if_ural.c revision 1.65 1 /* $NetBSD: if_ural.c,v 1.65 2020/03/15 23:04:51 thorpej Exp $ */
2 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $ */
3
4 /*-
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini (at) free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.65 2020/03/15 23:04:51 thorpej Exp $");
28
29 #ifdef _KERNEL_OPT
30 #include "opt_usb.h"
31 #endif
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_uralreg.h>
71 #include <dev/usb/if_uralvar.h>
72
73 #ifdef URAL_DEBUG
74 #define DPRINTF(x) do { if (ural_debug) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) printf x; } while (0)
76 int ural_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /* various supported device vendors/products */
83 static const struct usb_devno ural_devs[] = {
84 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
85 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
86 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
87 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS },
90 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
91 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
92 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
93 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
95 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
96 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
97 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
98 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
99 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
100 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
101 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902W },
102 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
103 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
105 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
106 { USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R },
107 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
108 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
109 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
110 };
111
112 Static int ural_alloc_tx_list(struct ural_softc *);
113 Static void ural_free_tx_list(struct ural_softc *);
114 Static int ural_alloc_rx_list(struct ural_softc *);
115 Static void ural_free_rx_list(struct ural_softc *);
116 Static int ural_media_change(struct ifnet *);
117 Static void ural_next_scan(void *);
118 Static void ural_task(void *);
119 Static int ural_newstate(struct ieee80211com *,
120 enum ieee80211_state, int);
121 Static int ural_rxrate(struct ural_rx_desc *);
122 Static void ural_txeof(struct usbd_xfer *, void *,
123 usbd_status);
124 Static void ural_rxeof(struct usbd_xfer *, void *,
125 usbd_status);
126 Static int ural_ack_rate(struct ieee80211com *, int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_reset(struct ifnet *);
140 Static int ural_ioctl(struct ifnet *, u_long, void *);
141 Static void ural_set_testmode(struct ural_softc *);
142 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143 int);
144 Static uint16_t ural_read(struct ural_softc *, uint16_t);
145 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
146 int);
147 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
148 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
149 int);
150 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
152 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153 Static void ural_set_chan(struct ural_softc *,
154 struct ieee80211_channel *);
155 Static void ural_disable_rf_tune(struct ural_softc *);
156 Static void ural_enable_tsf_sync(struct ural_softc *);
157 Static void ural_update_slot(struct ifnet *);
158 Static void ural_set_txpreamble(struct ural_softc *);
159 Static void ural_set_basicrates(struct ural_softc *);
160 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
161 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
162 Static void ural_update_promisc(struct ural_softc *);
163 Static const char *ural_get_rf(int);
164 Static void ural_read_eeprom(struct ural_softc *);
165 Static int ural_bbp_init(struct ural_softc *);
166 Static void ural_set_txantenna(struct ural_softc *, int);
167 Static void ural_set_rxantenna(struct ural_softc *, int);
168 Static int ural_init(struct ifnet *);
169 Static void ural_stop(struct ifnet *, int);
170 Static void ural_amrr_start(struct ural_softc *,
171 struct ieee80211_node *);
172 Static void ural_amrr_timeout(void *);
173 Static void ural_amrr_update(struct usbd_xfer *, void *,
174 usbd_status status);
175
176 /*
177 * Default values for MAC registers; values taken from the reference driver.
178 */
179 static const struct {
180 uint16_t reg;
181 uint16_t val;
182 } ural_def_mac[] = {
183 { RAL_TXRX_CSR5, 0x8c8d },
184 { RAL_TXRX_CSR6, 0x8b8a },
185 { RAL_TXRX_CSR7, 0x8687 },
186 { RAL_TXRX_CSR8, 0x0085 },
187 { RAL_MAC_CSR13, 0x1111 },
188 { RAL_MAC_CSR14, 0x1e11 },
189 { RAL_TXRX_CSR21, 0xe78f },
190 { RAL_MAC_CSR9, 0xff1d },
191 { RAL_MAC_CSR11, 0x0002 },
192 { RAL_MAC_CSR22, 0x0053 },
193 { RAL_MAC_CSR15, 0x0000 },
194 { RAL_MAC_CSR8, 0x0780 },
195 { RAL_TXRX_CSR19, 0x0000 },
196 { RAL_TXRX_CSR18, 0x005a },
197 { RAL_PHY_CSR2, 0x0000 },
198 { RAL_TXRX_CSR0, 0x1ec0 },
199 { RAL_PHY_CSR4, 0x000f }
200 };
201
202 /*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205 static const struct {
206 uint8_t reg;
207 uint8_t val;
208 } ural_def_bbp[] = {
209 { 3, 0x02 },
210 { 4, 0x19 },
211 { 14, 0x1c },
212 { 15, 0x30 },
213 { 16, 0xac },
214 { 17, 0x48 },
215 { 18, 0x18 },
216 { 19, 0xff },
217 { 20, 0x1e },
218 { 21, 0x08 },
219 { 22, 0x08 },
220 { 23, 0x08 },
221 { 24, 0x80 },
222 { 25, 0x50 },
223 { 26, 0x08 },
224 { 27, 0x23 },
225 { 30, 0x10 },
226 { 31, 0x2b },
227 { 32, 0xb9 },
228 { 34, 0x12 },
229 { 35, 0x50 },
230 { 39, 0xc4 },
231 { 40, 0x02 },
232 { 41, 0x60 },
233 { 53, 0x10 },
234 { 54, 0x18 },
235 { 56, 0x08 },
236 { 57, 0x10 },
237 { 58, 0x08 },
238 { 61, 0x60 },
239 { 62, 0x10 },
240 { 75, 0xff }
241 };
242
243 /*
244 * Default values for RF register R2 indexed by channel numbers.
245 */
246 static const uint32_t ural_rf2522_r2[] = {
247 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249 };
250
251 static const uint32_t ural_rf2523_r2[] = {
252 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254 };
255
256 static const uint32_t ural_rf2524_r2[] = {
257 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259 };
260
261 static const uint32_t ural_rf2525_r2[] = {
262 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264 };
265
266 static const uint32_t ural_rf2525_hi_r2[] = {
267 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269 };
270
271 static const uint32_t ural_rf2525e_r2[] = {
272 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274 };
275
276 static const uint32_t ural_rf2526_hi_r2[] = {
277 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279 };
280
281 static const uint32_t ural_rf2526_r2[] = {
282 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284 };
285
286 /*
287 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288 * values taken from the reference driver.
