIndex, 1);
1520 USETW(req.wLength, 0);
1521
1522 error = usbd_do_request(sc->sc_udev, &req, NULL);
1523 if (error != 0) {
1524 printf("%s: could not set test mode: %s\n",
1525 device_xname(sc->sc_dev), usbd_errstr(error));
1526 }
1527 }
1528
1529 Static void
1530 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1531 {
1532 usb_device_request_t req;
1533 usbd_status error;
1534
1535 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1536 req.bRequest = RAL_READ_EEPROM;
1537 USETW(req.wValue, 0);
1538 USETW(req.wIndex, addr);
1539 USETW(req.wLength, len);
1540
1541 error = usbd_do_request(sc->sc_udev, &req, buf);
1542 if (error != 0) {
1543 printf("%s: could not read EEPROM: %s\n",
1544 device_xname(sc->sc_dev), usbd_errstr(error));
1545 }
1546 }
1547
1548 Static uint16_t
1549 ural_read(struct ural_softc *sc, uint16_t reg)
1550 {
1551 usb_device_request_t req;
1552 usbd_status error;
1553 uint16_t val;
1554
1555 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1556 req.bRequest = RAL_READ_MAC;
1557 USETW(req.wValue, 0);
1558 USETW(req.wIndex, reg);
1559 USETW(req.wLength, sizeof(uint16_t));
1560
1561 error = usbd_do_request(sc->sc_udev, &req, &val);
1562 if (error != 0) {
1563 printf("%s: could not read MAC register: %s\n",
1564 device_xname(sc->sc_dev), usbd_errstr(error));
1565 return 0;
1566 }
1567
1568 return le16toh(val);
1569 }
1570
1571 Static void
1572 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1573 {
1574 usb_device_request_t req;
1575 usbd_status error;
1576
1577 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1578 req.bRequest = RAL_READ_MULTI_MAC;
1579 USETW(req.wValue, 0);
1580 USETW(req.wIndex, reg);
1581 USETW(req.wLength, len);
1582
1583 error = usbd_do_request(sc->sc_udev, &req, buf);
1584 if (error != 0) {
1585 printf("%s: could not read MAC register: %s\n",
1586 device_xname(sc->sc_dev), usbd_errstr(error));
1587 }
1588 }
1589
1590 Static void
1591 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1592 {
1593 usb_device_request_t req;
1594 usbd_status error;
1595
1596 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1597 req.bRequest = RAL_WRITE_MAC;
1598 USETW(req.wValue, val);
1599 USETW(req.wIndex, reg);
1600 USETW(req.wLength, 0);
1601
1602 error = usbd_do_request(sc->sc_udev, &req, NULL);
1603 if (error != 0) {
1604 printf("%s: could not write MAC register: %s\n",
1605 device_xname(sc->sc_dev), usbd_errstr(error));
1606 }
1607 }
1608
1609 Static void
1610 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1611 {
1612 usb_device_request_t req;
1613 usbd_status error;
1614
1615 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1616 req.bRequest = RAL_WRITE_MULTI_MAC;
1617 USETW(req.wValue, 0);
1618 USETW(req.wIndex, reg);
1619 USETW(req.wLength, len);
1620
1621 error = usbd_do_request(sc->sc_udev, &req, buf);
1622 if (error != 0) {
1623 printf("%s: could not write MAC register: %s\n",
1624 device_xname(sc->sc_dev), usbd_errstr(error));
1625 }
1626 }
1627
1628 Static void
1629 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1630 {
1631 uint16_t tmp;
1632 int ntries;
1633
1634 for (ntries = 0; ntries < 5; ntries++) {
1635 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1636 break;
1637 }
1638 if (ntries == 5) {
1639 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1640 return;
1641 }
1642
1643 tmp = reg << 8 | val;
1644 ural_write(sc, RAL_PHY_CSR7, tmp);
1645 }
1646
1647 Static uint8_t
1648 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1649 {
1650 uint16_t val;
1651 int ntries;
1652
1653 val = RAL_BBP_WRITE | reg << 8;
1654 ural_write(sc, RAL_PHY_CSR7, val);
1655
1656 for (ntries = 0; ntries < 5; ntries++) {
1657 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1658 break;
1659 }
1660 if (ntries == 5) {
1661 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1662 return 0;
1663 }
1664
1665 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1666 }
1667
1668 Static void
1669 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1670 {
1671 uint32_t tmp;
1672 int ntries;
1673
1674 for (ntries = 0; ntries < 5; ntries++) {
1675 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1676 break;
1677 }
1678 if (ntries == 5) {
