if_ural.c revision 1.55 1 /* $NetBSD: if_ural.c,v 1.55 2018/06/26 06:48:02 msaitoh Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.55 2018/06/26 06:48:02 msaitoh Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111
112 Static int ural_alloc_tx_list(struct ural_softc *);
113 Static void ural_free_tx_list(struct ural_softc *);
114 Static int ural_alloc_rx_list(struct ural_softc *);
115 Static void ural_free_rx_list(struct ural_softc *);
116 Static int ural_media_change(struct ifnet *);
117 Static void ural_next_scan(void *);
118 Static void ural_task(void *);
119 Static int ural_newstate(struct ieee80211com *,
120 enum ieee80211_state, int);
121 Static int ural_rxrate(struct ural_rx_desc *);
122 Static void ural_txeof(struct usbd_xfer *, void *,
123 usbd_status);
124 Static void ural_rxeof(struct usbd_xfer *, void *,
125 usbd_status);
126 Static int ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_reset(struct ifnet *);
140 Static int ural_ioctl(struct ifnet *, u_long, void *);
141 Static void ural_set_testmode(struct ural_softc *);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_update_slot(struct ifnet *);
158 Static void ural_set_txpreamble(struct ural_softc *);
159 Static void ural_set_basicrates(struct ural_softc *);
160 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void ural_update_promisc(struct ural_softc *);
163 Static const char *ural_get_rf(int);
164 Static void ural_read_eeprom(struct ural_softc *);
165 Static int ural_bbp_init(struct ural_softc *);
166 Static void ural_set_txantenna(struct ural_softc *, int);
167 Static void ural_set_rxantenna(struct ural_softc *, int);
168 Static int ural_init(struct ifnet *);
169 Static void ural_stop(struct ifnet *, int);
170 Static void ural_amrr_start(struct ural_softc *,
171 struct ieee80211_node *);
172 Static void ural_amrr_timeout(void *);
173 Static void ural_amrr_update(struct usbd_xfer *, void *,
174 usbd_status status);
175
176 /*
177 * Default values for MAC registers; values taken from the reference driver.
178 */
179 static const struct {
180 uint16_t reg;
181 uint16_t val;
182 } ural_def_mac[] = {
183 { RAL_TXRX_CSR5, 0x8c8d },
184 { RAL_TXRX_CSR6, 0x8b8a },
185 { RAL_TXRX_CSR7, 0x8687 },
186 { RAL_TXRX_CSR8, 0x0085 },
187 { RAL_MAC_CSR13, 0x1111 },
188 { RAL_MAC_CSR14, 0x1e11 },
189 { RAL_TXRX_CSR21, 0xe78f },
190 { RAL_MAC_CSR9, 0xff1d },
191 { RAL_MAC_CSR11, 0x0002 },
192 { RAL_MAC_CSR22, 0x0053 },
193 { RAL_MAC_CSR15, 0x0000 },
194 { RAL_MAC_CSR8, 0x0780 },
195 { RAL_TXRX_CSR19, 0x0000 },
196 { RAL_TXRX_CSR18, 0x005a },
197 { RAL_PHY_CSR2, 0x0000 },
198 { RAL_TXRX_CSR0, 0x1ec0 },
199 { RAL_PHY_CSR4, 0x000f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } ural_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers.
245 */
246 static const uint32_t ural_rf2522_r2[] = {
247 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250
251 static const uint32_t ural_rf2523_r2[] = {
252 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255
256 static const uint32_t ural_rf2524_r2[] = {
257 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260
261 static const uint32_t ural_rf2525_r2[] = {
262 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270
271 static const uint32_t ural_rf2525e_r2[] = {
272 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280
281 static const uint32_t ural_rf2526_r2[] = {
282 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285
286 /*
287 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288 * values taken from the reference driver.
289 */
290 static const struct {
291 uint8_t chan;
292 uint32_t r1;
293 uint32_t r2;
294 uint32_t r4;
295 } ural_rf5222[] = {
296 { 1, 0x08808, 0x0044d, 0x00282 },
297 { 2, 0x08808, 0x0044e, 0x00282 },
298 { 3, 0x08808, 0x0044f, 0x00282 },
299 { 4, 0x08808, 0x00460, 0x00282 },
300 { 5, 0x08808, 0x00461, 0x00282 },
301 { 6, 0x08808, 0x00462, 0x00282 },
302 { 7, 0x08808, 0x00463, 0x00282 },
303 { 8, 0x08808, 0x00464, 0x00282 },
304 { 9, 0x08808, 0x00465, 0x00282 },
305 { 10, 0x08808, 0x00466, 0x00282 },
306 { 11, 0x08808, 0x00467, 0x00282 },
307 { 12, 0x08808, 0x00468, 0x00282 },
308 { 13, 0x08808, 0x00469, 0x00282 },
309 { 14, 0x08808, 0x0046b, 0x00286 },
310
311 { 36, 0x08804, 0x06225, 0x00287 },
312 { 40, 0x08804, 0x06226, 0x00287 },
313 { 44, 0x08804, 0x06227, 0x00287 },
314 { 48, 0x08804, 0x06228, 0x00287 },
315 { 52, 0x08804, 0x06229, 0x00287 },
316 { 56, 0x08804, 0x0622a, 0x00287 },
317 { 60, 0x08804, 0x0622b, 0x00287 },
318 { 64, 0x08804, 0x0622c, 0x00287 },
319
320 { 100, 0x08804, 0x02200, 0x00283 },
321 { 104, 0x08804, 0x02201, 0x00283 },
322 { 108, 0x08804, 0x02202, 0x00283 },
323 { 112, 0x08804, 0x02203, 0x00283 },
324 { 116, 0x08804, 0x02204, 0x00283 },
325 { 120, 0x08804, 0x02205, 0x00283 },
326 { 124, 0x08804, 0x02206, 0x00283 },
327 { 128, 0x08804, 0x02207, 0x00283 },
328 { 132, 0x08804, 0x02208, 0x00283 },
329 { 136, 0x08804, 0x02209, 0x00283 },
330 { 140, 0x08804, 0x0220a, 0x00283 },
331
332 { 149, 0x08808, 0x02429, 0x00281 },
333 { 153, 0x08808, 0x0242b, 0x00281 },
334 { 157, 0x08808, 0x0242d, 0x00281 },
335 { 161, 0x08808, 0x0242f, 0x00281 }
336 };
337
338 int ural_match(device_t, cfdata_t, void *);
339 void ural_attach(device_t, device_t, void *);
340 int ural_detach(device_t, int);
341 int ural_activate(device_t, enum devact);
342 extern struct cfdriver ural_cd;
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344 ural_detach, ural_activate);
345
346 int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 struct usb_attach_arg *uaa = aux;
350
351 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354
355 void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 struct ural_softc *sc = device_private(self);
359 struct usb_attach_arg *uaa = aux;
360 struct ieee80211com *ic = &sc->sc_ic;
361 struct ifnet *ifp = &sc->sc_if;
362 usb_interface_descriptor_t *id;
363 usb_endpoint_descriptor_t *ed;
364 usbd_status error;
365 char *devinfop;
366 int i;
367
368 sc->sc_dev = self;
369 sc->sc_udev = uaa->uaa_device;
370
371 aprint_naive("\n");
372 aprint_normal("\n");
373
374 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
375 aprint_normal_dev(self, "%s\n", devinfop);
376 usbd_devinfo_free(devinfop);
377
378 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
379 if (error != 0) {
380 aprint_error_dev(self, "failed to set configuration"
381 ", err=%s\n", usbd_errstr(error));
382 return;
383 }
384
385 /* get the first interface handle */
386 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
387 &sc->sc_iface);
388 if (error != 0) {
389 aprint_error_dev(self, "could not get interface handle\n");
390 return;
391 }
392
393 /*
394 * Find endpoints.
