if_urtwn.c revision 1.10 1 /* $NetBSD: if_urtwn.c,v 1.10 2013/01/18 01:41:07 jmcneill Exp $ */
2 /* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*-
21 * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
22 */
23
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.10 2013/01/18 01:41:07 jmcneill Exp $");
26
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdivar.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67
68 #include <dev/usb/if_urtwnreg.h>
69 #include <dev/usb/if_urtwnvar.h>
70 #include <dev/usb/if_urtwn_data.h>
71
72 #ifdef URTWN_DEBUG
73 #define DBG_INIT __BIT(0)
74 #define DBG_FN __BIT(1)
75 #define DBG_TX __BIT(2)
76 #define DBG_RX __BIT(3)
77 #define DBG_STM __BIT(4)
78 #define DBG_RF __BIT(5)
79 #define DBG_REG __BIT(6)
80 #define DBG_ALL 0xffffffffU
81 u_int urtwn_debug = 0;
82 #define DPRINTFN(n, s) \
83 do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
84 #else
85 #define DPRINTFN(n, s)
86 #endif
87
88 static const struct usb_devno urtwn_devs[] = {
89 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 },
90 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 },
91 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU },
92 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU },
93 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
94 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
95 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU },
96 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU },
97 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU },
98 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 },
99 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 },
100 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 },
101 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 },
102 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 },
103 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU },
104 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU },
105 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 },
106 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 },
107 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 },
108 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU },
109 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU },
110 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU },
111 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU },
112 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 },
113 { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU },
114 { USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU },
115 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M },
116 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU },
117 { USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU },
118 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU },
119 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 },
120 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 },
121 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU },
122 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS },
125 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 },
126 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 },
127 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV },
128 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 },
129 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 },
130 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 },
131 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO },
132 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS },
133 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU },
134 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 },
135 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU },
136 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE },
137 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU },
138 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU },
139 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 },
140 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU },
141 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU },
142 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU },
143 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU }
144 };
145
146 static int urtwn_match(device_t, cfdata_t, void *);
147 static void urtwn_attach(device_t, device_t, void *);
148 static int urtwn_detach(device_t, int);
149 static int urtwn_activate(device_t, enum devact);
150
151 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
152 urtwn_attach, urtwn_detach, urtwn_activate);
153
154 static int urtwn_open_pipes(struct urtwn_softc *);
155 static void urtwn_close_pipes(struct urtwn_softc *);
156 static int urtwn_alloc_rx_list(struct urtwn_softc *);
157 static void urtwn_free_rx_list(struct urtwn_softc *);
158 static int urtwn_alloc_tx_list(struct urtwn_softc *);
159 static void urtwn_free_tx_list(struct urtwn_softc *);
160 static void urtwn_task(void *);
161 static void urtwn_do_async(struct urtwn_softc *,
162 void (*)(struct urtwn_softc *, void *), void *, int);
163 static void urtwn_wait_async(struct urtwn_softc *);
164 static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
165 int);
166 static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
167 int);
168 static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
169 static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
170 static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
171 static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
