if_ural.c revision 1.7 1 /* $NetBSD: if_ural.c,v 1.7 2005/08/16 19:35:17 drochner Exp $ */
2 /* $OpenBSD: if_ral.c,v 1.38 2005/07/07 08:33:22 jsg Exp $ */
3 /* $FreeBSD: /a/cvsroot/freebsd.repo/ncvs/src/sys/dev/usb/if_ural.c,v 1.10 2005/07/10 00:17:05 sam Exp $ */
4
5 /*-
6 * Copyright (c) 2005
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2500USB chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.7 2005/08/16 19:35:17 drochner Exp $");
29
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <machine/bus.h>
44 #include <machine/endian.h>
45 #include <machine/intr.h>
46
47 #if NBPFILTER > 0
48 #include <net/bpf.h>
49 #endif
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #include <dev/usb/usb.h>
67 #include <dev/usb/usbdi.h>
68 #include <dev/usb/usbdi_util.h>
69 #include <dev/usb/usbdevs.h>
70
71 #include <dev/usb/if_uralreg.h>
72 #include <dev/usb/if_uralvar.h>
73
74 #ifdef USB_DEBUG
75 #define URAL_DEBUG
76 #endif
77
78 #ifdef URAL_DEBUG
79 #define DPRINTF(x) do { if (ural_debug) logprintf x; } while (0)
80 #define DPRINTFN(n, x) do { if (ural_debug >= (n)) logprintf x; } while (0)
81 int ural_debug = 0;
82 #else
83 #define DPRINTF(x)
84 #define DPRINTFN(n, x)
85 #endif
86
87 /* various supported device vendors/products */
88 static const struct usb_devno ural_devs[] = {
89 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G },
90 { USB_VENDOR_ASUSTEK, USB_PRODUCT_RALINK_RT2570 },
91 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
92 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G },
93 { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
94 { USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU },
95 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
96 { USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
97 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
98 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
99 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
100 { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
101 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6861 },
102 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6865 },
103 { USB_VENDOR_MSI, USB_PRODUCT_MSI_MS6869 },
104 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
105 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
106 { USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3 },
107 { USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG },
108 { USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_EP9001G },
109 { USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
110 { USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_ZWXG261 },
111 };
112
113 Static int ural_alloc_tx_list(struct ural_softc *);
114 Static void ural_free_tx_list(struct ural_softc *);
115 Static int ural_alloc_rx_list(struct ural_softc *);
116 Static void ural_free_rx_list(struct ural_softc *);
117 Static int ural_media_change(struct ifnet *);
118 Static void ural_next_scan(void *);
119 Static void ural_task(void *);
120 Static int ural_newstate(struct ieee80211com *,
121 enum ieee80211_state, int);
122 Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
123 usbd_status);
124 Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
125 usbd_status);
126 Static int ural_ack_rate(int);
127 Static uint16_t ural_txtime(int, int, uint32_t);
128 Static uint8_t ural_plcp_signal(int);
129 Static void ural_setup_tx_desc(struct ural_softc *,
130 struct ural_tx_desc *, uint32_t, int, int);
131 Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
132 struct ieee80211_node *);
133 Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
134 struct ieee80211_node *);
135 Static int ural_tx_data(struct ural_softc *, struct mbuf *,
136 struct ieee80211_node *);
137 Static void ural_start(struct ifnet *);
138 Static void ural_watchdog(struct ifnet *);
139 Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
140 Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
141 int);
142 Static uint16_t ural_read(struct ural_softc *, uint16_t);
143 Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
144 int);
145 Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
146 Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
147 int);
148 Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
149 Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
150 Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
151 Static void ural_set_chan(struct ural_softc *,
152 struct ieee80211_channel *);
153 Static void ural_disable_rf_tune(struct ural_softc *);
154 Static void ural_enable_tsf_sync(struct ural_softc *);
155 Static void ural_set_bssid(struct ural_softc *, uint8_t *);
156 Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
157 Static void ural_update_promisc(struct ural_softc *);
158 Static const char *ural_get_rf(int);
159 Static void ural_read_eeprom(struct ural_softc *);
160 Static int ural_bbp_init(struct ural_softc *);
161 Static void ural_set_txantenna(struct ural_softc *, int);
162 Static void ural_set_rxantenna(struct ural_softc *, int);
163 Static int ural_init(struct ifnet *);
164 Static void ural_stop(struct ifnet *, int);
165
166 /*
167 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
168 */
169 static const struct ieee80211_rateset ural_rateset_11a =
170 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
171
172 static const struct ieee80211_rateset ural_rateset_11b =
173 { 4, { 2, 4, 11, 22 } };
174
175 static const struct ieee80211_rateset ural_rateset_11g =
176 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 /*
179 * Default values for MAC registers; values taken from the reference driver.
180 */
181 static const struct {
182 uint16_t reg;
183 uint16_t val;
184 } ural_def_mac[] = {
185 { RAL_TXRX_CSR5, 0x8c8d },
186 { RAL_TXRX_CSR6, 0x8b8a },
187 { RAL_TXRX_CSR7, 0x8687 },
188 { RAL_TXRX_CSR8, 0x0085 },
189 { RAL_MAC_CSR13, 0x1111 },
190 { RAL_MAC_CSR14, 0x1e11 },
191 { RAL_TXRX_CSR21, 0xe78f },
192 { RAL_MAC_CSR9, 0xff1d },
193 { RAL_MAC_CSR11, 0x0002 },
194 { RAL_MAC_CSR22, 0x0053 },
195 { RAL_MAC_CSR15, 0x0000 },
196 { RAL_MAC_CSR8, 0x0780 },
197 { RAL_TXRX_CSR19, 0x0000 },
198 { RAL_TXRX_CSR18, 0x005a },
199 { RAL_PHY_CSR2, 0x0000 },
200 { RAL_TXRX_CSR0, 0x1ec0 },
201 { RAL_PHY_CSR4, 0x000f }
202 };
203
204 /*
205 * Default values for BBP registers; values taken from the reference driver.
206 */
207 static const struct {
208 uint8_t reg;
209 uint8_t val;
210 } ural_def_bbp[] = {
211 { 3, 0x02 },
212 { 4, 0x19 },
213 { 14, 0x1c },
214 { 15, 0x30 },
215 { 16, 0xac },
216 { 17, 0x48 },
217 { 18, 0x18 },
218 { 19, 0xff },
219 { 20, 0x1e },
220 { 21, 0x08 },
221 { 22, 0x08 },
222 { 23, 0x08 },
223 { 24, 0x80 },
224 { 25, 0x50 },
225 { 26, 0x08 },
226 { 27, 0x23 },
227 { 30, 0x10 },
228 { 31, 0x2b },
229 { 32, 0xb9 },
230 { 34, 0x12 },
231 { 35, 0x50 },
232 { 39, 0xc4 },
233 { 40, 0x02 },
234 { 41, 0x60 },
235 { 53, 0x10 },
236 { 54, 0x18 },
237 { 56, 0x08 },
238 { 57, 0x10 },
239 { 58, 0x08 },
240 { 61, 0x60 },
241 { 62, 0x10 },
242 { 75, 0xff }
243 };
244
245 /*
246 * Default values for RF register R2 indexed by channel numbers.
247 */
248 static const uint32_t ural_rf2522_r2[] = {
249 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
250 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
251 };
252
253 static const uint32_t ural_rf2523_r2[] = {
254 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
255 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
256 };
257
258 static const uint32_t ural_rf2524_r2[] = {
259 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
260 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
261 };
262
263 static const uint32_t ural_rf2525_r2[] = {
264 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
265 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
266 };
267
268 static const uint32_t ural_rf2525_hi_r2[] = {
269 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
270 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
271 };
272
273 static const uint32_t ural_rf2525e_r2[] = {
274 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
275 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
276 };
277
278 static const uint32_t ural_rf2526_hi_r2[] = {
279 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
280 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
281 };
282
283 static const uint32_t ural_rf2526_r2[] = {
284 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
285 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
286 };
287
288 /*
289 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
290 * values taken from the reference driver.