395 */
396 id = usbd_get_interface_descriptor(sc->sc_iface);
397
398 sc->sc_rx_no = sc->sc_tx_no = -1;
399 for (i = 0; i < id->bNumEndpoints; i++) {
400 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
401 if (ed == NULL) {
402 aprint_error_dev(self,
403 "no endpoint descriptor for %d\n", i);
404 return;
405 }
406
407 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
408 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
409 sc->sc_rx_no = ed->bEndpointAddress;
410 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
411 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
412 sc->sc_tx_no = ed->bEndpointAddress;
413 }
414 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
415 aprint_error_dev(self, "missing endpoint\n");
416 return;
417 }
418
419 usb_init_task(&sc->sc_task, ural_task, sc, 0);
420 callout_init(&sc->sc_scan_ch, 0);
421 sc->amrr.amrr_min_success_threshold = 1;
422 sc->amrr.amrr_max_success_threshold = 15;
423 callout_init(&sc->sc_amrr_ch, 0);
424
425 /* retrieve RT2570 rev. no */
426 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
427
428 /* retrieve MAC address and various other things from EEPROM */
429 ural_read_eeprom(sc);
430
431 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
432 sc->asic_rev, ural_get_rf(sc->rf_rev));
433
434 ifp->if_softc = sc;
435 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
437 ifp->if_init = ural_init;
438 ifp->if_ioctl = ural_ioctl;
439 ifp->if_start = ural_start;
440 ifp->if_watchdog = ural_watchdog;
441 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
442 IFQ_SET_READY(&ifp->if_snd);
443
444 ic->ic_ifp = ifp;
445 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
446 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
447 ic->ic_state = IEEE80211_S_INIT;
448
449 /* set device capabilities */
450 ic->ic_caps =
451 IEEE80211_C_IBSS | /* IBSS mode supported */
452 IEEE80211_C_MONITOR | /* monitor mode supported */
453 IEEE80211_C_HOSTAP | /* HostAp mode supported */
454 IEEE80211_C_TXPMGT | /* tx power management */
455 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
456 IEEE80211_C_SHSLOT | /* short slot time supported */
457 IEEE80211_C_WPA; /* 802.11i */
458
459 if (sc->rf_rev == RAL_RF_5222) {
460 /* set supported .11a rates */
461 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
462
463 /* set supported .11a channels */
464 for (i = 36; i <= 64; i += 4) {
465 ic->ic_channels[i].ic_freq =
466 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
467 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
468 }
469 for (i = 100; i <= 140; i += 4) {
470 ic->ic_channels[i].ic_freq =
471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 }
474 for (i = 149; i <= 161; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 }
480
481 /* set supported .11b and .11g rates */
482 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
483 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
484
485 /* set supported .11b and .11g channels (1 through 14) */
486 for (i = 1; i <= 14; i++) {
487 ic->ic_channels[i].ic_freq =
488 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
489 ic->ic_channels[i].ic_flags =
490 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
491 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
492 }
493
494 if_attach(ifp);
495 ieee80211_ifattach(ic);
496 ic->ic_reset = ural_reset;
497
498 /* override state transition machine */
499 sc->sc_newstate = ic->ic_newstate;
500 ic->ic_newstate = ural_newstate;
501 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
502
503 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
504 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
505
506 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
507 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
508 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
509
510 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
511 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
512 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
513
514 ieee80211_announce(ic);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
517
518 if (!pmf_device_register(self, NULL, NULL))
519 aprint_error_dev(self, "couldn't establish power handler\n");
520
521 return;
522 }
523
524 int
525 ural_detach(device_t self, int flags)
526 {
527 struct ural_softc *sc = device_private(self);
528 struct ieee80211com *ic = &sc->sc_ic;
529 struct ifnet *ifp = &sc->sc_if;
530 int s;
531
532 pmf_device_deregister(self);
533
534 s = splusb();
535
536 ural_stop(ifp, 1);
537 usb_rem_task(sc->sc_udev, &sc->sc_task);
538 callout_stop(&sc->sc_scan_ch);
539 callout_stop(&sc->sc_amrr_ch);
540
541 bpf_detach(ifp);
542 ieee80211_ifdetach(ic);
543 if_detach(ifp);
544
545 splx(s);
546
547 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
548
549 return 0;
550 }
551
552 Static int
553 ural_alloc_tx_list(struct ural_softc *sc)
554 {
555 struct ural_tx_data *data;
556 int i, error;
557
558 sc->tx_queued = 0;
559
560 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
561 data = &sc->tx_data[i];
562
563 data->sc = sc;
564 error = usbd_create_xfer(sc->sc_tx_pipeh,
565 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
566 &data->xfer);
567 if (error) {
568 printf("%s: could not allocate tx xfer\n",
569 device_xname(sc->sc_dev));
570 goto fail;
571 }
572
573 data->buf = usbd_get_buffer(data->xfer);
574 }
575
576 return 0;
577
578 fail: ural_free_tx_list(sc);
579 return error;
580 }
581
582 Static void
583 ural_free_tx_list(struct ural_softc *sc)
584 {
585 struct ural_tx_data *data;
586 int i;
587
588 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
589 data = &sc->tx_data[i];
590
591 if (data->xfer != NULL) {
592 usbd_destroy_xfer(data->xfer);
593 data->xfer = NULL;
594 }
595
596 if (data->ni != NULL) {
597 ieee80211_free_node(data->ni);
598 data->ni = NULL;
599 }
600 }
601 }
602
603 Static int
604 ural_alloc_rx_list(struct ural_softc *sc)
605 {
606 struct ural_rx_data *data;
607 int i, error;
608
609 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
610 data = &sc->rx_data[i];
611
612 data->sc = sc;
613
614 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
615 0, 0, &data->xfer);
616 if (error) {
617 printf("%s: could not allocate rx xfer\n",
618 device_xname(sc->sc_dev));
619 goto fail;
620 }
621
622 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
623 if (data->m == NULL) {
624 printf("%s: could not allocate rx mbuf\n",
625 device_xname(sc->sc_dev));
626 error = ENOMEM;
627 goto fail;
628 }
629
630 MCLGET(data->m, M_DONTWAIT);
631 if (!(data->m->m_flags & M_EXT)) {
632 printf("%s: could not allocate rx mbuf cluster\n",
633 device_xname(sc->sc_dev));
634 error = ENOMEM;
635 goto fail;
636 }
637
638 data->buf = mtod(data->m, uint8_t *);
639 }
640
641 return 0;
642
643 fail: ural_free_rx_list(sc);
644 return error;
645 }
646
647 Static void
648 ural_free_rx_list(struct ural_softc *sc)
649 {
650 struct ural_rx_data *data;
651 int i;
652
653 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
654 data = &sc->rx_data[i];
655
656 if (data->xfer != NULL) {
657 usbd_destroy_xfer(data->xfer);
658 data->xfer = NULL;
659 }
660
661 if (data->m != NULL) {
662 m_freem(data->m);
663 data->m = NULL;
664 }
665 }
666 }
667
668 Static int
669 ural_media_change(struct ifnet *ifp)
670 {
671 int error;
672
673 error = ieee80211_media_change(ifp);
674 if (error != ENETRESET)
675 return error;
676
677 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
678 ural_init(ifp);
679
680 return 0;
681 }
682
683 /*
684 * This function is called periodically (every 200ms) during scanning to
685 * switch from one channel to another.
