if_ural.c revision 1.57 1 /* $NetBSD: if_ural.c,v 1.57 2018/08/02 06:09:04 riastradh Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.57 2018/08/02 06:09:04 riastradh Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111
112 Static int ural_alloc_tx_list(struct ural_softc *);
113 Static void ural_free_tx_list(struct ural_softc *);
114 Static int ural_alloc_rx_list(struct ural_softc *);
115 Static void ural_free_rx_list(struct ural_softc *);
116 Static int ural_media_change(struct ifnet *);
117 Static void ural_next_scan(void *);
118 Static void ural_task(void *);
119 Static int ural_newstate(struct ieee80211com *,
120 enum ieee80211_state, int);
121 Static int ural_rxrate(struct ural_rx_desc *);
122 Static void ural_txeof(struct usbd_xfer *, void *,
123 usbd_status);
124 Static void ural_rxeof(struct usbd_xfer *, void *,
125 usbd_status);
126 Static int ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_reset(struct ifnet *);
140 Static int ural_ioctl(struct ifnet *, u_long, void *);
141 Static void ural_set_testmode(struct ural_softc *);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_update_slot(struct ifnet *);
158 Static void ural_set_txpreamble(struct ural_softc *);
159 Static void ural_set_basicrates(struct ural_softc *);
160 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void ural_update_promisc(struct ural_softc *);
163 Static const char *ural_get_rf(int);
164 Static void ural_read_eeprom(struct ural_softc *);
165 Static int ural_bbp_init(struct ural_softc *);
166 Static void ural_set_txantenna(struct ural_softc *, int);
167 Static void ural_set_rxantenna(struct ural_softc *, int);
168 Static int ural_init(struct ifnet *);
169 Static void ural_stop(struct ifnet *, int);
170 Static void ural_amrr_start(struct ural_softc *,
171 struct ieee80211_node *);
172 Static void ural_amrr_timeout(void *);
173 Static void ural_amrr_update(struct usbd_xfer *, void *,
174 usbd_status status);
175
176 /*
177 * Default values for MAC registers; values taken from the reference driver.
178 */
179 static const struct {
180 uint16_t reg;
181 uint16_t val;
182 } ural_def_mac[] = {
183 { RAL_TXRX_CSR5, 0x8c8d },
184 { RAL_TXRX_CSR6, 0x8b8a },
185 { RAL_TXRX_CSR7, 0x8687 },
186 { RAL_TXRX_CSR8, 0x0085 },
187 { RAL_MAC_CSR13, 0x1111 },
188 { RAL_MAC_CSR14, 0x1e11 },
189 { RAL_TXRX_CSR21, 0xe78f },
190 { RAL_MAC_CSR9, 0xff1d },
191 { RAL_MAC_CSR11, 0x0002 },
192 { RAL_MAC_CSR22, 0x0053 },
193 { RAL_MAC_CSR15, 0x0000 },
194 { RAL_MAC_CSR8, 0x0780 },
195 { RAL_TXRX_CSR19, 0x0000 },
196 { RAL_TXRX_CSR18, 0x005a },
197 { RAL_PHY_CSR2, 0x0000 },
198 { RAL_TXRX_CSR0, 0x1ec0 },
199 { RAL_PHY_CSR4, 0x000f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } ural_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers.
245 */
246 static const uint32_t ural_rf2522_r2[] = {
247 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250
251 static const uint32_t ural_rf2523_r2[] = {
252 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255
256 static const uint32_t ural_rf2524_r2[] = {
257 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260
261 static const uint32_t ural_rf2525_r2[] = {
262 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270
271 static const uint32_t ural_rf2525e_r2[] = {
272 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280
281 static const uint32_t ural_rf2526_r2[] = {
282 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285
286 /*
287 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288 * values taken from the reference driver.
289 */
290 static const struct {
291 uint8_t chan;
292 uint32_t r1;
293 uint32_t r2;
294 uint32_t r4;
295 } ural_rf5222[] = {
296 { 1, 0x08808, 0x0044d, 0x00282 },
297 { 2, 0x08808, 0x0044e, 0x00282 },
298 { 3, 0x08808, 0x0044f, 0x00282 },
299 { 4, 0x08808, 0x00460, 0x00282 },
300 { 5, 0x08808, 0x00461, 0x00282 },
301 { 6, 0x08808, 0x00462, 0x00282 },
302 { 7, 0x08808, 0x00463, 0x00282 },
303 { 8, 0x08808, 0x00464, 0x00282 },
304 { 9, 0x08808, 0x00465, 0x00282 },
305 { 10, 0x08808, 0x00466, 0x00282 },
306 { 11, 0x08808, 0x00467, 0x00282 },
307 { 12, 0x08808, 0x00468, 0x00282 },
308 { 13, 0x08808, 0x00469, 0x00282 },
309 { 14, 0x08808, 0x0046b, 0x00286 },
310
311 { 36, 0x08804, 0x06225, 0x00287 },
312 { 40, 0x08804, 0x06226, 0x00287 },
313 { 44, 0x08804, 0x06227, 0x00287 },
314 { 48, 0x08804, 0x06228, 0x00287 },
315 { 52, 0x08804, 0x06229, 0x00287 },
316 { 56, 0x08804, 0x0622a, 0x00287 },
317 { 60, 0x08804, 0x0622b, 0x00287 },
318 { 64, 0x08804, 0x0622c, 0x00287 },
319
320 { 100, 0x08804, 0x02200, 0x00283 },
321 { 104, 0x08804, 0x02201, 0x00283 },
322 { 108, 0x08804, 0x02202, 0x00283 },
323 { 112, 0x08804, 0x02203, 0x00283 },
324 { 116, 0x08804, 0x02204, 0x00283 },
325 { 120, 0x08804, 0x02205, 0x00283 },
326 { 124, 0x08804, 0x02206, 0x00283 },
327 { 128, 0x08804, 0x02207, 0x00283 },
328 { 132, 0x08804, 0x02208, 0x00283 },
329 { 136, 0x08804, 0x02209, 0x00283 },
330 { 140, 0x08804, 0x0220a, 0x00283 },
331
332 { 149, 0x08808, 0x02429, 0x00281 },
333 { 153, 0x08808, 0x0242b, 0x00281 },
334 { 157, 0x08808, 0x0242d, 0x00281 },
335 { 161, 0x08808, 0x0242f, 0x00281 }
336 };
337
338 int ural_match(device_t, cfdata_t, void *);
339 void ural_attach(device_t, device_t, void *);
340 int ural_detach(device_t, int);
341 int ural_activate(device_t, enum devact);
342 extern struct cfdriver ural_cd;
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344 ural_detach, ural_activate);
345
346 int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 struct usb_attach_arg *uaa = aux;
350
351 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354
355 void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 struct ural_softc *sc = device_private(self);
359 struct usb_attach_arg *uaa = aux;
360 struct ieee80211com *ic = &sc->sc_ic;
361 struct ifnet *ifp = &sc->sc_if;
362 usb_interface_descriptor_t *id;
363 usb_endpoint_descriptor_t *ed;
364 usbd_status error;
365 char *devinfop;
366 int i;
367
368 sc->sc_dev = self;
369 sc->sc_udev = uaa->uaa_device;
370
371 aprint_naive("\n");
372 aprint_normal("\n");
373
374 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
375 aprint_normal_dev(self, "%s\n", devinfop);
376 usbd_devinfo_free(devinfop);
377
378 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
379 if (error != 0) {
380 aprint_error_dev(self, "failed to set configuration"
381 ", err=%s\n", usbd_errstr(error));
382 return;
383 }
384
385 /* get the first interface handle */
386 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
387 &sc->sc_iface);
388 if (error != 0) {
389 aprint_error_dev(self, "could not get interface handle\n");
390 return;
391 }
392
393 /*
394 * Find endpoints.