291 */
292 static const struct {
293 uint8_t chan;
294 uint32_t r1;
295 uint32_t r2;
296 uint32_t r4;
297 } ural_rf5222[] = {
298 /* channels in the 2.4GHz band */
299 { 1, 0x08808, 0x0044d, 0x00282 },
300 { 2, 0x08808, 0x0044e, 0x00282 },
301 { 3, 0x08808, 0x0044f, 0x00282 },
302 { 4, 0x08808, 0x00460, 0x00282 },
303 { 5, 0x08808, 0x00461, 0x00282 },
304 { 6, 0x08808, 0x00462, 0x00282 },
305 { 7, 0x08808, 0x00463, 0x00282 },
306 { 8, 0x08808, 0x00464, 0x00282 },
307 { 9, 0x08808, 0x00465, 0x00282 },
308 { 10, 0x08808, 0x00466, 0x00282 },
309 { 11, 0x08808, 0x00467, 0x00282 },
310 { 12, 0x08808, 0x00468, 0x00282 },
311 { 13, 0x08808, 0x00469, 0x00282 },
312 { 14, 0x08808, 0x0046b, 0x00286 },
313
314 /* channels in the 5.2GHz band */
315 { 36, 0x08804, 0x06225, 0x00287 },
316 { 40, 0x08804, 0x06226, 0x00287 },
317 { 44, 0x08804, 0x06227, 0x00287 },
318 { 48, 0x08804, 0x06228, 0x00287 },
319 { 52, 0x08804, 0x06229, 0x00287 },
320 { 56, 0x08804, 0x0622a, 0x00287 },
321 { 60, 0x08804, 0x0622b, 0x00287 },
322 { 64, 0x08804, 0x0622c, 0x00287 },
323
324 { 100, 0x08804, 0x02200, 0x00283 },
325 { 104, 0x08804, 0x02201, 0x00283 },
326 { 108, 0x08804, 0x02202, 0x00283 },
327 { 112, 0x08804, 0x02203, 0x00283 },
328 { 116, 0x08804, 0x02204, 0x00283 },
329 { 120, 0x08804, 0x02205, 0x00283 },
330 { 124, 0x08804, 0x02206, 0x00283 },
331 { 128, 0x08804, 0x02207, 0x00283 },
332 { 132, 0x08804, 0x02208, 0x00283 },
333 { 136, 0x08804, 0x02209, 0x00283 },
334 { 140, 0x08804, 0x0220a, 0x00283 },
335
336 { 149, 0x08808, 0x02429, 0x00281 },
337 { 153, 0x08808, 0x0242b, 0x00281 },
338 { 157, 0x08808, 0x0242d, 0x00281 },
339 { 161, 0x08808, 0x0242f, 0x00281 }
340 };
341
342 USB_DECLARE_DRIVER(ural);
343
344 USB_MATCH(ural)
345 {
346 USB_MATCH_START(ural, uaa);
347
348 if (uaa->iface != NULL)
349 return UMATCH_NONE;
350
351 return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
352 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353 }
354
355 USB_ATTACH(ural)
356 {
357 USB_ATTACH_START(ural, sc, uaa);
358 struct ieee80211com *ic = &sc->sc_ic;
359 struct ifnet *ifp = &sc->sc_if;
360 usb_interface_descriptor_t *id;
361 usb_endpoint_descriptor_t *ed;
362 usbd_status error;
363 char *devinfop;
364 int i;
365
366 sc->sc_udev = uaa->device;
367
368 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
369 USB_ATTACH_SETUP;
370 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
371 usbd_devinfo_free(devinfop);
372
373 if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
374 printf("%s: could not set configuration no\n",
375 USBDEVNAME(sc->sc_dev));
376 USB_ATTACH_ERROR_RETURN;
377 }
378
379 /* get the first interface handle */
380 error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
381 &sc->sc_iface);
382 if (error != 0) {
383 printf("%s: could not get interface handle\n",
384 USBDEVNAME(sc->sc_dev));
385 USB_ATTACH_ERROR_RETURN;
386 }
387
388 /*
389 * Find endpoints.
390 */
391 id = usbd_get_interface_descriptor(sc->sc_iface);
392
393 sc->sc_rx_no = sc->sc_tx_no = -1;
394 for (i = 0; i < id->bNumEndpoints; i++) {
395 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
396 if (ed == NULL) {
397 printf("%s: no endpoint descriptor for iface %d\n",
398 USBDEVNAME(sc->sc_dev), i);
399 USB_ATTACH_ERROR_RETURN;
400 }
401
402 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
403 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
404 sc->sc_rx_no = ed->bEndpointAddress;
405 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
406 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
407 sc->sc_tx_no = ed->bEndpointAddress;
408 }
409 if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
410 printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
411 USB_ATTACH_ERROR_RETURN;
412 }
413
414 usb_init_task(&sc->sc_task, ural_task, sc);
415 callout_init(&sc->scan_ch);
416
417 /* retrieve RT2570 rev. no */
418 sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
419
420 /* retrieve MAC address and various other things from EEPROM */
421 ural_read_eeprom(sc);
422
423 printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s, address %s\n",
424 USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev),
425 ether_sprintf(ic->ic_myaddr));
426
427 ic->ic_ifp = ifp;
428 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
429 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
430 ic->ic_state = IEEE80211_S_INIT;
431
432 /* set device capabilities */
433 ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
434 IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
435 IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
436
437 if (sc->rf_rev == RAL_RF_5222) {
438 /* set supported .11a rates */
439 ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
440
441 /* set supported .11a channels */
442 for (i = 36; i <= 64; i += 4) {
443 ic->ic_channels[i].ic_freq =
444 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
445 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
446 }
447 for (i = 100; i <= 140; i += 4) {
448 ic->ic_channels[i].ic_freq =
449 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
450 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
451 }
452 for (i = 149; i <= 161; i += 4) {
453 ic->ic_channels[i].ic_freq =
454 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
455 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
456 }
457 }
458
459 /* set supported .11b and .11g rates */
460 ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
461 ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
462
463 /* set supported .11b and .11g channels (1 through 14) */
464 for (i = 1; i <= 14; i++) {
465 ic->ic_channels[i].ic_freq =
466 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
467 ic->ic_channels[i].ic_flags =
468 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
469 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
470 }
471
472 ifp->if_softc = sc;
473 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
474 ifp->if_init = ural_init;
475 ifp->if_stop = ural_stop;
476 ifp->if_ioctl = ural_ioctl;
477 ifp->if_start = ural_start;
478 ifp->if_watchdog = ural_watchdog;
479 IFQ_SET_READY(&ifp->if_snd);
480 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
481
482 if_attach(ifp);
483 ieee80211_ifattach(ic);
484
485 /* override state transition machine */
486 sc->sc_newstate = ic->ic_newstate;
487 ic->ic_newstate = ural_newstate;
488 ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
489
490 #if NBPFILTER > 0
491 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
492 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
493
494 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
495 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
496 sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
497
498 sc->sc_txtap_len = sizeof sc->sc_txtapu;
499 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
500 sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
501 #endif
502
503 ieee80211_announce(ic);
504
505 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
506 USBDEV(sc->sc_dev));
507
508 USB_ATTACH_SUCCESS_RETURN;
509 }
510
511 USB_DETACH(ural)
512 {
513 USB_DETACH_START(ural, sc);
514 struct ieee80211com *ic = &sc->sc_ic;
515 struct ifnet *ifp = &sc->sc_if;
516 int s;
517
518 s = splusb();
519
520 usb_rem_task(sc->sc_udev, &sc->sc_task);
521 callout_stop(&sc->scan_ch);
522
523 if (sc->sc_rx_pipeh != NULL) {
524 usbd_abort_pipe(sc->sc_rx_pipeh);
525 usbd_close_pipe(sc->sc_rx_pipeh);
526 }
527
528 if (sc->sc_tx_pipeh != NULL) {
529 usbd_abort_pipe(sc->sc_tx_pipeh);
530 usbd_close_pipe(sc->sc_tx_pipeh);
531 }
532
533 ural_free_rx_list(sc);
534 ural_free_tx_list(sc);
535
536 #if NBPFILTER > 0
537 bpfdetach(ifp);
538 #endif
539 ieee80211_ifdetach(ic);
540 if_detach(ifp);
541
542 splx(s);
543