686 */
687 Static void
688 ural_next_scan(void *arg)
689 {
690 struct ural_softc *sc = arg;
691 struct ieee80211com *ic = &sc->sc_ic;
692
693 if (ic->ic_state == IEEE80211_S_SCAN)
694 ieee80211_next_scan(ic);
695 }
696
697 Static void
698 ural_task(void *arg)
699 {
700 struct ural_softc *sc = arg;
701 struct ieee80211com *ic = &sc->sc_ic;
702 enum ieee80211_state ostate;
703 struct ieee80211_node *ni;
704 struct mbuf *m;
705
706 ostate = ic->ic_state;
707
708 switch (sc->sc_state) {
709 case IEEE80211_S_INIT:
710 if (ostate == IEEE80211_S_RUN) {
711 /* abort TSF synchronization */
712 ural_write(sc, RAL_TXRX_CSR19, 0);
713
714 /* force tx led to stop blinking */
715 ural_write(sc, RAL_MAC_CSR20, 0);
716 }
717 break;
718
719 case IEEE80211_S_SCAN:
720 ural_set_chan(sc, ic->ic_curchan);
721 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
722 break;
723
724 case IEEE80211_S_AUTH:
725 ural_set_chan(sc, ic->ic_curchan);
726 break;
727
728 case IEEE80211_S_ASSOC:
729 ural_set_chan(sc, ic->ic_curchan);
730 break;
731
732 case IEEE80211_S_RUN:
733 ural_set_chan(sc, ic->ic_curchan);
734
735 ni = ic->ic_bss;
736
737 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 ural_update_slot(ic->ic_ifp);
739 ural_set_txpreamble(sc);
740 ural_set_basicrates(sc);
741 ural_set_bssid(sc, ni->ni_bssid);
742 }
743
744 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
745 ic->ic_opmode == IEEE80211_M_IBSS) {
746 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
747 if (m == NULL) {
748 printf("%s: could not allocate beacon\n",
749 device_xname(sc->sc_dev));
750 return;
751 }
752
753 if (ural_tx_bcn(sc, m, ni) != 0) {
754 m_freem(m);
755 printf("%s: could not send beacon\n",
756 device_xname(sc->sc_dev));
757 return;
758 }
759
760 /* beacon is no longer needed */
761 m_freem(m);
762 }
763
764 /* make tx led blink on tx (controlled by ASIC) */
765 ural_write(sc, RAL_MAC_CSR20, 1);
766
767 if (ic->ic_opmode != IEEE80211_M_MONITOR)
768 ural_enable_tsf_sync(sc);
769
770 /* enable automatic rate adaptation in STA mode */
771 if (ic->ic_opmode == IEEE80211_M_STA &&
772 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
773 ural_amrr_start(sc, ni);
774
775 break;
776 }
777
778 sc->sc_newstate(ic, sc->sc_state, -1);
779 }
780
781 Static int
782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
783 int arg)
784 {
785 struct ural_softc *sc = ic->ic_ifp->if_softc;
786
787 usb_rem_task(sc->sc_udev, &sc->sc_task);
788 callout_stop(&sc->sc_scan_ch);
789 callout_stop(&sc->sc_amrr_ch);
790
791 /* do it in a process context */
792 sc->sc_state = nstate;
793 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
794
795 return 0;
796 }
797
798 /* quickly determine if a given rate is CCK or OFDM */
799 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
800
801 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
802 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
803
804 #define RAL_SIFS 10 /* us */
805
806 #define RAL_RXTX_TURNAROUND 5 /* us */
807
808 /*
809 * This function is only used by the Rx radiotap code.
810 */
811 Static int
812 ural_rxrate(struct ural_rx_desc *desc)
813 {
814 if (le32toh(desc->flags) & RAL_RX_OFDM) {
815 /* reverse function of ural_plcp_signal */
816 switch (desc->rate) {
817 case 0xb: return 12;
818 case 0xf: return 18;
819 case 0xa: return 24;
820 case 0xe: return 36;
821 case 0x9: return 48;
822 case 0xd: return 72;
823 case 0x8: return 96;
824 case 0xc: return 108;
825 }
826 } else {
827 if (desc->rate == 10)
828 return 2;
829 if (desc->rate == 20)
830 return 4;
831 if (desc->rate == 55)
832 return 11;
833 if (desc->rate == 110)
834 return 22;
835 }
836 return 2; /* should not get there */
837 }
838
839 Static void
840 ural_txeof(struct usbd_xfer *xfer, void * priv,
841 usbd_status status)
842 {
843 struct ural_tx_data *data = priv;
844 struct ural_softc *sc = data->sc;
845 struct ifnet *ifp = &sc->sc_if;
846 int s;
847
848 if (status != USBD_NORMAL_COMPLETION) {
849 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
850 return;
851
852 printf("%s: could not transmit buffer: %s\n",
853 device_xname(sc->sc_dev), usbd_errstr(status));
854
855 if (status == USBD_STALLED)
856 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
857
858 ifp->if_oerrors++;
859 return;
860 }
861
862 s = splnet();
863
864 m_freem(data->m);
865 data->m = NULL;
866 ieee80211_free_node(data->ni);
867 data->ni = NULL;
868
869 sc->tx_queued--;
870 ifp->if_opackets++;
871
872 DPRINTFN(10, ("tx done\n"));
873
874 sc->sc_tx_timer = 0;
875 ifp->if_flags &= ~IFF_OACTIVE;
876 ural_start(ifp);
877
878 splx(s);
879 }
880
881 Static void
882 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
883 {
884 struct ural_rx_data *data = priv;
885 struct ural_softc *sc = data->sc;
886 struct ieee80211com *ic = &sc->sc_ic;
887 struct ifnet *ifp = &sc->sc_if;
888 struct ural_rx_desc *desc;
889 struct ieee80211_frame *wh;
890 struct ieee80211_node *ni;
891 struct mbuf *mnew, *m;
892 int s, len;
893
894 if (status != USBD_NORMAL_COMPLETION) {
895 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
896 return;
897
898 if (status == USBD_STALLED)
899 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
900 goto skip;
901 }
902
903 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
904
905 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
906 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
907 len));
908 ifp->if_ierrors++;
909 goto skip;
910 }
911
912 /* rx descriptor is located at the end */
913 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
914
915 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
916 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
917 /*
918 * This should not happen since we did not request to receive
919 * those frames when we filled RAL_TXRX_CSR2.
920 */
921 DPRINTFN(5, ("PHY or CRC error\n"));
922 ifp->if_ierrors++;
923 goto skip;
924 }
925
926 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
927 if (mnew == NULL) {
928 ifp->if_ierrors++;
929 goto skip;
930 }
931
932 MCLGET(mnew, M_DONTWAIT);
933 if (!(mnew->m_flags & M_EXT)) {
934 ifp->if_ierrors++;
935 m_freem(mnew);
936 goto skip;
937 }
938
939 m = data->m;
940 data->m = mnew;
941 data->buf = mtod(data->m, uint8_t *);
942
943 /* finalize mbuf */
944 m_set_rcvif(m, ifp);
945 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
946 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
947
948 s = splnet();
949
950 if (sc->sc_drvbpf != NULL) {
951 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
952
953 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
954 tap->wr_rate = ural_rxrate(desc);
955 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
956 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
957 tap->wr_antenna = sc->rx_ant;
958 tap->wr_antsignal = desc->rssi;
959
960 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
961 }
962
963 wh = mtod(m, struct ieee80211_frame *);
964 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
965
966 /* send the frame to the 802.11 layer */
967 ieee80211_input(ic, m, ni, desc->rssi, 0);
968
969 /* node is no longer needed */
970 ieee80211_free_node(ni);
971
972 splx(s);
973
974 DPRINTFN(15, ("rx done\n"));
975
976 skip: /* setup a new transfer */
977 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
978 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
979 usbd_transfer(xfer);
980 }
981
982 /*
983 * Return the expected ack rate for a frame transmitted at rate `rate'.