395 */
396 id = usbd_get_interface_descriptor(sc->sc_iface);
397
398 sc->sc_rx_no = sc->sc_tx_no = -1;
399 for (i = 0; i < id->bNumEndpoints; i++) {
400 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
401 if (ed == NULL) {
402 aprint_error_dev(self,
403 "no endpoint descriptor for %d\n", i);
404 return;
405 }
406
407 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
408 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
409 sc->sc_rx_no = ed->bEndpointAddress;
410 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
411 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
412 sc->sc_tx_no = ed->bEndpointAddress;
413 }
414 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
415 aprint_error_dev(self, "missing endpoint\n");
416 return;
417 }
418
419 usb_init_task(&sc->sc_task, ural_task, sc, 0);
420 callout_init(&sc->sc_scan_ch, 0);
421 sc->amrr.amrr_min_success_threshold = 1;
422 sc->amrr.amrr_max_success_threshold = 15;
423 callout_init(&sc->sc_amrr_ch, 0);
424
425 /* retrieve RT2570 rev. no */
426 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
427
428 /* retrieve MAC address and various other things from EEPROM */
429 ural_read_eeprom(sc);
430
431 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
432 sc->asic_rev, ural_get_rf(sc->rf_rev));
433
434 ifp->if_softc = sc;
435 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
437 ifp->if_init = ural_init;
438 ifp->if_ioctl = ural_ioctl;
439 ifp->if_start = ural_start;
440 ifp->if_watchdog = ural_watchdog;
441 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
442 IFQ_SET_READY(&ifp->if_snd);
443
444 ic->ic_ifp = ifp;
445 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
446 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
447 ic->ic_state = IEEE80211_S_INIT;
448
449 /* set device capabilities */
450 ic->ic_caps =
451 IEEE80211_C_IBSS | /* IBSS mode supported */
452 IEEE80211_C_MONITOR | /* monitor mode supported */
453 IEEE80211_C_HOSTAP | /* HostAp mode supported */
454 IEEE80211_C_TXPMGT | /* tx power management */
455 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
456 IEEE80211_C_SHSLOT | /* short slot time supported */
457 IEEE80211_C_WPA; /* 802.11i */
458
459 if (sc->rf_rev == RAL_RF_5222) {
460 /* set supported .11a rates */
461 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
462
463 /* set supported .11a channels */
464 for (i = 36; i <= 64; i += 4) {
465 ic->ic_channels[i].ic_freq =
466 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
467 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
468 }
469 for (i = 100; i <= 140; i += 4) {
470 ic->ic_channels[i].ic_freq =
471 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
472 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
473 }
474 for (i = 149; i <= 161; i += 4) {
475 ic->ic_channels[i].ic_freq =
476 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
477 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
478 }
479 }
480
481 /* set supported .11b and .11g rates */
482 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
483 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
484
485 /* set supported .11b and .11g channels (1 through 14) */
486 for (i = 1; i <= 14; i++) {
487 ic->ic_channels[i].ic_freq =
488 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
489 ic->ic_channels[i].ic_flags =
490 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
491 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
492 }
493
494 if_attach(ifp);
495 ieee80211_ifattach(ic);
496 ic->ic_reset = ural_reset;
497
498 /* override state transition machine */
499 sc->sc_newstate = ic->ic_newstate;
500 ic->ic_newstate = ural_newstate;
501 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
502
503 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
504 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
505
506 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
507 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
508 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
509
510 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
511 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
512 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
513
514 ieee80211_announce(ic);
515
516 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
517
518 if (!pmf_device_register(self, NULL, NULL))
519 aprint_error_dev(self, "couldn't establish power handler\n");
520
521 return;
522 }
523
524 int
525 ural_detach(device_t self, int flags)
526 {
527 struct ural_softc *sc = device_private(self);
528 struct ieee80211com *ic = &sc->sc_ic;
529 struct ifnet *ifp = &sc->sc_if;
530 int s;
531
532 pmf_device_deregister(self);
533
534 s = splusb();
535
536 ural_stop(ifp, 1);
537 callout_halt(&sc->sc_scan_ch, NULL);
538 callout_halt(&sc->sc_amrr_ch, NULL);
539 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
540
541 bpf_detach(ifp);
542 ieee80211_ifdetach(ic);
543 if_detach(ifp);
544
545 splx(s);
546
547 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
548
549 return 0;
550 }
551
552 Static int
553 ural_alloc_tx_list(struct ural_softc *sc)
554 {
555 struct ural_tx_data *data;
556 int i, error;
557
558 sc->tx_queued = 0;
559
560 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
561 data = &sc->tx_data[i];
562
563 data->sc = sc;
564 error = usbd_create_xfer(sc->sc_tx_pipeh,
565 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
566 &data->xfer);
567 if (error) {
568 printf("%s: could not allocate tx xfer\n",
569 device_xname(sc->sc_dev));
570 goto fail;
571 }
572
573 data->buf = usbd_get_buffer(data->xfer);
574 }
575
576 return 0;
577
578 fail: ural_free_tx_list(sc);
579 return error;
580 }
581
582 Static void
583 ural_free_tx_list(struct ural_softc *sc)
584 {
585 struct ural_tx_data *data;
586 int i;
587
588 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
589 data = &sc->tx_data[i];
590
591 if (data->xfer != NULL) {
592 usbd_destroy_xfer(data->xfer);
593 data->xfer = NULL;
594 }
595
596 if (data->ni != NULL) {
597 ieee80211_free_node(data->ni);
598 data->ni = NULL;
599 }
600 }
601 }
602
603 Static int
604 ural_alloc_rx_list(struct ural_softc *sc)
605 {
606 struct ural_rx_data *data;
607 int i, error;
608
609 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
610 data = &sc->rx_data[i];
611
612 data->sc = sc;
613
614 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
615 0, 0, &data->xfer);
616 if (error) {
617 printf("%s: could not allocate rx xfer\n",
618 device_xname(sc->sc_dev));
619 goto fail;
620 }
621
622 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
623 if (data->m == NULL) {
624 printf("%s: could not allocate rx mbuf\n",
625 device_xname(sc->sc_dev));
626 error = ENOMEM;
627 goto fail;
628 }
629
630 MCLGET(data->m, M_DONTWAIT);
631 if (!(data->m->m_flags & M_EXT)) {
632 printf("%s: could not allocate rx mbuf cluster\n",
633 device_xname(sc->sc_dev));
634 error = ENOMEM;
635 goto fail;
636 }
637
638 data->buf = mtod(data->m, uint8_t *);
639 }
640
641 return 0;
642
643 fail: ural_free_rx_list(sc);
644 return error;
645 }
646
647 Static void
648 ural_free_rx_list(struct ural_softc *sc)
649 {
650 struct ural_rx_data *data;
651 int i;
652
653 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
654 data = &sc->rx_data[i];
655
656 if (data->xfer != NULL) {
657 usbd_destroy_xfer(data->xfer);
658 data->xfer = NULL;
659 }
660
661 if (data->m != NULL) {
662 m_freem(data->m);
663 data->m = NULL;
664 }
665 }
666 }
667
668 Static int
669 ural_media_change(struct ifnet *ifp)
670 {
671 int error;
672
673 error = ieee80211_media_change(ifp);
674 if (error != ENETRESET)
675 return error;
676
677 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
678 ural_init(ifp);
679
680 return 0;
681 }
682
683 /*
684 * This function is called periodically (every 200ms) during scanning to
685 * switch from one channel to another.