544 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
545 USBDEV(sc->sc_dev));
546
547 return 0;
548 }
549
550 Static int
551 ural_alloc_tx_list(struct ural_softc *sc)
552 {
553 struct ural_tx_data *data;
554 int i, error;
555
556 sc->tx_queued = 0;
557
558 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
559 data = &sc->tx_data[i];
560
561 data->sc = sc;
562
563 data->xfer = usbd_alloc_xfer(sc->sc_udev);
564 if (data->xfer == NULL) {
565 printf("%s: could not allocate tx xfer\n",
566 USBDEVNAME(sc->sc_dev));
567 error = ENOMEM;
568 goto fail;
569 }
570
571 data->buf = usbd_alloc_buffer(data->xfer,
572 RAL_TX_DESC_SIZE + MCLBYTES);
573 if (data->buf == NULL) {
574 printf("%s: could not allocate tx buffer\n",
575 USBDEVNAME(sc->sc_dev));
576 error = ENOMEM;
577 goto fail;
578 }
579 }
580
581 return 0;
582
583 fail: ural_free_tx_list(sc);
584 return error;
585 }
586
587 Static void
588 ural_free_tx_list(struct ural_softc *sc)
589 {
590 struct ural_tx_data *data;
591 int i;
592
593 for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
594 data = &sc->tx_data[i];
595
596 if (data->xfer != NULL) {
597 usbd_free_xfer(data->xfer);
598 data->xfer = NULL;
599 }
600
601 if (data->ni != NULL) {
602 ieee80211_free_node(data->ni);
603 data->ni = NULL;
604 }
605 }
606 }
607
608 Static int
609 ural_alloc_rx_list(struct ural_softc *sc)
610 {
611 struct ural_rx_data *data;
612 int i, error;
613
614 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
615 data = &sc->rx_data[i];
616
617 data->sc = sc;
618
619 data->xfer = usbd_alloc_xfer(sc->sc_udev);
620 if (data->xfer == NULL) {
621 printf("%s: could not allocate rx xfer\n",
622 USBDEVNAME(sc->sc_dev));
623 error = ENOMEM;
624 goto fail;
625 }
626
627 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
628 printf("%s: could not allocate rx buffer\n",
629 USBDEVNAME(sc->sc_dev));
630 error = ENOMEM;
631 goto fail;
632 }
633
634 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 if (data->m == NULL) {
636 printf("%s: could not allocate rx mbuf\n",
637 USBDEVNAME(sc->sc_dev));
638 error = ENOMEM;
639 goto fail;
640 }
641
642 MCLGET(data->m, M_DONTWAIT);
643 if (!(data->m->m_flags & M_EXT)) {
644 printf("%s: could not allocate rx mbuf cluster\n",
645 USBDEVNAME(sc->sc_dev));
646 error = ENOMEM;
647 goto fail;
648 }
649
650 data->buf = mtod(data->m, uint8_t *);
651 }
652
653 return 0;
654
655 fail: ural_free_tx_list(sc);
656 return error;
657 }
658
659 Static void
660 ural_free_rx_list(struct ural_softc *sc)
661 {
662 struct ural_rx_data *data;
663 int i;
664
665 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
666 data = &sc->rx_data[i];
667
668 if (data->xfer != NULL) {
669 usbd_free_xfer(data->xfer);
670 data->xfer = NULL;
671 }
672
673 if (data->m != NULL) {
674 m_freem(data->m);
675 data->m = NULL;
676 }
677 }
678 }
679
680 Static int
681 ural_media_change(struct ifnet *ifp)
682 {
683 int error;
684
685 error = ieee80211_media_change(ifp);
686 if (error != ENETRESET)
687 return error;
688
689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 ural_init(ifp);
691
692 return 0;
693 }
694
695 /*
696 * This function is called periodically (every 200ms) during scanning to
697 * switch from one channel to another.
698 */
699 Static void
700 ural_next_scan(void *arg)
701 {
702 struct ural_softc *sc = arg;
703 struct ieee80211com *ic = &sc->sc_ic;
704
705 if (ic->ic_state == IEEE80211_S_SCAN)
706 ieee80211_next_scan(ic);
707 }
708
709 Static void
710 ural_task(void *arg)
711 {
712 struct ural_softc *sc = arg;
713 struct ieee80211com *ic = &sc->sc_ic;
714 enum ieee80211_state ostate;
715 struct mbuf *m;
716
717 ostate = ic->ic_state;
718
719 switch (sc->sc_state) {
720 case IEEE80211_S_INIT:
721 if (ostate == IEEE80211_S_RUN) {
722 /* abort TSF synchronization */
723 ural_write(sc, RAL_TXRX_CSR19, 0);
724
725 /* force tx led to stop blinking */
726 ural_write(sc, RAL_MAC_CSR20, 0);
727 }
728 break;
729
730 case IEEE80211_S_SCAN:
731 ural_set_chan(sc, ic->ic_bss->ni_chan);
732 callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
733 break;
734
735 case IEEE80211_S_AUTH:
736 ural_set_chan(sc, ic->ic_bss->ni_chan);
737 break;
738
739 case IEEE80211_S_ASSOC:
740 ural_set_chan(sc, ic->ic_bss->ni_chan);
741 break;
742
743 case IEEE80211_S_RUN:
744 ural_set_chan(sc, ic->ic_bss->ni_chan);
745
746 if (ic->ic_opmode != IEEE80211_M_MONITOR)
747 ural_set_bssid(sc, ic->ic_bss->ni_bssid);
748
749 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
750 ic->ic_opmode == IEEE80211_M_IBSS) {
751 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
752 if (m == NULL) {
753 printf("%s: could not allocate beacon\n",
754 USBDEVNAME(sc->sc_dev));
755 return;
756 }
757
758 if (ural_tx_bcn(sc, m, ic->ic_bss) != 0) {
759 m_freem(m);
760 printf("%s: could not transmit beacon\n",
761 USBDEVNAME(sc->sc_dev));
762 return;
763 }
764
765 /* beacon is no longer needed */
766 m_freem(m);
767 }
768
769 /* make tx led blink on tx (controlled by ASIC) */
770 ural_write(sc, RAL_MAC_CSR20, 1);
771
772 if (ic->ic_opmode != IEEE80211_M_MONITOR)
773 ural_enable_tsf_sync(sc);
774 break;
775 }
776
777 sc->sc_newstate(ic, sc->sc_state, -1);
778 }
779
780 Static int
781 ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
782 {
783 struct ural_softc *sc = ic->ic_ifp->if_softc;
784
785 usb_rem_task(sc->sc_udev, &sc->sc_task);
786 callout_stop(&sc->scan_ch);
787
788 /* do it in a process context */
789 sc->sc_state = nstate;
790 usb_add_task(sc->sc_udev, &sc->sc_task);
791
792 return 0;
793 }
794
795 /* quickly determine if a given rate is CCK or OFDM */
796 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
797
798 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
799 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
800 #define RAL_SIFS 10
801
802 Static void
803 ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
804 {
805 struct ural_tx_data *data = priv;
806 struct ural_softc *sc = data->sc;
807 struct ifnet *ifp = &sc->sc_if;
808 int s;
809
810 if (status != USBD_NORMAL_COMPLETION) {
811 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
812 return;
813
814 printf("%s: could not transmit buffer: %s\n",
815 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
816
817 if (status == USBD_STALLED)
818 usbd_clear_endpoint_stall(sc->sc_tx_pipeh);
819
820 ifp->if_oerrors++;
821 return;
822 }
823
824 s = splnet();
825
826 m_freem(data->m);
827 data->m = NULL;
828 ieee80211_free_node(data->ni);
829 data->ni = NULL;
830
831 sc->tx_queued--;
832 ifp->if_opackets++;
833
834 DPRINTFN(10, ("tx done\n"));
835
836 sc->sc_tx_timer = 0;
837 ifp->if_flags &= ~IFF_OACTIVE;
838 ural_start(ifp);
839
840 splx(s);
841 }
842
843 Static void
844 ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
845 {
846 struct ural_rx_data *data = priv;
847 struct ural_softc *sc = data->sc;
848 struct ieee80211com *ic = &sc->sc_ic;
849 struct ifnet *ifp = &sc->sc_if;
850 struct ural_rx_desc *desc;
851 struct ieee80211_frame_min *wh;
852 struct ieee80211_node *ni;
853 struct mbuf *m;
854 int s, len;
855
856 if (status != USBD_NORMAL_COMPLETION) {
857 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
858 return;
859
860 if (status == USBD_STALLED)
861 usbd_clear_endpoint_stall(sc->sc_rx_pipeh);
862 goto skip;
863 }
864
865 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
866
867 if (len < RAL_RX_DESC_SIZE) {
868 printf("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev), len);
869 ifp->if_ierrors++;
870 goto skip;
871 }
872
873 /* rx descriptor is located at the end */
874 desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
875
876 if (le32toh(desc->flags) & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
877 /*
878 * This should not happen since we did not request to receive
879 * those frames when we filled RAL_TXRX_CSR2.