1679 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1680 return;
1681 }
1682
1683 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1684 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1685 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1686
1687 /* remember last written value in sc */
1688 sc->rf_regs[reg] = val;
1689
1690 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1691 }
1692
1693 Static void
1694 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1695 {
1696 struct ieee80211com *ic = &sc->sc_ic;
1697 uint8_t power, tmp;
1698 u_int i, chan;
1699
1700 chan = ieee80211_chan2ieee(ic, c);
1701 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1702 return;
1703
1704 if (IEEE80211_IS_CHAN_2GHZ(c))
1705 power = min(sc->txpow[chan - 1], 31);
1706 else
1707 power = 31;
1708
1709 /* adjust txpower using ifconfig settings */
1710 power -= (100 - ic->ic_txpowlimit) / 8;
1711
1712 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1713
1714 switch (sc->rf_rev) {
1715 case RAL_RF_2522:
1716 ural_rf_write(sc, RAL_RF1, 0x00814);
1717 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1718 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1719 break;
1720
1721 case RAL_RF_2523:
1722 ural_rf_write(sc, RAL_RF1, 0x08804);
1723 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1724 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1725 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1726 break;
1727
1728 case RAL_RF_2524:
1729 ural_rf_write(sc, RAL_RF1, 0x0c808);
1730 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1731 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1732 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1733 break;
1734
1735 case RAL_RF_2525:
1736 ural_rf_write(sc, RAL_RF1, 0x08808);
1737 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1738 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1739 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1740
1741 ural_rf_write(sc, RAL_RF1, 0x08808);
1742 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1743 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1744 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1745 break;
1746
1747 case RAL_RF_2525E:
1748 ural_rf_write(sc, RAL_RF1, 0x08808);
1749 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1750 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1751 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1752 break;
1753
1754 case RAL_RF_2526:
1755 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1756 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1757 ural_rf_write(sc, RAL_RF1, 0x08804);
1758
1759 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1760 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1761 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1762 break;
1763
1764 /* dual-band RF */
1765 case RAL_RF_5222:
1766 for (i = 0; ural_rf5222[i].chan != chan; i++);
1767
1768 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1769 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1770 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1771 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1772 break;
1773 }
1774
1775 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1776 ic->ic_state != IEEE80211_S_SCAN) {
1777 /* set Japan filter bit for channel 14 */
1778 tmp = ural_bbp_read(sc, 70);
1779
1780 tmp &= ~RAL_JAPAN_FILTER;
1781 if (chan == 14)
1782 tmp |= RAL_JAPAN_FILTER;
1783
1784 ural_bbp_write(sc, 70, tmp);
1785
1786 /* clear CRC errors */
1787 ural_read(sc, RAL_STA_CSR0);
1788
1789 DELAY(10000);
1790 ural_disable_rf_tune(sc);
1791 }
1792 }
1793
1794 /*
1795 * Disable RF auto-tuning.
1796 */
1797 Static void
1798 ural_disable_rf_tune(struct ural_softc *sc)
1799 {
1800 uint32_t tmp;
1801
1802 if (sc->rf_rev != RAL_RF_2523) {
1803 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1804 ural_rf_write(sc, RAL_RF1, tmp);
1805 }
1806
1807 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1808 ural_rf_write(sc, RAL_RF3, tmp);
1809
1810 DPRINTFN(2, ("disabling RF autotune\n"));
1811 }
1812
1813 /*
1814 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1815 * synchronization.