172 static void urtwn_efuse_read(struct urtwn_softc *);
173 static int urtwn_read_chipid(struct urtwn_softc *);
174 static void urtwn_read_rom(struct urtwn_softc *);
175 static int urtwn_media_change(struct ifnet *);
176 static int urtwn_ra_init(struct urtwn_softc *);
177 static void urtwn_tsf_sync_enable(struct urtwn_softc *);
178 static void urtwn_set_led(struct urtwn_softc *, int, int);
179 static void urtwn_calib_to(void *);
180 static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
181 static void urtwn_next_scan(void *);
182 static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
183 int);
184 static void urtwn_newstate_cb(struct urtwn_softc *, void *);
185 static int urtwn_wme_update(struct ieee80211com *);
186 static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
187 static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
188 static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
189 static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
190 static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
191 static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
192 static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
193 struct ieee80211_node *);
194 static void urtwn_start(struct ifnet *);
195 static void urtwn_watchdog(struct ifnet *);
196 static int urtwn_ioctl(struct ifnet *, u_long, void *);
197 static int urtwn_power_on(struct urtwn_softc *);
198 static int urtwn_llt_init(struct urtwn_softc *);
199 static void urtwn_fw_reset(struct urtwn_softc *);
200 static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
201 static int urtwn_load_firmware(struct urtwn_softc *);
202 static int urtwn_dma_init(struct urtwn_softc *);
203 static void urtwn_mac_init(struct urtwn_softc *);
204 static void urtwn_bb_init(struct urtwn_softc *);
205 static void urtwn_rf_init(struct urtwn_softc *);
206 static void urtwn_cam_init(struct urtwn_softc *);
207 static void urtwn_pa_bias_init(struct urtwn_softc *);
208 static void urtwn_rxfilter_init(struct urtwn_softc *);
209 static void urtwn_edca_init(struct urtwn_softc *);
210 static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
211 static void urtwn_get_txpower(struct urtwn_softc *, int, u_int, u_int,
212 uint16_t[]);
213 static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
214 static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
215 u_int);
216 static void urtwn_iq_calib(struct urtwn_softc *, bool);
217 static void urtwn_lc_calib(struct urtwn_softc *);
218 static void urtwn_temp_calib(struct urtwn_softc *);
219 static int urtwn_init(struct ifnet *);
220 static void urtwn_stop(struct ifnet *, int);
221 static void urtwn_chip_stop(struct urtwn_softc *);
222
223 /* Aliases. */
224 #define urtwn_bb_write urtwn_write_4
225 #define urtwn_bb_read urtwn_read_4
226
227 static int
228 urtwn_match(device_t parent, cfdata_t match, void *aux)
229 {
230 struct usb_attach_arg *uaa = aux;
231
232 return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
233 UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
234 }
235
236 static void
237 urtwn_attach(device_t parent, device_t self, void *aux)
238 {
239 struct urtwn_softc *sc = device_private(self);
240 struct ieee80211com *ic = &sc->sc_ic;
241 struct ifnet *ifp = &sc->sc_if;
242 struct usb_attach_arg *uaa = aux;
243 char *devinfop;
244 int i, error;
245
246 sc->sc_dev = self;
247 sc->sc_udev = uaa->device;
248
249 aprint_naive("\n");
250 aprint_normal("\n");
251
252 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
253 aprint_normal_dev(self, "%s\n", devinfop);
254 usbd_devinfo_free(devinfop);
255
256 mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
257 mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NET);
258 mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
259
260 usb_init_task(&sc->sc_task, urtwn_task, sc);
261
262 callout_init(&sc->sc_scan_to, 0);
263 callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
264 callout_init(&sc->sc_calib_to, 0);
265 callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
266
267 error = usbd_set_config_no(sc->sc_udev, 1, 0);
268 if (error != 0) {
269 aprint_error_dev(self, "failed to set configuration"
270 ", err=%s\n", usbd_errstr(error));
271 goto fail;
272 }
273
274 /* Get the first interface handle. */
275 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
276 if (error != 0) {
277 aprint_error_dev(self, "could not get interface handle\n");
278 goto fail;
279 }
280
281 error = urtwn_read_chipid(sc);
282 if (error != 0) {
283 aprint_error_dev(self, "unsupported test chip\n");
284 goto fail;
285 }
286
287 /* Determine number of Tx/Rx chains. */
288 if (sc->chip & URTWN_CHIP_92C) {
289 sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
290 sc->nrxchains = 2;
291 } else {
292 sc->ntxchains = 1;
293 sc->nrxchains = 1;
294 }
295 urtwn_read_rom(sc);
296
297 aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
298 (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
299 (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
300 (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
301 "8188CUS", sc->ntxchains, sc->nrxchains,
302 ether_sprintf(ic->ic_myaddr));
303
304 error = urtwn_open_pipes(sc);
305 if (error != 0) {
306 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
307 goto fail;
308 }
309 aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
310 sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
311 sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
312
313 /*
314 * Setup the 802.11 device.