880 */
881 DPRINTFN(5, ("PHY or CRC error\n"));
882 ifp->if_ierrors++;
883 goto skip;
884 }
885
886 /* finalize mbuf */
887 m = data->m;
888 m->m_pkthdr.rcvif = ifp;
889 m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
890 m->m_flags |= M_HASFCS; /* hardware appends FCS */
891
892 s = splnet();
893
894 #if NBPFILTER > 0
895 if (sc->sc_drvbpf != NULL) {
896 struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
897
898 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
899 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
900 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
901 tap->wr_antenna = sc->rx_ant;
902 tap->wr_antsignal = desc->rssi;
903
904 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
905 }
906 #endif
907
908 wh = mtod(m, struct ieee80211_frame_min *);
909 ni = ieee80211_find_rxnode(ic, wh);
910
911 /* send the frame to the 802.11 layer */
912 ieee80211_input(ic, m, ni, desc->rssi, 0);
913
914 /* node is no longer needed */
915 ieee80211_free_node(ni);
916
917 splx(s);
918
919 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
920 if (data->m == NULL) {
921 printf("%s: could not allocate rx mbuf\n",
922 USBDEVNAME(sc->sc_dev));
923 return;
924 }
925
926 MCLGET(data->m, M_DONTWAIT);
927 if (!(data->m->m_flags & M_EXT)) {
928 printf("%s: could not allocate rx mbuf cluster\n",
929 USBDEVNAME(sc->sc_dev));
930 m_freem(data->m);
931 data->m = NULL;
932 return;
933 }
934
935 data->buf = mtod(data->m, uint8_t *);
936
937 DPRINTFN(15, ("rx done\n"));
938
939 skip: /* setup a new transfer */
940 usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
941 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
942 usbd_transfer(xfer);
943 }
944
945 /*
946 * Return the expected ack rate for a frame transmitted at rate `rate'.
947 * XXX: this should depend on the destination node basic rate set.
948 */
949 Static int
950 ural_ack_rate(int rate)
951 {
952 switch (rate) {
953 /* CCK rates */
954 case 2:
955 return 2;
956 case 4:
957 case 11:
958 case 22:
959 return 4;
960
961 /* OFDM rates */
962 case 12:
963 case 18:
964 return 12;
965 case 24:
966 case 36:
967 return 24;
968 case 48:
969 case 72:
970 case 96:
971 case 108:
972 return 48;
973 }
974
975 /* default to 1Mbps */
976 return 2;
977 }
978
979 /*
980 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
981 * The function automatically determines the operating mode depending on the
982 * given rate. `flags' indicates whether short preamble is in use or not.
983 */
984 Static uint16_t
985 ural_txtime(int len, int rate, uint32_t flags)
986 {
987 uint16_t txtime;
988 int ceil, dbps;
989
990 if (RAL_RATE_IS_OFDM(rate)) {
991 /*
992 * OFDM TXTIME calculation.
993 * From IEEE Std 802.11a-1999, pp. 37.
994 */
995 dbps = rate * 2; /* data bits per OFDM symbol */
996
997 ceil = (16 + 8 * len + 6) / dbps;
998 if ((16 + 8 * len + 6) % dbps != 0)
999 ceil++;
1000
1001 txtime = 16 + 4 + 4 * ceil + 6;
1002 } else {
1003 /*
1004 * High Rate TXTIME calculation.
1005 * From IEEE Std 802.11b-1999, pp. 28.
1006 */
1007 ceil = (8 * len * 2) / rate;
1008 if ((8 * len * 2) % rate != 0)
1009 ceil++;
1010
1011 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1012 txtime = 72 + 24 + ceil;
1013 else
1014 txtime = 144 + 48 + ceil;
1015 }
1016
1017 return txtime;
1018 }
1019
1020 Static uint8_t
1021 ural_plcp_signal(int rate)
1022 {
1023 switch (rate) {
1024 /* CCK rates (returned values are device-dependent) */
1025 case 2: return 0x0;
1026 case 4: return 0x1;
1027 case 11: return 0x2;
1028 case 22: return 0x3;
1029
1030 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1031 case 12: return 0xb;
1032 case 18: return 0xf;
1033 case 24: return 0xa;
1034 case 36: return 0xe;
1035 case 48: return 0x9;
1036 case 72: return 0xd;
1037 case 96: return 0x8;
1038 case 108: return 0xc;
1039
1040 /* unsupported rates (should not get there) */
1041 default: return 0xff;
1042 }
1043 }
1044
1045 Static void
1046 ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1047 uint32_t flags, int len, int rate)
1048 {
1049 struct ieee80211com *ic = &sc->sc_ic;
1050 uint16_t plcp_length;
1051 int remainder;
1052
1053 desc->flags = htole32(flags);
1054 desc->flags |= htole32(RAL_TX_NEWSEQ);
1055 desc->flags |= htole32(len << 16);
1056
1057 if (RAL_RATE_IS_OFDM(rate))
1058 desc->flags |= htole32(RAL_TX_OFDM);
1059
1060 desc->wme = htole16(RAL_LOGCWMAX(5) | RAL_LOGCWMIN(3) | RAL_AIFSN(2));
1061 desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1062
1063 /*
1064 * Fill PLCP fields.
1065 */
1066 desc->plcp_service = 4;
1067
1068 len += 4; /* account for FCS */
1069 if (RAL_RATE_IS_OFDM(rate)) {
1070 /*
1071 * PLCP length field (LENGTH).
1072 * From IEEE Std 802.11a-1999, pp. 14.
1073 */
1074 plcp_length = len & 0xfff;
1075 desc->plcp_length = htole16((plcp_length >> 6) << 8 |
1076 (plcp_length & 0x3f));
1077 } else {
1078 /*
1079 * Long PLCP LENGTH field.
1080 * From IEEE Std 802.11b-1999, pp. 16.
