if_ural.c revision 1.60 1 /* $NetBSD: if_ural.c,v 1.60 2019/09/14 12:42:36 maxv Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.60 2019/09/14 12:42:36 maxv Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111
112 Static int ural_alloc_tx_list(struct ural_softc *);
113 Static void ural_free_tx_list(struct ural_softc *);
114 Static int ural_alloc_rx_list(struct ural_softc *);
115 Static void ural_free_rx_list(struct ural_softc *);
116 Static int ural_media_change(struct ifnet *);
117 Static void ural_next_scan(void *);
118 Static void ural_task(void *);
119 Static int ural_newstate(struct ieee80211com *,
120 enum ieee80211_state, int);
121 Static int ural_rxrate(struct ural_rx_desc *);
122 Static void ural_txeof(struct usbd_xfer *, void *,
123 usbd_status);
124 Static void ural_rxeof(struct usbd_xfer *, void *,
125 usbd_status);
126 Static int ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_reset(struct ifnet *);
140 Static int ural_ioctl(struct ifnet *, u_long, void *);
141 Static void ural_set_testmode(struct ural_softc *);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_update_slot(struct ifnet *);
158 Static void ural_set_txpreamble(struct ural_softc *);
159 Static void ural_set_basicrates(struct ural_softc *);
160 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void ural_update_promisc(struct ural_softc *);
163 Static const char *ural_get_rf(int);
164 Static void ural_read_eeprom(struct ural_softc *);
165 Static int ural_bbp_init(struct ural_softc *);
166 Static void ural_set_txantenna(struct ural_softc *, int);
167 Static void ural_set_rxantenna(struct ural_softc *, int);
168 Static int ural_init(struct ifnet *);
169 Static void ural_stop(struct ifnet *, int);
170 Static void ural_amrr_start(struct ural_softc *,
171 struct ieee80211_node *);
172 Static void ural_amrr_timeout(void *);
173 Static void ural_amrr_update(struct usbd_xfer *, void *,
174 usbd_status status);
175
176 /*
177 * Default values for MAC registers; values taken from the reference driver.
178 */
179 static const struct {
180 uint16_t reg;
181 uint16_t val;
182 } ural_def_mac[] = {
183 { RAL_TXRX_CSR5, 0x8c8d },
184 { RAL_TXRX_CSR6, 0x8b8a },
185 { RAL_TXRX_CSR7, 0x8687 },
186 { RAL_TXRX_CSR8, 0x0085 },
187 { RAL_MAC_CSR13, 0x1111 },
188 { RAL_MAC_CSR14, 0x1e11 },
189 { RAL_TXRX_CSR21, 0xe78f },
190 { RAL_MAC_CSR9, 0xff1d },
191 { RAL_MAC_CSR11, 0x0002 },
192 { RAL_MAC_CSR22, 0x0053 },
193 { RAL_MAC_CSR15, 0x0000 },
194 { RAL_MAC_CSR8, 0x0780 },
195 { RAL_TXRX_CSR19, 0x0000 },
196 { RAL_TXRX_CSR18, 0x005a },
197 { RAL_PHY_CSR2, 0x0000 },
198 { RAL_TXRX_CSR0, 0x1ec0 },
199 { RAL_PHY_CSR4, 0x000f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } ural_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers.
245 */
246 static const uint32_t ural_rf2522_r2[] = {
247 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250
251 static const uint32_t ural_rf2523_r2[] = {
252 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255
256 static const uint32_t ural_rf2524_r2[] = {
257 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260
261 static const uint32_t ural_rf2525_r2[] = {
262 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270
271 static const uint32_t ural_rf2525e_r2[] = {
272 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280
281 static const uint32_t ural_rf2526_r2[] = {
282 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285
286 /*
287 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288 * values taken from the reference driver.
289 */
290 static const struct {
291 uint8_t chan;
292 uint32_t r1;
293 uint32_t r2;
294 uint32_t r4;
295 } ural_rf5222[] = {
296 { 1, 0x08808, 0x0044d, 0x00282 },
297 { 2, 0x08808, 0x0044e, 0x00282 },
298 { 3, 0x08808, 0x0044f, 0x00282 },
299 { 4, 0x08808, 0x00460, 0x00282 },
300 { 5, 0x08808, 0x00461, 0x00282 },
301 { 6, 0x08808, 0x00462, 0x00282 },
302 { 7, 0x08808, 0x00463, 0x00282 },
303 { 8, 0x08808, 0x00464, 0x00282 },
304 { 9, 0x08808, 0x00465, 0x00282 },
305 { 10, 0x08808, 0x00466, 0x00282 },
306 { 11, 0x08808, 0x00467, 0x00282 },
307 { 12, 0x08808, 0x00468, 0x00282 },
308 { 13, 0x08808, 0x00469, 0x00282 },
309 { 14, 0x08808, 0x0046b, 0x00286 },
310
311 { 36, 0x08804, 0x06225, 0x00287 },
312 { 40, 0x08804, 0x06226, 0x00287 },
313 { 44, 0x08804, 0x06227, 0x00287 },
314 { 48, 0x08804, 0x06228, 0x00287 },
315 { 52, 0x08804, 0x06229, 0x00287 },
316 { 56, 0x08804, 0x0622a, 0x00287 },
317 { 60, 0x08804, 0x0622b, 0x00287 },
318 { 64, 0x08804, 0x0622c, 0x00287 },
319
320 { 100, 0x08804, 0x02200, 0x00283 },
321 { 104, 0x08804, 0x02201, 0x00283 },
322 { 108, 0x08804, 0x02202, 0x00283 },
323 { 112, 0x08804, 0x02203, 0x00283 },
324 { 116, 0x08804, 0x02204, 0x00283 },
325 { 120, 0x08804, 0x02205, 0x00283 },
326 { 124, 0x08804, 0x02206, 0x00283 },
327 { 128, 0x08804, 0x02207, 0x00283 },
328 { 132, 0x08804, 0x02208, 0x00283 },
329 { 136, 0x08804, 0x02209, 0x00283 },
330 { 140, 0x08804, 0x0220a, 0x00283 },
331
332 { 149, 0x08808, 0x02429, 0x00281 },
333 { 153, 0x08808, 0x0242b, 0x00281 },
334 { 157, 0x08808, 0x0242d, 0x00281 },
335 { 161, 0x08808, 0x0242f, 0x00281 }
336 };
337
338 int ural_match(device_t, cfdata_t, void *);
339 void ural_attach(device_t, device_t, void *);
340 int ural_detach(device_t, int);
341 int ural_activate(device_t, enum devact);
342
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344 ural_detach, ural_activate);
345
346 int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 struct usb_attach_arg *uaa = aux;
350
351 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354
355 void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 struct ural_softc *sc = device_private(self);
359 struct usb_attach_arg *uaa = aux;
360 struct ieee80211com *ic = &sc->sc_ic;
361 struct ifnet *ifp = &sc->sc_if;
362 usb_interface_descriptor_t *id;
363 usb_endpoint_descriptor_t *ed;
364 usbd_status error;
365 char *devinfop;
366 int i;
367
368 sc->sc_dev = self;
369 sc->sc_udev = uaa->uaa_device;
370 sc->sc_init_state = URAL_INIT_NONE;
371
372 aprint_naive("\n");
373 aprint_normal("\n");
374
375 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
376 aprint_normal_dev(self, "%s\n", devinfop);
377 usbd_devinfo_free(devinfop);
378
379 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
380 if (error != 0) {
381 aprint_error_dev(self, "failed to set configuration"
382 ", err=%s\n", usbd_errstr(error));
383 return;
384 }
385
386 /* get the first interface handle */
387 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
388 &sc->sc_iface);
389 if (error != 0) {
390 aprint_error_dev(self, "could not get interface handle\n");
391 return;
392 }
393
394 /*
395 * Find endpoints.