1816 */
1817 Static void
1818 ural_enable_tsf_sync(struct ural_softc *sc)
1819 {
1820 struct ieee80211com *ic = &sc->sc_ic;
1821 uint16_t logcwmin, preload, tmp;
1822
1823 /* first, disable TSF synchronization */
1824 ural_write(sc, RAL_TXRX_CSR19, 0);
1825
1826 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1827 ural_write(sc, RAL_TXRX_CSR18, tmp);
1828
1829 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1830 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1831 tmp = logcwmin << 12 | preload;
1832 ural_write(sc, RAL_TXRX_CSR20, tmp);
1833
1834 /* finally, enable TSF synchronization */
1835 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1836 if (ic->ic_opmode == IEEE80211_M_STA)
1837 tmp |= RAL_ENABLE_TSF_SYNC(1);
1838 else
1839 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1840 ural_write(sc, RAL_TXRX_CSR19, tmp);
1841
1842 DPRINTF(("enabling TSF synchronization\n"));
1843 }
1844
1845 Static void
1846 ural_update_slot(struct ifnet *ifp)
1847 {
1848 struct ural_softc *sc = ifp->if_softc;
1849 struct ieee80211com *ic = &sc->sc_ic;
1850 uint16_t slottime, sifs, eifs;
1851
1852 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1853
1854 /*
1855 * These settings may sound a bit inconsistent but this is what the
1856 * reference driver does.
1857 */
1858 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1859 sifs = 16 - RAL_RXTX_TURNAROUND;
1860 eifs = 364;
1861 } else {
1862 sifs = 10 - RAL_RXTX_TURNAROUND;
1863 eifs = 64;
1864 }
1865
1866 ural_write(sc, RAL_MAC_CSR10, slottime);
1867 ural_write(sc, RAL_MAC_CSR11, sifs);
1868 ural_write(sc, RAL_MAC_CSR12, eifs);
1869 }
1870
1871 Static void
1872 ural_set_txpreamble(struct ural_softc *sc)
1873 {
1874 uint16_t tmp;
1875
1876 tmp = ural_read(sc, RAL_TXRX_CSR10);
1877
1878 tmp &= ~RAL_SHORT_PREAMBLE;
1879 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1880 tmp |= RAL_SHORT_PREAMBLE;
1881
1882 ural_write(sc, RAL_TXRX_CSR10, tmp);
1883 }
1884
1885 Static void
1886 ural_set_basicrates(struct ural_softc *sc)
1887 {
1888 struct ieee80211com *ic = &sc->sc_ic;
1889
1890 /* update basic rate set */
1891 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1892 /* 11b basic rates: 1, 2Mbps */
1893 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1894 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1895 /* 11a basic rates: 6, 12, 24Mbps */
1896 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1897 } else {
1898 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1899 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1900 }
1901 }
1902
1903 Static void
1904 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1905 {
1906 uint16_t tmp;
1907
1908 tmp = bssid[0] | bssid[1] << 8;
1909 ural_write(sc, RAL_MAC_CSR5, tmp);
1910
1911 tmp = bssid[2] | bssid[3] << 8;
1912 ural_write(sc, RAL_MAC_CSR6, tmp);
1913
1914 tmp = bssid[4] | bssid[5] << 8;
1915 ural_write(sc, RAL_MAC_CSR7, tmp);
1916
1917 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1918 }
1919
1920 Static void
1921 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1922 {
1923 uint16_t tmp;
1924
1925 tmp = addr[0] | addr[1] << 8;
1926 ural_write(sc, RAL_MAC_CSR2, tmp);
1927
1928 tmp = addr[2] | addr[3] << 8;
1929 ural_write(sc, RAL_MAC_CSR3, tmp);
1930
1931 tmp = addr[4] | addr[5] << 8;
1932 ural_write(sc, RAL_MAC_CSR4, tmp);
1933
1934 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1935 }
1936
1937 Static void
1938 ural_update_promisc(struct ural_softc *sc)
1939 {