1081 */
1082 plcp_length = (8 * len * 2) / rate;
1083 remainder = (8 * len * 2) % rate;
1084 if (remainder != 0) {
1085 if (rate == 22 && (rate - remainder) / 16 != 0)
1086 desc->plcp_service |= RAL_PLCP_LENGEXT;
1087 plcp_length++;
1088 }
1089 desc->plcp_length = htole16(plcp_length);
1090 }
1091
1092 desc->plcp_signal = ural_plcp_signal(rate);
1093 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1094 desc->plcp_signal |= 0x08;
1095
1096 desc->iv = 0;
1097 desc->eiv = 0;
1098 }
1099
1100 #define RAL_TX_TIMEOUT 5000
1101
1102 Static int
1103 ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1104 {
1105 struct ural_tx_desc *desc;
1106 usbd_xfer_handle xfer;
1107 usbd_status error;
1108 uint8_t cmd = 0;
1109 uint8_t *buf;
1110 int xferlen, rate;
1111
1112 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1113
1114 xfer = usbd_alloc_xfer(sc->sc_udev);
1115 if (xfer == NULL)
1116 return ENOMEM;
1117
1118 /* xfer length needs to be a multiple of two! */
1119 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1120
1121 buf = usbd_alloc_buffer(xfer, xferlen);
1122 if (buf == NULL) {
1123 usbd_free_xfer(xfer);
1124 return ENOMEM;
1125 }
1126
1127 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
1128 USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
1129
1130 error = usbd_sync_transfer(xfer);
1131 if (error != 0) {
1132 usbd_free_xfer(xfer);
1133 return error;
1134 }
1135
1136 desc = (struct ural_tx_desc *)buf;
1137
1138 m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1139 ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1140 m0->m_pkthdr.len, rate);
1141
1142 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1143 m0->m_pkthdr.len, rate, xferlen));
1144
1145 usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
1146 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
1147
1148 error = usbd_sync_transfer(xfer);
1149 usbd_free_xfer(xfer);
1150
1151 return error;
1152 }
1153
1154 Static int
1155 ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1156 {
1157 struct ieee80211com *ic = &sc->sc_ic;
1158 struct ural_tx_desc *desc;
1159 struct ural_tx_data *data;
1160 struct ieee80211_frame *wh;
1161 uint32_t flags = 0;
1162 uint16_t dur;
1163 usbd_status error;
1164 int xferlen, rate;
1165
1166 data = &sc->tx_data[0];
1167 desc = (struct ural_tx_desc *)data->buf;
1168
1169 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
1170 data->m = m0;
1171 data->ni = ni;
1172
1173 wh = mtod(m0, struct ieee80211_frame *);
1174
1175 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1176 flags |= RAL_TX_ACK;
1177
1178 dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1179 *(uint16_t *)wh->i_dur = htole16(dur);
1180
1181 /* tell hardware to add timestamp for probe responses */
1182 if ((wh->i_fc[0] &
1183 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1184 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1185 flags |= RAL_TX_TIMESTAMP;
1186 }
1187
1188 #if NBPFILTER > 0
1189 if (sc->sc_drvbpf != NULL) {
1190 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1191
1192 tap->wt_flags = 0;
1193 tap->wt_rate = rate;
1194 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1195 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1196 tap->wt_antenna = sc->tx_ant;
1197
1198 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1199 }
1200 #endif
1201
1202 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1203 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1204
1205 /* xfer length needs to be a multiple of two! */
1206 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1207
1208 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1209 m0->m_pkthdr.len, rate, xferlen));
1210
1211 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1212 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1213
1214 error = usbd_transfer(data->xfer);
1215 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1216 m_freem(m0);
1217 return error;
1218 }
1219
1220 sc->tx_queued++;
1221
1222 return 0;
1223 }
1224
1225 Static int
1226 ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1227 {
1228 struct ieee80211com *ic = &sc->sc_ic;
1229 struct ieee80211_rateset *rs;
1230 struct ural_tx_desc *desc;
1231 struct ural_tx_data *data;
1232 struct ieee80211_frame *wh;
1233 struct ieee80211_key *k;
1234 uint32_t flags = 0;
1235 uint16_t dur;
1236 usbd_status error;
1237 int xferlen, rate;
1238
1239 wh = mtod(m0, struct ieee80211_frame *);
1240
1241 /* XXX this should be reworked! */
1242 if (ic->ic_fixed_rate != -1) {
1243 if (ic->ic_curmode != IEEE80211_MODE_AUTO)
1244 rs = &ic->ic_sup_rates[ic->ic_curmode];
1245 else
1246 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
1247
1248 rate = rs->rs_rates[ic->ic_fixed_rate];
1249 } else {
1250 rs = &ni->ni_rates;
1251 rate = rs->rs_rates[ni->ni_txrate];
1252 }
1253 rate &= IEEE80211_RATE_VAL;
1254
1255 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1256 k = ieee80211_crypto_encap(ic, ni, m0);
1257 if (k == NULL) {
1258 m_freem(m0);
1259 return ENOBUFS;
1260 }
1261
1262 /* packet header may have moved, reset our local pointer */
1263 wh = mtod(m0, struct ieee80211_frame *);
1264 }
1265
1266 #if NBPFILTER > 0
1267 if (sc->sc_drvbpf != NULL) {
1268 struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1269
1270 tap->wt_flags = 0;
1271 tap->wt_rate = rate;
1272 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1273 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1274 tap->wt_antenna = sc->tx_ant;
1275
1276 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1277 }
1278 #endif
1279
1280 data = &sc->tx_data[0];
1281 desc = (struct ural_tx_desc *)data->buf;
1282
1283 data->m = m0;
1284 data->ni = ni;
1285
1286 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1287 flags |= RAL_TX_ACK;
1288 flags |= RAL_TX_RETRY(7);
1289
1290 dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(rate),
1291 ic->ic_flags) + RAL_SIFS;
1292 *(uint16_t *)wh->i_dur = htole16(dur);
1293 }
1294
1295 m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1296 ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1297
1298 /* xfer length needs to be a multiple of two! */
1299 xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1300
1301 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1302 m0->m_pkthdr.len, rate, xferlen));
1303
1304 usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1305 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, ural_txeof);
1306
1307 error = usbd_transfer(data->xfer);
1308 if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1309 m_freem(m0);
1310 return error;
1311 }
1312
1313 sc->tx_queued++;
1314
1315 return 0;
1316 }
1317
1318 Static void
1319 ural_start(struct ifnet *ifp)
1320 {
1321 struct ural_softc *sc = ifp->if_softc;
1322 struct ieee80211com *ic = &sc->sc_ic;
1323 struct ether_header *eh;
1324 struct ieee80211_node *ni;
1325 struct mbuf *m0;
1326
1327 for (;;) {
1328 IF_POLL(&ic->ic_mgtq, m0);
1329 if (m0 != NULL) {
1330 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1331 ifp->if_flags |= IFF_OACTIVE;
1332 break;
1333 }
1334 IF_DEQUEUE(&ic->ic_mgtq, m0);
1335
1336 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1337 m0->m_pkthdr.rcvif = NULL;
1338 #if NBPFILTER > 0
1339 if (ic->ic_rawbpf != NULL)
1340 bpf_mtap(ic->ic_rawbpf, m0);
1341 #endif
1342 if (ural_tx_mgt(sc, m0, ni) != 0)
1343 break;
1344
1345 } else {
1346 if (ic->ic_state != IEEE80211_S_RUN)