396 */
397 id = usbd_get_interface_descriptor(sc->sc_iface);
398
399 sc->sc_rx_no = sc->sc_tx_no = -1;
400 for (i = 0; i < id->bNumEndpoints; i++) {
401 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
402 if (ed == NULL) {
403 aprint_error_dev(self,
404 "no endpoint descriptor for %d\n", i);
405 return;
406 }
407
408 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
409 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
410 sc->sc_rx_no = ed->bEndpointAddress;
411 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
412 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 sc->sc_tx_no = ed->bEndpointAddress;
414 }
415 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
416 aprint_error_dev(self, "missing endpoint\n");
417 return;
418 }
419
420 usb_init_task(&sc->sc_task, ural_task, sc, 0);
421 callout_init(&sc->sc_scan_ch, 0);
422 sc->amrr.amrr_min_success_threshold = 1;
423 sc->amrr.amrr_max_success_threshold = 15;
424 callout_init(&sc->sc_amrr_ch, 0);
425
426 /* retrieve RT2570 rev. no */
427 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
428
429 /* retrieve MAC address and various other things from EEPROM */
430 ural_read_eeprom(sc);
431
432 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
433 sc->asic_rev, ural_get_rf(sc->rf_rev));
434
435 ifp->if_softc = sc;
436 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
437 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438 ifp->if_init = ural_init;
439 ifp->if_ioctl = ural_ioctl;
440 ifp->if_start = ural_start;
441 ifp->if_watchdog = ural_watchdog;
442 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443 IFQ_SET_READY(&ifp->if_snd);
444
445 ic->ic_ifp = ifp;
446 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
447 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
448 ic->ic_state = IEEE80211_S_INIT;
449
450 /* set device capabilities */
451 ic->ic_caps =
452 IEEE80211_C_IBSS | /* IBSS mode supported */
453 IEEE80211_C_MONITOR | /* monitor mode supported */
454 IEEE80211_C_HOSTAP | /* HostAp mode supported */
455 IEEE80211_C_TXPMGT | /* tx power management */
456 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
457 IEEE80211_C_SHSLOT | /* short slot time supported */
458 IEEE80211_C_WPA; /* 802.11i */
459
460 if (sc->rf_rev == RAL_RF_5222) {
461 /* set supported .11a rates */
462 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
463
464 /* set supported .11a channels */
465 for (i = 36; i <= 64; i += 4) {
466 ic->ic_channels[i].ic_freq =
467 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
468 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
469 }
470 for (i = 100; i <= 140; i += 4) {
471 ic->ic_channels[i].ic_freq =
472 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 }
475 for (i = 149; i <= 161; i += 4) {
476 ic->ic_channels[i].ic_freq =
477 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 }
480 }
481
482 /* set supported .11b and .11g rates */
483 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
484 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
485
486 /* set supported .11b and .11g channels (1 through 14) */
487 for (i = 1; i <= 14; i++) {
488 ic->ic_channels[i].ic_freq =
489 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
490 ic->ic_channels[i].ic_flags =
491 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
492 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
493 }
494
495 if_attach(ifp);
496 ieee80211_ifattach(ic);
497 ic->ic_reset = ural_reset;
498
499 /* override state transition machine */
500 sc->sc_newstate = ic->ic_newstate;
501 ic->ic_newstate = ural_newstate;
502 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
503
504 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
505 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
506
507 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
508 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
509 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
510
511 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
512 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
513 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
514
515 ieee80211_announce(ic);
516
517 sc->sc_init_state = URAL_INIT_INITED;
518
519 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
520
521 if (!pmf_device_register(self, NULL, NULL))
522 aprint_error_dev(self, "couldn't establish power handler\n");
523
524 return;
525 }
526
527 int
528 ural_detach(device_t self, int flags)
529 {
530 struct ural_softc *sc = device_private(self);
531 struct ieee80211com *ic = &sc->sc_ic;
532 struct ifnet *ifp = &sc->sc_if;
533 int s;
534
535 if (sc->sc_init_state < URAL_INIT_INITED)
536 return 0;
537
538 pmf_device_deregister(self);
539
540 s = splusb();
541
542 ural_stop(ifp, 1);
543 callout_halt(&sc->sc_scan_ch, NULL);
544 callout_halt(&sc->sc_amrr_ch, NULL);
545 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
546
547 bpf_detach(ifp);
548 ieee80211_ifdetach(ic);
549 if_detach(ifp);
550
551 splx(s);
552
553 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
554
555 return 0;
556 }
557
558 Static int
559 ural_alloc_tx_list(struct ural_softc *sc)
560 {
561 struct ural_tx_data *data;
562 int i, error;
563
564 sc->tx_queued = 0;
565
566 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
567 data = &sc->tx_data[i];
568
569 data->sc = sc;
570 error = usbd_create_xfer(sc->sc_tx_pipeh,
571 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
572 &data->xfer);
573 if (error) {
574 printf("%s: could not allocate tx xfer\n",
575 device_xname(sc->sc_dev));
576 goto fail;
577 }
578
579 data->buf = usbd_get_buffer(data->xfer);
580 }
581
582 return 0;
583
584 fail: ural_free_tx_list(sc);
585 return error;
586 }
587
588 Static void
589 ural_free_tx_list(struct ural_softc *sc)
590 {
591 struct ural_tx_data *data;
592 int i;
593
594 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
595 data = &sc->tx_data[i];
596
597 if (data->xfer != NULL) {
598 usbd_destroy_xfer(data->xfer);
599 data->xfer = NULL;
600 }
601
602 if (data->ni != NULL) {
603 ieee80211_free_node(data->ni);
604 data->ni = NULL;
605 }
606 }
607 }
608
609 Static int
610 ural_alloc_rx_list(struct ural_softc *sc)
611 {
612 struct ural_rx_data *data;
613 int i, error;
614
615 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
616 data = &sc->rx_data[i];
617
618 data->sc = sc;
619
620 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
621 0, 0, &data->xfer);
622 if (error) {
623 printf("%s: could not allocate rx xfer\n",
624 device_xname(sc->sc_dev));
625 goto fail;
626 }
627
628 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
629 if (data->m == NULL) {
630 printf("%s: could not allocate rx mbuf\n",
631 device_xname(sc->sc_dev));
632 error = ENOMEM;
633 goto fail;
634 }
635
636 MCLGET(data->m, M_DONTWAIT);
637 if (!(data->m->m_flags & M_EXT)) {
638 printf("%s: could not allocate rx mbuf cluster\n",
639 device_xname(sc->sc_dev));
640 error = ENOMEM;
641 goto fail;
642 }
643
644 data->buf = mtod(data->m, uint8_t *);
645 }
646
647 return 0;
648
649 fail: ural_free_rx_list(sc);
650 return error;
651 }
652
653 Static void
654 ural_free_rx_list(struct ural_softc *sc)
655 {
656 struct ural_rx_data *data;
657 int i;
658
659 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
660 data = &sc->rx_data[i];
661
662 if (data->xfer != NULL) {
663 usbd_destroy_xfer(data->xfer);
664 data->xfer = NULL;
665 }
666
667 if (data->m != NULL) {
668 m_freem(data->m);
669 data->m = NULL;
670 }
671 }
672 }
673
674 Static int
675 ural_media_change(struct ifnet *ifp)
676 {
677 int error;
678
679 error = ieee80211_media_change(ifp);
680 if (error != ENETRESET)
681 return error;
682
683 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
684 ural_init(ifp);
685
686 return 0;
687 }
688
689 /*
690 * This function is called periodically (every 200ms) during scanning to
691 * switch from one channel to another.