289 */
290 static const struct {
291 uint8_t chan;
292 uint32_t r1;
293 uint32_t r2;
294 uint32_t r4;
295 } ural_rf5222[] = {
296 { 1, 0x08808, 0x0044d, 0x00282 },
297 { 2, 0x08808, 0x0044e, 0x00282 },
298 { 3, 0x08808, 0x0044f, 0x00282 },
299 { 4, 0x08808, 0x00460, 0x00282 },
300 { 5, 0x08808, 0x00461, 0x00282 },
301 { 6, 0x08808, 0x00462, 0x00282 },
302 { 7, 0x08808, 0x00463, 0x00282 },
303 { 8, 0x08808, 0x00464, 0x00282 },
304 { 9, 0x08808, 0x00465, 0x00282 },
305 { 10, 0x08808, 0x00466, 0x00282 },
306 { 11, 0x08808, 0x00467, 0x00282 },
307 { 12, 0x08808, 0x00468, 0x00282 },
308 { 13, 0x08808, 0x00469, 0x00282 },
309 { 14, 0x08808, 0x0046b, 0x00286 },
310
311 { 36, 0x08804, 0x06225, 0x00287 },
312 { 40, 0x08804, 0x06226, 0x00287 },
313 { 44, 0x08804, 0x06227, 0x00287 },
314 { 48, 0x08804, 0x06228, 0x00287 },
315 { 52, 0x08804, 0x06229, 0x00287 },
316 { 56, 0x08804, 0x0622a, 0x00287 },
317 { 60, 0x08804, 0x0622b, 0x00287 },
318 { 64, 0x08804, 0x0622c, 0x00287 },
319
320 { 100, 0x08804, 0x02200, 0x00283 },
321 { 104, 0x08804, 0x02201, 0x00283 },
322 { 108, 0x08804, 0x02202, 0x00283 },
323 { 112, 0x08804, 0x02203, 0x00283 },
324 { 116, 0x08804, 0x02204, 0x00283 },
325 { 120, 0x08804, 0x02205, 0x00283 },
326 { 124, 0x08804, 0x02206, 0x00283 },
327 { 128, 0x08804, 0x02207, 0x00283 },
328 { 132, 0x08804, 0x02208, 0x00283 },
329 { 136, 0x08804, 0x02209, 0x00283 },
330 { 140, 0x08804, 0x0220a, 0x00283 },
331
332 { 149, 0x08808, 0x02429, 0x00281 },
333 { 153, 0x08808, 0x0242b, 0x00281 },
334 { 157, 0x08808, 0x0242d, 0x00281 },
335 { 161, 0x08808, 0x0242f, 0x00281 }
336 };
337
338 static int ural_match(device_t, cfdata_t, void *);
339 static void ural_attach(device_t, device_t, void *);
340 static int ural_detach(device_t, int);
341 static int ural_activate(device_t, enum devact);
342
343 CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344 ural_detach, ural_activate);
345
346 static int
347 ural_match(device_t parent, cfdata_t match, void *aux)
348 {
349 struct usb_attach_arg *uaa = aux;
350
351 return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354
355 static void
356 ural_attach(device_t parent, device_t self, void *aux)
357 {
358 struct ural_softc *sc = device_private(self);
359 struct usb_attach_arg *uaa = aux;
360 struct ieee80211com *ic = &sc->sc_ic;
361 struct ifnet *ifp = &sc->sc_if;
362 usb_interface_descriptor_t *id;
363 usb_endpoint_descriptor_t *ed;
364 usbd_status error;
365 char *devinfop;
366 int i;
367
368 sc->sc_dev = self;
369 sc->sc_udev = uaa->uaa_device;
370 sc->sc_init_state = URAL_INIT_NONE;
371
372 aprint_naive("\n");
373 aprint_normal("\n");
374
375 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
376 aprint_normal_dev(self, "%s\n", devinfop);
377 usbd_devinfo_free(devinfop);
378
379 error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
380 if (error != 0) {
381 aprint_error_dev(self, "failed to set configuration"
382 ", err=%s\n", usbd_errstr(error));
383 return;
384 }
385
386 /* get the first interface handle */
387 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
388 &sc->sc_iface);
389 if (error != 0) {
390 aprint_error_dev(self, "could not get interface handle\n");
391 return;
392 }
393
394 /*
395 * Find endpoints.
396 */
397 id = usbd_get_interface_descriptor(sc->sc_iface);
398
399 sc->sc_rx_no = sc->sc_tx_no = -1;
400 for (i = 0; i < id->bNumEndpoints; i++) {
401 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
402 if (ed == NULL) {
403 aprint_error_dev(self,
404 "no endpoint descriptor for %d\n", i);
405 return;
406 }
407
408 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
409 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
410 sc->sc_rx_no = ed->bEndpointAddress;
411 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
412 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413 sc->sc_tx_no = ed->bEndpointAddress;
414 }
415 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
416 aprint_error_dev(self, "missing endpoint\n");
417 return;
418 }
419
420 usb_init_task(&sc->sc_task, ural_task, sc, 0);
421 callout_init(&sc->sc_scan_ch, 0);
422 sc->amrr.amrr_min_success_threshold = 1;
423 sc->amrr.amrr_max_success_threshold = 15;
424 callout_init(&sc->sc_amrr_ch, 0);
425
426 /* retrieve RT2570 rev. no */
427 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
428
429 /* retrieve MAC address and various other things from EEPROM */
430 ural_read_eeprom(sc);
431
432 aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
433 sc->asic_rev, ural_get_rf(sc->rf_rev));
434
435 ifp->if_softc = sc;
436 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
437 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438 ifp->if_init = ural_init;
439 ifp->if_ioctl = ural_ioctl;
440 ifp->if_start = ural_start;
441 ifp->if_watchdog = ural_watchdog;
442 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443 IFQ_SET_READY(&ifp->if_snd);
444
445 ic->ic_ifp = ifp;
446 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
447 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
448 ic->ic_state = IEEE80211_S_INIT;
449
450 /* set device capabilities */
451 ic->ic_caps =
452 IEEE80211_C_IBSS | /* IBSS mode supported */
453 IEEE80211_C_MONITOR | /* monitor mode supported */
454 IEEE80211_C_HOSTAP | /* HostAp mode supported */
455 IEEE80211_C_TXPMGT | /* tx power management */
456 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
457 IEEE80211_C_SHSLOT | /* short slot time supported */
458 IEEE80211_C_WPA; /* 802.11i */
459
460 if (sc->rf_rev == RAL_RF_5222) {
461 /* set supported .11a rates */
462 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
463
464 /* set supported .11a channels */
465 for (i = 36; i <= 64; i += 4) {
466 ic->ic_channels[i].ic_freq =
467 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
468 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
469 }
470 for (i = 100; i <= 140; i += 4) {
471 ic->ic_channels[i].ic_freq =
472 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474 }
475 for (i = 149; i <= 161; i += 4) {
476 ic->ic_channels[i].ic_freq =
477 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479 }
480 }
481
482 /* set supported .11b and .11g rates */
483 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
484 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
485
486 /* set supported .11b and .11g channels (1 through 14) */
487 for (i = 1; i <= 14; i++) {
488 ic->ic_channels[i].ic_freq =
489 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
490 ic->ic_channels[i].ic_flags =
491 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
492 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
493 }
494
495 if_attach(ifp);
496 ieee80211_ifattach(ic);
497 ic->ic_reset = ural_reset;
498
499 /* override state transition machine */
500 sc->sc_newstate = ic->ic_newstate;
501 ic->ic_newstate = ural_newstate;
502
503 /* XXX media locking needs revisiting */
504 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
505 ieee80211_media_init_with_lock(ic,
506 ural_media_change, ieee80211_media_status, &sc->sc_media_mtx);
507
508 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
509 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
510
511 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
512 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
513 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
514
515 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
516 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
517 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
518
519 ieee80211_announce(ic);
520
521 sc->sc_init_state = URAL_INIT_INITED;
522
523 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
524
525 if (!pmf_device_register(self, NULL, NULL))
526 aprint_error_dev(self, "couldn't establish power handler\n");
527
528 return;
529 }
530
531 static int
532 ural_detach(device_t self, int flags)
533 {
534 struct ural_softc *sc = device_private(self);
535 struct ieee80211com *ic = &sc->sc_ic;
536 struct ifnet *ifp = &sc->sc_if;
537 int s;
538
539 if (sc->sc_init_state < URAL_INIT_INITED)
540 return 0;
541
542 pmf_device_deregister(self);
543
544 s = splusb();
545
546 ural_stop(ifp, 1);
547 callout_halt(&sc->sc_scan_ch, NULL);
548 callout_halt(&sc->sc_amrr_ch, NULL);
549 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
550
551 bpf_detach(ifp);
552 ieee80211_ifdetach(ic);
553 if_detach(ifp);
554
555 splx(s);
556
557 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
558
559 return 0;
560 }
561
562 Static int
563 ural_alloc_tx_list(struct ural_softc *sc)
564 {
565 struct ural_tx_data *data;
566 int i, error;
567
568 sc->tx_queued = 0;
569
570 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
571 data = &sc->tx_data[i];
572
573 data->sc = sc;
574 error = usbd_create_xfer(sc->sc_tx_pipeh,
575 RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
576 &data->xfer);
577 if (error) {
578 printf("%s: could not allocate tx xfer\n",
579 device_xname(sc->sc_dev));
580 goto fail;
581 }
582
583 data->buf = usbd_get_buffer(data->xfer);
584 }
585
586 return 0;
587
588 fail: ural_free_tx_list(sc);
589 return error;
590 }
591
592 Static void
593 ural_free_tx_list(struct ural_softc *sc)
594 {
595 struct ural_tx_data *data;
596 int i;
597
598 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
599 data = &sc->tx_data[i];
600
601 if (data->xfer != NULL) {
602 usbd_destroy_xfer(data->xfer);
603 data->xfer = NULL;
604 }
605
606 if (data->ni != NULL) {
607 ieee80211_free_node(data->ni);
608 data->ni = NULL;
609 }
610 }
611 }
612
613 Static int
614 ural_alloc_rx_list(struct ural_softc *sc)
615 {
616 struct ural_rx_data *data;
617 int i, error;
618
619 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
620 data = &sc->rx_data[i];
621
622 data->sc = sc;
623
624 error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
625 0, 0, &data->xfer);
626 if (error) {
627 printf("%s: could not allocate rx xfer\n",
628 device_xname(sc->sc_dev));
629 goto fail;
630 }
631
632 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633 if (data->m == NULL) {
634 printf("%s: could not allocate rx mbuf\n",
635 device_xname(sc->sc_dev));
636 error = ENOMEM;
637 goto fail;
638 }
639
640 MCLGET(data->m, M_DONTWAIT);
641 if (!(data->m->m_flags & M_EXT)) {
642 printf("%s: could not allocate rx mbuf cluster\n",
643 device_xname(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647
648 data->buf = mtod(data->m, uint8_t *);
649 }
650
651 return 0;
652
653 fail: ural_free_rx_list(sc);
654 return error;
655 }
656
657 Static void
658 ural_free_rx_list(struct ural_softc *sc)
659 {
660 struct ural_rx_data *data;
661 int i;
662
663 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
664 data = &sc->rx_data[i];
665
666 if (data->xfer != NULL) {
667 usbd_destroy_xfer(data->xfer);
668 data->xfer = NULL;
669 }
670
671 if (data->m != NULL) {
672 m_freem(data->m);
673 data->m = NULL;
674 }
675 }
676 }
677
678 Static int
679 ural_media_change(struct ifnet *ifp)
680 {
681 int error;
682
683 error = ieee80211_media_change(ifp);
684 if (error != ENETRESET)
685 return error;
686
687 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
688 ural_init(ifp);
689
690 return 0;
691 }
692
693 /*
694 * This function is called periodically (every 200ms) during scanning to
695 * switch from one channel to another.