984 * XXX: this should depend on the destination node basic rate set.
985 */
986 Static int
987 ural_ack_rate(struct ieee80211com *ic, int rate)
988 {
989 switch (rate) {
990 /* CCK rates */
991 case 2:
992 return 2;
993 case 4:
994 case 11:
995 case 22:
996 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
997
998 /* OFDM rates */
999 case 12:
1000 case 18:
1001 return 12;
1002 case 24:
1003 case 36:
1004 return 24;
1005 case 48:
1006 case 72:
1007 case 96:
1008 case 108:
1009 return 48;
1010 }
1011
1012 /* default to 1Mbps */
1013 return 2;
1014 }
1015
1016 /*
1017 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1018 * The function automatically determines the operating mode depending on the
1019 * given rate. `flags' indicates whether short preamble is in use or not.
1020 */
1021 Static uint16_t
1022 ural_txtime(int len, int rate, uint32_t flags)
1023 {
1024 uint16_t txtime;
1025
1026 if (RAL_RATE_IS_OFDM(rate)) {
1027 /* IEEE Std 802.11g-2003, pp. 37 */
1028 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1029 txtime = 16 + 4 + 4 * txtime + 6;
1030 } else {
1031 /* IEEE Std 802.11b-1999, pp. 28 */
1032 txtime = (16 * len + rate - 1) / rate;
1033 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1034 txtime += 72 + 24;
1035 else
1036 txtime += 144 + 48;
1037 }
1038 return txtime;
1039 }
1040
1041 Static uint8_t
1042 ural_plcp_signal(int rate)
1043 {
1044 switch (rate) {
1045 /* CCK rates (returned values are device-dependent) */
1046 case 2: return 0x0;
1047 case 4: return 0x1;
1048 case 11: return 0x2;
1049 case 22: return 0x3;
1050
1051 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1052 case 12: return 0xb;
1053 case 18: return 0xf;
1054 case 24: return 0xa;
1055 case 36: return 0xe;
1056 case 48: return 0x9;
1057 case 72: return 0xd;
1058 case 96: return 0x8;
1059 case 108: return 0xc;
1060
1061 /* unsupported rates (should not get there) */
1062 default: return 0xff;
1063 }
1064 }
1065
1066 Static void
1067 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1068 uint32_t flags, int len, int rate)
1069 {
1070 struct ieee80211com *ic = &sc->sc_ic;
1071 uint16_t plcp_length;
1072 int remainder;
1073
1074 desc->flags = htole32(flags);
1075 desc->flags |= htole32(RAL_TX_NEWSEQ);
1076 desc->flags |= htole32(len << 16);
1077
1078 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1079 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1080
1081 /* setup PLCP fields */
1082 desc->plcp_signal = ural_plcp_signal(rate);
1083 desc->plcp_service = 4;
1084
1085 len += IEEE80211_CRC_LEN;
1086 if (RAL_RATE_IS_OFDM(rate)) {
1087 desc->flags |= htole32(RAL_TX_OFDM);
1088
1089 plcp_length = len & 0xfff;
1090 desc->plcp_length_hi = plcp_length >> 6;
1091 desc->plcp_length_lo = plcp_length & 0x3f;
1092 } else {
1093 plcp_length = (16 * len + rate - 1) / rate;
1094 if (rate == 22) {
1095 remainder = (16 * len) % 22;
1096 if (remainder != 0 && remainder < 7)
1097 desc->plcp_service |= RAL_PLCP_LENGEXT;
1098 }
1099 desc->plcp_length_hi = plcp_length >> 8;
1100 desc->plcp_length_lo = plcp_length & 0xff;
1101
1102 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1103 desc->plcp_signal |= 0x08;
1104 }
1105
1106 desc->iv = 0;
1107 desc->eiv = 0;
1108 }
1109
1110 #define RAL_TX_TIMEOUT 5000
1111
1112 Static int
1113 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1114 {
1115 struct ural_tx_desc *desc;
1116 struct usbd_xfer *xfer;
1117 uint8_t cmd = 0;
1118 usbd_status error;
1119 uint8_t *buf;
1120 int xferlen, rate;
1121
1122 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1123
1124 /* xfer length needs to be a multiple of two! */
1125 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1126
1127 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1128 USBD_FORCE_SHORT_XFER, 0, &xfer);
1129 if (error)
1130 return error;
1131
1132 buf = usbd_get_buffer(xfer);
1133
1134 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1135 RAL_TX_TIMEOUT, NULL);
1136
1137 error = usbd_sync_transfer(xfer);
1138 if (error != 0) {
1139 usbd_destroy_xfer(xfer);
1140 return error;
1141 }
1142
1143 desc = (struct ural_tx_desc *)buf;
1144
1145 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1146 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1147 m0->m_pkthdr.len, rate);
1148
1149 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1150 m0->m_pkthdr.len, rate, xferlen));
1151
1152 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1153 RAL_TX_TIMEOUT, NULL);
1154
1155 error = usbd_sync_transfer(xfer);
1156 usbd_destroy_xfer(xfer);
1157
1158 return error;
1159 }
1160
1161 Static int
1162 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1163 {
1164 struct ieee80211com *ic = &sc->sc_ic;
1165 struct ural_tx_desc *desc;
1166 struct ural_tx_data *data;
1167 struct ieee80211_frame *wh;
1168 struct ieee80211_key *k;
1169 uint32_t flags = 0;
1170 uint16_t dur;
1171 usbd_status error;
1172 int xferlen, rate;
1173
1174 data = &sc->tx_data[0];
1175 desc = (struct ural_tx_desc *)data->buf;
1176
1177 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1178
1179 wh = mtod(m0, struct ieee80211_frame *);
1180
1181 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1182 k = ieee80211_crypto_encap(ic, ni, m0);
1183 if (k == NULL) {
1184 m_freem(m0);
1185 return ENOBUFS;
1186 }
1187 }
1188
1189 data->m = m0;
1190 data->ni = ni;
1191
1192 wh = mtod(m0, struct ieee80211_frame *);
1193
1194 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1195 flags |= RAL_TX_ACK;
1196
1197 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1198 *(uint16_t *)wh->i_dur = htole16(dur);
1199
1200 /* tell hardware to add timestamp for probe responses */
1201 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1202 IEEE80211_FC0_TYPE_MGT &&
1203 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1204 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1205 flags |= RAL_TX_TIMESTAMP;
1206 }
1207
1208 if (sc->sc_drvbpf != NULL) {
1209 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1210
1211 tap->wt_flags = 0;
1212 tap->wt_rate = rate;
1213 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1214 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1215 tap->wt_antenna = sc->tx_ant;
1216
1217 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1218 }
1219
1220 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1221 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1222
1223 /* align end on a 2-bytes boundary */
1224 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1225
1226 /*
1227 * No space left in the last URB to store the extra 2 bytes, force
1228 * sending of another URB.