692 */
693 Static void
694 ural_next_scan(void *arg)
695 {
696 struct ural_softc *sc = arg;
697 struct ieee80211com *ic = &sc->sc_ic;
698
699 if (ic->ic_state == IEEE80211_S_SCAN)
700 ieee80211_next_scan(ic);
701 }
702
703 Static void
704 ural_task(void *arg)
705 {
706 struct ural_softc *sc = arg;
707 struct ieee80211com *ic = &sc->sc_ic;
708 enum ieee80211_state ostate;
709 struct ieee80211_node *ni;
710 struct mbuf *m;
711
712 ostate = ic->ic_state;
713
714 switch (sc->sc_state) {
715 case IEEE80211_S_INIT:
716 if (ostate == IEEE80211_S_RUN) {
717 /* abort TSF synchronization */
718 ural_write(sc, RAL_TXRX_CSR19, 0);
719
720 /* force tx led to stop blinking */
721 ural_write(sc, RAL_MAC_CSR20, 0);
722 }
723 break;
724
725 case IEEE80211_S_SCAN:
726 ural_set_chan(sc, ic->ic_curchan);
727 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
728 break;
729
730 case IEEE80211_S_AUTH:
731 ural_set_chan(sc, ic->ic_curchan);
732 break;
733
734 case IEEE80211_S_ASSOC:
735 ural_set_chan(sc, ic->ic_curchan);
736 break;
737
738 case IEEE80211_S_RUN:
739 ural_set_chan(sc, ic->ic_curchan);
740
741 ni = ic->ic_bss;
742
743 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
744 ural_update_slot(ic->ic_ifp);
745 ural_set_txpreamble(sc);
746 ural_set_basicrates(sc);
747 ural_set_bssid(sc, ni->ni_bssid);
748 }
749
750 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
751 ic->ic_opmode == IEEE80211_M_IBSS) {
752 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
753 if (m == NULL) {
754 printf("%s: could not allocate beacon\n",
755 device_xname(sc->sc_dev));
756 return;
757 }
758
759 if (ural_tx_bcn(sc, m, ni) != 0) {
760 m_freem(m);
761 printf("%s: could not send beacon\n",
762 device_xname(sc->sc_dev));
763 return;
764 }
765
766 /* beacon is no longer needed */
767 m_freem(m);
768 }
769
770 /* make tx led blink on tx (controlled by ASIC) */
771 ural_write(sc, RAL_MAC_CSR20, 1);
772
773 if (ic->ic_opmode != IEEE80211_M_MONITOR)
774 ural_enable_tsf_sync(sc);
775
776 /* enable automatic rate adaptation in STA mode */
777 if (ic->ic_opmode == IEEE80211_M_STA &&
778 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
779 ural_amrr_start(sc, ni);
780
781 break;
782 }
783
784 sc->sc_newstate(ic, sc->sc_state, -1);
785 }
786
787 Static int
788 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
789 int arg)
790 {
791 struct ural_softc *sc = ic->ic_ifp->if_softc;
792
793 /*
794 * XXXSMP: This does not wait for the task, if it is in flight,
795 * to complete. If this code works at all, it must rely on the
796 * kernel lock to serialize with the USB task thread.
797 */
798 usb_rem_task(sc->sc_udev, &sc->sc_task);
799 callout_stop(&sc->sc_scan_ch);
800 callout_stop(&sc->sc_amrr_ch);
801
802 /* do it in a process context */
803 sc->sc_state = nstate;
804 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
805
806 return 0;
807 }
808
809 /* quickly determine if a given rate is CCK or OFDM */
810 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
811
812 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
813 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
814
815 #define RAL_SIFS 10 /* us */
816
817 #define RAL_RXTX_TURNAROUND 5 /* us */
818
819 /*
820 * This function is only used by the Rx radiotap code.
821 */
822 Static int
823 ural_rxrate(struct ural_rx_desc *desc)
824 {
825 if (le32toh(desc->flags) & RAL_RX_OFDM) {
826 /* reverse function of ural_plcp_signal */
827 switch (desc->rate) {
828 case 0xb: return 12;
829 case 0xf: return 18;
830 case 0xa: return 24;
831 case 0xe: return 36;
832 case 0x9: return 48;
833 case 0xd: return 72;
834 case 0x8: return 96;
835 case 0xc: return 108;
836 }
837 } else {
838 if (desc->rate == 10)
839 return 2;
840 if (desc->rate == 20)
841 return 4;
842 if (desc->rate == 55)
843 return 11;
844 if (desc->rate == 110)
845 return 22;
846 }
847 return 2; /* should not get there */
848 }
849
850 Static void
851 ural_txeof(struct usbd_xfer *xfer, void * priv,
852 usbd_status status)
853 {
854 struct ural_tx_data *data = priv;
855 struct ural_softc *sc = data->sc;
856 struct ifnet *ifp = &sc->sc_if;
857 int s;
858
859 if (status != USBD_NORMAL_COMPLETION) {
860 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
861 return;
862
863 printf("%s: could not transmit buffer: %s\n",
864 device_xname(sc->sc_dev), usbd_errstr(status));
865
866 if (status == USBD_STALLED)
867 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
868
869 ifp->if_oerrors++;
870 return;
871 }
872
873 s = splnet();
874
875 m_freem(data->m);
876 data->m = NULL;
877 ieee80211_free_node(data->ni);
878 data->ni = NULL;
879
880 sc->tx_queued--;
881 ifp->if_opackets++;
882
883 DPRINTFN(10, ("tx done\n"));
884
885 sc->sc_tx_timer = 0;
886 ifp->if_flags &= ~IFF_OACTIVE;
887 ural_start(ifp);
888
889 splx(s);
890 }
891
892 Static void
893 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
894 {
895 struct ural_rx_data *data = priv;
896 struct ural_softc *sc = data->sc;
897 struct ieee80211com *ic = &sc->sc_ic;
898 struct ifnet *ifp = &sc->sc_if;
899 struct ural_rx_desc *desc;
900 struct ieee80211_frame *wh;
901 struct ieee80211_node *ni;
902 struct mbuf *mnew, *m;
903 int s, len;
904
905 if (status != USBD_NORMAL_COMPLETION) {
906 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
907 return;
908
909 if (status == USBD_STALLED)
910 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
911 goto skip;
912 }
913
914 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
915
916 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
917 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
918 len));
919 ifp->if_ierrors++;
920 goto skip;
921 }
922
923 /* rx descriptor is located at the end */
924 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
925
926 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
927 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
928 /*
929 * This should not happen since we did not request to receive
930 * those frames when we filled RAL_TXRX_CSR2.
931 */
932 DPRINTFN(5, ("PHY or CRC error\n"));
933 ifp->if_ierrors++;
934 goto skip;
935 }
936
937 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
938 if (mnew == NULL) {
939 ifp->if_ierrors++;
940 goto skip;
941 }
942
943 MCLGET(mnew, M_DONTWAIT);
944 if (!(mnew->m_flags & M_EXT)) {
945 ifp->if_ierrors++;
946 m_freem(mnew);
947 goto skip;
948 }
949
950 m = data->m;
951 data->m = mnew;
952 data->buf = mtod(data->m, uint8_t *);
953
954 /* finalize mbuf */
955 m_set_rcvif(m, ifp);
956 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
957 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
958
959 s = splnet();
960
961 if (sc->sc_drvbpf != NULL) {
962 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
963
964 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
965 tap->wr_rate = ural_rxrate(desc);
966 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
967 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
968 tap->wr_antenna = sc->rx_ant;
969 tap->wr_antsignal = desc->rssi;
970
971 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
972 }
973
974 wh = mtod(m, struct ieee80211_frame *);
975 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
976
977 /* send the frame to the 802.11 layer */
978 ieee80211_input(ic, m, ni, desc->rssi, 0);
979
980 /* node is no longer needed */
981 ieee80211_free_node(ni);
982
983 splx(s);
984
985 DPRINTFN(15, ("rx done\n"));
986
987 skip: /* setup a new transfer */
988 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
989 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
990 usbd_transfer(xfer);
991 }
992
993 /*
994 * Return the expected ack rate for a frame transmitted at rate `rate'.