686 */
687 Static void
688 ural_next_scan(void *arg)
689 {
690 struct ural_softc *sc = arg;
691 struct ieee80211com *ic = &sc->sc_ic;
692
693 if (ic->ic_state == IEEE80211_S_SCAN)
694 ieee80211_next_scan(ic);
695 }
696
697 Static void
698 ural_task(void *arg)
699 {
700 struct ural_softc *sc = arg;
701 struct ieee80211com *ic = &sc->sc_ic;
702 enum ieee80211_state ostate;
703 struct ieee80211_node *ni;
704 struct mbuf *m;
705
706 ostate = ic->ic_state;
707
708 switch (sc->sc_state) {
709 case IEEE80211_S_INIT:
710 if (ostate == IEEE80211_S_RUN) {
711 /* abort TSF synchronization */
712 ural_write(sc, RAL_TXRX_CSR19, 0);
713
714 /* force tx led to stop blinking */
715 ural_write(sc, RAL_MAC_CSR20, 0);
716 }
717 break;
718
719 case IEEE80211_S_SCAN:
720 ural_set_chan(sc, ic->ic_curchan);
721 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
722 break;
723
724 case IEEE80211_S_AUTH:
725 ural_set_chan(sc, ic->ic_curchan);
726 break;
727
728 case IEEE80211_S_ASSOC:
729 ural_set_chan(sc, ic->ic_curchan);
730 break;
731
732 case IEEE80211_S_RUN:
733 ural_set_chan(sc, ic->ic_curchan);
734
735 ni = ic->ic_bss;
736
737 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 ural_update_slot(ic->ic_ifp);
739 ural_set_txpreamble(sc);
740 ural_set_basicrates(sc);
741 ural_set_bssid(sc, ni->ni_bssid);
742 }
743
744 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
745 ic->ic_opmode == IEEE80211_M_IBSS) {
746 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
747 if (m == NULL) {
748 printf("%s: could not allocate beacon\n",
749 device_xname(sc->sc_dev));
750 return;
751 }
752
753 if (ural_tx_bcn(sc, m, ni) != 0) {
754 m_freem(m);
755 printf("%s: could not send beacon\n",
756 device_xname(sc->sc_dev));
757 return;
758 }
759
760 /* beacon is no longer needed */
761 m_freem(m);
762 }
763
764 /* make tx led blink on tx (controlled by ASIC) */
765 ural_write(sc, RAL_MAC_CSR20, 1);
766
767 if (ic->ic_opmode != IEEE80211_M_MONITOR)
768 ural_enable_tsf_sync(sc);
769
770 /* enable automatic rate adaptation in STA mode */
771 if (ic->ic_opmode == IEEE80211_M_STA &&
772 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
773 ural_amrr_start(sc, ni);
774
775 break;
776 }
777
778 sc->sc_newstate(ic, sc->sc_state, -1);
779 }
780
781 Static int
782 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
783 int arg)
784 {
785 struct ural_softc *sc = ic->ic_ifp->if_softc;
786
787 /*
788 * XXXSMP: This does not wait for the task, if it is in flight,
789 * to complete. If this code works at all, it must rely on the
790 * kernel lock to serialize with the USB task thread.
791 */
792 usb_rem_task(sc->sc_udev, &sc->sc_task);
793 callout_stop(&sc->sc_scan_ch);
794 callout_stop(&sc->sc_amrr_ch);
795
796 /* do it in a process context */
797 sc->sc_state = nstate;
798 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
799
800 return 0;
801 }
802
803 /* quickly determine if a given rate is CCK or OFDM */
804 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
805
806 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
807 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
808
809 #define RAL_SIFS 10 /* us */
810
811 #define RAL_RXTX_TURNAROUND 5 /* us */
812
813 /*
814 * This function is only used by the Rx radiotap code.
815 */
816 Static int
817 ural_rxrate(struct ural_rx_desc *desc)
818 {
819 if (le32toh(desc->flags) & RAL_RX_OFDM) {
820 /* reverse function of ural_plcp_signal */
821 switch (desc->rate) {
822 case 0xb: return 12;
823 case 0xf: return 18;
824 case 0xa: return 24;
825 case 0xe: return 36;
826 case 0x9: return 48;
827 case 0xd: return 72;
828 case 0x8: return 96;
829 case 0xc: return 108;
830 }
831 } else {
832 if (desc->rate == 10)
833 return 2;
834 if (desc->rate == 20)
835 return 4;
836 if (desc->rate == 55)
837 return 11;
838 if (desc->rate == 110)
839 return 22;
840 }
841 return 2; /* should not get there */
842 }
843
844 Static void
845 ural_txeof(struct usbd_xfer *xfer, void * priv,
846 usbd_status status)
847 {
848 struct ural_tx_data *data = priv;
849 struct ural_softc *sc = data->sc;
850 struct ifnet *ifp = &sc->sc_if;
851 int s;
852
853 if (status != USBD_NORMAL_COMPLETION) {
854 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
855 return;
856
857 printf("%s: could not transmit buffer: %s\n",
858 device_xname(sc->sc_dev), usbd_errstr(status));
859
860 if (status == USBD_STALLED)
861 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
862
863 ifp->if_oerrors++;
864 return;
865 }
866
867 s = splnet();
868
869 m_freem(data->m);
870 data->m = NULL;
871 ieee80211_free_node(data->ni);
872 data->ni = NULL;
873
874 sc->tx_queued--;
875 ifp->if_opackets++;
876
877 DPRINTFN(10, ("tx done\n"));
878
879 sc->sc_tx_timer = 0;
880 ifp->if_flags &= ~IFF_OACTIVE;
881 ural_start(ifp);
882
883 splx(s);
884 }
885
886 Static void
887 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
888 {
889 struct ural_rx_data *data = priv;
890 struct ural_softc *sc = data->sc;
891 struct ieee80211com *ic = &sc->sc_ic;
892 struct ifnet *ifp = &sc->sc_if;
893 struct ural_rx_desc *desc;
894 struct ieee80211_frame *wh;
895 struct ieee80211_node *ni;
896 struct mbuf *mnew, *m;
897 int s, len;
898
899 if (status != USBD_NORMAL_COMPLETION) {
900 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
901 return;
902
903 if (status == USBD_STALLED)
904 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
905 goto skip;
906 }
907
908 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
909
910 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
911 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
912 len));
913 ifp->if_ierrors++;
914 goto skip;
915 }
916
917 /* rx descriptor is located at the end */
918 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
919
920 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
921 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
922 /*
923 * This should not happen since we did not request to receive
924 * those frames when we filled RAL_TXRX_CSR2.
925 */
926 DPRINTFN(5, ("PHY or CRC error\n"));
927 ifp->if_ierrors++;
928 goto skip;
929 }
930
931 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
932 if (mnew == NULL) {
933 ifp->if_ierrors++;
934 goto skip;
935 }
936
937 MCLGET(mnew, M_DONTWAIT);
938 if (!(mnew->m_flags & M_EXT)) {
939 ifp->if_ierrors++;
940 m_freem(mnew);
941 goto skip;
942 }
943
944 m = data->m;
945 data->m = mnew;
946 data->buf = mtod(data->m, uint8_t *);
947
948 /* finalize mbuf */
949 m_set_rcvif(m, ifp);
950 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
951 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
952
953 s = splnet();
954
955 if (sc->sc_drvbpf != NULL) {
956 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
957
958 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
959 tap->wr_rate = ural_rxrate(desc);
960 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
961 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
962 tap->wr_antenna = sc->rx_ant;
963 tap->wr_antsignal = desc->rssi;
964
965 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
966 }
967
968 wh = mtod(m, struct ieee80211_frame *);
969 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
970
971 /* send the frame to the 802.11 layer */
972 ieee80211_input(ic, m, ni, desc->rssi, 0);
973
974 /* node is no longer needed */
975 ieee80211_free_node(ni);
976
977 splx(s);
978
979 DPRINTFN(15, ("rx done\n"));
980
981 skip: /* setup a new transfer */
982 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
983 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
984 usbd_transfer(xfer);
985 }
986
987 /*
988 * Return the expected ack rate for a frame transmitted at rate `rate'.