1229 */
1230 if ((xferlen % 64) == 0)
1231 xferlen += 2;
1232
1233 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1234 m0->m_pkthdr.len, rate, xferlen));
1235
1236 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1237 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1238
1239 error = usbd_transfer(data->xfer);
1240 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1241 m_freem(m0);
1242 return error;
1243 }
1244
1245 sc->tx_queued++;
1246
1247 return 0;
1248 }
1249
1250 Static int
1251 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1252 {
1253 struct ieee80211com *ic = &sc->sc_ic;
1254 struct ural_tx_desc *desc;
1255 struct ural_tx_data *data;
1256 struct ieee80211_frame *wh;
1257 struct ieee80211_key *k;
1258 uint32_t flags = 0;
1259 uint16_t dur;
1260 usbd_status error;
1261 int xferlen, rate;
1262
1263 wh = mtod(m0, struct ieee80211_frame *);
1264
1265 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1266 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1267 else
1268 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1269
1270 rate &= IEEE80211_RATE_VAL;
1271
1272 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1273 k = ieee80211_crypto_encap(ic, ni, m0);
1274 if (k == NULL) {
1275 m_freem(m0);
1276 return ENOBUFS;
1277 }
1278
1279 /* packet header may have moved, reset our local pointer */
1280 wh = mtod(m0, struct ieee80211_frame *);
1281 }
1282
1283 data = &sc->tx_data[0];
1284 desc = (struct ural_tx_desc *)data->buf;
1285
1286 data->m = m0;
1287 data->ni = ni;
1288
1289 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1290 flags |= RAL_TX_ACK;
1291 flags |= RAL_TX_RETRY(7);
1292
1293 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1294 ic->ic_flags) + RAL_SIFS;
1295 *(uint16_t *)wh->i_dur = htole16(dur);
1296 }
1297
1298 if (sc->sc_drvbpf != NULL) {
1299 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1300
1301 tap->wt_flags = 0;
1302 tap->wt_rate = rate;
1303 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1304 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1305 tap->wt_antenna = sc->tx_ant;
1306
1307 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1308 }
1309
1310 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1311 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1312
1313 /* align end on a 2-bytes boundary */
1314 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1315
1316 /*
1317 * No space left in the last URB to store the extra 2 bytes, force
1318 * sending of another URB.
1319 */
1320 if ((xferlen % 64) == 0)
1321 xferlen += 2;
1322
1323 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1324 m0->m_pkthdr.len, rate, xferlen));
1325 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1326 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1327
1328 error = usbd_transfer(data->xfer);
1329 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1330 return error;
1331
1332 sc->tx_queued++;
1333
1334 return 0;
1335 }
1336
1337 Static void
1338 ural_start(struct ifnet *ifp)
1339 {
1340 struct ural_softc *sc = ifp->if_softc;
1341 struct ieee80211com *ic = &sc->sc_ic;
1342 struct mbuf *m0;
1343 struct ether_header *eh;
1344 struct ieee80211_node *ni;
1345
1346 for (;;) {
1347 IF_POLL(&ic->ic_mgtq, m0);
1348 if (m0 != NULL) {
1349 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1350 ifp->if_flags |= IFF_OACTIVE;
1351 break;
1352 }
1353 IF_DEQUEUE(&ic->ic_mgtq, m0);
1354
1355 ni = M_GETCTX(m0, struct ieee80211_node *);
1356 M_CLEARCTX(m0);
1357 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1358 if (ural_tx_mgt(sc, m0, ni) != 0)
1359 break;
1360
1361 } else {
1362 if (ic->ic_state != IEEE80211_S_RUN)
1363 break;
1364 IFQ_DEQUEUE(&ifp->if_snd, m0);
1365 if (m0 == NULL)
1366 break;
1367 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1368 IF_PREPEND(&ifp->if_snd, m0);
1369 ifp->if_flags |= IFF_OACTIVE;
1370 break;
1371 }
1372
1373 if (m0->m_len < sizeof(struct ether_header) &&
1374 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1375 continue;
1376
1377 eh = mtod(m0, struct ether_header *);
1378 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1379 if (ni == NULL) {
1380 m_freem(m0);
1381 continue;
1382 }
1383 bpf_mtap(ifp, m0, BPF_D_OUT);
1384 m0 = ieee80211_encap(ic, m0, ni);
1385 if (m0 == NULL) {
1386 ieee80211_free_node(ni);
1387 continue;
1388 }
1389 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1390 if (ural_tx_data(sc, m0, ni) != 0) {
1391 ieee80211_free_node(ni);
1392 ifp->if_oerrors++;
1393 break;
1394 }
1395 }
1396
1397 sc->sc_tx_timer = 5;
1398 ifp->if_timer = 1;
1399 }
1400 }
1401
1402 Static void
1403 ural_watchdog(struct ifnet *ifp)
1404 {
1405 struct ural_softc *sc = ifp->if_softc;
1406 struct ieee80211com *ic = &sc->sc_ic;
1407
1408 ifp->if_timer = 0;
1409
1410 if (sc->sc_tx_timer > 0) {
1411 if (--sc->sc_tx_timer == 0) {
1412 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1413 /*ural_init(sc); XXX needs a process context! */
1414 ifp->if_oerrors++;
1415 return;
1416 }
1417 ifp->if_timer = 1;
1418 }
1419
1420 ieee80211_watchdog(ic);
1421 }
1422
1423 /*
1424 * This function allows for fast channel switching in monitor mode (used by
1425 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1426 * generate a new beacon frame.
1427 */
1428 Static int
1429 ural_reset(struct ifnet *ifp)
1430 {
1431 struct ural_softc *sc = ifp->if_softc;
1432 struct ieee80211com *ic = &sc->sc_ic;
1433
1434 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1435 return ENETRESET;
1436
1437 ural_set_chan(sc, ic->ic_curchan);
1438
1439 return 0;
1440 }
1441
1442 Static int
1443 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1444 {
1445 #define IS_RUNNING(ifp) \
1446 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1447
1448 struct ural_softc *sc = ifp->if_softc;
1449 struct ieee80211com *ic = &sc->sc_ic;
1450 int s, error = 0;
1451
1452 s = splnet();
1453
1454 switch (cmd) {
1455 case SIOCSIFFLAGS:
1456 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1457 break;
1458 /* XXX re-use ether_ioctl() */
1459 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1460 case IFF_UP|IFF_RUNNING:
1461 ural_update_promisc(sc);
1462 break;
1463 case IFF_UP:
1464 ural_init(ifp);
1465 break;
1466 case IFF_RUNNING:
1467 ural_stop(ifp, 1);
1468 break;
1469 case 0:
1470 break;
1471 }
1472 break;
1473
1474 case SIOCADDMULTI:
1475 case SIOCDELMULTI:
1476 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1477 error = 0;
1478 }
1479 break;
1480
1481 default:
1482 error = ieee80211_ioctl(ic, cmd, data);
1483 }
1484
1485 if (error == ENETRESET) {
1486 if (IS_RUNNING(ifp) &&
1487 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1488 ural_init(ifp);
1489 error = 0;
1490 }
1491
1492 splx(s);
1493
1494 return error;
1495 #undef IS_RUNNING
1496 }
1497
1498 Static void
1499 ural_set_testmode(struct ural_softc *sc)
1500 {
1501 usb_device_request_t req;
1502 usbd_status error;
1503
1504 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1505 req.bRequest = RAL_VENDOR_REQUEST;
1506 USETW(req.wValue, 4);
1507 USETW(req.wIndex, 1);
1508 USETW(req.wLength, 0);
1509
1510 error = usbd_do_request(sc->sc_udev, &req, NULL);
1511 if (error != 0) {
1512 printf("%s: could not set test mode: %s\n",
1513 device_xname(sc->sc_dev), usbd_errstr(error));
1514 }
1515 }
1516
1517 Static void
1518 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1519 {
1520 usb_device_request_t req;
1521 usbd_status error;
1522
1523 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1524 req.bRequest = RAL_READ_EEPROM;
1525 USETW(req.wValue, 0);
1526 USETW(req.wIndex, addr);
1527 USETW(req.wLength, len);
1528
1529 error = usbd_do_request(sc->sc_udev, &req, buf);
1530 if (error != 0) {