995 * XXX: this should depend on the destination node basic rate set.
996 */
997 Static int
998 ural_ack_rate(struct ieee80211com *ic, int rate)
999 {
1000 switch (rate) {
1001 /* CCK rates */
1002 case 2:
1003 return 2;
1004 case 4:
1005 case 11:
1006 case 22:
1007 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1008
1009 /* OFDM rates */
1010 case 12:
1011 case 18:
1012 return 12;
1013 case 24:
1014 case 36:
1015 return 24;
1016 case 48:
1017 case 72:
1018 case 96:
1019 case 108:
1020 return 48;
1021 }
1022
1023 /* default to 1Mbps */
1024 return 2;
1025 }
1026
1027 /*
1028 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1029 * The function automatically determines the operating mode depending on the
1030 * given rate. `flags' indicates whether short preamble is in use or not.
1031 */
1032 Static uint16_t
1033 ural_txtime(int len, int rate, uint32_t flags)
1034 {
1035 uint16_t txtime;
1036
1037 if (RAL_RATE_IS_OFDM(rate)) {
1038 /* IEEE Std 802.11g-2003, pp. 37 */
1039 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1040 txtime = 16 + 4 + 4 * txtime + 6;
1041 } else {
1042 /* IEEE Std 802.11b-1999, pp. 28 */
1043 txtime = (16 * len + rate - 1) / rate;
1044 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1045 txtime += 72 + 24;
1046 else
1047 txtime += 144 + 48;
1048 }
1049 return txtime;
1050 }
1051
1052 Static uint8_t
1053 ural_plcp_signal(int rate)
1054 {
1055 switch (rate) {
1056 /* CCK rates (returned values are device-dependent) */
1057 case 2: return 0x0;
1058 case 4: return 0x1;
1059 case 11: return 0x2;
1060 case 22: return 0x3;
1061
1062 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1063 case 12: return 0xb;
1064 case 18: return 0xf;
1065 case 24: return 0xa;
1066 case 36: return 0xe;
1067 case 48: return 0x9;
1068 case 72: return 0xd;
1069 case 96: return 0x8;
1070 case 108: return 0xc;
1071
1072 /* unsupported rates (should not get there) */
1073 default: return 0xff;
1074 }
1075 }
1076
1077 Static void
1078 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1079 uint32_t flags, int len, int rate)
1080 {
1081 struct ieee80211com *ic = &sc->sc_ic;
1082 uint16_t plcp_length;
1083 int remainder;
1084
1085 desc->flags = htole32(flags);
1086 desc->flags |= htole32(RAL_TX_NEWSEQ);
1087 desc->flags |= htole32(len << 16);
1088
1089 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1090 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1091
1092 /* setup PLCP fields */
1093 desc->plcp_signal = ural_plcp_signal(rate);
1094 desc->plcp_service = 4;
1095
1096 len += IEEE80211_CRC_LEN;
1097 if (RAL_RATE_IS_OFDM(rate)) {
1098 desc->flags |= htole32(RAL_TX_OFDM);
1099
1100 plcp_length = len & 0xfff;
1101 desc->plcp_length_hi = plcp_length >> 6;
1102 desc->plcp_length_lo = plcp_length & 0x3f;
1103 } else {
1104 plcp_length = (16 * len + rate - 1) / rate;
1105 if (rate == 22) {
1106 remainder = (16 * len) % 22;
1107 if (remainder != 0 && remainder < 7)
1108 desc->plcp_service |= RAL_PLCP_LENGEXT;
1109 }
1110 desc->plcp_length_hi = plcp_length >> 8;
1111 desc->plcp_length_lo = plcp_length & 0xff;
1112
1113 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1114 desc->plcp_signal |= 0x08;
1115 }
1116
1117 desc->iv = 0;
1118 desc->eiv = 0;
1119 }
1120
1121 #define RAL_TX_TIMEOUT 5000
1122
1123 Static int
1124 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1125 {
1126 struct ural_tx_desc *desc;
1127 struct usbd_xfer *xfer;
1128 uint8_t cmd = 0;
1129 usbd_status error;
1130 uint8_t *buf;
1131 int xferlen, rate;
1132
1133 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1134
1135 /* xfer length needs to be a multiple of two! */
1136 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1137
1138 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1139 USBD_FORCE_SHORT_XFER, 0, &xfer);
1140 if (error)
1141 return error;
1142
1143 buf = usbd_get_buffer(xfer);
1144
1145 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1146 RAL_TX_TIMEOUT, NULL);
1147
1148 error = usbd_sync_transfer(xfer);
1149 if (error != 0) {
1150 usbd_destroy_xfer(xfer);
1151 return error;
1152 }
1153
1154 desc = (struct ural_tx_desc *)buf;
1155
1156 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1157 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1158 m0->m_pkthdr.len, rate);
1159
1160 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1161 m0->m_pkthdr.len, rate, xferlen));
1162
1163 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1164 RAL_TX_TIMEOUT, NULL);
1165
1166 error = usbd_sync_transfer(xfer);
1167 usbd_destroy_xfer(xfer);
1168
1169 return error;
1170 }
1171
1172 Static int
1173 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1174 {
1175 struct ieee80211com *ic = &sc->sc_ic;
1176 struct ural_tx_desc *desc;
1177 struct ural_tx_data *data;
1178 struct ieee80211_frame *wh;
1179 struct ieee80211_key *k;
1180 uint32_t flags = 0;
1181 uint16_t dur;
1182 usbd_status error;
1183 int xferlen, rate;
1184
1185 data = &sc->tx_data[0];
1186 desc = (struct ural_tx_desc *)data->buf;
1187
1188 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1189
1190 wh = mtod(m0, struct ieee80211_frame *);
1191
1192 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1193 k = ieee80211_crypto_encap(ic, ni, m0);
1194 if (k == NULL) {
1195 m_freem(m0);
1196 return ENOBUFS;
1197 }
1198 }
1199
1200 data->m = m0;
1201 data->ni = ni;
1202
1203 wh = mtod(m0, struct ieee80211_frame *);
1204
1205 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1206 flags |= RAL_TX_ACK;
1207
1208 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1209 *(uint16_t *)wh->i_dur = htole16(dur);
1210
1211 /* tell hardware to add timestamp for probe responses */
1212 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1213 IEEE80211_FC0_TYPE_MGT &&
1214 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1215 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1216 flags |= RAL_TX_TIMESTAMP;
1217 }
1218
1219 if (sc->sc_drvbpf != NULL) {
1220 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1221
1222 tap->wt_flags = 0;
1223 tap->wt_rate = rate;
1224 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1225 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1226 tap->wt_antenna = sc->tx_ant;
1227
1228 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1229 }
1230
1231 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1232 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1233
1234 /* align end on a 2-bytes boundary */
1235 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1236
1237 /*
1238 * No space left in the last URB to store the extra 2 bytes, force
1239 * sending of another URB.