989 * XXX: this should depend on the destination node basic rate set.
990 */
991 Static int
992 ural_ack_rate(struct ieee80211com *ic, int rate)
993 {
994 switch (rate) {
995 /* CCK rates */
996 case 2:
997 return 2;
998 case 4:
999 case 11:
1000 case 22:
1001 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1002
1003 /* OFDM rates */
1004 case 12:
1005 case 18:
1006 return 12;
1007 case 24:
1008 case 36:
1009 return 24;
1010 case 48:
1011 case 72:
1012 case 96:
1013 case 108:
1014 return 48;
1015 }
1016
1017 /* default to 1Mbps */
1018 return 2;
1019 }
1020
1021 /*
1022 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1023 * The function automatically determines the operating mode depending on the
1024 * given rate. `flags' indicates whether short preamble is in use or not.
1025 */
1026 Static uint16_t
1027 ural_txtime(int len, int rate, uint32_t flags)
1028 {
1029 uint16_t txtime;
1030
1031 if (RAL_RATE_IS_OFDM(rate)) {
1032 /* IEEE Std 802.11g-2003, pp. 37 */
1033 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1034 txtime = 16 + 4 + 4 * txtime + 6;
1035 } else {
1036 /* IEEE Std 802.11b-1999, pp. 28 */
1037 txtime = (16 * len + rate - 1) / rate;
1038 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1039 txtime += 72 + 24;
1040 else
1041 txtime += 144 + 48;
1042 }
1043 return txtime;
1044 }
1045
1046 Static uint8_t
1047 ural_plcp_signal(int rate)
1048 {
1049 switch (rate) {
1050 /* CCK rates (returned values are device-dependent) */
1051 case 2: return 0x0;
1052 case 4: return 0x1;
1053 case 11: return 0x2;
1054 case 22: return 0x3;
1055
1056 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1057 case 12: return 0xb;
1058 case 18: return 0xf;
1059 case 24: return 0xa;
1060 case 36: return 0xe;
1061 case 48: return 0x9;
1062 case 72: return 0xd;
1063 case 96: return 0x8;
1064 case 108: return 0xc;
1065
1066 /* unsupported rates (should not get there) */
1067 default: return 0xff;
1068 }
1069 }
1070
1071 Static void
1072 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1073 uint32_t flags, int len, int rate)
1074 {
1075 struct ieee80211com *ic = &sc->sc_ic;
1076 uint16_t plcp_length;
1077 int remainder;
1078
1079 desc->flags = htole32(flags);
1080 desc->flags |= htole32(RAL_TX_NEWSEQ);
1081 desc->flags |= htole32(len << 16);
1082
1083 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1084 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1085
1086 /* setup PLCP fields */
1087 desc->plcp_signal = ural_plcp_signal(rate);
1088 desc->plcp_service = 4;
1089
1090 len += IEEE80211_CRC_LEN;
1091 if (RAL_RATE_IS_OFDM(rate)) {
1092 desc->flags |= htole32(RAL_TX_OFDM);
1093
1094 plcp_length = len & 0xfff;
1095 desc->plcp_length_hi = plcp_length >> 6;
1096 desc->plcp_length_lo = plcp_length & 0x3f;
1097 } else {
1098 plcp_length = (16 * len + rate - 1) / rate;
1099 if (rate == 22) {
1100 remainder = (16 * len) % 22;
1101 if (remainder != 0 && remainder < 7)
1102 desc->plcp_service |= RAL_PLCP_LENGEXT;
1103 }
1104 desc->plcp_length_hi = plcp_length >> 8;
1105 desc->plcp_length_lo = plcp_length & 0xff;
1106
1107 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1108 desc->plcp_signal |= 0x08;
1109 }
1110
1111 desc->iv = 0;
1112 desc->eiv = 0;
1113 }
1114
1115 #define RAL_TX_TIMEOUT 5000
1116
1117 Static int
1118 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1119 {
1120 struct ural_tx_desc *desc;
1121 struct usbd_xfer *xfer;
1122 uint8_t cmd = 0;
1123 usbd_status error;
1124 uint8_t *buf;
1125 int xferlen, rate;
1126
1127 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1128
1129 /* xfer length needs to be a multiple of two! */
1130 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1131
1132 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1133 USBD_FORCE_SHORT_XFER, 0, &xfer);
1134 if (error)
1135 return error;
1136
1137 buf = usbd_get_buffer(xfer);
1138
1139 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1140 RAL_TX_TIMEOUT, NULL);
1141
1142 error = usbd_sync_transfer(xfer);
1143 if (error != 0) {
1144 usbd_destroy_xfer(xfer);
1145 return error;
1146 }
1147
1148 desc = (struct ural_tx_desc *)buf;
1149
1150 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1151 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1152 m0->m_pkthdr.len, rate);
1153
1154 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155 m0->m_pkthdr.len, rate, xferlen));
1156
1157 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1158 RAL_TX_TIMEOUT, NULL);
1159
1160 error = usbd_sync_transfer(xfer);
1161 usbd_destroy_xfer(xfer);
1162
1163 return error;
1164 }
1165
1166 Static int
1167 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1168 {
1169 struct ieee80211com *ic = &sc->sc_ic;
1170 struct ural_tx_desc *desc;
1171 struct ural_tx_data *data;
1172 struct ieee80211_frame *wh;
1173 struct ieee80211_key *k;
1174 uint32_t flags = 0;
1175 uint16_t dur;
1176 usbd_status error;
1177 int xferlen, rate;
1178
1179 data = &sc->tx_data[0];
1180 desc = (struct ural_tx_desc *)data->buf;
1181
1182 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1183
1184 wh = mtod(m0, struct ieee80211_frame *);
1185
1186 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1187 k = ieee80211_crypto_encap(ic, ni, m0);
1188 if (k == NULL) {
1189 m_freem(m0);
1190 return ENOBUFS;
1191 }
1192 }
1193
1194 data->m = m0;
1195 data->ni = ni;
1196
1197 wh = mtod(m0, struct ieee80211_frame *);
1198
1199 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1200 flags |= RAL_TX_ACK;
1201
1202 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1203 *(uint16_t *)wh->i_dur = htole16(dur);
1204
1205 /* tell hardware to add timestamp for probe responses */
1206 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1207 IEEE80211_FC0_TYPE_MGT &&
1208 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1209 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1210 flags |= RAL_TX_TIMESTAMP;
1211 }
1212
1213 if (sc->sc_drvbpf != NULL) {
1214 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1215
1216 tap->wt_flags = 0;
1217 tap->wt_rate = rate;
1218 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1219 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1220 tap->wt_antenna = sc->tx_ant;
1221
1222 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1223 }
1224
1225 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1226 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1227
1228 /* align end on a 2-bytes boundary */
1229 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1230
1231 /*
1232 * No space left in the last URB to store the extra 2 bytes, force
1233 * sending of another URB.