1531 printf("%s: could not read EEPROM: %s\n",
1532 device_xname(sc->sc_dev), usbd_errstr(error));
1533 }
1534 }
1535
1536 Static uint16_t
1537 ural_read(struct ural_softc *sc, uint16_t reg)
1538 {
1539 usb_device_request_t req;
1540 usbd_status error;
1541 uint16_t val;
1542
1543 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1544 req.bRequest = RAL_READ_MAC;
1545 USETW(req.wValue, 0);
1546 USETW(req.wIndex, reg);
1547 USETW(req.wLength, sizeof(uint16_t));
1548
1549 error = usbd_do_request(sc->sc_udev, &req, &val);
1550 if (error != 0) {
1551 printf("%s: could not read MAC register: %s\n",
1552 device_xname(sc->sc_dev), usbd_errstr(error));
1553 return 0;
1554 }
1555
1556 return le16toh(val);
1557 }
1558
1559 Static void
1560 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1561 {
1562 usb_device_request_t req;
1563 usbd_status error;
1564
1565 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1566 req.bRequest = RAL_READ_MULTI_MAC;
1567 USETW(req.wValue, 0);
1568 USETW(req.wIndex, reg);
1569 USETW(req.wLength, len);
1570
1571 error = usbd_do_request(sc->sc_udev, &req, buf);
1572 if (error != 0) {
1573 printf("%s: could not read MAC register: %s\n",
1574 device_xname(sc->sc_dev), usbd_errstr(error));
1575 }
1576 }
1577
1578 Static void
1579 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1580 {
1581 usb_device_request_t req;
1582 usbd_status error;
1583
1584 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1585 req.bRequest = RAL_WRITE_MAC;
1586 USETW(req.wValue, val);
1587 USETW(req.wIndex, reg);
1588 USETW(req.wLength, 0);
1589
1590 error = usbd_do_request(sc->sc_udev, &req, NULL);
1591 if (error != 0) {
1592 printf("%s: could not write MAC register: %s\n",
1593 device_xname(sc->sc_dev), usbd_errstr(error));
1594 }
1595 }
1596
1597 Static void
1598 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1599 {
1600 usb_device_request_t req;
1601 usbd_status error;
1602
1603 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1604 req.bRequest = RAL_WRITE_MULTI_MAC;
1605 USETW(req.wValue, 0);
1606 USETW(req.wIndex, reg);
1607 USETW(req.wLength, len);
1608
1609 error = usbd_do_request(sc->sc_udev, &req, buf);
1610 if (error != 0) {
1611 printf("%s: could not write MAC register: %s\n",
1612 device_xname(sc->sc_dev), usbd_errstr(error));
1613 }
1614 }
1615
1616 Static void
1617 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1618 {
1619 uint16_t tmp;
1620 int ntries;
1621
1622 for (ntries = 0; ntries < 5; ntries++) {
1623 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1624 break;
1625 }
1626 if (ntries == 5) {
1627 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1628 return;
1629 }
1630
1631 tmp = reg << 8 | val;
1632 ural_write(sc, RAL_PHY_CSR7, tmp);
1633 }
1634
1635 Static uint8_t
1636 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1637 {
1638 uint16_t val;
1639 int ntries;
1640
1641 val = RAL_BBP_WRITE | reg << 8;
1642 ural_write(sc, RAL_PHY_CSR7, val);
1643
1644 for (ntries = 0; ntries < 5; ntries++) {
1645 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1646 break;
1647 }
1648 if (ntries == 5) {
1649 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1650 return 0;
1651 }
1652
1653 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1654 }
1655
1656 Static void
1657 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1658 {
1659 uint32_t tmp;
1660 int ntries;
1661
1662 for (ntries = 0; ntries < 5; ntries++) {
1663 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1664 break;
1665 }
1666 if (ntries == 5) {
1667 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1668 return;
1669 }
1670
1671 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1672 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1673 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1674
1675 /* remember last written value in sc */
1676 sc->rf_regs[reg] = val;
1677
1678 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1679 }
1680
1681 Static void
1682 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1683 {
1684 struct ieee80211com *ic = &sc->sc_ic;
1685 uint8_t power, tmp;
1686 u_int i, chan;
1687
1688 chan = ieee80211_chan2ieee(ic, c);
1689 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1690 return;
1691
1692 if (IEEE80211_IS_CHAN_2GHZ(c))
1693 power = min(sc->txpow[chan - 1], 31);
1694 else
1695 power = 31;
1696
1697 /* adjust txpower using ifconfig settings */
1698 power -= (100 - ic->ic_txpowlimit) / 8;
1699
1700 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1701
1702 switch (sc->rf_rev) {
1703 case RAL_RF_2522:
1704 ural_rf_write(sc, RAL_RF1, 0x00814);
1705 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1706 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1707 break;
1708
1709 case RAL_RF_2523:
1710 ural_rf_write(sc, RAL_RF1, 0x08804);
1711 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1712 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1713 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1714 break;
1715
1716 case RAL_RF_2524:
1717 ural_rf_write(sc, RAL_RF1, 0x0c808);
1718 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1719 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1720 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1721 break;
1722
1723 case RAL_RF_2525:
1724 ural_rf_write(sc, RAL_RF1, 0x08808);
1725 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1726 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1727 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1728
1729 ural_rf_write(sc, RAL_RF1, 0x08808);
1730 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1731 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1732 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1733 break;
1734
1735 case RAL_RF_2525E:
1736 ural_rf_write(sc, RAL_RF1, 0x08808);
1737 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1738 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1739 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1740 break;
1741
1742 case RAL_RF_2526:
1743 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1744 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1745 ural_rf_write(sc, RAL_RF1, 0x08804);
1746
1747 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1748 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1749 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1750 break;
1751
1752 /* dual-band RF */
1753 case RAL_RF_5222:
1754 for (i = 0; ural_rf5222[i].chan != chan; i++);
1755
1756 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1757 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1758 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1759 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1760 break;
1761 }
1762
1763 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1764 ic->ic_state != IEEE80211_S_SCAN) {
1765 /* set Japan filter bit for channel 14 */
1766 tmp = ural_bbp_read(sc, 70);
1767
1768 tmp &= ~RAL_JAPAN_FILTER;
1769 if (chan == 14)
1770 tmp |= RAL_JAPAN_FILTER;
1771
1772 ural_bbp_write(sc, 70, tmp);
1773
1774 /* clear CRC errors */
1775 ural_read(sc, RAL_STA_CSR0);
1776
1777 DELAY(10000);
1778 ural_disable_rf_tune(sc);
1779 }
1780 }
1781
1782 /*
1783 * Disable RF auto-tuning.
1784 */
1785 Static void
1786 ural_disable_rf_tune(struct ural_softc *sc)
1787 {
1788 uint32_t tmp;
1789
1790 if (sc->rf_rev != RAL_RF_2523) {
1791 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1792 ural_rf_write(sc, RAL_RF1, tmp);
1793 }
1794
1795 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1796 ural_rf_write(sc, RAL_RF3, tmp);
1797
1798 DPRINTFN(2, ("disabling RF autotune\n"));
1799 }
1800
1801 /*
1802 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1803 * synchronization.