696 */
697 Static void
698 ural_next_scan(void *arg)
699 {
700 struct ural_softc *sc = arg;
701 struct ieee80211com *ic = &sc->sc_ic;
702
703 if (ic->ic_state == IEEE80211_S_SCAN)
704 ieee80211_next_scan(ic);
705 }
706
707 Static void
708 ural_task(void *arg)
709 {
710 struct ural_softc *sc = arg;
711 struct ieee80211com *ic = &sc->sc_ic;
712 enum ieee80211_state ostate;
713 struct ieee80211_node *ni;
714 struct mbuf *m;
715
716 ostate = ic->ic_state;
717
718 switch (sc->sc_state) {
719 case IEEE80211_S_INIT:
720 if (ostate == IEEE80211_S_RUN) {
721 /* abort TSF synchronization */
722 ural_write(sc, RAL_TXRX_CSR19, 0);
723
724 /* force tx led to stop blinking */
725 ural_write(sc, RAL_MAC_CSR20, 0);
726 }
727 break;
728
729 case IEEE80211_S_SCAN:
730 ural_set_chan(sc, ic->ic_curchan);
731 callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
732 break;
733
734 case IEEE80211_S_AUTH:
735 ural_set_chan(sc, ic->ic_curchan);
736 break;
737
738 case IEEE80211_S_ASSOC:
739 ural_set_chan(sc, ic->ic_curchan);
740 break;
741
742 case IEEE80211_S_RUN:
743 ural_set_chan(sc, ic->ic_curchan);
744
745 ni = ic->ic_bss;
746
747 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
748 ural_update_slot(ic->ic_ifp);
749 ural_set_txpreamble(sc);
750 ural_set_basicrates(sc);
751 ural_set_bssid(sc, ni->ni_bssid);
752 }
753
754 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
755 ic->ic_opmode == IEEE80211_M_IBSS) {
756 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
757 if (m == NULL) {
758 printf("%s: could not allocate beacon\n",
759 device_xname(sc->sc_dev));
760 return;
761 }
762
763 if (ural_tx_bcn(sc, m, ni) != 0) {
764 m_freem(m);
765 printf("%s: could not send beacon\n",
766 device_xname(sc->sc_dev));
767 return;
768 }
769
770 /* beacon is no longer needed */
771 m_freem(m);
772 }
773
774 /* make tx led blink on tx (controlled by ASIC) */
775 ural_write(sc, RAL_MAC_CSR20, 1);
776
777 if (ic->ic_opmode != IEEE80211_M_MONITOR)
778 ural_enable_tsf_sync(sc);
779
780 /* enable automatic rate adaptation in STA mode */
781 if (ic->ic_opmode == IEEE80211_M_STA &&
782 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
783 ural_amrr_start(sc, ni);
784
785 break;
786 }
787
788 sc->sc_newstate(ic, sc->sc_state, -1);
789 }
790
791 Static int
792 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
793 int arg)
794 {
795 struct ural_softc *sc = ic->ic_ifp->if_softc;
796
797 /*
798 * XXXSMP: This does not wait for the task, if it is in flight,
799 * to complete. If this code works at all, it must rely on the
800 * kernel lock to serialize with the USB task thread.
801 */
802 usb_rem_task(sc->sc_udev, &sc->sc_task);
803 callout_stop(&sc->sc_scan_ch);
804 callout_stop(&sc->sc_amrr_ch);
805
806 /* do it in a process context */
807 sc->sc_state = nstate;
808 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
809
810 return 0;
811 }
812
813 /* quickly determine if a given rate is CCK or OFDM */
814 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
815
816 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
817 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
818
819 #define RAL_SIFS 10 /* us */
820
821 #define RAL_RXTX_TURNAROUND 5 /* us */
822
823 /*
824 * This function is only used by the Rx radiotap code.
825 */
826 Static int
827 ural_rxrate(struct ural_rx_desc *desc)
828 {
829 if (le32toh(desc->flags) & RAL_RX_OFDM) {
830 /* reverse function of ural_plcp_signal */
831 switch (desc->rate) {
832 case 0xb: return 12;
833 case 0xf: return 18;
834 case 0xa: return 24;
835 case 0xe: return 36;
836 case 0x9: return 48;
837 case 0xd: return 72;
838 case 0x8: return 96;
839 case 0xc: return 108;
840 }
841 } else {
842 if (desc->rate == 10)
843 return 2;
844 if (desc->rate == 20)
845 return 4;
846 if (desc->rate == 55)
847 return 11;
848 if (desc->rate == 110)
849 return 22;
850 }
851 return 2; /* should not get there */
852 }
853
854 Static void
855 ural_txeof(struct usbd_xfer *xfer, void * priv,
856 usbd_status status)
857 {
858 struct ural_tx_data *data = priv;
859 struct ural_softc *sc = data->sc;
860 struct ifnet *ifp = &sc->sc_if;
861 int s;
862
863 if (status != USBD_NORMAL_COMPLETION) {
864 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
865 return;
866
867 printf("%s: could not transmit buffer: %s\n",
868 device_xname(sc->sc_dev), usbd_errstr(status));
869
870 if (status == USBD_STALLED)
871 usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
872
873 if_statinc(ifp, if_oerrors);
874 return;
875 }
876
877 s = splnet();
878
879 m_freem(data->m);
880 data->m = NULL;
881 ieee80211_free_node(data->ni);
882 data->ni = NULL;
883
884 sc->tx_queued--;
885 if_statinc(ifp, if_opackets);
886
887 DPRINTFN(10, ("tx done\n"));
888
889 sc->sc_tx_timer = 0;
890 ifp->if_flags &= ~IFF_OACTIVE;
891 ural_start(ifp);
892
893 splx(s);
894 }
895
896 Static void
897 ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
898 {
899 struct ural_rx_data *data = priv;
900 struct ural_softc *sc = data->sc;
901 struct ieee80211com *ic = &sc->sc_ic;
902 struct ifnet *ifp = &sc->sc_if;
903 struct ural_rx_desc *desc;
904 struct ieee80211_frame *wh;
905 struct ieee80211_node *ni;
906 struct mbuf *mnew, *m;
907 int s, len;
908
909 if (status != USBD_NORMAL_COMPLETION) {
910 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
911 return;
912
913 if (status == USBD_STALLED)
914 usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
915 goto skip;
916 }
917
918 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
919
920 if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
921 DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
922 len));
923 if_statinc(ifp, if_ierrors);
924 goto skip;
925 }
926
927 /* rx descriptor is located at the end */
928 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
929
930 if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
931 (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
932 /*
933 * This should not happen since we did not request to receive
934 * those frames when we filled RAL_TXRX_CSR2.