1940 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1941 uint32_t tmp;
1942
1943 tmp = ural_read(sc, RAL_TXRX_CSR2);
1944
1945 tmp &= ~RAL_DROP_NOT_TO_ME;
1946 if (!(ifp->if_flags & IFF_PROMISC))
1947 tmp |= RAL_DROP_NOT_TO_ME;
1948
1949 ural_write(sc, RAL_TXRX_CSR2, tmp);
1950
1951 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1952 "entering" : "leaving"));
1953 }
1954
1955 Static const char *
1956 ural_get_rf(int rev)
1957 {
1958 switch (rev) {
1959 case RAL_RF_2522: return "RT2522";
1960 case RAL_RF_2523: return "RT2523";
1961 case RAL_RF_2524: return "RT2524";
1962 case RAL_RF_2525: return "RT2525";
1963 case RAL_RF_2525E: return "RT2525e";
1964 case RAL_RF_2526: return "RT2526";
1965 case RAL_RF_5222: return "RT5222";
1966 default: return "unknown";
1967 }
1968 }
1969
1970 Static void
1971 ural_read_eeprom(struct ural_softc *sc)
1972 {
1973 struct ieee80211com *ic = &sc->sc_ic;
1974 uint16_t val;
1975
1976 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1977 val = le16toh(val);
1978 sc->rf_rev = (val >> 11) & 0x7;
1979 sc->hw_radio = (val >> 10) & 0x1;
1980 sc->led_mode = (val >> 6) & 0x7;
1981 sc->rx_ant = (val >> 4) & 0x3;
1982 sc->tx_ant = (val >> 2) & 0x3;
1983 sc->nb_ant = val & 0x3;
1984
1985 /* read MAC address */
1986 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1987
1988 /* read default values for BBP registers */
1989 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1990
1991 /* read Tx power for all b/g channels */
1992 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1993 }
1994
1995 Static int
1996 ural_bbp_init(struct ural_softc *sc)
1997 {
1998 int i, ntries;
1999
2000 /* wait for BBP to be ready */
2001 for (ntries = 0; ntries < 100; ntries++) {
2002 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2003 break;
2004 DELAY(1000);
2005 }
2006 if (ntries == 100) {
2007 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2008 return EIO;
2009 }
2010
2011 /* initialize BBP registers to default values */
2012 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2013 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2014
2015 #if 0
2016 /* initialize BBP registers to values stored in EEPROM */
2017 for (i = 0; i < 16; i++) {
2018 if (sc->bbp_prom[i].reg == 0xff)
2019 continue;
2020 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2021 }
2022 #endif
2023
2024 return 0;
2025 }
2026
2027 Static void
2028 ural_set_txantenna(struct ural_softc *sc, int antenna)
2029 {
2030 uint16_t tmp;
2031 uint8_t tx;
2032
2033 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2034 if (antenna == 1)
2035 tx |= RAL_BBP_ANTA;
2036 else if (antenna == 2)
2037 tx |= RAL_BBP_ANTB;
2038 else
2039 tx |= RAL_BBP_DIVERSITY;
2040
2041 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2042 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2043 sc->rf_rev == RAL_RF_5222)
2044 tx |= RAL_BBP_FLIPIQ;
2045
2046 ural_bbp_write(sc, RAL_BBP_TX, tx);
2047
2048 /* update values in PHY_CSR5 and PHY_CSR6 */
2049 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2050 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2051
2052 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2053 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2054 }
2055
2056 Static void
2057 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2058 {
2059 uint8_t rx;
2060
2061 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2062 if (antenna == 1)
2063 rx |= RAL_BBP_ANTA;
2064 else if (antenna == 2)
2065 rx |= RAL_BBP_ANTB;