1804 */
1805 Static void
1806 ural_enable_tsf_sync(struct ural_softc *sc)
1807 {
1808 struct ieee80211com *ic = &sc->sc_ic;
1809 uint16_t logcwmin, preload, tmp;
1810
1811 /* first, disable TSF synchronization */
1812 ural_write(sc, RAL_TXRX_CSR19, 0);
1813
1814 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1815 ural_write(sc, RAL_TXRX_CSR18, tmp);
1816
1817 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1818 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1819 tmp = logcwmin << 12 | preload;
1820 ural_write(sc, RAL_TXRX_CSR20, tmp);
1821
1822 /* finally, enable TSF synchronization */
1823 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1824 if (ic->ic_opmode == IEEE80211_M_STA)
1825 tmp |= RAL_ENABLE_TSF_SYNC(1);
1826 else
1827 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1828 ural_write(sc, RAL_TXRX_CSR19, tmp);
1829
1830 DPRINTF(("enabling TSF synchronization\n"));
1831 }
1832
1833 Static void
1834 ural_update_slot(struct ifnet *ifp)
1835 {
1836 struct ural_softc *sc = ifp->if_softc;
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 uint16_t slottime, sifs, eifs;
1839
1840 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1841
1842 /*
1843 * These settings may sound a bit inconsistent but this is what the
1844 * reference driver does.
1845 */
1846 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1847 sifs = 16 - RAL_RXTX_TURNAROUND;
1848 eifs = 364;
1849 } else {
1850 sifs = 10 - RAL_RXTX_TURNAROUND;
1851 eifs = 64;
1852 }
1853
1854 ural_write(sc, RAL_MAC_CSR10, slottime);
1855 ural_write(sc, RAL_MAC_CSR11, sifs);
1856 ural_write(sc, RAL_MAC_CSR12, eifs);
1857 }
1858
1859 Static void
1860 ural_set_txpreamble(struct ural_softc *sc)
1861 {
1862 uint16_t tmp;
1863
1864 tmp = ural_read(sc, RAL_TXRX_CSR10);
1865
1866 tmp &= ~RAL_SHORT_PREAMBLE;
1867 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1868 tmp |= RAL_SHORT_PREAMBLE;
1869
1870 ural_write(sc, RAL_TXRX_CSR10, tmp);
1871 }
1872
1873 Static void
1874 ural_set_basicrates(struct ural_softc *sc)
1875 {
1876 struct ieee80211com *ic = &sc->sc_ic;
1877
1878 /* update basic rate set */
1879 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1880 /* 11b basic rates: 1, 2Mbps */
1881 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1882 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1883 /* 11a basic rates: 6, 12, 24Mbps */
1884 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1885 } else {
1886 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1887 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1888 }
1889 }
1890
1891 Static void
1892 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1893 {
1894 uint16_t tmp;
1895
1896 tmp = bssid[0] | bssid[1] << 8;
1897 ural_write(sc, RAL_MAC_CSR5, tmp);
1898
1899 tmp = bssid[2] | bssid[3] << 8;
1900 ural_write(sc, RAL_MAC_CSR6, tmp);
1901
1902 tmp = bssid[4] | bssid[5] << 8;
1903 ural_write(sc, RAL_MAC_CSR7, tmp);
1904
1905 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1906 }
1907
1908 Static void
1909 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1910 {
1911 uint16_t tmp;
1912
1913 tmp = addr[0] | addr[1] << 8;
1914 ural_write(sc, RAL_MAC_CSR2, tmp);
1915
1916 tmp = addr[2] | addr[3] << 8;
1917 ural_write(sc, RAL_MAC_CSR3, tmp);
1918
1919 tmp = addr[4] | addr[5] << 8;
1920 ural_write(sc, RAL_MAC_CSR4, tmp);
1921
1922 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1923 }
1924
1925 Static void
1926 ural_update_promisc(struct ural_softc *sc)
1927 {
1928 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1929 uint32_t tmp;
1930
1931 tmp = ural_read(sc, RAL_TXRX_CSR2);
1932
1933 tmp &= ~RAL_DROP_NOT_TO_ME;
1934 if (!(ifp->if_flags & IFF_PROMISC))
1935 tmp |= RAL_DROP_NOT_TO_ME;
1936
1937 ural_write(sc, RAL_TXRX_CSR2, tmp);
1938
1939 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1940 "entering" : "leaving"));
1941 }
1942
1943 Static const char *
1944 ural_get_rf(int rev)
1945 {
1946 switch (rev) {
1947 case RAL_RF_2522: return "RT2522";
1948 case RAL_RF_2523: return "RT2523";
1949 case RAL_RF_2524: return "RT2524";
1950 case RAL_RF_2525: return "RT2525";
1951 case RAL_RF_2525E: return "RT2525e";
1952 case RAL_RF_2526: return "RT2526";
1953 case RAL_RF_5222: return "RT5222";
1954 default: return "unknown";
1955 }
1956 }
1957
1958 Static void
1959 ural_read_eeprom(struct ural_softc *sc)
1960 {
1961 struct ieee80211com *ic = &sc->sc_ic;
1962 uint16_t val;
1963
1964 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1965 val = le16toh(val);
1966 sc->rf_rev = (val >> 11) & 0x7;
1967 sc->hw_radio = (val >> 10) & 0x1;
1968 sc->led_mode = (val >> 6) & 0x7;
1969 sc->rx_ant = (val >> 4) & 0x3;
1970 sc->tx_ant = (val >> 2) & 0x3;
1971 sc->nb_ant = val & 0x3;
1972
1973 /* read MAC address */
1974 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1975
1976 /* read default values for BBP registers */
1977 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1978
1979 /* read Tx power for all b/g channels */
1980 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1981 }
1982
1983 Static int
1984 ural_bbp_init(struct ural_softc *sc)
1985 {
1986 int i, ntries;
1987
1988 /* wait for BBP to be ready */
1989 for (ntries = 0; ntries < 100; ntries++) {
1990 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1991 break;
1992 DELAY(1000);
1993 }
1994 if (ntries == 100) {
1995 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
1996 return EIO;
1997 }
1998
1999 /* initialize BBP registers to default values */
2000 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2001 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2002
2003 #if 0
2004 /* initialize BBP registers to values stored in EEPROM */
2005 for (i = 0; i < 16; i++) {
2006 if (sc->bbp_prom[i].reg == 0xff)
2007 continue;
2008 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2009 }
2010 #endif
2011
2012 return 0;
2013 }
2014
2015 Static void
2016 ural_set_txantenna(struct ural_softc *sc, int antenna)
2017 {
2018 uint16_t tmp;
2019 uint8_t tx;
2020
2021 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2022 if (antenna == 1)
2023 tx |= RAL_BBP_ANTA;
2024 else if (antenna == 2)
2025 tx |= RAL_BBP_ANTB;
2026 else
2027 tx |= RAL_BBP_DIVERSITY;
2028
2029 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2030 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2031 sc->rf_rev == RAL_RF_5222)
2032 tx |= RAL_BBP_FLIPIQ;
2033
2034 ural_bbp_write(sc, RAL_BBP_TX, tx);
2035
2036 /* update values in PHY_CSR5 and PHY_CSR6 */
2037 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2038 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2039
2040 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2041 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2042 }
2043
2044 Static void
2045 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2046 {
2047 uint8_t rx;
2048
2049 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2050 if (antenna == 1)
2051 rx |= RAL_BBP_ANTA;
2052 else if (antenna == 2)
2053 rx |= RAL_BBP_ANTB;
2054 else
2055 rx |= RAL_BBP_DIVERSITY;
2056
2057 /* need to force no I/Q flip for RF 2525e and 2526 */
2058 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2059 rx &= ~RAL_BBP_FLIPIQ;
2060
2061 ural_bbp_write(sc, RAL_BBP_RX, rx);
2062 }
2063
2064 Static int
2065 ural_init(struct ifnet *ifp)
2066 {
2067 struct ural_softc *sc = ifp->if_softc;
2068 struct ieee80211com *ic = &sc->sc_ic;
2069 struct ieee80211_key *wk;
2070 uint16_t tmp;
2071 usbd_status error;
2072 int i, ntries;
2073
2074 ural_set_testmode(sc);
2075 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2076
2077 ural_stop(ifp, 0);
2078
2079 /* initialize MAC registers to default values */
2080 for (i = 0; i < __arraycount(ural_def_mac); i++)
2081 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2082
2083 /* wait for BBP and RF to wake up (this can take a long time!) */
2084 for (ntries = 0; ntries < 100; ntries++) {
2085 tmp = ural_read(sc, RAL_MAC_CSR17);
2086 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2087 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2088 break;
2089 DELAY(1000);
2090 }
2091 if (ntries == 100) {
2092 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2093 device_xname(sc->sc_dev));
2094 error = EIO;
2095 goto fail;
2096 }
2097
2098 /* we're ready! */
2099 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2100
2101 /* set basic rate set (will be updated later) */
2102 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2103
2104 error = ural_bbp_init(sc);
2105 if (error != 0)
2106 goto fail;
2107
2108 /* set default BSS channel */
2109 ural_set_chan(sc, ic->ic_curchan);
2110
2111 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2112 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2113
2114 ural_set_txantenna(sc, sc->tx_ant);
2115 ural_set_rxantenna(sc, sc->rx_ant);
2116
2117 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2118 ural_set_macaddr(sc, ic->ic_myaddr);
2119
2120 /*
2121 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2122 */
2123 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2124 wk = &ic->ic_crypto.cs_nw_keys[i];
2125 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2126 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2127 }
2128
2129 /*
2130 * Allocate xfer for AMRR statistics requests.