1240 */
1241 if ((xferlen % 64) == 0)
1242 xferlen += 2;
1243
1244 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1245 m0->m_pkthdr.len, rate, xferlen));
1246
1247 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1248 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1249
1250 error = usbd_transfer(data->xfer);
1251 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1252 m_freem(m0);
1253 return error;
1254 }
1255
1256 sc->tx_queued++;
1257
1258 return 0;
1259 }
1260
1261 Static int
1262 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1263 {
1264 struct ieee80211com *ic = &sc->sc_ic;
1265 struct ural_tx_desc *desc;
1266 struct ural_tx_data *data;
1267 struct ieee80211_frame *wh;
1268 struct ieee80211_key *k;
1269 uint32_t flags = 0;
1270 uint16_t dur;
1271 usbd_status error;
1272 int xferlen, rate;
1273
1274 wh = mtod(m0, struct ieee80211_frame *);
1275
1276 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1277 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1278 else
1279 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1280
1281 rate &= IEEE80211_RATE_VAL;
1282
1283 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1284 k = ieee80211_crypto_encap(ic, ni, m0);
1285 if (k == NULL) {
1286 m_freem(m0);
1287 return ENOBUFS;
1288 }
1289
1290 /* packet header may have moved, reset our local pointer */
1291 wh = mtod(m0, struct ieee80211_frame *);
1292 }
1293
1294 data = &sc->tx_data[0];
1295 desc = (struct ural_tx_desc *)data->buf;
1296
1297 data->m = m0;
1298 data->ni = ni;
1299
1300 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1301 flags |= RAL_TX_ACK;
1302 flags |= RAL_TX_RETRY(7);
1303
1304 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1305 ic->ic_flags) + RAL_SIFS;
1306 *(uint16_t *)wh->i_dur = htole16(dur);
1307 }
1308
1309 if (sc->sc_drvbpf != NULL) {
1310 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1311
1312 tap->wt_flags = 0;
1313 tap->wt_rate = rate;
1314 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1315 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1316 tap->wt_antenna = sc->tx_ant;
1317
1318 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1319 }
1320
1321 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1322 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1323
1324 /* align end on a 2-bytes boundary */
1325 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1326
1327 /*
1328 * No space left in the last URB to store the extra 2 bytes, force
1329 * sending of another URB.
1330 */
1331 if ((xferlen % 64) == 0)
1332 xferlen += 2;
1333
1334 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1335 m0->m_pkthdr.len, rate, xferlen));
1336 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1337 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1338
1339 error = usbd_transfer(data->xfer);
1340 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1341 return error;
1342
1343 sc->tx_queued++;
1344
1345 return 0;
1346 }
1347
1348 Static void
1349 ural_start(struct ifnet *ifp)
1350 {
1351 struct ural_softc *sc = ifp->if_softc;
1352 struct ieee80211com *ic = &sc->sc_ic;
1353 struct mbuf *m0;
1354 struct ether_header *eh;
1355 struct ieee80211_node *ni;
1356
1357 for (;;) {
1358 IF_POLL(&ic->ic_mgtq, m0);
1359 if (m0 != NULL) {
1360 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1361 ifp->if_flags |= IFF_OACTIVE;
1362 break;
1363 }
1364 IF_DEQUEUE(&ic->ic_mgtq, m0);
1365
1366 ni = M_GETCTX(m0, struct ieee80211_node *);
1367 M_CLEARCTX(m0);
1368 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1369 if (ural_tx_mgt(sc, m0, ni) != 0)
1370 break;
1371
1372 } else {
1373 if (ic->ic_state != IEEE80211_S_RUN)
1374 break;
1375 IFQ_DEQUEUE(&ifp->if_snd, m0);
1376 if (m0 == NULL)
1377 break;
1378 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1379 IF_PREPEND(&ifp->if_snd, m0);
1380 ifp->if_flags |= IFF_OACTIVE;
1381 break;
1382 }
1383
1384 if (m0->m_len < sizeof(struct ether_header) &&
1385 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1386 continue;
1387
1388 eh = mtod(m0, struct ether_header *);
1389 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1390 if (ni == NULL) {
1391 m_freem(m0);
1392 continue;
1393 }
1394 bpf_mtap(ifp, m0, BPF_D_OUT);
1395 m0 = ieee80211_encap(ic, m0, ni);
1396 if (m0 == NULL) {
1397 ieee80211_free_node(ni);
1398 continue;
1399 }
1400 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1401 if (ural_tx_data(sc, m0, ni) != 0) {
1402 ieee80211_free_node(ni);
1403 ifp->if_oerrors++;
1404 break;
1405 }
1406 }
1407
1408 sc->sc_tx_timer = 5;
1409 ifp->if_timer = 1;
1410 }
1411 }
1412
1413 Static void
1414 ural_watchdog(struct ifnet *ifp)
1415 {
1416 struct ural_softc *sc = ifp->if_softc;
1417 struct ieee80211com *ic = &sc->sc_ic;
1418
1419 ifp->if_timer = 0;
1420
1421 if (sc->sc_tx_timer > 0) {
1422 if (--sc->sc_tx_timer == 0) {
1423 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1424 /*ural_init(sc); XXX needs a process context! */
1425 ifp->if_oerrors++;
1426 return;
1427 }
1428 ifp->if_timer = 1;
1429 }
1430
1431 ieee80211_watchdog(ic);
1432 }
1433
1434 /*
1435 * This function allows for fast channel switching in monitor mode (used by
1436 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1437 * generate a new beacon frame.
1438 */
1439 Static int
1440 ural_reset(struct ifnet *ifp)
1441 {
1442 struct ural_softc *sc = ifp->if_softc;
1443 struct ieee80211com *ic = &sc->sc_ic;
1444
1445 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1446 return ENETRESET;
1447
1448 ural_set_chan(sc, ic->ic_curchan);
1449
1450 return 0;
1451 }
1452
1453 Static int
1454 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1455 {
1456 #define IS_RUNNING(ifp) \
1457 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1458
1459 struct ural_softc *sc = ifp->if_softc;
1460 struct ieee80211com *ic = &sc->sc_ic;
1461 int s, error = 0;
1462
1463 s = splnet();
1464
1465 switch (cmd) {
1466 case SIOCSIFFLAGS:
1467 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1468 break;
1469 /* XXX re-use ether_ioctl() */
1470 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1471 case IFF_UP|IFF_RUNNING:
1472 ural_update_promisc(sc);
1473 break;
1474 case IFF_UP:
1475 ural_init(ifp);
1476 break;
1477 case IFF_RUNNING:
1478 ural_stop(ifp, 1);
1479 break;
1480 case 0:
1481 break;
1482 }
1483 break;
1484
1485 case SIOCADDMULTI:
1486 case SIOCDELMULTI:
1487 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1488 error = 0;
1489 }
1490 break;
1491
1492 default:
1493 error = ieee80211_ioctl(ic, cmd, data);
1494 }
1495
1496 if (error == ENETRESET) {
1497 if (IS_RUNNING(ifp) &&
1498 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1499 ural_init(ifp);
1500 error = 0;
1501 }
1502
1503 splx(s);
1504
1505 return error;
1506 #undef IS_RUNNING
1507 }
1508
1509 Static void
1510 ural_set_testmode(struct ural_softc *sc)
1511 {
1512 usb_device_request_t req;
1513 usbd_status error;
1514
1515 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1516 req.bRequest = RAL_VENDOR_REQUEST;
1517 USETW(req.wValue, 4);
1518 USETW(req.wIndex, 1);
1519 USETW(req.wLength, 0);
1520
1521 error = usbd_do_request(sc->sc_udev, &req, NULL);
1522 if (error != 0) {
1523 printf("%s: could not set test mode: %s\n",
1524 device_xname(sc->sc_dev), usbd_errstr(error));
1525 }
1526 }
1527
1528 Static void
1529 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1530 {
1531 usb_device_request_t req;
1532 usbd_status error;
1533
1534 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1535 req.bRequest = RAL_READ_EEPROM;
1536 USETW(req.wValue, 0);
1537 USETW(req.wIndex, addr);
1538 USETW(req.wLength, len);
1539
1540 error = usbd_do_request(sc->sc_udev, &req, buf);
1541 if (error != 0) {