2066 else
2067 rx |= RAL_BBP_DIVERSITY;
2068
2069 /* need to force no I/Q flip for RF 2525e and 2526 */
2070 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2071 rx &= ~RAL_BBP_FLIPIQ;
2072
2073 ural_bbp_write(sc, RAL_BBP_RX, rx);
2074 }
2075
2076 Static int
2077 ural_init(struct ifnet *ifp)
2078 {
2079 struct ural_softc *sc = ifp->if_softc;
2080 struct ieee80211com *ic = &sc->sc_ic;
2081 struct ieee80211_key *wk;
2082 uint16_t tmp;
2083 usbd_status error;
2084 int i, ntries;
2085
2086 ural_set_testmode(sc);
2087 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2088
2089 ural_stop(ifp, 0);
2090
2091 /* initialize MAC registers to default values */
2092 for (i = 0; i < __arraycount(ural_def_mac); i++)
2093 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2094
2095 /* wait for BBP and RF to wake up (this can take a long time!) */
2096 for (ntries = 0; ntries < 100; ntries++) {
2097 tmp = ural_read(sc, RAL_MAC_CSR17);
2098 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2099 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2100 break;
2101 DELAY(1000);
2102 }
2103 if (ntries == 100) {
2104 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2105 device_xname(sc->sc_dev));
2106 error = EIO;
2107 goto fail;
2108 }
2109
2110 /* we're ready! */
2111 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2112
2113 /* set basic rate set (will be updated later) */
2114 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2115
2116 error = ural_bbp_init(sc);
2117 if (error != 0)
2118 goto fail;
2119
2120 /* set default BSS channel */
2121 ural_set_chan(sc, ic->ic_curchan);
2122
2123 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2124 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2125
2126 ural_set_txantenna(sc, sc->tx_ant);
2127 ural_set_rxantenna(sc, sc->rx_ant);
2128
2129 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2130 ural_set_macaddr(sc, ic->ic_myaddr);
2131
2132 /*
2133 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2134 */
2135 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2136 wk = &ic->ic_crypto.cs_nw_keys[i];
2137 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2138 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2139 }
2140
2141 /*
2142 * Allocate xfer for AMRR statistics requests.
2143 */
2144 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2145 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2146 if (error) {
2147 printf("%s: could not allocate AMRR xfer\n",
2148 device_xname(sc->sc_dev));
2149 goto fail;
2150 }
2151
2152 /*
2153 * Open Tx and Rx USB bulk pipes.
2154 */
2155 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2156 &sc->sc_tx_pipeh);
2157 if (error != 0) {
2158 printf("%s: could not open Tx pipe: %s\n",
2159 device_xname(sc->sc_dev), usbd_errstr(error));
2160 goto fail;
2161 }
2162
2163 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2164 &sc->sc_rx_pipeh);
2165 if (error != 0) {
2166 printf("%s: could not open Rx pipe: %s\n",
2167 device_xname(sc->sc_dev), usbd_errstr(error));
2168 goto fail;
2169 }
2170
2171 /*
2172 * Allocate Tx and Rx xfer queues.
2173 */
2174 error = ural_alloc_tx_list(sc);
2175 if (error != 0) {
2176 printf("%s: could not allocate Tx list\n",
2177 device_xname(sc->sc_dev));
2178 goto fail;
2179 }
2180
2181 error = ural_alloc_rx_list(sc);
2182 if (error != 0) {
2183 printf("%s: could not allocate Rx list\n",
2184 device_xname(sc->sc_dev));
2185 goto fail;
2186 }
2187
2188 /*
2189 * Start up the receive pipe.