935 */
936 DPRINTFN(5, ("PHY or CRC error\n"));
937 if_statinc(ifp, if_ierrors);
938 goto skip;
939 }
940
941 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
942 if (mnew == NULL) {
943 if_statinc(ifp, if_ierrors);
944 goto skip;
945 }
946
947 MCLGET(mnew, M_DONTWAIT);
948 if (!(mnew->m_flags & M_EXT)) {
949 if_statinc(ifp, if_ierrors);
950 m_freem(mnew);
951 goto skip;
952 }
953
954 m = data->m;
955 data->m = mnew;
956 data->buf = mtod(data->m, uint8_t *);
957
958 /* finalize mbuf */
959 m_set_rcvif(m, ifp);
960 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
961 m->m_flags |= M_HASFCS; /* h/w leaves FCS */
962
963 s = splnet();
964
965 if (sc->sc_drvbpf != NULL) {
966 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
967
968 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
969 tap->wr_rate = ural_rxrate(desc);
970 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
971 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
972 tap->wr_antenna = sc->rx_ant;
973 tap->wr_antsignal = desc->rssi;
974
975 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
976 }
977
978 wh = mtod(m, struct ieee80211_frame *);
979 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
980
981 /* send the frame to the 802.11 layer */
982 ieee80211_input(ic, m, ni, desc->rssi, 0);
983
984 /* node is no longer needed */
985 ieee80211_free_node(ni);
986
987 splx(s);
988
989 DPRINTFN(15, ("rx done\n"));
990
991 skip: /* setup a new transfer */
992 usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
993 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
994 usbd_transfer(xfer);
995 }
996
997 /*
998 * Return the expected ack rate for a frame transmitted at rate `rate'.
999 * XXX: this should depend on the destination node basic rate set.
1000 */
1001 Static int
1002 ural_ack_rate(struct ieee80211com *ic, int rate)
1003 {
1004 switch (rate) {
1005 /* CCK rates */
1006 case 2:
1007 return 2;
1008 case 4:
1009 case 11:
1010 case 22:
1011 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1012
1013 /* OFDM rates */
1014 case 12:
1015 case 18:
1016 return 12;
1017 case 24:
1018 case 36:
1019 return 24;
1020 case 48:
1021 case 72:
1022 case 96:
1023 case 108:
1024 return 48;
1025 }
1026
1027 /* default to 1Mbps */
1028 return 2;
1029 }
1030
1031 /*
1032 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1033 * The function automatically determines the operating mode depending on the
1034 * given rate. `flags' indicates whether short preamble is in use or not.
1035 */
1036 Static uint16_t
1037 ural_txtime(int len, int rate, uint32_t flags)
1038 {
1039 uint16_t txtime;
1040
1041 if (RAL_RATE_IS_OFDM(rate)) {
1042 /* IEEE Std 802.11g-2003, pp. 37 */
1043 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1044 txtime = 16 + 4 + 4 * txtime + 6;
1045 } else {
1046 /* IEEE Std 802.11b-1999, pp. 28 */
1047 txtime = (16 * len + rate - 1) / rate;
1048 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1049 txtime += 72 + 24;
1050 else
1051 txtime += 144 + 48;
1052 }
1053 return txtime;
1054 }
1055
1056 Static uint8_t
1057 ural_plcp_signal(int rate)
1058 {
1059 switch (rate) {
1060 /* CCK rates (returned values are device-dependent) */
1061 case 2: return 0x0;
1062 case 4: return 0x1;
1063 case 11: return 0x2;
1064 case 22: return 0x3;
1065
1066 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1067 case 12: return 0xb;
1068 case 18: return 0xf;
1069 case 24: return 0xa;
1070 case 36: return 0xe;
1071 case 48: return 0x9;
1072 case 72: return 0xd;
1073 case 96: return 0x8;
1074 case 108: return 0xc;
1075
1076 /* unsupported rates (should not get there) */
1077 default: return 0xff;
1078 }
1079 }
1080
1081 Static void
1082 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1083 uint32_t flags, int len, int rate)
1084 {
1085 struct ieee80211com *ic = &sc->sc_ic;
1086 uint16_t plcp_length;
1087 int remainder;
1088
1089 desc->flags = htole32(flags);
1090 desc->flags |= htole32(RAL_TX_NEWSEQ);
1091 desc->flags |= htole32(len << 16);
1092
1093 desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1094 desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1095
1096 /* setup PLCP fields */
1097 desc->plcp_signal = ural_plcp_signal(rate);
1098 desc->plcp_service = 4;
1099
1100 len += IEEE80211_CRC_LEN;
1101 if (RAL_RATE_IS_OFDM(rate)) {
1102 desc->flags |= htole32(RAL_TX_OFDM);
1103
1104 plcp_length = len & 0xfff;
1105 desc->plcp_length_hi = plcp_length >> 6;
1106 desc->plcp_length_lo = plcp_length & 0x3f;
1107 } else {
1108 plcp_length = (16 * len + rate - 1) / rate;
1109 if (rate == 22) {
1110 remainder = (16 * len) % 22;
1111 if (remainder != 0 && remainder < 7)
1112 desc->plcp_service |= RAL_PLCP_LENGEXT;
1113 }
1114 desc->plcp_length_hi = plcp_length >> 8;
1115 desc->plcp_length_lo = plcp_length & 0xff;
1116
1117 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1118 desc->plcp_signal |= 0x08;
1119 }
1120
1121 desc->iv = 0;
1122 desc->eiv = 0;
1123 }
1124
1125 #define RAL_TX_TIMEOUT 5000
1126
1127 Static int
1128 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1129 {
1130 struct ural_tx_desc *desc;
1131 struct usbd_xfer *xfer;
1132 uint8_t cmd = 0;
1133 usbd_status error;
1134 uint8_t *buf;
1135 int xferlen, rate;
1136
1137 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1138
1139 /* xfer length needs to be a multiple of two! */
1140 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1141
1142 error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1143 USBD_FORCE_SHORT_XFER, 0, &xfer);
1144 if (error)
1145 return error;
1146
1147 buf = usbd_get_buffer(xfer);
1148
1149 usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1150 RAL_TX_TIMEOUT, NULL);
1151
1152 error = usbd_sync_transfer(xfer);
1153 if (error != 0) {
1154 usbd_destroy_xfer(xfer);
1155 return error;
1156 }
1157
1158 desc = (struct ural_tx_desc *)buf;
1159
1160 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1161 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1162 m0->m_pkthdr.len, rate);
1163
1164 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1165 m0->m_pkthdr.len, rate, xferlen));
1166
1167 usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1168 RAL_TX_TIMEOUT, NULL);
1169
1170 error = usbd_sync_transfer(xfer);
1171 usbd_destroy_xfer(xfer);
1172
1173 return error;
1174 }
1175
1176 Static int
1177 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1178 {
1179 struct ieee80211com *ic = &sc->sc_ic;
1180 struct ural_tx_desc *desc;
1181 struct ural_tx_data *data;
1182 struct ieee80211_frame *wh;
1183 struct ieee80211_key *k;
1184 uint32_t flags = 0;
1185 uint16_t dur;
1186 usbd_status error;
1187 int xferlen, rate;
1188
1189 data = &sc->tx_data[0];
1190 desc = (struct ural_tx_desc *)data->buf;
1191
1192 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1193
1194 wh = mtod(m0, struct ieee80211_frame *);
1195
1196 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1197 k = ieee80211_crypto_encap(ic, ni, m0);
1198 if (k == NULL) {
1199 m_freem(m0);
1200 return ENOBUFS;
1201 }
1202 }
1203
1204 data->m = m0;
1205 data->ni = ni;
1206
1207 wh = mtod(m0, struct ieee80211_frame *);
1208
1209 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1210 flags |= RAL_TX_ACK;
1211
1212 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1213 *(uint16_t *)wh->i_dur = htole16(dur);
1214
1215 /* tell hardware to add timestamp for probe responses */
1216 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1217 IEEE80211_FC0_TYPE_MGT &&
1218 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1219 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1220 flags |= RAL_TX_TIMESTAMP;
1221 }
1222
1223 if (sc->sc_drvbpf != NULL) {
1224 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1225
1226 tap->wt_flags = 0;
1227 tap->wt_rate = rate;
1228 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1229 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1230 tap->wt_antenna = sc->tx_ant;
1231
1232 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1233 }
1234
1235 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1236 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1237
1238 /* align end on a 2-bytes boundary */
1239 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1240
1241 /*
1242 * No space left in the last URB to store the extra 2 bytes, force
1243 * sending of another URB.