1234 */
1235 if ((xferlen % 64) == 0)
1236 xferlen += 2;
1237
1238 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1239 m0->m_pkthdr.len, rate, xferlen));
1240
1241 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1242 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1243
1244 error = usbd_transfer(data->xfer);
1245 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1246 m_freem(m0);
1247 return error;
1248 }
1249
1250 sc->tx_queued++;
1251
1252 return 0;
1253 }
1254
1255 Static int
1256 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1257 {
1258 struct ieee80211com *ic = &sc->sc_ic;
1259 struct ural_tx_desc *desc;
1260 struct ural_tx_data *data;
1261 struct ieee80211_frame *wh;
1262 struct ieee80211_key *k;
1263 uint32_t flags = 0;
1264 uint16_t dur;
1265 usbd_status error;
1266 int xferlen, rate;
1267
1268 wh = mtod(m0, struct ieee80211_frame *);
1269
1270 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1271 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1272 else
1273 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1274
1275 rate &= IEEE80211_RATE_VAL;
1276
1277 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1278 k = ieee80211_crypto_encap(ic, ni, m0);
1279 if (k == NULL) {
1280 m_freem(m0);
1281 return ENOBUFS;
1282 }
1283
1284 /* packet header may have moved, reset our local pointer */
1285 wh = mtod(m0, struct ieee80211_frame *);
1286 }
1287
1288 data = &sc->tx_data[0];
1289 desc = (struct ural_tx_desc *)data->buf;
1290
1291 data->m = m0;
1292 data->ni = ni;
1293
1294 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1295 flags |= RAL_TX_ACK;
1296 flags |= RAL_TX_RETRY(7);
1297
1298 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1299 ic->ic_flags) + RAL_SIFS;
1300 *(uint16_t *)wh->i_dur = htole16(dur);
1301 }
1302
1303 if (sc->sc_drvbpf != NULL) {
1304 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1305
1306 tap->wt_flags = 0;
1307 tap->wt_rate = rate;
1308 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1309 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1310 tap->wt_antenna = sc->tx_ant;
1311
1312 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1313 }
1314
1315 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1316 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1317
1318 /* align end on a 2-bytes boundary */
1319 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1320
1321 /*
1322 * No space left in the last URB to store the extra 2 bytes, force
1323 * sending of another URB.
1324 */
1325 if ((xferlen % 64) == 0)
1326 xferlen += 2;
1327
1328 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1329 m0->m_pkthdr.len, rate, xferlen));
1330 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1331 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1332
1333 error = usbd_transfer(data->xfer);
1334 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1335 return error;
1336
1337 sc->tx_queued++;
1338
1339 return 0;
1340 }
1341
1342 Static void
1343 ural_start(struct ifnet *ifp)
1344 {
1345 struct ural_softc *sc = ifp->if_softc;
1346 struct ieee80211com *ic = &sc->sc_ic;
1347 struct mbuf *m0;
1348 struct ether_header *eh;
1349 struct ieee80211_node *ni;
1350
1351 for (;;) {
1352 IF_POLL(&ic->ic_mgtq, m0);
1353 if (m0 != NULL) {
1354 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1355 ifp->if_flags |= IFF_OACTIVE;
1356 break;
1357 }
1358 IF_DEQUEUE(&ic->ic_mgtq, m0);
1359
1360 ni = M_GETCTX(m0, struct ieee80211_node *);
1361 M_CLEARCTX(m0);
1362 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1363 if (ural_tx_mgt(sc, m0, ni) != 0)
1364 break;
1365
1366 } else {
1367 if (ic->ic_state != IEEE80211_S_RUN)
1368 break;
1369 IFQ_DEQUEUE(&ifp->if_snd, m0);
1370 if (m0 == NULL)
1371 break;
1372 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1373 IF_PREPEND(&ifp->if_snd, m0);
1374 ifp->if_flags |= IFF_OACTIVE;
1375 break;
1376 }
1377
1378 if (m0->m_len < sizeof(struct ether_header) &&
1379 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1380 continue;
1381
1382 eh = mtod(m0, struct ether_header *);
1383 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1384 if (ni == NULL) {
1385 m_freem(m0);
1386 continue;
1387 }
1388 bpf_mtap(ifp, m0, BPF_D_OUT);
1389 m0 = ieee80211_encap(ic, m0, ni);
1390 if (m0 == NULL) {
1391 ieee80211_free_node(ni);
1392 continue;
1393 }
1394 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1395 if (ural_tx_data(sc, m0, ni) != 0) {
1396 ieee80211_free_node(ni);
1397 ifp->if_oerrors++;
1398 break;
1399 }
1400 }
1401
1402 sc->sc_tx_timer = 5;
1403 ifp->if_timer = 1;
1404 }
1405 }
1406
1407 Static void
1408 ural_watchdog(struct ifnet *ifp)
1409 {
1410 struct ural_softc *sc = ifp->if_softc;
1411 struct ieee80211com *ic = &sc->sc_ic;
1412
1413 ifp->if_timer = 0;
1414
1415 if (sc->sc_tx_timer > 0) {
1416 if (--sc->sc_tx_timer == 0) {
1417 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1418 /*ural_init(sc); XXX needs a process context! */
1419 ifp->if_oerrors++;
1420 return;
1421 }
1422 ifp->if_timer = 1;
1423 }
1424
1425 ieee80211_watchdog(ic);
1426 }
1427
1428 /*
1429 * This function allows for fast channel switching in monitor mode (used by
1430 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1431 * generate a new beacon frame.
1432 */
1433 Static int
1434 ural_reset(struct ifnet *ifp)
1435 {
1436 struct ural_softc *sc = ifp->if_softc;
1437 struct ieee80211com *ic = &sc->sc_ic;
1438
1439 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1440 return ENETRESET;
1441
1442 ural_set_chan(sc, ic->ic_curchan);
1443
1444 return 0;
1445 }
1446
1447 Static int
1448 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1449 {
1450 #define IS_RUNNING(ifp) \
1451 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1452
1453 struct ural_softc *sc = ifp->if_softc;
1454 struct ieee80211com *ic = &sc->sc_ic;
1455 int s, error = 0;
1456
1457 s = splnet();
1458
1459 switch (cmd) {
1460 case SIOCSIFFLAGS:
1461 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1462 break;
1463 /* XXX re-use ether_ioctl() */
1464 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1465 case IFF_UP|IFF_RUNNING:
1466 ural_update_promisc(sc);
1467 break;
1468 case IFF_UP:
1469 ural_init(ifp);
1470 break;
1471 case IFF_RUNNING:
1472 ural_stop(ifp, 1);
1473 break;
1474 case 0:
1475 break;
1476 }
1477 break;
1478
1479 case SIOCADDMULTI:
1480 case SIOCDELMULTI:
1481 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1482 error = 0;
1483 }
1484 break;
1485
1486 default:
1487 error = ieee80211_ioctl(ic, cmd, data);
1488 }
1489
1490 if (error == ENETRESET) {
1491 if (IS_RUNNING(ifp) &&
1492 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1493 ural_init(ifp);
1494 error = 0;
1495 }
1496
1497 splx(s);
1498
1499 return error;
1500 #undef IS_RUNNING
1501 }
1502
1503 Static void
1504 ural_set_testmode(struct ural_softc *sc)
1505 {
1506 usb_device_request_t req;
1507 usbd_status error;
1508
1509 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1510 req.bRequest = RAL_VENDOR_REQUEST;
1511 USETW(req.wValue, 4);
1512 USETW(req.wIndex, 1);
1513 USETW(req.wLength, 0);
1514
1515 error = usbd_do_request(sc->sc_udev, &req, NULL);
1516 if (error != 0) {
1517 printf("%s: could not set test mode: %s\n",
1518 device_xname(sc->sc_dev), usbd_errstr(error));
1519 }
1520 }
1521
1522 Static void
1523 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1524 {
1525 usb_device_request_t req;
1526 usbd_status error;
1527
1528 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1529 req.bRequest = RAL_READ_EEPROM;
1530 USETW(req.wValue, 0);
1531 USETW(req.wIndex, addr);
1532 USETW(req.wLength, len);
1533
1534 error = usbd_do_request(sc->sc_udev, &req, buf);