2190 */
2191 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2192 struct ural_rx_data *data = &sc->rx_data[i];
2193
2194 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2195 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2196 usbd_transfer(data->xfer);
2197 }
2198
2199 /* kick Rx */
2200 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2201 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2202 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2203 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2204 tmp |= RAL_DROP_TODS;
2205 if (!(ifp->if_flags & IFF_PROMISC))
2206 tmp |= RAL_DROP_NOT_TO_ME;
2207 }
2208 ural_write(sc, RAL_TXRX_CSR2, tmp);
2209
2210 ifp->if_flags &= ~IFF_OACTIVE;
2211 ifp->if_flags |= IFF_RUNNING;
2212
2213 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2214 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2215 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2216 } else
2217 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2218
2219 return 0;
2220
2221 fail: ural_stop(ifp, 1);
2222 return error;
2223 }
2224
2225 Static void
2226 ural_stop(struct ifnet *ifp, int disable)
2227 {
2228 struct ural_softc *sc = ifp->if_softc;
2229 struct ieee80211com *ic = &sc->sc_ic;
2230
2231 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2232
2233 sc->sc_tx_timer = 0;
2234 ifp->if_timer = 0;
2235 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2236
2237 /* disable Rx */
2238 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2239
2240 /* reset ASIC and BBP (but won't reset MAC registers!) */
2241 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2242 ural_write(sc, RAL_MAC_CSR1, 0);
2243
2244 if (sc->amrr_xfer != NULL) {
2245 usbd_destroy_xfer(sc->amrr_xfer);
2246 sc->amrr_xfer = NULL;
2247 }
2248
2249 if (sc->sc_rx_pipeh != NULL) {
2250 usbd_abort_pipe(sc->sc_rx_pipeh);
2251 }
2252
2253 if (sc->sc_tx_pipeh != NULL) {
2254 usbd_abort_pipe(sc->sc_tx_pipeh);
2255 }
2256
2257 ural_free_rx_list(sc);
2258 ural_free_tx_list(sc);
2259
2260 if (sc->sc_rx_pipeh != NULL) {
2261 usbd_close_pipe(sc->sc_rx_pipeh);
2262 sc->sc_rx_pipeh = NULL;
2263 }
2264
2265 if (sc->sc_tx_pipeh != NULL) {
2266 usbd_close_pipe(sc->sc_tx_pipeh);
2267 sc->sc_tx_pipeh = NULL;
2268 }
2269 }
2270
2271 int
2272 ural_activate(device_t self, enum devact act)
2273 {
2274 struct ural_softc *sc = device_private(self);
2275
2276 switch (act) {
2277 case DVACT_DEACTIVATE:
2278 if_deactivate(&sc->sc_if);
2279 return 0;
2280 default:
2281 return EOPNOTSUPP;
2282 }
2283 }
2284
2285 Static void
2286 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2287 {
2288 int i;
2289
2290 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2291 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2292
2293 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2294
2295 /* set rate to some reasonable initial value */
2296 for (i = ni->ni_rates.rs_nrates - 1;
2297 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2298 i--);
2299 ni->ni_txrate = i;
2300
2301 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2302 }
2303
2304 Static void
2305 ural_amrr_timeout(void *arg)
2306 {
2307 struct ural_softc *sc = (struct ural_softc *)arg;
2308 usb_device_request_t req;
2309 int s;
2310
2311 s = splusb();
2312
2313 /*
2314 * Asynchronously read statistic registers (cleared by read).
2315 */
2316 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2317 req.bRequest = RAL_READ_MULTI_MAC;
2318 USETW(req.wValue, 0);
2319 USETW(req.wIndex, RAL_STA_CSR0);
2320 USETW(req.wLength, sizeof(sc->sta));
2321
2322 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2323 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2324 ural_amrr_update);
2325 (void)usbd_transfer(sc->amrr_xfer);
2326
2327 splx(s);
2328 }
2329
2330 Static void
2331 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2332 usbd_status status)
2333 {
2334 struct ural_softc *sc = (struct ural_softc *)priv;
2335 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2336
2337 if (status != USBD_NORMAL_COMPLETION) {
2338 printf("%s: could not retrieve Tx statistics - "
2339 "cancelling automatic rate control\n",
2340 device_xname(sc->sc_dev));
2341 return;
2342 }
2343
2344 /* count TX retry-fail as Tx errors */
2345 ifp->if_oerrors += sc->sta[9];
2346
2347 sc->amn.amn_retrycnt =
2348 sc->sta[7] + /* TX one-retry ok count */
2349 sc->sta[8] + /* TX more-retry ok count */
2350 sc->sta[9]; /* TX retry-fail count */
2351
2352 sc->amn.amn_txcnt =
2353 sc->amn.amn_retrycnt +
2354 sc->sta[6]; /* TX no-retry ok count */
2355
2356 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2357
2358 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2359 }
2360