1244 */
1245 if ((xferlen % 64) == 0)
1246 xferlen += 2;
1247
1248 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1249 m0->m_pkthdr.len, rate, xferlen));
1250
1251 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1252 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1253
1254 error = usbd_transfer(data->xfer);
1255 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1256 m_freem(m0);
1257 return error;
1258 }
1259
1260 sc->tx_queued++;
1261
1262 return 0;
1263 }
1264
1265 Static int
1266 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1267 {
1268 struct ieee80211com *ic = &sc->sc_ic;
1269 struct ural_tx_desc *desc;
1270 struct ural_tx_data *data;
1271 struct ieee80211_frame *wh;
1272 struct ieee80211_key *k;
1273 uint32_t flags = 0;
1274 uint16_t dur;
1275 usbd_status error;
1276 int xferlen, rate;
1277
1278 wh = mtod(m0, struct ieee80211_frame *);
1279
1280 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1281 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1282 else
1283 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1284
1285 rate &= IEEE80211_RATE_VAL;
1286
1287 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1288 k = ieee80211_crypto_encap(ic, ni, m0);
1289 if (k == NULL) {
1290 m_freem(m0);
1291 return ENOBUFS;
1292 }
1293
1294 /* packet header may have moved, reset our local pointer */
1295 wh = mtod(m0, struct ieee80211_frame *);
1296 }
1297
1298 data = &sc->tx_data[0];
1299 desc = (struct ural_tx_desc *)data->buf;
1300
1301 data->m = m0;
1302 data->ni = ni;
1303
1304 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1305 flags |= RAL_TX_ACK;
1306 flags |= RAL_TX_RETRY(7);
1307
1308 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1309 ic->ic_flags) + RAL_SIFS;
1310 *(uint16_t *)wh->i_dur = htole16(dur);
1311 }
1312
1313 if (sc->sc_drvbpf != NULL) {
1314 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1315
1316 tap->wt_flags = 0;
1317 tap->wt_rate = rate;
1318 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1319 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1320 tap->wt_antenna = sc->tx_ant;
1321
1322 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1323 }
1324
1325 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1326 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1327
1328 /* align end on a 2-bytes boundary */
1329 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1330
1331 /*
1332 * No space left in the last URB to store the extra 2 bytes, force
1333 * sending of another URB.
1334 */
1335 if ((xferlen % 64) == 0)
1336 xferlen += 2;
1337
1338 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1339 m0->m_pkthdr.len, rate, xferlen));
1340 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1341 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1342
1343 error = usbd_transfer(data->xfer);
1344 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1345 return error;
1346
1347 sc->tx_queued++;
1348
1349 return 0;
1350 }
1351
1352 Static void
1353 ural_start(struct ifnet *ifp)
1354 {
1355 struct ural_softc *sc = ifp->if_softc;
1356 struct ieee80211com *ic = &sc->sc_ic;
1357 struct mbuf *m0;
1358 struct ether_header *eh;
1359 struct ieee80211_node *ni;
1360
1361 for (;;) {
1362 IF_POLL(&ic->ic_mgtq, m0);
1363 if (m0 != NULL) {
1364 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1365 ifp->if_flags |= IFF_OACTIVE;
1366 break;
1367 }
1368 IF_DEQUEUE(&ic->ic_mgtq, m0);
1369
1370 ni = M_GETCTX(m0, struct ieee80211_node *);
1371 M_CLEARCTX(m0);
1372 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1373 if (ural_tx_mgt(sc, m0, ni) != 0)
1374 break;
1375
1376 } else {
1377 if (ic->ic_state != IEEE80211_S_RUN)
1378 break;
1379 IFQ_DEQUEUE(&ifp->if_snd, m0);
1380 if (m0 == NULL)
1381 break;
1382 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1383 IF_PREPEND(&ifp->if_snd, m0);
1384 ifp->if_flags |= IFF_OACTIVE;
1385 break;
1386 }
1387
1388 if (m0->m_len < sizeof(struct ether_header) &&
1389 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1390 continue;
1391
1392 eh = mtod(m0, struct ether_header *);
1393 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1394 if (ni == NULL) {
1395 m_freem(m0);
1396 continue;
1397 }
1398 bpf_mtap(ifp, m0, BPF_D_OUT);
1399 m0 = ieee80211_encap(ic, m0, ni);
1400 if (m0 == NULL) {
1401 ieee80211_free_node(ni);
1402 continue;
1403 }
1404 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1405 if (ural_tx_data(sc, m0, ni) != 0) {
1406 ieee80211_free_node(ni);
1407 if_statinc(ifp, if_oerrors);
1408 break;
1409 }
1410 }
1411
1412 sc->sc_tx_timer = 5;
1413 ifp->if_timer = 1;
1414 }
1415 }
1416
1417 Static void
1418 ural_watchdog(struct ifnet *ifp)
1419 {
1420 struct ural_softc *sc = ifp->if_softc;
1421 struct ieee80211com *ic = &sc->sc_ic;
1422
1423 ifp->if_timer = 0;
1424
1425 if (sc->sc_tx_timer > 0) {
1426 if (--sc->sc_tx_timer == 0) {
1427 printf("%s: device timeout\n", device_xname(sc->sc_dev));
1428 /*ural_init(sc); XXX needs a process context! */
1429 if_statinc(ifp, if_oerrors);
1430 return;
1431 }
1432 ifp->if_timer = 1;
1433 }
1434
1435 ieee80211_watchdog(ic);
1436 }
1437
1438 /*
1439 * This function allows for fast channel switching in monitor mode (used by
1440 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1441 * generate a new beacon frame.