1542 printf("%s: could not read EEPROM: %s\n",
1543 device_xname(sc->sc_dev), usbd_errstr(error));
1544 }
1545 }
1546
1547 Static uint16_t
1548 ural_read(struct ural_softc *sc, uint16_t reg)
1549 {
1550 usb_device_request_t req;
1551 usbd_status error;
1552 uint16_t val;
1553
1554 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1555 req.bRequest = RAL_READ_MAC;
1556 USETW(req.wValue, 0);
1557 USETW(req.wIndex, reg);
1558 USETW(req.wLength, sizeof(uint16_t));
1559
1560 error = usbd_do_request(sc->sc_udev, &req, &val);
1561 if (error != 0) {
1562 printf("%s: could not read MAC register: %s\n",
1563 device_xname(sc->sc_dev), usbd_errstr(error));
1564 return 0;
1565 }
1566
1567 return le16toh(val);
1568 }
1569
1570 Static void
1571 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1572 {
1573 usb_device_request_t req;
1574 usbd_status error;
1575
1576 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1577 req.bRequest = RAL_READ_MULTI_MAC;
1578 USETW(req.wValue, 0);
1579 USETW(req.wIndex, reg);
1580 USETW(req.wLength, len);
1581
1582 error = usbd_do_request(sc->sc_udev, &req, buf);
1583 if (error != 0) {
1584 printf("%s: could not read MAC register: %s\n",
1585 device_xname(sc->sc_dev), usbd_errstr(error));
1586 }
1587 }
1588
1589 Static void
1590 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1591 {
1592 usb_device_request_t req;
1593 usbd_status error;
1594
1595 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1596 req.bRequest = RAL_WRITE_MAC;
1597 USETW(req.wValue, val);
1598 USETW(req.wIndex, reg);
1599 USETW(req.wLength, 0);
1600
1601 error = usbd_do_request(sc->sc_udev, &req, NULL);
1602 if (error != 0) {
1603 printf("%s: could not write MAC register: %s\n",
1604 device_xname(sc->sc_dev), usbd_errstr(error));
1605 }
1606 }
1607
1608 Static void
1609 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1610 {
1611 usb_device_request_t req;
1612 usbd_status error;
1613
1614 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1615 req.bRequest = RAL_WRITE_MULTI_MAC;
1616 USETW(req.wValue, 0);
1617 USETW(req.wIndex, reg);
1618 USETW(req.wLength, len);
1619
1620 error = usbd_do_request(sc->sc_udev, &req, buf);
1621 if (error != 0) {
1622 printf("%s: could not write MAC register: %s\n",
1623 device_xname(sc->sc_dev), usbd_errstr(error));
1624 }
1625 }
1626
1627 Static void
1628 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1629 {
1630 uint16_t tmp;
1631 int ntries;
1632
1633 for (ntries = 0; ntries < 5; ntries++) {
1634 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1635 break;
1636 }
1637 if (ntries == 5) {
1638 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1639 return;
1640 }
1641
1642 tmp = reg << 8 | val;
1643 ural_write(sc, RAL_PHY_CSR7, tmp);
1644 }
1645
1646 Static uint8_t
1647 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1648 {
1649 uint16_t val;
1650 int ntries;
1651
1652 val = RAL_BBP_WRITE | reg << 8;
1653 ural_write(sc, RAL_PHY_CSR7, val);
1654
1655 for (ntries = 0; ntries < 5; ntries++) {
1656 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1657 break;
1658 }
1659 if (ntries == 5) {
1660 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1661 return 0;
1662 }
1663
1664 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1665 }
1666
1667 Static void
1668 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1669 {
1670 uint32_t tmp;
1671 int ntries;
1672
1673 for (ntries = 0; ntries < 5; ntries++) {
1674 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1675 break;
1676 }
1677 if (ntries == 5) {
1678 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1679 return;
1680 }
1681
1682 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1683 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1684 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1685
1686 /* remember last written value in sc */
1687 sc->rf_regs[reg] = val;
1688
1689 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1690 }
1691
1692 Static void
1693 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1694 {
1695 struct ieee80211com *ic = &sc->sc_ic;
1696 uint8_t power, tmp;
1697 u_int i, chan;
1698
1699 chan = ieee80211_chan2ieee(ic, c);
1700 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1701 return;
1702
1703 if (IEEE80211_IS_CHAN_2GHZ(c))
1704 power = uimin(sc->txpow[chan - 1], 31);
1705 else
1706 power = 31;
1707
1708 /* adjust txpower using ifconfig settings */
1709 power -= (100 - ic->ic_txpowlimit) / 8;
1710
1711 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1712
1713 switch (sc->rf_rev) {
1714 case RAL_RF_2522:
1715 ural_rf_write(sc, RAL_RF1, 0x00814);
1716 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1717 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1718 break;
1719
1720 case RAL_RF_2523:
1721 ural_rf_write(sc, RAL_RF1, 0x08804);
1722 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1723 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1724 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1725 break;
1726
1727 case RAL_RF_2524:
1728 ural_rf_write(sc, RAL_RF1, 0x0c808);
1729 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1730 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1731 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1732 break;
1733
1734 case RAL_RF_2525:
1735 ural_rf_write(sc, RAL_RF1, 0x08808);
1736 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1737 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1738 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1739
1740 ural_rf_write(sc, RAL_RF1, 0x08808);
1741 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1742 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1743 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1744 break;
1745
1746 case RAL_RF_2525E:
1747 ural_rf_write(sc, RAL_RF1, 0x08808);
1748 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1749 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1750 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1751 break;
1752
1753 case RAL_RF_2526:
1754 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1755 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1756 ural_rf_write(sc, RAL_RF1, 0x08804);
1757
1758 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1759 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1760 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1761 break;
1762
1763 /* dual-band RF */
1764 case RAL_RF_5222:
1765 for (i = 0; ural_rf5222[i].chan != chan; i++);
1766
1767 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1768 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1769 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1770 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1771 break;
1772 }
1773
1774 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1775 ic->ic_state != IEEE80211_S_SCAN) {
1776 /* set Japan filter bit for channel 14 */
1777 tmp = ural_bbp_read(sc, 70);
1778
1779 tmp &= ~RAL_JAPAN_FILTER;
1780 if (chan == 14)
1781 tmp |= RAL_JAPAN_FILTER;
1782
1783 ural_bbp_write(sc, 70, tmp);
1784
1785 /* clear CRC errors */
1786 ural_read(sc, RAL_STA_CSR0);
1787
1788 DELAY(10000);
1789 ural_disable_rf_tune(sc);
1790 }
1791 }
1792
1793 /*
1794 * Disable RF auto-tuning.
1795 */
1796 Static void
1797 ural_disable_rf_tune(struct ural_softc *sc)
1798 {
1799 uint32_t tmp;
1800
1801 if (sc->rf_rev != RAL_RF_2523) {
1802 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1803 ural_rf_write(sc, RAL_RF1, tmp);
1804 }
1805
1806 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1807 ural_rf_write(sc, RAL_RF3, tmp);
1808
1809 DPRINTFN(2, ("disabling RF autotune\n"));
1810 }
1811
1812 /*
1813 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1814 * synchronization.