1347 break;
1348 IFQ_DEQUEUE(&ifp->if_snd, m0);
1349 if (m0 == NULL)
1350 break;
1351 if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1352 IF_PREPEND(&ifp->if_snd, m0);
1353 ifp->if_flags |= IFF_OACTIVE;
1354 break;
1355 }
1356
1357 if (m0->m_len < sizeof (struct ether_header) &&
1358 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1359 continue;
1360
1361 eh = mtod(m0, struct ether_header *);
1362 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1363 if (ni == NULL) {
1364 m_freem(m0);
1365 continue;
1366 }
1367 #if NBPFILTER > 0
1368 if (ifp->if_bpf != NULL)
1369 bpf_mtap(ifp->if_bpf, m0);
1370 #endif
1371 m0 = ieee80211_encap(ic, m0, ni);
1372 if (m0 == NULL) {
1373 ieee80211_free_node(ni);
1374 continue;
1375 }
1376 #if NBPFILTER > 0
1377 if (ic->ic_rawbpf != NULL)
1378 bpf_mtap(ic->ic_rawbpf, m0);
1379 #endif
1380 if (ural_tx_data(sc, m0, ni) != 0) {
1381 ieee80211_free_node(ni);
1382 ifp->if_oerrors++;
1383 break;
1384 }
1385 }
1386
1387 sc->sc_tx_timer = 5;
1388 ifp->if_timer = 1;
1389 }
1390 }
1391
1392 Static void
1393 ural_watchdog(struct ifnet *ifp)
1394 {
1395 struct ural_softc *sc = ifp->if_softc;
1396 struct ieee80211com *ic = &sc->sc_ic;
1397
1398 ifp->if_timer = 0;
1399
1400 if (sc->sc_tx_timer > 0) {
1401 if (--sc->sc_tx_timer == 0) {
1402 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1403 /*ural_init(ifp); XXX needs a process context! */
1404 ifp->if_oerrors++;
1405 return;
1406 }
1407 ifp->if_timer = 1;
1408 }
1409
1410 ieee80211_watchdog(ic);
1411 }
1412
1413 Static int
1414 ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1415 {
1416 struct ural_softc *sc = ifp->if_softc;
1417 struct ieee80211com *ic = &sc->sc_ic;
1418 struct ifreq *ifr;
1419 int s, error = 0;
1420
1421 s = splnet();
1422
1423 switch (cmd) {
1424 case SIOCSIFFLAGS:
1425 if (ifp->if_flags & IFF_UP) {
1426 if (ifp->if_flags & IFF_RUNNING)
1427 ural_update_promisc(sc);
1428 else
1429 ural_init(ifp);
1430 } else {
1431 if (ifp->if_flags & IFF_RUNNING)
1432 ural_stop(ifp, 1);
1433 }
1434 break;
1435
1436 case SIOCADDMULTI:
1437 case SIOCDELMULTI:
1438 ifr = (struct ifreq *)data;
1439 error = (cmd == SIOCADDMULTI) ?
1440 ether_addmulti(ifr, &sc->sc_ec) :
1441 ether_delmulti(ifr, &sc->sc_ec);
1442
1443 if (error == ENETRESET)
1444 error = 0;
1445 break;
1446
1447 case SIOCS80211CHANNEL:
1448 /*
1449 * This allows for fast channel switching in monitor mode
1450 * (used by kismet). In IBSS mode, we must explicitly reset
1451 * the interface to generate a new beacon frame.
1452 */
1453 error = ieee80211_ioctl(ic, cmd, data);
1454 if (error == ENETRESET &&
1455 ic->ic_opmode == IEEE80211_M_MONITOR) {
1456 ural_set_chan(sc, ic->ic_ibss_chan);
1457 error = 0;
1458 }
1459 break;
1460
1461 default:
1462 error = ieee80211_ioctl(ic, cmd, data);
1463 }
1464
1465 if (error == ENETRESET) {
1466 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1467 (IFF_UP | IFF_RUNNING))
1468 ural_init(ifp);
1469 error = 0;
1470 }
1471
1472 splx(s);
1473
1474 return error;
1475 }
1476
1477 Static void
1478 ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1479 {
1480 usb_device_request_t req;
1481 usbd_status error;
1482
1483 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1484 req.bRequest = RAL_READ_EEPROM;
1485 USETW(req.wValue, 0);
1486 USETW(req.wIndex, addr);
1487 USETW(req.wLength, len);
1488
1489 error = usbd_do_request(sc->sc_udev, &req, buf);
1490 if (error != 0) {
1491 printf("%s: could not read EEPROM: %s\n",
1492 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1493 }
1494 }
1495
1496 Static uint16_t
1497 ural_read(struct ural_softc *sc, uint16_t reg)
1498 {
1499 usb_device_request_t req;
1500 usbd_status error;
1501 uint16_t val;
1502
1503 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1504 req.bRequest = RAL_READ_MAC;
1505 USETW(req.wValue, 0);
1506 USETW(req.wIndex, reg);
1507 USETW(req.wLength, sizeof (uint16_t));
1508
1509 error = usbd_do_request(sc->sc_udev, &req, &val);
1510 if (error != 0) {
1511 printf("%s: could not read MAC register: %s\n",
1512 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1513 return 0;
1514 }
1515
1516 return le16toh(val);
1517 }
1518
1519 Static void
1520 ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1521 {
1522 usb_device_request_t req;
1523 usbd_status error;
1524
1525 req.bmRequestType = UT_READ_VENDOR_DEVICE;
1526 req.bRequest = RAL_READ_MULTI_MAC;
1527 USETW(req.wValue, 0);
1528 USETW(req.wIndex, reg);
1529 USETW(req.wLength, len);
1530
1531 error = usbd_do_request(sc->sc_udev, &req, buf);
1532 if (error != 0) {
1533 printf("%s: could not read MAC register: %s\n",
1534 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1535 return;
1536 }
1537 }
1538
1539 Static void
1540 ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1541 {
1542 usb_device_request_t req;
1543 usbd_status error;
1544
1545 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1546 req.bRequest = RAL_WRITE_MAC;
1547 USETW(req.wValue, val);
1548 USETW(req.wIndex, reg);
1549 USETW(req.wLength, 0);
1550
1551 error = usbd_do_request(sc->sc_udev, &req, NULL);
1552 if (error != 0) {
1553 printf("%s: could not write MAC register: %s\n",
1554 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1555 }
1556 }
1557
1558 Static void
1559 ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1560 {
1561 usb_device_request_t req;
1562 usbd_status error;
1563
1564 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1565 req.bRequest = RAL_WRITE_MULTI_MAC;
1566 USETW(req.wValue, 0);
1567 USETW(req.wIndex, reg);
1568 USETW(req.wLength, len);
1569
1570 error = usbd_do_request(sc->sc_udev, &req, buf);
1571 if (error != 0) {
1572 printf("%s: could not write MAC register: %s\n",
1573 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1574 }
1575 }
1576
1577 Static void
1578 ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1579 {
1580 uint16_t tmp;
1581 int ntries;
1582
1583 for (ntries = 0; ntries < 5; ntries++) {
1584 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1585 break;
1586 }
1587 if (ntries == 5) {
1588 printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1589 return;
1590 }
1591
1592 tmp = reg << 8 | val;
1593 ural_write(sc, RAL_PHY_CSR7, tmp);
1594 }
1595
1596 Static uint8_t
1597 ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1598 {
1599 uint16_t val;
1600 int ntries;
1601
1602 val = RAL_BBP_WRITE | reg << 8;
1603 ural_write(sc, RAL_PHY_CSR7, val);
1604
1605 for (ntries = 0; ntries < 5; ntries++) {
1606 if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1607 break;
1608 }
1609 if (ntries == 5) {
1610 printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1611 return 0;
1612 }
1613
1614 return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1615 }
1616
1617 Static void
1618 ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1619 {
1620 uint32_t tmp;
1621 int ntries;
1622
1623 for (ntries = 0; ntries < 5; ntries++) {
1624 if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1625 break;
1626 }
1627 if (ntries == 5) {
1628 printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1629 return;
1630 }
1631
1632 tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1633 ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
1634 ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1635
1636 /* remember last written value in sc */
1637 sc->rf_regs[reg] = val;
1638