1535 if (error != 0) {
1536 printf("%s: could not read EEPROM: %s\n",
1537 device_xname(sc->sc_dev), usbd_errstr(error));
1538 }
1539 }
1540
1541 Static uint16_t
1542 ural_read(struct ural_softc *sc, uint16_t reg)
1543 {
1544 usb_device_request_t req;
1545 usbd_status error;
1546 uint16_t val;
1547
1548 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1549 req.bRequest = RAL_READ_MAC;
1550 USETW(req.wValue, 0);
1551 USETW(req.wIndex, reg);
1552 USETW(req.wLength, sizeof(uint16_t));
1553
1554 error = usbd_do_request(sc->sc_udev, &req, &val);
1555 if (error != 0) {
1556 printf("%s: could not read MAC register: %s\n",
1557 device_xname(sc->sc_dev), usbd_errstr(error));
1558 return 0;
1559 }
1560
1561 return le16toh(val);
1562 }
1563
1564 Static void
1565 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1566 {
1567 usb_device_request_t req;
1568 usbd_status error;
1569
1570 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1571 req.bRequest = RAL_READ_MULTI_MAC;
1572 USETW(req.wValue, 0);
1573 USETW(req.wIndex, reg);
1574 USETW(req.wLength, len);
1575
1576 error = usbd_do_request(sc->sc_udev, &req, buf);
1577 if (error != 0) {
1578 printf("%s: could not read MAC register: %s\n",
1579 device_xname(sc->sc_dev), usbd_errstr(error));
1580 }
1581 }
1582
1583 Static void
1584 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1585 {
1586 usb_device_request_t req;
1587 usbd_status error;
1588
1589 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1590 req.bRequest = RAL_WRITE_MAC;
1591 USETW(req.wValue, val);
1592 USETW(req.wIndex, reg);
1593 USETW(req.wLength, 0);
1594
1595 error = usbd_do_request(sc->sc_udev, &req, NULL);
1596 if (error != 0) {
1597 printf("%s: could not write MAC register: %s\n",
1598 device_xname(sc->sc_dev), usbd_errstr(error));
1599 }
1600 }
1601
1602 Static void
1603 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1604 {
1605 usb_device_request_t req;
1606 usbd_status error;
1607
1608 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1609 req.bRequest = RAL_WRITE_MULTI_MAC;
1610 USETW(req.wValue, 0);
1611 USETW(req.wIndex, reg);
1612 USETW(req.wLength, len);
1613
1614 error = usbd_do_request(sc->sc_udev, &req, buf);
1615 if (error != 0) {
1616 printf("%s: could not write MAC register: %s\n",
1617 device_xname(sc->sc_dev), usbd_errstr(error));
1618 }
1619 }
1620
1621 Static void
1622 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1623 {
1624 uint16_t tmp;
1625 int ntries;
1626
1627 for (ntries = 0; ntries < 5; ntries++) {
1628 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1629 break;
1630 }
1631 if (ntries == 5) {
1632 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1633 return;
1634 }
1635
1636 tmp = reg << 8 | val;
1637 ural_write(sc, RAL_PHY_CSR7, tmp);
1638 }
1639
1640 Static uint8_t
1641 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1642 {
1643 uint16_t val;
1644 int ntries;
1645
1646 val = RAL_BBP_WRITE | reg << 8;
1647 ural_write(sc, RAL_PHY_CSR7, val);
1648
1649 for (ntries = 0; ntries < 5; ntries++) {
1650 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1651 break;
1652 }
1653 if (ntries == 5) {
1654 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1655 return 0;
1656 }
1657
1658 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1659 }
1660
1661 Static void
1662 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1663 {
1664 uint32_t tmp;
1665 int ntries;
1666
1667 for (ntries = 0; ntries < 5; ntries++) {
1668 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1669 break;
1670 }
1671 if (ntries == 5) {
1672 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1673 return;
1674 }
1675
1676 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1677 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1678 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1679
1680 /* remember last written value in sc */
1681 sc->rf_regs[reg] = val;
1682
1683 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1684 }
1685
1686 Static void
1687 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1688 {
1689 struct ieee80211com *ic = &sc->sc_ic;
1690 uint8_t power, tmp;
1691 u_int i, chan;
1692
1693 chan = ieee80211_chan2ieee(ic, c);
1694 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1695 return;
1696
1697 if (IEEE80211_IS_CHAN_2GHZ(c))
1698 power = min(sc->txpow[chan - 1], 31);
1699 else
1700 power = 31;
1701
1702 /* adjust txpower using ifconfig settings */
1703 power -= (100 - ic->ic_txpowlimit) / 8;
1704
1705 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1706
1707 switch (sc->rf_rev) {
1708 case RAL_RF_2522:
1709 ural_rf_write(sc, RAL_RF1, 0x00814);
1710 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1711 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1712 break;
1713
1714 case RAL_RF_2523:
1715 ural_rf_write(sc, RAL_RF1, 0x08804);
1716 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1717 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1718 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1719 break;
1720
1721 case RAL_RF_2524:
1722 ural_rf_write(sc, RAL_RF1, 0x0c808);
1723 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1724 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1725 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1726 break;
1727
1728 case RAL_RF_2525:
1729 ural_rf_write(sc, RAL_RF1, 0x08808);
1730 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1731 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1732 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1733
1734 ural_rf_write(sc, RAL_RF1, 0x08808);
1735 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1736 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1737 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1738 break;
1739
1740 case RAL_RF_2525E:
1741 ural_rf_write(sc, RAL_RF1, 0x08808);
1742 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1743 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1744 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1745 break;
1746
1747 case RAL_RF_2526:
1748 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1749 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1750 ural_rf_write(sc, RAL_RF1, 0x08804);
1751
1752 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1753 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1755 break;
1756
1757 /* dual-band RF */
1758 case RAL_RF_5222:
1759 for (i = 0; ural_rf5222[i].chan != chan; i++);
1760
1761 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1762 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1763 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1764 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1765 break;
1766 }
1767
1768 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1769 ic->ic_state != IEEE80211_S_SCAN) {
1770 /* set Japan filter bit for channel 14 */
1771 tmp = ural_bbp_read(sc, 70);
1772
1773 tmp &= ~RAL_JAPAN_FILTER;
1774 if (chan == 14)
1775 tmp |= RAL_JAPAN_FILTER;
1776
1777 ural_bbp_write(sc, 70, tmp);
1778
1779 /* clear CRC errors */
1780 ural_read(sc, RAL_STA_CSR0);
1781
1782 DELAY(10000);
1783 ural_disable_rf_tune(sc);
1784 }
1785 }
1786
1787 /*
1788 * Disable RF auto-tuning.
1789 */
1790 Static void
1791 ural_disable_rf_tune(struct ural_softc *sc)
1792 {
1793 uint32_t tmp;
1794
1795 if (sc->rf_rev != RAL_RF_2523) {
1796 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1797 ural_rf_write(sc, RAL_RF1, tmp);
1798 }
1799
1800 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1801 ural_rf_write(sc, RAL_RF3, tmp);
1802
1803 DPRINTFN(2, ("disabling RF autotune\n"));
1804 }
1805
1806 /*
1807 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1808 * synchronization.