1442 */
1443 Static int
1444 ural_reset(struct ifnet *ifp)
1445 {
1446 struct ural_softc *sc = ifp->if_softc;
1447 struct ieee80211com *ic = &sc->sc_ic;
1448
1449 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1450 return ENETRESET;
1451
1452 ural_set_chan(sc, ic->ic_curchan);
1453
1454 return 0;
1455 }
1456
1457 Static int
1458 ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1459 {
1460 #define IS_RUNNING(ifp) \
1461 (((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1462
1463 struct ural_softc *sc = ifp->if_softc;
1464 struct ieee80211com *ic = &sc->sc_ic;
1465 int s, error = 0;
1466
1467 s = splnet();
1468
1469 switch (cmd) {
1470 case SIOCSIFFLAGS:
1471 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472 break;
1473 /* XXX re-use ether_ioctl() */
1474 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1475 case IFF_UP|IFF_RUNNING:
1476 ural_update_promisc(sc);
1477 break;
1478 case IFF_UP:
1479 ural_init(ifp);
1480 break;
1481 case IFF_RUNNING:
1482 ural_stop(ifp, 1);
1483 break;
1484 case 0:
1485 break;
1486 }
1487 break;
1488
1489 case SIOCADDMULTI:
1490 case SIOCDELMULTI:
1491 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1492 error = 0;
1493 }
1494 break;
1495
1496 default:
1497 error = ieee80211_ioctl(ic, cmd, data);
1498 }
1499
1500 if (error == ENETRESET) {
1501 if (IS_RUNNING(ifp) &&
1502 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1503 ural_init(ifp);
1504 error = 0;
1505 }
1506
1507 splx(s);
1508
1509 return error;
1510 #undef IS_RUNNING
1511 }
1512
1513 Static void
1514 ural_set_testmode(struct ural_softc *sc)
1515 {
1516 usb_device_request_t req;
1517 usbd_status error;
1518
1519 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1520 req.bRequest = RAL_VENDOR_REQUEST;
1521 USETW(req.wValue, 4);
1522 USETW(req.wIndex, 1);
1523 USETW(req.wLength, 0);
1524
1525 error = usbd_do_request(sc->sc_udev, &req, NULL);
1526 if (error != 0) {
1527 printf("%s: could not set test mode: %s\n",
1528 device_xname(sc->sc_dev), usbd_errstr(error));
1529 }
1530 }
1531
1532 Static void
1533 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1534 {
1535 usb_device_request_t req;
1536 usbd_status error;
1537
1538 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1539 req.bRequest = RAL_READ_EEPROM;
1540 USETW(req.wValue, 0);
1541 USETW(req.wIndex, addr);
1542 USETW(req.wLength, len);
1543
1544 error = usbd_do_request(sc->sc_udev, &req, buf);
1545 if (error != 0) {
1546 printf("%s: could not read EEPROM: %s\n",
1547 device_xname(sc->sc_dev), usbd_errstr(error));
1548 }
1549 }
1550
1551 Static uint16_t
1552 ural_read(struct ural_softc *sc, uint16_t reg)
1553 {
1554 usb_device_request_t req;
1555 usbd_status error;
1556 uint16_t val;
1557
1558 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1559 req.bRequest = RAL_READ_MAC;
1560 USETW(req.wValue, 0);
1561 USETW(req.wIndex, reg);
1562 USETW(req.wLength, sizeof(uint16_t));
1563
1564 error = usbd_do_request(sc->sc_udev, &req, &val);
1565 if (error != 0) {
1566 printf("%s: could not read MAC register: %s\n",
1567 device_xname(sc->sc_dev), usbd_errstr(error));
1568 return 0;
1569 }
1570
1571 return le16toh(val);
1572 }
1573
1574 Static void
1575 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1576 {
1577 usb_device_request_t req;
1578 usbd_status error;
1579
1580 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1581 req.bRequest = RAL_READ_MULTI_MAC;
1582 USETW(req.wValue, 0);
1583 USETW(req.wIndex, reg);
1584 USETW(req.wLength, len);
1585
1586 error = usbd_do_request(sc->sc_udev, &req, buf);
1587 if (error != 0) {
1588 printf("%s: could not read MAC register: %s\n",
1589 device_xname(sc->sc_dev), usbd_errstr(error));
1590 }
1591 }
1592
1593 Static void
1594 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1595 {
1596 usb_device_request_t req;
1597 usbd_status error;
1598
1599 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1600 req.bRequest = RAL_WRITE_MAC;
1601 USETW(req.wValue, val);
1602 USETW(req.wIndex, reg);
1603 USETW(req.wLength, 0);
1604
1605 error = usbd_do_request(sc->sc_udev, &req, NULL);
1606 if (error != 0) {
1607 printf("%s: could not write MAC register: %s\n",
1608 device_xname(sc->sc_dev), usbd_errstr(error));
1609 }
1610 }
1611
1612 Static void
1613 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1614 {
1615 usb_device_request_t req;
1616 usbd_status error;
1617
1618 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1619 req.bRequest = RAL_WRITE_MULTI_MAC;
1620 USETW(req.wValue, 0);
1621 USETW(req.wIndex, reg);
1622 USETW(req.wLength, len);
1623
1624 error = usbd_do_request(sc->sc_udev, &req, buf);
1625 if (error != 0) {
1626 printf("%s: could not write MAC register: %s\n",
1627 device_xname(sc->sc_dev), usbd_errstr(error));
1628 }
1629 }
1630
1631 Static void
1632 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1633 {
1634 uint16_t tmp;
1635 int ntries;
1636
1637 for (ntries = 0; ntries < 5; ntries++) {
1638 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1639 break;
1640 }
1641 if (ntries == 5) {
1642 printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1643 return;
1644 }
1645
1646 tmp = reg << 8 | val;
1647 ural_write(sc, RAL_PHY_CSR7, tmp);
1648 }
1649
1650 Static uint8_t
1651 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1652 {
1653 uint16_t val;
1654 int ntries;
1655
1656 val = RAL_BBP_WRITE | reg << 8;
1657 ural_write(sc, RAL_PHY_CSR7, val);
1658
1659 for (ntries = 0; ntries < 5; ntries++) {
1660 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1661 break;
1662 }
1663 if (ntries == 5) {
1664 printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1665 return 0;
1666 }
1667
1668 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1669 }
1670
1671 Static void
1672 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1673 {
1674 uint32_t tmp;
1675 int ntries;
1676
1677 for (ntries = 0; ntries < 5; ntries++) {
1678 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1679 break;
1680 }
1681 if (ntries == 5) {
1682 printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1683 return;
1684 }
1685
1686 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1687 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1688 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1689
1690 /* remember last written value in sc */
1691 sc->rf_regs[reg] = val;
1692
1693 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1694 }
1695
1696 Static void
1697 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1698 {
1699 struct ieee80211com *ic = &sc->sc_ic;
1700 uint8_t power, tmp;
1701 u_int i, chan;
1702
1703 chan = ieee80211_chan2ieee(ic, c);
1704 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1705 return;
1706
1707 if (IEEE80211_IS_CHAN_2GHZ(c))
1708 power = uimin(sc->txpow[chan - 1], 31);
1709 else
1710 power = 31;
1711
1712 /* adjust txpower using ifconfig settings */
1713 power -= (100 - ic->ic_txpowlimit) / 8;
1714
1715 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1716
1717 switch (sc->rf_rev) {
1718 case RAL_RF_2522:
1719 ural_rf_write(sc, RAL_RF1, 0x00814);
1720 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1721 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1722 break;
1723
1724 case RAL_RF_2523:
1725 ural_rf_write(sc, RAL_RF1, 0x08804);
1726 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1727 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1728 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1729 break;
1730
1731 case RAL_RF_2524:
1732 ural_rf_write(sc, RAL_RF1, 0x0c808);
1733 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1734 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1735 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1736 break;
1737
1738 case RAL_RF_2525:
1739 ural_rf_write(sc, RAL_RF1, 0x08808);
1740 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1741 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1742 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1743
1744 ural_rf_write(sc, RAL_RF1, 0x08808);
1745 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1746 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1747 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1748 break;
1749
1750 case RAL_RF_2525E:
1751 ural_rf_write(sc, RAL_RF1, 0x08808);
1752 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1753 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1755 break;
1756
1757 case RAL_RF_2526:
1758 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1759 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1760 ural_rf_write(sc, RAL_RF1, 0x08804);
1761
1762 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1763 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1764 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1765 break;
1766
1767 /* dual-band RF */
1768 case RAL_RF_5222:
1769 for (i = 0; ural_rf5222[i].chan != chan; i++);
1770
1771 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1772 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1773 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1774 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1775 break;
1776 }
1777
1778 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1779 ic->ic_state != IEEE80211_S_SCAN) {
1780 /* set Japan filter bit for channel 14 */
1781 tmp = ural_bbp_read(sc, 70);
1782
1783 tmp &= ~RAL_JAPAN_FILTER;
1784 if (chan == 14)
1785 tmp |= RAL_JAPAN_FILTER;
1786
1787 ural_bbp_write(sc, 70, tmp);
1788
1789 /* clear CRC errors */
1790 ural_read(sc, RAL_STA_CSR0);
1791
1792 DELAY(10000);
1793 ural_disable_rf_tune(sc);
1794 }
1795 }
1796
1797 /*
1798 * Disable RF auto-tuning.
1799 */
1800 Static void
1801 ural_disable_rf_tune(struct ural_softc *sc)
1802 {
1803 uint32_t tmp;
1804
1805 if (sc->rf_rev != RAL_RF_2523) {
1806 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1807 ural_rf_write(sc, RAL_RF1, tmp);
1808 }
1809
1810 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1811 ural_rf_write(sc, RAL_RF3, tmp);
1812
1813 DPRINTFN(2, ("disabling RF autotune\n"));
1814 }
1815
1816 /*
1817 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1818 * synchronization.