1639 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1640 }
1641
1642 Static void
1643 ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1644 {
1645 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1646 struct ieee80211com *ic = &sc->sc_ic;
1647 uint8_t power, tmp;
1648 u_int i, chan;
1649
1650 chan = ieee80211_chan2ieee(ic, c);
1651 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1652 return;
1653
1654 if (IEEE80211_IS_CHAN_2GHZ(c))
1655 power = min(sc->txpow[chan - 1], 31);
1656 else
1657 power = 31;
1658
1659 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1660
1661 switch (sc->rf_rev) {
1662 case RAL_RF_2522:
1663 ural_rf_write(sc, RAL_RF1, 0x00814);
1664 ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1665 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1666 break;
1667
1668 case RAL_RF_2523:
1669 ural_rf_write(sc, RAL_RF1, 0x08804);
1670 ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1671 ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1672 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1673 break;
1674
1675 case RAL_RF_2524:
1676 ural_rf_write(sc, RAL_RF1, 0x0c808);
1677 ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1678 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1679 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1680 break;
1681
1682 case RAL_RF_2525:
1683 ural_rf_write(sc, RAL_RF1, 0x08808);
1684 ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1685 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1686 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1687
1688 ural_rf_write(sc, RAL_RF1, 0x08808);
1689 ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1690 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1691 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1692 break;
1693
1694 case RAL_RF_2525E:
1695 ural_rf_write(sc, RAL_RF1, 0x08808);
1696 ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1697 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1698 ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1699 break;
1700
1701 case RAL_RF_2526:
1702 ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1703 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1704 ural_rf_write(sc, RAL_RF1, 0x08804);
1705
1706 ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1707 ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1708 ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1709 break;
1710
1711 /* dual-band RF */
1712 case RAL_RF_5222:
1713 for (i = 0; i < N(ural_rf5222); i++)
1714 if (ural_rf5222[i].chan == chan)
1715 break;
1716
1717 if (i < N(ural_rf5222)) {
1718 ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1719 ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1720 ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1721 ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1722 }
1723 break;
1724 }
1725
1726 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1727 ic->ic_state != IEEE80211_S_SCAN) {
1728 /* set Japan filter bit for channel 14 */
1729 tmp = ural_bbp_read(sc, 70);
1730
1731 tmp &= ~RAL_JAPAN_FILTER;
1732 if (chan == 14)
1733 tmp |= RAL_JAPAN_FILTER;
1734
1735 ural_bbp_write(sc, 70, tmp);
1736
1737 /* clear CRC errors */
1738 ural_read(sc, RAL_STA_CSR0);
1739
1740 DELAY(1000); /* RF needs a 1ms delay here */
1741 ural_disable_rf_tune(sc);
1742 }
1743 #undef N
1744 }
1745
1746 /*
1747 * Disable RF auto-tuning.
1748 */
1749 Static void
1750 ural_disable_rf_tune(struct ural_softc *sc)
1751 {
1752 uint32_t tmp;
1753
1754 if (sc->rf_rev != RAL_RF_2523) {
1755 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1756 ural_rf_write(sc, RAL_RF1, tmp);
1757 }
1758
1759 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1760 ural_rf_write(sc, RAL_RF3, tmp);
1761
1762 DPRINTFN(2, ("disabling RF autotune\n"));
1763 }
1764
1765 /*
1766 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1767 * synchronization.
1768 */
1769 Static void
1770 ural_enable_tsf_sync(struct ural_softc *sc)
1771 {
1772 struct ieee80211com *ic = &sc->sc_ic;
1773 uint16_t logcwmin, preload, tmp;
1774
1775 /* first, disable TSF synchronization */
1776 ural_write(sc, RAL_TXRX_CSR19, 0);
1777
1778 tmp = (16 * ic->ic_bss->ni_intval) << 4;
1779 ural_write(sc, RAL_TXRX_CSR18, tmp);
1780
1781 logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1782 preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1783 tmp = logcwmin << 12 | preload;
1784 ural_write(sc, RAL_TXRX_CSR20, tmp);
1785
1786 /* finally, enable TSF synchronization */
1787 tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1788 if (ic->ic_opmode == IEEE80211_M_STA)
1789 tmp |= RAL_ENABLE_TSF_SYNC(1);
1790 else
1791 tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1792 ural_write(sc, RAL_TXRX_CSR19, tmp);
1793
1794 DPRINTF(("enabling TSF synchronization\n"));
1795 }
1796
1797 Static void
1798 ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1799 {
1800 uint16_t tmp;
1801
1802 tmp = bssid[0] | bssid[1] << 8;
1803 ural_write(sc, RAL_MAC_CSR5, tmp);
1804
1805 tmp = bssid[2] | bssid[3] << 8;
1806 ural_write(sc, RAL_MAC_CSR6, tmp);
1807
1808 tmp = bssid[4] | bssid[5] << 8;
1809 ural_write(sc, RAL_MAC_CSR7, tmp);
1810
1811 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1812 }
1813
1814 Static void
1815 ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1816 {
1817 uint16_t tmp;
1818
1819 tmp = addr[0] | addr[1] << 8;
1820 ural_write(sc, RAL_MAC_CSR2, tmp);
1821
1822 tmp = addr[2] | addr[3] << 8;
1823 ural_write(sc, RAL_MAC_CSR3, tmp);
1824
1825 tmp = addr[4] | addr[5] << 8;
1826 ural_write(sc, RAL_MAC_CSR4, tmp);
1827
1828 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1829 }
1830
1831 Static void
1832 ural_update_promisc(struct ural_softc *sc)
1833 {
1834 struct ifnet *ifp = &sc->sc_if;
1835 uint16_t tmp;
1836
1837 tmp = ural_read(sc, RAL_TXRX_CSR2);
1838
1839 tmp &= ~RAL_DROP_NOT_TO_ME;
1840 if (!(ifp->if_flags & IFF_PROMISC))
1841 tmp |= RAL_DROP_NOT_TO_ME;
1842
1843 ural_write(sc, RAL_TXRX_CSR2, tmp);
1844
1845 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1846 "entering" : "leaving"));
1847 }
1848
1849 Static const char *
1850 ural_get_rf(int rev)
1851 {
1852 switch (rev) {
1853 case RAL_RF_2522: return "RT2522";
1854 case RAL_RF_2523: return "RT2523";
1855 case RAL_RF_2524: return "RT2524";
1856 case RAL_RF_2525: return "RT2525";
1857 case RAL_RF_2525E: return "RT2525e";
1858 case RAL_RF_2526: return "RT2526";
1859 case RAL_RF_5222: return "RT5222";
1860 default: return "unknown";
1861 }
1862 }
1863
1864 Static void
1865 ural_read_eeprom(struct ural_softc *sc)
1866 {
1867 struct ieee80211com *ic = &sc->sc_ic;
1868 uint16_t val;
1869
1870 ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1871 val = le16toh(val);
1872 sc->rf_rev = (val >> 11) & 0x7;
1873 sc->hw_radio = (val >> 10) & 0x1;
1874 sc->led_mode = (val >> 6) & 0x7;
1875 sc->rx_ant = (val >> 4) & 0x3;
1876 sc->tx_ant = (val >> 2) & 0x3;
1877 sc->nb_ant = val & 0x3;
1878
1879 /* read MAC address */
1880 ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1881
1882 /* read default values for BBP registers */
1883 ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1884
1885 /* read Tx power for all b/g channels */
1886 ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1887 }
1888
1889 Static int
1890 ural_bbp_init(struct ural_softc *sc)
1891 {
1892 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1893 int i, ntries;
1894