1809 */
1810 Static void
1811 ural_enable_tsf_sync(struct ural_softc *sc)
1812 {
1813 struct ieee80211com *ic = &sc->sc_ic;
1814 uint16_t logcwmin, preload, tmp;
1815
1816 /* first, disable TSF synchronization */
1817 ural_write(sc, RAL_TXRX_CSR19, 0);
1818
1819 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1820 ural_write(sc, RAL_TXRX_CSR18, tmp);
1821
1822 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1823 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1824 tmp = logcwmin << 12 | preload;
1825 ural_write(sc, RAL_TXRX_CSR20, tmp);
1826
1827 /* finally, enable TSF synchronization */
1828 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1829 if (ic->ic_opmode == IEEE80211_M_STA)
1830 tmp |= RAL_ENABLE_TSF_SYNC(1);
1831 else
1832 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1833 ural_write(sc, RAL_TXRX_CSR19, tmp);
1834
1835 DPRINTF(("enabling TSF synchronization\n"));
1836 }
1837
1838 Static void
1839 ural_update_slot(struct ifnet *ifp)
1840 {
1841 struct ural_softc *sc = ifp->if_softc;
1842 struct ieee80211com *ic = &sc->sc_ic;
1843 uint16_t slottime, sifs, eifs;
1844
1845 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1846
1847 /*
1848 * These settings may sound a bit inconsistent but this is what the
1849 * reference driver does.
1850 */
1851 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1852 sifs = 16 - RAL_RXTX_TURNAROUND;
1853 eifs = 364;
1854 } else {
1855 sifs = 10 - RAL_RXTX_TURNAROUND;
1856 eifs = 64;
1857 }
1858
1859 ural_write(sc, RAL_MAC_CSR10, slottime);
1860 ural_write(sc, RAL_MAC_CSR11, sifs);
1861 ural_write(sc, RAL_MAC_CSR12, eifs);
1862 }
1863
1864 Static void
1865 ural_set_txpreamble(struct ural_softc *sc)
1866 {
1867 uint16_t tmp;
1868
1869 tmp = ural_read(sc, RAL_TXRX_CSR10);
1870
1871 tmp &= ~RAL_SHORT_PREAMBLE;
1872 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1873 tmp |= RAL_SHORT_PREAMBLE;
1874
1875 ural_write(sc, RAL_TXRX_CSR10, tmp);
1876 }
1877
1878 Static void
1879 ural_set_basicrates(struct ural_softc *sc)
1880 {
1881 struct ieee80211com *ic = &sc->sc_ic;
1882
1883 /* update basic rate set */
1884 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1885 /* 11b basic rates: 1, 2Mbps */
1886 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1887 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1888 /* 11a basic rates: 6, 12, 24Mbps */
1889 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1890 } else {
1891 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1892 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1893 }
1894 }
1895
1896 Static void
1897 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1898 {
1899 uint16_t tmp;
1900
1901 tmp = bssid[0] | bssid[1] << 8;
1902 ural_write(sc, RAL_MAC_CSR5, tmp);
1903
1904 tmp = bssid[2] | bssid[3] << 8;
1905 ural_write(sc, RAL_MAC_CSR6, tmp);
1906
1907 tmp = bssid[4] | bssid[5] << 8;
1908 ural_write(sc, RAL_MAC_CSR7, tmp);
1909
1910 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1911 }
1912
1913 Static void
1914 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1915 {
1916 uint16_t tmp;
1917
1918 tmp = addr[0] | addr[1] << 8;
1919 ural_write(sc, RAL_MAC_CSR2, tmp);
1920
1921 tmp = addr[2] | addr[3] << 8;
1922 ural_write(sc, RAL_MAC_CSR3, tmp);
1923
1924 tmp = addr[4] | addr[5] << 8;
1925 ural_write(sc, RAL_MAC_CSR4, tmp);
1926
1927 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1928 }
1929
1930 Static void
1931 ural_update_promisc(struct ural_softc *sc)
1932 {
1933 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1934 uint32_t tmp;
1935
1936 tmp = ural_read(sc, RAL_TXRX_CSR2);
1937
1938 tmp &= ~RAL_DROP_NOT_TO_ME;
1939 if (!(ifp->if_flags & IFF_PROMISC))
1940 tmp |= RAL_DROP_NOT_TO_ME;
1941
1942 ural_write(sc, RAL_TXRX_CSR2, tmp);
1943
1944 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1945 "entering" : "leaving"));
1946 }
1947
1948 Static const char *
1949 ural_get_rf(int rev)
1950 {
1951 switch (rev) {
1952 case RAL_RF_2522: return "RT2522";
1953 case RAL_RF_2523: return "RT2523";
1954 case RAL_RF_2524: return "RT2524";
1955 case RAL_RF_2525: return "RT2525";
1956 case RAL_RF_2525E: return "RT2525e";
1957 case RAL_RF_2526: return "RT2526";
1958 case RAL_RF_5222: return "RT5222";
1959 default: return "unknown";
1960 }
1961 }
1962
1963 Static void
1964 ural_read_eeprom(struct ural_softc *sc)
1965 {
1966 struct ieee80211com *ic = &sc->sc_ic;
1967 uint16_t val;
1968
1969 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1970 val = le16toh(val);
1971 sc->rf_rev = (val >> 11) & 0x7;
1972 sc->hw_radio = (val >> 10) & 0x1;
1973 sc->led_mode = (val >> 6) & 0x7;
1974 sc->rx_ant = (val >> 4) & 0x3;
1975 sc->tx_ant = (val >> 2) & 0x3;
1976 sc->nb_ant = val & 0x3;
1977
1978 /* read MAC address */
1979 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1980
1981 /* read default values for BBP registers */
1982 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1983
1984 /* read Tx power for all b/g channels */
1985 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1986 }
1987
1988 Static int
1989 ural_bbp_init(struct ural_softc *sc)
1990 {
1991 int i, ntries;
1992
1993 /* wait for BBP to be ready */
1994 for (ntries = 0; ntries < 100; ntries++) {
1995 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1996 break;
1997 DELAY(1000);
1998 }
1999 if (ntries == 100) {
2000 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2001 return EIO;
2002 }
2003
2004 /* initialize BBP registers to default values */
2005 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2006 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2007
2008 #if 0
2009 /* initialize BBP registers to values stored in EEPROM */
2010 for (i = 0; i < 16; i++) {
2011 if (sc->bbp_prom[i].reg == 0xff)
2012 continue;
2013 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2014 }
2015 #endif
2016
2017 return 0;
2018 }
2019
2020 Static void
2021 ural_set_txantenna(struct ural_softc *sc, int antenna)
2022 {
2023 uint16_t tmp;
2024 uint8_t tx;
2025
2026 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2027 if (antenna == 1)
2028 tx |= RAL_BBP_ANTA;
2029 else if (antenna == 2)
2030 tx |= RAL_BBP_ANTB;
2031 else
2032 tx |= RAL_BBP_DIVERSITY;
2033
2034 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2035 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2036 sc->rf_rev == RAL_RF_5222)
2037 tx |= RAL_BBP_FLIPIQ;
2038
2039 ural_bbp_write(sc, RAL_BBP_TX, tx);
2040
2041 /* update values in PHY_CSR5 and PHY_CSR6 */
2042 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2043 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2044
2045 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2046 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2047 }
2048
2049 Static void
2050 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2051 {
2052 uint8_t rx;
2053
2054 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2055 if (antenna == 1)
2056 rx |= RAL_BBP_ANTA;
2057 else if (antenna == 2)
2058 rx |= RAL_BBP_ANTB;
2059 else
2060 rx |= RAL_BBP_DIVERSITY;
2061
2062 /* need to force no I/Q flip for RF 2525e and 2526 */
2063 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2064 rx &= ~RAL_BBP_FLIPIQ;
2065
2066 ural_bbp_write(sc, RAL_BBP_RX, rx);
2067 }
2068
2069 Static int
2070 ural_init(struct ifnet *ifp)
2071 {
2072 struct ural_softc *sc = ifp->if_softc;
2073 struct ieee80211com *ic = &sc->sc_ic;
2074 struct ieee80211_key *wk;
2075 uint16_t tmp;
2076 usbd_status error;
2077 int i, ntries;
2078
2079 ural_set_testmode(sc);
2080 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2081
2082 ural_stop(ifp, 0);
2083
2084 /* initialize MAC registers to default values */
2085 for (i = 0; i < __arraycount(ural_def_mac); i++)
2086 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2087
2088 /* wait for BBP and RF to wake up (this can take a long time!) */
2089 for (ntries = 0; ntries < 100; ntries++) {
2090 tmp = ural_read(sc, RAL_MAC_CSR17);
2091 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2092 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2093 break;
2094 DELAY(1000);
2095 }
2096 if (ntries == 100) {
2097 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2098 device_xname(sc->sc_dev));
2099 error = EIO;
2100 goto fail;
2101 }
2102
2103 /* we're ready! */
2104 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2105
2106 /* set basic rate set (will be updated later) */
2107 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2108
2109 error = ural_bbp_init(sc);
2110 if (error != 0)
2111 goto fail;
2112
2113 /* set default BSS channel */
2114 ural_set_chan(sc, ic->ic_curchan);
2115
2116 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2117 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2118
2119 ural_set_txantenna(sc, sc->tx_ant);
2120 ural_set_rxantenna(sc, sc->rx_ant);
2121
2122 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2123 ural_set_macaddr(sc, ic->ic_myaddr);
2124
2125 /*
2126 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2127 */
2128 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2129 wk = &ic->ic_crypto.cs_nw_keys[i];
2130 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2131 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2132 }
2133
2134 /*
2135 * Allocate xfer for AMRR statistics requests.