2131 */
2132 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2133 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2134 if (error) {
2135 printf("%s: could not allocate AMRR xfer\n",
2136 device_xname(sc->sc_dev));
2137 goto fail;
2138 }
2139
2140 /*
2141 * Open Tx and Rx USB bulk pipes.
2142 */
2143 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2144 &sc->sc_tx_pipeh);
2145 if (error != 0) {
2146 printf("%s: could not open Tx pipe: %s\n",
2147 device_xname(sc->sc_dev), usbd_errstr(error));
2148 goto fail;
2149 }
2150
2151 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2152 &sc->sc_rx_pipeh);
2153 if (error != 0) {
2154 printf("%s: could not open Rx pipe: %s\n",
2155 device_xname(sc->sc_dev), usbd_errstr(error));
2156 goto fail;
2157 }
2158
2159 /*
2160 * Allocate Tx and Rx xfer queues.
2161 */
2162 error = ural_alloc_tx_list(sc);
2163 if (error != 0) {
2164 printf("%s: could not allocate Tx list\n",
2165 device_xname(sc->sc_dev));
2166 goto fail;
2167 }
2168
2169 error = ural_alloc_rx_list(sc);
2170 if (error != 0) {
2171 printf("%s: could not allocate Rx list\n",
2172 device_xname(sc->sc_dev));
2173 goto fail;
2174 }
2175
2176 /*
2177 * Start up the receive pipe.
2178 */
2179 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2180 struct ural_rx_data *data = &sc->rx_data[i];
2181
2182 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2183 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2184 usbd_transfer(data->xfer);
2185 }
2186
2187 /* kick Rx */
2188 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2189 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2190 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2191 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2192 tmp |= RAL_DROP_TODS;
2193 if (!(ifp->if_flags & IFF_PROMISC))
2194 tmp |= RAL_DROP_NOT_TO_ME;
2195 }
2196 ural_write(sc, RAL_TXRX_CSR2, tmp);
2197
2198 ifp->if_flags &= ~IFF_OACTIVE;
2199 ifp->if_flags |= IFF_RUNNING;
2200
2201 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2202 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2203 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2204 } else
2205 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2206
2207 return 0;
2208
2209 fail: ural_stop(ifp, 1);
2210 return error;
2211 }
2212
2213 Static void
2214 ural_stop(struct ifnet *ifp, int disable)
2215 {
2216 struct ural_softc *sc = ifp->if_softc;
2217 struct ieee80211com *ic = &sc->sc_ic;
2218
2219 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2220
2221 sc->sc_tx_timer = 0;
2222 ifp->if_timer = 0;
2223 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2224
2225 /* disable Rx */
2226 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2227
2228 /* reset ASIC and BBP (but won't reset MAC registers!) */
2229 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2230 ural_write(sc, RAL_MAC_CSR1, 0);
2231
2232 if (sc->amrr_xfer != NULL) {
2233 usbd_destroy_xfer(sc->amrr_xfer);
2234 sc->amrr_xfer = NULL;
2235 }
2236
2237 if (sc->sc_rx_pipeh != NULL) {
2238 usbd_abort_pipe(sc->sc_rx_pipeh);
2239 }
2240
2241 if (sc->sc_tx_pipeh != NULL) {
2242 usbd_abort_pipe(sc->sc_tx_pipeh);
2243 }
2244
2245 ural_free_rx_list(sc);
2246 ural_free_tx_list(sc);
2247
2248 if (sc->sc_rx_pipeh != NULL) {
2249 usbd_close_pipe(sc->sc_rx_pipeh);
2250 sc->sc_rx_pipeh = NULL;
2251 }
2252
2253 if (sc->sc_tx_pipeh != NULL) {
2254 usbd_close_pipe(sc->sc_tx_pipeh);
2255 sc->sc_tx_pipeh = NULL;
2256 }
2257 }
2258
2259 int
2260 ural_activate(device_t self, enum devact act)
2261 {
2262 struct ural_softc *sc = device_private(self);
2263
2264 switch (act) {
2265 case DVACT_DEACTIVATE:
2266 if_deactivate(&sc->sc_if);
2267 return 0;
2268 default:
2269 return EOPNOTSUPP;
2270 }
2271 }
2272
2273 Static void
2274 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2275 {
2276 int i;
2277
2278 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2279 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2280
2281 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2282
2283 /* set rate to some reasonable initial value */
2284 for (i = ni->ni_rates.rs_nrates - 1;
2285 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2286 i--);
2287 ni->ni_txrate = i;
2288
2289 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2290 }
2291
2292 Static void
2293 ural_amrr_timeout(void *arg)
2294 {
2295 struct ural_softc *sc = (struct ural_softc *)arg;
2296 usb_device_request_t req;
2297 int s;
2298
2299 s = splusb();
2300
2301 /*
2302 * Asynchronously read statistic registers (cleared by read).
2303 */
2304 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2305 req.bRequest = RAL_READ_MULTI_MAC;
2306 USETW(req.wValue, 0);
2307 USETW(req.wIndex, RAL_STA_CSR0);
2308 USETW(req.wLength, sizeof(sc->sta));
2309
2310 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2311 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2312 ural_amrr_update);
2313 (void)usbd_transfer(sc->amrr_xfer);
2314
2315 splx(s);
2316 }
2317
2318 Static void
2319 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2320 usbd_status status)
2321 {
2322 struct ural_softc *sc = (struct ural_softc *)priv;
2323 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2324
2325 if (status != USBD_NORMAL_COMPLETION) {
2326 printf("%s: could not retrieve Tx statistics - "
2327 "cancelling automatic rate control\n",
2328 device_xname(sc->sc_dev));
2329 return;
2330 }
2331
2332 /* count TX retry-fail as Tx errors */
2333 ifp->if_oerrors += sc->sta[9];
2334
2335 sc->amn.amn_retrycnt =
2336 sc->sta[7] + /* TX one-retry ok count */
2337 sc->sta[8] + /* TX more-retry ok count */
2338 sc->sta[9]; /* TX retry-fail count */
2339
2340 sc->amn.amn_txcnt =
2341 sc->amn.amn_retrycnt +
2342 sc->sta[6]; /* TX no-retry ok count */
2343
2344 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2345
2346 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2347 }
2348