1895 /* wait for BBP to be ready */
1896 for (ntries = 0; ntries < 100; ntries++) {
1897 if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1898 break;
1899 DELAY(1000);
1900 }
1901 if (ntries == 100) {
1902 printf("%s: timeout waiting for BBP\n", USBDEVNAME(sc->sc_dev));
1903 return EIO;
1904 }
1905
1906 /* initialize BBP registers to default values */
1907 for (i = 0; i < N(ural_def_bbp); i++)
1908 ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1909
1910 #if 0
1911 /* initialize BBP registers to values stored in EEPROM */
1912 for (i = 0; i < 16; i++) {
1913 if (sc->bbp_prom[i].reg == 0xff)
1914 continue;
1915 ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1916 }
1917 #endif
1918
1919 return 0;
1920 #undef N
1921 }
1922
1923 Static void
1924 ural_set_txantenna(struct ural_softc *sc, int antenna)
1925 {
1926 uint16_t tmp;
1927 uint8_t tx;
1928
1929 tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1930 if (antenna == 1)
1931 tx |= RAL_BBP_ANTA;
1932 else if (antenna == 2)
1933 tx |= RAL_BBP_ANTB;
1934 else
1935 tx |= RAL_BBP_DIVERSITY;
1936
1937 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1938 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1939 sc->rf_rev == RAL_RF_5222)
1940 tx |= RAL_BBP_FLIPIQ;
1941
1942 ural_bbp_write(sc, RAL_BBP_TX, tx);
1943
1944 /* update flags in PHY_CSR5 and PHY_CSR6 too */
1945 tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
1946 ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
1947
1948 tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
1949 ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
1950 }
1951
1952 Static void
1953 ural_set_rxantenna(struct ural_softc *sc, int antenna)
1954 {
1955 uint8_t rx;
1956
1957 rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
1958 if (antenna == 1)
1959 rx |= RAL_BBP_ANTA;
1960 else if (antenna == 2)
1961 rx |= RAL_BBP_ANTB;
1962 else
1963 rx |= RAL_BBP_DIVERSITY;
1964
1965 /* need to force no I/Q flip for RF 2525e and 2526 */
1966 if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
1967 rx &= ~RAL_BBP_FLIPIQ;
1968
1969 ural_bbp_write(sc, RAL_BBP_RX, rx);
1970 }
1971
1972 Static int
1973 ural_init(struct ifnet *ifp)
1974 {
1975 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1976 struct ural_softc *sc = ifp->if_softc;
1977 struct ieee80211com *ic = &sc->sc_ic;
1978 struct ieee80211_key *wk;
1979 struct ural_rx_data *data;
1980 uint16_t sta[11], tmp;
1981 usbd_status error;
1982 int i, ntries;
1983
1984 ural_stop(ifp, 0);
1985
1986 /* initialize MAC registers to default values */
1987 for (i = 0; i < N(ural_def_mac); i++)
1988 ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
1989
1990 /* wait for BBP and RF to wake up (this can take a long time!) */
1991 for (ntries = 0; ntries < 100; ntries++) {
1992 tmp = ural_read(sc, RAL_MAC_CSR17);
1993 if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
1994 (RAL_BBP_AWAKE | RAL_RF_AWAKE))
1995 break;
1996 DELAY(1000);
1997 }
1998 if (ntries == 100) {
1999 printf("%s: timeout waiting for BBP/RF to wakeup\n",
2000 USBDEVNAME(sc->sc_dev));
2001 error = EIO;
2002 goto fail;
2003 }
2004
2005 /* we're ready! */
2006 ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2007
2008 /* set supported basic rates (1, 2, 6, 12, 24) */
2009 ural_write(sc, RAL_TXRX_CSR11, 0x153);
2010
2011 error = ural_bbp_init(sc);
2012 if (error != 0)
2013 goto fail;
2014
2015 /* set default BSS channel */
2016 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2017 ural_set_chan(sc, ic->ic_bss->ni_chan);
2018
2019 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2020 ural_read_multi(sc, RAL_STA_CSR0, sta, sizeof sta);
2021
2022 ural_set_txantenna(sc, 1);
2023 ural_set_rxantenna(sc, 1);
2024
2025 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2026 ural_set_macaddr(sc, ic->ic_myaddr);
2027
2028 /*
2029 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2030 */
2031 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2032 wk = &ic->ic_nw_keys[i];
2033 ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2034 RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2035 }
2036
2037 /*
2038 * Open Tx and Rx USB bulk pipes.
2039 */
2040 error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2041 &sc->sc_tx_pipeh);
2042 if (error != 0) {
2043 printf("%s: could not open Tx pipe: %s\n",
2044 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2045 goto fail;
2046 }
2047
2048 error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2049 &sc->sc_rx_pipeh);
2050 if (error != 0) {
2051 printf("%s: could not open Rx pipe: %s\n",
2052 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2053 goto fail;
2054 }
2055
2056 /*
2057 * Allocate Tx and Rx xfer queues.
2058 */
2059 error = ural_alloc_tx_list(sc);
2060 if (error != 0) {
2061 printf("%s: could not allocate Tx list\n",
2062 USBDEVNAME(sc->sc_dev));
2063 goto fail;
2064 }
2065
2066 error = ural_alloc_rx_list(sc);
2067 if (error != 0) {
2068 printf("%s: could not allocate Rx list\n",
2069 USBDEVNAME(sc->sc_dev));
2070 goto fail;
2071 }
2072
2073 /*
2074 * Start up the receive pipe.
2075 */
2076 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2077 data = &sc->rx_data[i];
2078
2079 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2080 MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2081 usbd_transfer(data->xfer);
2082 }
2083
2084 /* kick Rx */
2085 tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2086 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2087 tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2088 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2089 tmp |= RAL_DROP_TODS;
2090 if (!(ifp->if_flags & IFF_PROMISC))
2091 tmp |= RAL_DROP_NOT_TO_ME;
2092 }
2093 ural_write(sc, RAL_TXRX_CSR2, tmp);
2094
2095 ifp->if_flags &= ~IFF_OACTIVE;
2096 ifp->if_flags |= IFF_RUNNING;
2097
2098 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2099 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2100 else
2101 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2102
2103 return 0;
2104
2105 fail: ural_stop(ifp, 1);
2106 return error;
2107 #undef N
2108 }
2109
2110 Static void
2111 ural_stop(struct ifnet *ifp, int disable)
2112 {
2113 struct ural_softc *sc = ifp->if_softc;
2114 struct ieee80211com *ic = &sc->sc_ic;
2115
2116 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2117
2118 sc->sc_tx_timer = 0;
2119 ifp->if_timer = 0;
2120 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2121
2122 /* disable Rx */
2123 ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2124
2125 /* reset ASIC and BBP (but won't reset MAC registers!) */
2126 ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2127 ural_write(sc, RAL_MAC_CSR1, 0);
2128
2129 if (sc->sc_rx_pipeh != NULL) {
2130 usbd_abort_pipe(sc->sc_rx_pipeh);
2131 usbd_close_pipe(sc->sc_rx_pipeh);
2132 sc->sc_rx_pipeh = NULL;
2133 }
2134
2135 if (sc->sc_tx_pipeh != NULL) {
2136 usbd_abort_pipe(sc->sc_tx_pipeh);
2137 usbd_close_pipe(sc->sc_tx_pipeh);
2138 sc->sc_tx_pipeh = NULL;
2139 }
2140
2141 ural_free_rx_list(sc);
2142 ural_free_tx_list(sc);
2143 }
2144
2145 int
2146 ural_activate(device_ptr_t self, enum devact act)
2147 {
2148 struct ural_softc *sc = (struct ural_softc *)self;
2149
2150 switch (act) {
2151 case DVACT_ACTIVATE:
2152 return EOPNOTSUPP;
2153 break;
2154
2155 case DVACT_DEACTIVATE:
2156 if_deactivate(&sc->sc_if);
2157 break;
2158 }
2159
2160 return 0;
2161 }
2162