1819 */
1820 Static void
1821 ural_enable_tsf_sync(struct ural_softc *sc)
1822 {
1823 struct ieee80211com *ic = &sc->sc_ic;
1824 uint16_t logcwmin, preload, tmp;
1825
1826 /* first, disable TSF synchronization */
1827 ural_write(sc, RAL_TXRX_CSR19, 0);
1828
1829 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1830 ural_write(sc, RAL_TXRX_CSR18, tmp);
1831
1832 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1833 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1834 tmp = logcwmin << 12 | preload;
1835 ural_write(sc, RAL_TXRX_CSR20, tmp);
1836
1837 /* finally, enable TSF synchronization */
1838 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1839 if (ic->ic_opmode == IEEE80211_M_STA)
1840 tmp |= RAL_ENABLE_TSF_SYNC(1);
1841 else
1842 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1843 ural_write(sc, RAL_TXRX_CSR19, tmp);
1844
1845 DPRINTF(("enabling TSF synchronization\n"));
1846 }
1847
1848 Static void
1849 ural_update_slot(struct ifnet *ifp)
1850 {
1851 struct ural_softc *sc = ifp->if_softc;
1852 struct ieee80211com *ic = &sc->sc_ic;
1853 uint16_t slottime, sifs, eifs;
1854
1855 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1856
1857 /*
1858 * These settings may sound a bit inconsistent but this is what the
1859 * reference driver does.
1860 */
1861 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1862 sifs = 16 - RAL_RXTX_TURNAROUND;
1863 eifs = 364;
1864 } else {
1865 sifs = 10 - RAL_RXTX_TURNAROUND;
1866 eifs = 64;
1867 }
1868
1869 ural_write(sc, RAL_MAC_CSR10, slottime);
1870 ural_write(sc, RAL_MAC_CSR11, sifs);
1871 ural_write(sc, RAL_MAC_CSR12, eifs);
1872 }
1873
1874 Static void
1875 ural_set_txpreamble(struct ural_softc *sc)
1876 {
1877 uint16_t tmp;
1878
1879 tmp = ural_read(sc, RAL_TXRX_CSR10);
1880
1881 tmp &= ~RAL_SHORT_PREAMBLE;
1882 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1883 tmp |= RAL_SHORT_PREAMBLE;
1884
1885 ural_write(sc, RAL_TXRX_CSR10, tmp);
1886 }
1887
1888 Static void
1889 ural_set_basicrates(struct ural_softc *sc)
1890 {
1891 struct ieee80211com *ic = &sc->sc_ic;
1892
1893 /* update basic rate set */
1894 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1895 /* 11b basic rates: 1, 2Mbps */
1896 ural_write(sc, RAL_TXRX_CSR11, 0x3);
1897 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1898 /* 11a basic rates: 6, 12, 24Mbps */
1899 ural_write(sc, RAL_TXRX_CSR11, 0x150);
1900 } else {
1901 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1902 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1903 }
1904 }
1905
1906 Static void
1907 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1908 {
1909 uint16_t tmp;
1910
1911 tmp = bssid[0] | bssid[1] << 8;
1912 ural_write(sc, RAL_MAC_CSR5, tmp);
1913
1914 tmp = bssid[2] | bssid[3] << 8;
1915 ural_write(sc, RAL_MAC_CSR6, tmp);
1916
1917 tmp = bssid[4] | bssid[5] << 8;
1918 ural_write(sc, RAL_MAC_CSR7, tmp);
1919
1920 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1921 }
1922
1923 Static void
1924 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1925 {
1926 uint16_t tmp;
1927
1928 tmp = addr[0] | addr[1] << 8;
1929 ural_write(sc, RAL_MAC_CSR2, tmp);
1930
1931 tmp = addr[2] | addr[3] << 8;
1932 ural_write(sc, RAL_MAC_CSR3, tmp);
1933
1934 tmp = addr[4] | addr[5] << 8;
1935 ural_write(sc, RAL_MAC_CSR4, tmp);
1936
1937 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1938 }
1939
1940 Static void
1941 ural_update_promisc(struct ural_softc *sc)
1942 {
1943 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1944 uint32_t tmp;
1945
1946 tmp = ural_read(sc, RAL_TXRX_CSR2);
1947
1948 tmp &= ~RAL_DROP_NOT_TO_ME;
1949 if (!(ifp->if_flags & IFF_PROMISC))
1950 tmp |= RAL_DROP_NOT_TO_ME;
1951
1952 ural_write(sc, RAL_TXRX_CSR2, tmp);
1953
1954 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1955 "entering" : "leaving"));
1956 }
1957
1958 Static const char *
1959 ural_get_rf(int rev)
1960 {
1961 switch (rev) {
1962 case RAL_RF_2522: return "RT2522";
1963 case RAL_RF_2523: return "RT2523";
1964 case RAL_RF_2524: return "RT2524";
1965 case RAL_RF_2525: return "RT2525";
1966 case RAL_RF_2525E: return "RT2525e";
1967 case RAL_RF_2526: return "RT2526";
1968 case RAL_RF_5222: return "RT5222";
1969 default: return "unknown";
1970 }
1971 }
1972
1973 Static void
1974 ural_read_eeprom(struct ural_softc *sc)
1975 {
1976 struct ieee80211com *ic = &sc->sc_ic;
1977 uint16_t val;
1978
1979 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1980 val = le16toh(val);
1981 sc->rf_rev = (val >> 11) & 0x7;
1982 sc->hw_radio = (val >> 10) & 0x1;
1983 sc->led_mode = (val >> 6) & 0x7;
1984 sc->rx_ant = (val >> 4) & 0x3;
1985 sc->tx_ant = (val >> 2) & 0x3;
1986 sc->nb_ant = val & 0x3;
1987
1988 /* read MAC address */
1989 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1990
1991 /* read default values for BBP registers */
1992 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1993
1994 /* read Tx power for all b/g channels */
1995 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1996 }
1997
1998 Static int
1999 ural_bbp_init(struct ural_softc *sc)
2000 {
2001 int i, ntries;
2002
2003 /* wait for BBP to be ready */
2004 for (ntries = 0; ntries < 100; ntries++) {
2005 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2006 break;
2007 DELAY(1000);
2008 }
2009 if (ntries == 100) {
2010 printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2011 return EIO;
2012 }
2013
2014 /* initialize BBP registers to default values */
2015 for (i = 0; i < __arraycount(ural_def_bbp); i++)
2016 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2017
2018 #if 0
2019 /* initialize BBP registers to values stored in EEPROM */
2020 for (i = 0; i < 16; i++) {
2021 if (sc->bbp_prom[i].reg == 0xff)
2022 continue;
2023 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2024 }
2025 #endif
2026
2027 return 0;
2028 }
2029
2030 Static void
2031 ural_set_txantenna(struct ural_softc *sc, int antenna)
2032 {
2033 uint16_t tmp;
2034 uint8_t tx;
2035
2036 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2037 if (antenna == 1)
2038 tx |= RAL_BBP_ANTA;
2039 else if (antenna == 2)
2040 tx |= RAL_BBP_ANTB;
2041 else
2042 tx |= RAL_BBP_DIVERSITY;
2043
2044 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2045 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2046 sc->rf_rev == RAL_RF_5222)
2047 tx |= RAL_BBP_FLIPIQ;
2048
2049 ural_bbp_write(sc, RAL_BBP_TX, tx);
2050
2051 /* update values in PHY_CSR5 and PHY_CSR6 */
2052 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2053 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2054
2055 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2056 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2057 }
2058
2059 Static void
2060 ural_set_rxantenna(struct ural_softc *sc, int antenna)
2061 {
2062 uint8_t rx;
2063
2064 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2065 if (antenna == 1)
2066 rx |= RAL_BBP_ANTA;
2067 else if (antenna == 2)
2068 rx |= RAL_BBP_ANTB;
2069 else
2070 rx |= RAL_BBP_DIVERSITY;
2071
2072 /* need to force no I/Q flip for RF 2525e and 2526 */
2073 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2074 rx &= ~RAL_BBP_FLIPIQ;
2075
2076 ural_bbp_write(sc, RAL_BBP_RX, rx);
2077 }
2078
2079 Static int
2080 ural_init(struct ifnet *ifp)
2081 {
2082 struct ural_softc *sc = ifp->if_softc;
2083 struct ieee80211com *ic = &sc->sc_ic;
2084 struct ieee80211_key *wk;
2085 uint16_t tmp;
2086 usbd_status error;
2087 int i, ntries;
2088
2089 ural_set_testmode(sc);
2090 ural_write(sc, 0x308, 0x00f0); /* XXX magic */
2091
2092 ural_stop(ifp, 0);
2093
2094 /* initialize MAC registers to default values */
2095 for (i = 0; i < __arraycount(ural_def_mac); i++)
2096 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2097
2098 /* wait for BBP and RF to wake up (this can take a long time!) */
2099 for (ntries = 0; ntries < 100; ntries++) {
2100 tmp = ural_read(sc, RAL_MAC_CSR17);
2101 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2102 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2103 break;
2104 DELAY(1000);
2105 }
2106 if (ntries == 100) {
2107 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2108 device_xname(sc->sc_dev));
2109 error = EIO;
2110 goto fail;
2111 }
2112
2113 /* we're ready! */
2114 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2115
2116 /* set basic rate set (will be updated later) */
2117 ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2118
2119 error = ural_bbp_init(sc);
2120 if (error != 0)
2121 goto fail;
2122
2123 /* set default BSS channel */
2124 ural_set_chan(sc, ic->ic_curchan);
2125
2126 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2127 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2128
2129 ural_set_txantenna(sc, sc->tx_ant);
2130 ural_set_rxantenna(sc, sc->rx_ant);
2131
2132 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2133 ural_set_macaddr(sc, ic->ic_myaddr);
2134
2135 /*
2136 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2137 */
2138 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2139 wk = &ic->ic_crypto.cs_nw_keys[i];
2140 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2141 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2142 }
2143
2144 /*
2145 * Allocate xfer for AMRR statistics requests.