1815 */
1816 Static void
1817 ural_enable_tsf_sync(struct ural_softc *sc)
1818 {
1819 struct ieee80211com *ic = &sc->sc_ic;
1820 uint16_t logcwmin, preload, tmp;
1821
1822 /* first, disable TSF synchronization */
1823 ural_write(sc, RAL_TXRX_CSR19, 0);
1824
1825 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1826 ural_write(sc, RAL_TXRX_CSR18, tmp);
1827
1828 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1829 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1830 tmp = logcwmin << 12 | preload;
1831 ural_write(sc, RAL_TXRX_CSR20, tmp);
1832
1833 /* finally, enable TSF synchronization */
1834 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1835 if (ic->ic_opmode == IEEE80211_M_STA)
1836 tmp |= RAL_ENABLE_TSF_SYNC(1);
1837 else
1838 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1839 ural_write(sc, RAL_TXRX_CSR19, tmp);
1840
1841 DPRINTF(("enabling TSF synchronization\n"));
1842 }
1843
1844 Static void
1845 ural_update_slot(struct ifnet *ifp)
1846 {
1847 struct ural_softc *sc = ifp->if_softc;
1848 struct ieee80211com *ic = &sc->sc_ic;
1849 uint16_t slottime, sifs, eifs;
1850
1851 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1852
1853 /*
1854 * These settings may sound a bit inconsistent but this is what the
1855 * reference driver does.
1856 */
1857 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1858 sifs = 16 - RAL_RXTX_TURNAROUND;
1859 eifs = 364;
1860 } else {
1861 sifs = 10 - RAL_RXTX_TURNAROUND;
1862 eifs = 64;
1863 }
1864
1865 ural_write(sc, RAL_MAC_CSR10, slottime);
1866 ural_write(sc, RAL_MAC_CSR11, sifs);
1867 ural_write(sc, RAL_MAC_CSR12, eifs);
1868 }
1869
1870 Static void
1871 ural_set_txpreamble(struct ural_softc *sc)
1872 {
1873 uint16_t tmp;
1874
1875 tmp = ural_read(sc, RAL_TXRX_CSR10);
1876
1877 tmp &= ~RAL_SHORT_PREAMBLE;
1878 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1879 tmp |= RAL_SHORT_PREAMBLE;
1880
1881 ural_write(sc, RAL_TXRX_CSR10, tmp);
1882 }
1883
1884 Static void
1885 ural_set_basicrates(struct ural_softc *sc)
1886 {
1887 struct ieee80211com *ic = &sc->sc_ic;
1888
1889 /* update basic rate set */
1890 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1891 /* 11b basic rates: 1, 2Mbps */
1892 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1893 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1894 /* 11a basic rates: 6, 12, 24Mbps */
1895 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1896 } else {
1897 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1898 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1899 }
1900 }
1901
1902 Static void
1903 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1904 {
1905 uint16_t tmp;
1906
1907 tmp = bssid[0] | bssid[1] << 8;
1908 ural_write(sc, RAL_MAC_CSR5, tmp);
1909
1910 tmp = bssid[2] | bssid[3] << 8;
1911 ural_write(sc, RAL_MAC_CSR6, tmp);
1912
1913 tmp = bssid[4] | bssid[5] << 8;
1914 ural_write(sc, RAL_MAC_CSR7, tmp);
1915
1916 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1917 }
1918
1919 Static void
1920 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1921 {
1922 uint16_t tmp;
1923
1924 tmp = addr[0] | addr[1] << 8;
1925 ural_write(sc, RAL_MAC_CSR2, tmp);
1926
1927 tmp = addr[2] | addr[3] << 8;
1928 ural_write(sc, RAL_MAC_CSR3, tmp);
1929
1930 tmp = addr[4] | addr[5] << 8;
1931 ural_write(sc, RAL_MAC_CSR4, tmp);
1932
1933 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1934 }
1935
1936 Static void
1937 ural_update_promisc(struct ural_softc *sc)
1938 {
1939 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1940 uint32_t tmp;
1941
1942 tmp = ural_read(sc, RAL_TXRX_CSR2);
1943
1944 tmp &= ~RAL_DROP_NOT_TO_ME;
1945 if (!(ifp->if_flags & IFF_PROMISC))
1946 tmp |= RAL_DROP_NOT_TO_ME;
1947
1948 ural_write(sc, RAL_TXRX_CSR2, tmp);
1949
1950 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1951 "entering" : "leaving"));
1952 }
1953
1954 Static const char *
1955 ural_get_rf(int rev)
1956 {
1957 switch (rev) {
1958 case RAL_RF_2522: return "RT2522";
1959 case RAL_RF_2523: return "RT2523";
1960 case RAL_RF_2524: return "RT2524";
1961 case RAL_RF_2525: return "RT2525";
1962 case RAL_RF_2525E: return "RT2525e";
1963 case RAL_RF_2526: return "RT2526";
1964 case RAL_RF_5222: return "RT5222";
1965 default: return "unknown";
1966 }
1967 }
1968
1969 Static void
1970 ural_read_eeprom(struct ural_softc *sc)
1971 {
1972 struct ieee80211com *ic = &sc->sc_ic;
1973 uint16_t val;
1974
1975 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1976 val = le16toh(val);
1977 sc->rf_rev = (val >> 11) & 0x7;
1978 sc->hw_radio = (val >> 10) & 0x1;
1979 sc->led_mode = (val >> 6) & 0x7;
1980 sc->rx_ant = (val >> 4) & 0x3;
1981 sc->tx_ant = (val >> 2) & 0x3;
1982 sc->nb_ant = val & 0x3;
1983
1984 /* read MAC address */
1985 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1986
1987 /* read default values for BBP registers */
1988 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1989
1990 /* read Tx power for all b/g channels */
1991 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1992 }
1993
1994 Static int
1995 ural_bbp_init(struct ural_softc *sc)
1996 {
1997 int i, ntries;
1998
1999 /* wait for BBP to be ready */
2000 for (ntries = 0; ntries < 100; ntries++) {
2001 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2002 break;
2003 DELAY(1000);
2004 }
2005 if (ntries == 100) {
2006 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2007 return EIO;
2008 }
2009
2010 /* initialize BBP registers to default values */
2011 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2012 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2013
2014 #if 0
2015 /* initialize BBP registers to values stored in EEPROM */
2016 for (i = 0; i < 16; i++) {
2017 if (sc->bbp_prom[i].reg == 0xff)
2018 continue;
2019 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2020 }
2021 #endif
2022
2023 return 0;
2024 }
2025
2026 Static void
2027 ural_set_txantenna(struct ural_softc *sc, int antenna)
2028 {
2029 uint16_t tmp;
2030 uint8_t tx;
2031
2032 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2033 if (antenna == 1)
2034 tx |= RAL_BBP_ANTA;
2035 else if (antenna == 2)
2036 tx |= RAL_BBP_ANTB;
2037 else
2038 tx |= RAL_BBP_DIVERSITY;
2039
2040 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2041 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2042 sc->rf_rev == RAL_RF_5222)
2043 tx |= RAL_BBP_FLIPIQ;
2044
2045 ural_bbp_write(sc, RAL_BBP_TX, tx);
2046
2047 /* update values in PHY_CSR5 and PHY_CSR6 */
2048 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2049 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2050
2051 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2052 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2053 }
2054
2055 Static void
2056 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2057 {
2058 uint8_t rx;
2059
2060 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2061 if (antenna == 1)
2062 rx |= RAL_BBP_ANTA;
2063 else if (antenna == 2)
2064 rx |= RAL_BBP_ANTB;
2065 else
2066 rx |= RAL_BBP_DIVERSITY;
2067
2068 /* need to force no I/Q flip for RF 2525e and 2526 */
2069 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2070 rx &= ~RAL_BBP_FLIPIQ;
2071
2072 ural_bbp_write(sc, RAL_BBP_RX, rx);
2073 }
2074
2075 Static int
2076 ural_init(struct ifnet *ifp)
2077 {
2078 struct ural_softc *sc = ifp->if_softc;
2079 struct ieee80211com *ic = &sc->sc_ic;
2080 struct ieee80211_key *wk;
2081 uint16_t tmp;
2082 usbd_status error;
2083 int i, ntries;
2084
2085 ural_set_testmode(sc);
2086 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2087
2088 ural_stop(ifp, 0);
2089
2090 /* initialize MAC registers to default values */
2091 for (i = 0; i < __arraycount(ural_def_mac); i++)
2092 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2093
2094 /* wait for BBP and RF to wake up (this can take a long time!) */
2095 for (ntries = 0; ntries < 100; ntries++) {
2096 tmp = ural_read(sc, RAL_MAC_CSR17);
2097 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2098 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2099 break;
2100 DELAY(1000);
2101 }
2102 if (ntries == 100) {
2103 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2104 device_xname(sc->sc_dev));
2105 error = EIO;
2106 goto fail;
2107 }
2108
2109 /* we're ready! */
2110 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2111
2112 /* set basic rate set (will be updated later) */
2113 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2114
2115 error = ural_bbp_init(sc);
2116 if (error != 0)
2117 goto fail;
2118
2119 /* set default BSS channel */
2120 ural_set_chan(sc, ic->ic_curchan);
2121
2122 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2123 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2124
2125 ural_set_txantenna(sc, sc->tx_ant);
2126 ural_set_rxantenna(sc, sc->rx_ant);
2127
2128 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2129 ural_set_macaddr(sc, ic->ic_myaddr);
2130
2131 /*
2132 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2133 */
2134 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2135 wk = &ic->ic_crypto.cs_nw_keys[i];
2136 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2137 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2138 }
2139
2140 /*
2141 * Allocate xfer for AMRR statistics requests.