2136 */
2137 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2138 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2139 if (error) {
2140 printf("%s: could not allocate AMRR xfer\n",
2141 device_xname(sc->sc_dev));
2142 goto fail;
2143 }
2144
2145 /*
2146 * Open Tx and Rx USB bulk pipes.
2147 */
2148 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2149 &sc->sc_tx_pipeh);
2150 if (error != 0) {
2151 printf("%s: could not open Tx pipe: %s\n",
2152 device_xname(sc->sc_dev), usbd_errstr(error));
2153 goto fail;
2154 }
2155
2156 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2157 &sc->sc_rx_pipeh);
2158 if (error != 0) {
2159 printf("%s: could not open Rx pipe: %s\n",
2160 device_xname(sc->sc_dev), usbd_errstr(error));
2161 goto fail;
2162 }
2163
2164 /*
2165 * Allocate Tx and Rx xfer queues.
2166 */
2167 error = ural_alloc_tx_list(sc);
2168 if (error != 0) {
2169 printf("%s: could not allocate Tx list\n",
2170 device_xname(sc->sc_dev));
2171 goto fail;
2172 }
2173
2174 error = ural_alloc_rx_list(sc);
2175 if (error != 0) {
2176 printf("%s: could not allocate Rx list\n",
2177 device_xname(sc->sc_dev));
2178 goto fail;
2179 }
2180
2181 /*
2182 * Start up the receive pipe.
2183 */
2184 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2185 struct ural_rx_data *data = &sc->rx_data[i];
2186
2187 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2188 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2189 usbd_transfer(data->xfer);
2190 }
2191
2192 /* kick Rx */
2193 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2194 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2195 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2196 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2197 tmp |= RAL_DROP_TODS;
2198 if (!(ifp->if_flags & IFF_PROMISC))
2199 tmp |= RAL_DROP_NOT_TO_ME;
2200 }
2201 ural_write(sc, RAL_TXRX_CSR2, tmp);
2202
2203 ifp->if_flags &= ~IFF_OACTIVE;
2204 ifp->if_flags |= IFF_RUNNING;
2205
2206 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2207 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2208 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2209 } else
2210 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2211
2212 return 0;
2213
2214 fail: ural_stop(ifp, 1);
2215 return error;
2216 }
2217
2218 Static void
2219 ural_stop(struct ifnet *ifp, int disable)
2220 {
2221 struct ural_softc *sc = ifp->if_softc;
2222 struct ieee80211com *ic = &sc->sc_ic;
2223
2224 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2225
2226 sc->sc_tx_timer = 0;
2227 ifp->if_timer = 0;
2228 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2229
2230 /* disable Rx */
2231 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2232
2233 /* reset ASIC and BBP (but won't reset MAC registers!) */
2234 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2235 ural_write(sc, RAL_MAC_CSR1, 0);
2236
2237 if (sc->amrr_xfer != NULL) {
2238 usbd_destroy_xfer(sc->amrr_xfer);
2239 sc->amrr_xfer = NULL;
2240 }
2241
2242 if (sc->sc_rx_pipeh != NULL) {
2243 usbd_abort_pipe(sc->sc_rx_pipeh);
2244 }
2245
2246 if (sc->sc_tx_pipeh != NULL) {
2247 usbd_abort_pipe(sc->sc_tx_pipeh);
2248 }
2249
2250 ural_free_rx_list(sc);
2251 ural_free_tx_list(sc);
2252
2253 if (sc->sc_rx_pipeh != NULL) {
2254 usbd_close_pipe(sc->sc_rx_pipeh);
2255 sc->sc_rx_pipeh = NULL;
2256 }
2257
2258 if (sc->sc_tx_pipeh != NULL) {
2259 usbd_close_pipe(sc->sc_tx_pipeh);
2260 sc->sc_tx_pipeh = NULL;
2261 }
2262 }
2263
2264 int
2265 ural_activate(device_t self, enum devact act)
2266 {
2267 struct ural_softc *sc = device_private(self);
2268
2269 switch (act) {
2270 case DVACT_DEACTIVATE:
2271 if_deactivate(&sc->sc_if);
2272 return 0;
2273 default:
2274 return EOPNOTSUPP;
2275 }
2276 }
2277
2278 Static void
2279 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2280 {
2281 int i;
2282
2283 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2284 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2285
2286 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2287
2288 /* set rate to some reasonable initial value */
2289 for (i = ni->ni_rates.rs_nrates - 1;
2290 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2291 i--);
2292 ni->ni_txrate = i;
2293
2294 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2295 }
2296
2297 Static void
2298 ural_amrr_timeout(void *arg)
2299 {
2300 struct ural_softc *sc = (struct ural_softc *)arg;
2301 usb_device_request_t req;
2302 int s;
2303
2304 s = splusb();
2305
2306 /*
2307 * Asynchronously read statistic registers (cleared by read).
2308 */
2309 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2310 req.bRequest = RAL_READ_MULTI_MAC;
2311 USETW(req.wValue, 0);
2312 USETW(req.wIndex, RAL_STA_CSR0);
2313 USETW(req.wLength, sizeof(sc->sta));
2314
2315 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2316 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2317 ural_amrr_update);
2318 (void)usbd_transfer(sc->amrr_xfer);
2319
2320 splx(s);
2321 }
2322
2323 Static void
2324 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2325 usbd_status status)
2326 {
2327 struct ural_softc *sc = (struct ural_softc *)priv;
2328 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2329
2330 if (status != USBD_NORMAL_COMPLETION) {
2331 printf("%s: could not retrieve Tx statistics - "
2332 "cancelling automatic rate control\n",
2333 device_xname(sc->sc_dev));
2334 return;
2335 }
2336
2337 /* count TX retry-fail as Tx errors */
2338 ifp->if_oerrors += sc->sta[9];
2339
2340 sc->amn.amn_retrycnt =
2341 sc->sta[7] + /* TX one-retry ok count */
2342 sc->sta[8] + /* TX more-retry ok count */
2343 sc->sta[9]; /* TX retry-fail count */
2344
2345 sc->amn.amn_txcnt =
2346 sc->amn.amn_retrycnt +
2347 sc->sta[6]; /* TX no-retry ok count */
2348
2349 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2350
2351 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2352 }
2353