2146 */
2147 struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2148 error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2149 if (error) {
2150 printf("%s: could not allocate AMRR xfer\n",
2151 device_xname(sc->sc_dev));
2152 goto fail;
2153 }
2154
2155 /*
2156 * Open Tx and Rx USB bulk pipes.
2157 */
2158 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2159 &sc->sc_tx_pipeh);
2160 if (error != 0) {
2161 printf("%s: could not open Tx pipe: %s\n",
2162 device_xname(sc->sc_dev), usbd_errstr(error));
2163 goto fail;
2164 }
2165
2166 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2167 &sc->sc_rx_pipeh);
2168 if (error != 0) {
2169 printf("%s: could not open Rx pipe: %s\n",
2170 device_xname(sc->sc_dev), usbd_errstr(error));
2171 goto fail;
2172 }
2173
2174 /*
2175 * Allocate Tx and Rx xfer queues.
2176 */
2177 error = ural_alloc_tx_list(sc);
2178 if (error != 0) {
2179 printf("%s: could not allocate Tx list\n",
2180 device_xname(sc->sc_dev));
2181 goto fail;
2182 }
2183
2184 error = ural_alloc_rx_list(sc);
2185 if (error != 0) {
2186 printf("%s: could not allocate Rx list\n",
2187 device_xname(sc->sc_dev));
2188 goto fail;
2189 }
2190
2191 /*
2192 * Start up the receive pipe.
2193 */
2194 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2195 struct ural_rx_data *data = &sc->rx_data[i];
2196
2197 usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2198 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2199 usbd_transfer(data->xfer);
2200 }
2201
2202 /* kick Rx */
2203 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2204 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2205 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2206 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2207 tmp |= RAL_DROP_TODS;
2208 if (!(ifp->if_flags & IFF_PROMISC))
2209 tmp |= RAL_DROP_NOT_TO_ME;
2210 }
2211 ural_write(sc, RAL_TXRX_CSR2, tmp);
2212
2213 ifp->if_flags &= ~IFF_OACTIVE;
2214 ifp->if_flags |= IFF_RUNNING;
2215
2216 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2218 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2219 } else
2220 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2221
2222 return 0;
2223
2224 fail: ural_stop(ifp, 1);
2225 return error;
2226 }
2227
2228 Static void
2229 ural_stop(struct ifnet *ifp, int disable)
2230 {
2231 struct ural_softc *sc = ifp->if_softc;
2232 struct ieee80211com *ic = &sc->sc_ic;
2233
2234 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235
2236 sc->sc_tx_timer = 0;
2237 ifp->if_timer = 0;
2238 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2239
2240 /* disable Rx */
2241 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2242
2243 /* reset ASIC and BBP (but won't reset MAC registers!) */
2244 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2245 ural_write(sc, RAL_MAC_CSR1, 0);
2246
2247 if (sc->amrr_xfer != NULL) {
2248 usbd_destroy_xfer(sc->amrr_xfer);
2249 sc->amrr_xfer = NULL;
2250 }
2251
2252 if (sc->sc_rx_pipeh != NULL) {
2253 usbd_abort_pipe(sc->sc_rx_pipeh);
2254 }
2255
2256 if (sc->sc_tx_pipeh != NULL) {
2257 usbd_abort_pipe(sc->sc_tx_pipeh);
2258 }
2259
2260 ural_free_rx_list(sc);
2261 ural_free_tx_list(sc);
2262
2263 if (sc->sc_rx_pipeh != NULL) {
2264 usbd_close_pipe(sc->sc_rx_pipeh);
2265 sc->sc_rx_pipeh = NULL;
2266 }
2267
2268 if (sc->sc_tx_pipeh != NULL) {
2269 usbd_close_pipe(sc->sc_tx_pipeh);
2270 sc->sc_tx_pipeh = NULL;
2271 }
2272 }
2273
2274 static int
2275 ural_activate(device_t self, enum devact act)
2276 {
2277 struct ural_softc *sc = device_private(self);
2278
2279 switch (act) {
2280 case DVACT_DEACTIVATE:
2281 if_deactivate(&sc->sc_if);
2282 return 0;
2283 default:
2284 return EOPNOTSUPP;
2285 }
2286 }
2287
2288 Static void
2289 ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2290 {
2291 int i;
2292
2293 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2294 ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2295
2296 ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2297
2298 /* set rate to some reasonable initial value */
2299 for (i = ni->ni_rates.rs_nrates - 1;
2300 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2301 i--);
2302 ni->ni_txrate = i;
2303
2304 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2305 }
2306
2307 Static void
2308 ural_amrr_timeout(void *arg)
2309 {
2310 struct ural_softc *sc = (struct ural_softc *)arg;
2311 usb_device_request_t req;
2312 int s;
2313
2314 s = splusb();
2315
2316 /*
2317 * Asynchronously read statistic registers (cleared by read).
2318 */
2319 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2320 req.bRequest = RAL_READ_MULTI_MAC;
2321 USETW(req.wValue, 0);
2322 USETW(req.wIndex, RAL_STA_CSR0);
2323 USETW(req.wLength, sizeof(sc->sta));
2324
2325 usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2326 USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2327 ural_amrr_update);
2328 (void)usbd_transfer(sc->amrr_xfer);
2329
2330 splx(s);
2331 }
2332
2333 Static void
2334 ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2335 usbd_status status)
2336 {
2337 struct ural_softc *sc = (struct ural_softc *)priv;
2338 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2339
2340 if (status != USBD_NORMAL_COMPLETION) {
2341 printf("%s: could not retrieve Tx statistics - "
2342 "cancelling automatic rate control\n",
2343 device_xname(sc->sc_dev));
2344 return;
2345 }
2346
2347 /* count TX retry-fail as Tx errors */
2348 if_statadd(ifp, if_oerrors, sc->sta[9]);
2349
2350 sc->amn.amn_retrycnt =
2351 sc->sta[7] + /* TX one-retry ok count */
2352 sc->sta[8] + /* TX more-retry ok count */
2353 sc->sta[9]; /* TX retry-fail count */
2354
2355 sc->amn.amn_txcnt =
2356 sc->amn.amn_retrycnt +
2357 sc->sta[6]; /* TX no-retry ok count */
2358
2359 ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2360
2361 callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2362 }
2363