2142 */
2143 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2144 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2145 if (error) {
2146 printf("%s: could not allocate AMRR xfer\n",
2147 device_xname(sc->sc_dev));
2148 goto fail;
2149 }
2150
2151 /*
2152 * Open Tx and Rx USB bulk pipes.
2153 */
2154 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2155 &sc->sc_tx_pipeh);
2156 if (error != 0) {
2157 printf("%s: could not open Tx pipe: %s\n",
2158 device_xname(sc->sc_dev), usbd_errstr(error));
2159 goto fail;
2160 }
2161
2162 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2163 &sc->sc_rx_pipeh);
2164 if (error != 0) {
2165 printf("%s: could not open Rx pipe: %s\n",
2166 device_xname(sc->sc_dev), usbd_errstr(error));
2167 goto fail;
2168 }
2169
2170 /*
2171 * Allocate Tx and Rx xfer queues.
2172 */
2173 error = ural_alloc_tx_list(sc);
2174 if (error != 0) {
2175 printf("%s: could not allocate Tx list\n",
2176 device_xname(sc->sc_dev));
2177 goto fail;
2178 }
2179
2180 error = ural_alloc_rx_list(sc);
2181 if (error != 0) {
2182 printf("%s: could not allocate Rx list\n",
2183 device_xname(sc->sc_dev));
2184 goto fail;
2185 }
2186
2187 /*
2188 * Start up the receive pipe.
2189 */
2190 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2191 struct ural_rx_data *data = &sc->rx_data[i];
2192
2193 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2194 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2195 usbd_transfer(data->xfer);
2196 }
2197
2198 /* kick Rx */
2199 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2200 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2201 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2202 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2203 tmp |= RAL_DROP_TODS;
2204 if (!(ifp->if_flags & IFF_PROMISC))
2205 tmp |= RAL_DROP_NOT_TO_ME;
2206 }
2207 ural_write(sc, RAL_TXRX_CSR2, tmp);
2208
2209 ifp->if_flags &= ~IFF_OACTIVE;
2210 ifp->if_flags |= IFF_RUNNING;
2211
2212 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2213 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2214 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2215 } else
2216 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2217
2218 return 0;
2219
2220 fail: ural_stop(ifp, 1);
2221 return error;
2222 }
2223
2224 Static void
2225 ural_stop(struct ifnet *ifp, int disable)
2226 {
2227 struct ural_softc *sc = ifp->if_softc;
2228 struct ieee80211com *ic = &sc->sc_ic;
2229
2230 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2231
2232 sc->sc_tx_timer = 0;
2233 ifp->if_timer = 0;
2234 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2235
2236 /* disable Rx */
2237 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2238
2239 /* reset ASIC and BBP (but won't reset MAC registers!) */
2240 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2241 ural_write(sc, RAL_MAC_CSR1, 0);
2242
2243 if (sc->amrr_xfer != NULL) {
2244 usbd_destroy_xfer(sc->amrr_xfer);
2245 sc->amrr_xfer = NULL;
2246 }
2247
2248 if (sc->sc_rx_pipeh != NULL) {
2249 usbd_abort_pipe(sc->sc_rx_pipeh);
2250 }
2251
2252 if (sc->sc_tx_pipeh != NULL) {
2253 usbd_abort_pipe(sc->sc_tx_pipeh);
2254 }
2255
2256 ural_free_rx_list(sc);
2257 ural_free_tx_list(sc);
2258
2259 if (sc->sc_rx_pipeh != NULL) {
2260 usbd_close_pipe(sc->sc_rx_pipeh);
2261 sc->sc_rx_pipeh = NULL;
2262 }
2263
2264 if (sc->sc_tx_pipeh != NULL) {
2265 usbd_close_pipe(sc->sc_tx_pipeh);
2266 sc->sc_tx_pipeh = NULL;
2267 }
2268 }
2269
2270 int
2271 ural_activate(device_t self, enum devact act)
2272 {
2273 struct ural_softc *sc = device_private(self);
2274
2275 switch (act) {
2276 case DVACT_DEACTIVATE:
2277 if_deactivate(&sc->sc_if);
2278 return 0;
2279 default:
2280 return EOPNOTSUPP;
2281 }
2282 }
2283
2284 Static void
2285 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2286 {
2287 int i;
2288
2289 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2290 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2291
2292 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2293
2294 /* set rate to some reasonable initial value */
2295 for (i = ni->ni_rates.rs_nrates - 1;
2296 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2297 i--);
2298 ni->ni_txrate = i;
2299
2300 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2301 }
2302
2303 Static void
2304 ural_amrr_timeout(void *arg)
2305 {
2306 struct ural_softc *sc = (struct ural_softc *)arg;
2307 usb_device_request_t req;
2308 int s;
2309
2310 s = splusb();
2311
2312 /*
2313 * Asynchronously read statistic registers (cleared by read).
2314 */
2315 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2316 req.bRequest = RAL_READ_MULTI_MAC;
2317 USETW(req.wValue, 0);
2318 USETW(req.wIndex, RAL_STA_CSR0);
2319 USETW(req.wLength, sizeof(sc->sta));
2320
2321 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2322 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2323 ural_amrr_update);
2324 (void)usbd_transfer(sc->amrr_xfer);
2325
2326 splx(s);
2327 }
2328
2329 Static void
2330 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2331 usbd_status status)
2332 {
2333 struct ural_softc *sc = (struct ural_softc *)priv;
2334 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2335
2336 if (status != USBD_NORMAL_COMPLETION) {
2337 printf("%s: could not retrieve Tx statistics - "
2338 "cancelling automatic rate control\n",
2339 device_xname(sc->sc_dev));
2340 return;
2341 }
2342
2343 /* count TX retry-fail as Tx errors */
2344 ifp->if_oerrors += sc->sta[9];
2345
2346 sc->amn.amn_retrycnt =
2347 sc->sta[7] + /* TX one-retry ok count */
2348 sc->sta[8] + /* TX more-retry ok count */
2349 sc->sta[9]; /* TX retry-fail count */
2350
2351 sc->amn.amn_txcnt =
2352 sc->amn.amn_retrycnt +
2353 sc->sta[6]; /* TX no-retry ok count */
2354
2355 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2356
2357 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2358 }
2359