315 */
316 ic->ic_ifp = ifp;
317 ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
318 ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
319 ic->ic_state = IEEE80211_S_INIT;
320
321 /* Set device capabilities. */
322 ic->ic_caps =
323 IEEE80211_C_MONITOR | /* Monitor mode supported. */
324 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
325 IEEE80211_C_SHSLOT | /* Short slot time supported. */
326 IEEE80211_C_WME | /* 802.11e */
327 IEEE80211_C_WPA; /* 802.11i */
328
329 /* Set supported .11b and .11g rates. */
330 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
331 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
332
333 /* Set supported .11b and .11g channels (1 through 14). */
334 for (i = 1; i <= 14; i++) {
335 ic->ic_channels[i].ic_freq =
336 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
337 ic->ic_channels[i].ic_flags =
338 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
339 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
340 }
341
342 ifp->if_softc = sc;
343 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
344 ifp->if_init = urtwn_init;
345 ifp->if_ioctl = urtwn_ioctl;
346 ifp->if_start = urtwn_start;
347 ifp->if_watchdog = urtwn_watchdog;
348 IFQ_SET_READY(&ifp->if_snd);
349 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
350
351 if_attach(ifp);
352 ieee80211_ifattach(ic);
353 /* override default methods */
354 ic->ic_wme.wme_update = urtwn_wme_update;
355
356 /* Override state transition machine. */
357 sc->sc_newstate = ic->ic_newstate;
358 ic->ic_newstate = urtwn_newstate;
359 ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
360
361 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
362 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
363 &sc->sc_drvbpf);
364
365 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
366 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
367 sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
368
369 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
370 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
371 sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
372
373 ieee80211_announce(ic);
374
375 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
376
377 SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
378 return;
379
380 fail:
381 sc->sc_dying = 1;
382 aprint_error_dev(self, "attach failed\n");
383 }
384
385 static int
386 urtwn_detach(device_t self, int flags)
387 {
388 struct urtwn_softc *sc = device_private(self);
389 struct ifnet *ifp = &sc->sc_if;
390 int s;
391
392 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
393
394 s = splusb();
395
396 sc->sc_dying = 1;
397
398 callout_stop(&sc->sc_scan_to);
399 callout_stop(&sc->sc_calib_to);
400
401 if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
402 usb_rem_task(sc->sc_udev, &sc->sc_task);
403 urtwn_stop(ifp, 0);
404
405 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
406 bpf_detach(ifp);
407 ieee80211_ifdetach(&sc->sc_ic);
408 if_detach(ifp);
409
410 /* Free Tx/Rx buffers. */
411 urtwn_free_tx_list(sc);
412 urtwn_free_rx_list(sc);
413
414 /* Abort and close Tx/Rx pipes. */
415 urtwn_close_pipes(sc);
416 }
417
418 splx(s);
419
420 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
421
422 callout_destroy(&sc->sc_scan_to);
423 callout_destroy(&sc->sc_calib_to);
424 mutex_destroy(&sc->sc_fwcmd_mtx);
425 mutex_destroy(&sc->sc_tx_mtx);
426 mutex_destroy(&sc->sc_task_mtx);
427
428 return (0);
429 }
430
431 static int
432 urtwn_activate(device_t self, enum devact act)
433 {
434 struct urtwn_softc *sc = device_private(self);
435
436 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
437
438 switch (act) {
439 case DVACT_DEACTIVATE:
440 if_deactivate(sc->sc_ic.ic_ifp);
441 return (0);
442 default:
443 return (EOPNOTSUPP);
444 }
445 }
446
447 static int
448 urtwn_open_pipes(struct urtwn_softc *sc)
449 {
450 /* Bulk-out endpoints addresses (from highest to lowest prio). */
451 static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
452 usb_interface_descriptor_t *id;
453 usb_endpoint_descriptor_t *ed;
454 int i, ntx = 0, error;
455
456 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
457
458 /* Determine the number of bulk-out pipes. */
459 id = usbd_get_interface_descriptor(sc->sc_iface);
460 for (i = 0; i < id->bNumEndpoints; i++) {
461 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
462 if (ed != NULL &&
463 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
464 UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
465 ntx++;
466 }
467 DPRINTFN(DBG_INIT, ("%s: %s: found %d bulk-out pipes\n",
468 device_xname(sc->sc_dev), __func__, ntx));
469 if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
470 aprint_error_dev(sc->sc_dev,
471 "%d: invalid number of Tx bulk pipes\n", ntx);
472 return (EIO);
473 }
474 sc->rx_npipe = 1;
475 sc->tx_npipe = ntx;
476
477 /* Open bulk-in pipe at address 0x81. */
478 error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
479 &sc->rx_pipe);
480 if (error != 0) {
481 aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe\n");
482 goto fail;
483 }
484
485 /* Open bulk-out pipes (up to 3). */
486 for (i = 0; i < ntx; i++) {
487 error = usbd_open_pipe(sc->sc_iface, epaddr[i],
488 USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
489 if (error != 0) {
490 aprint_error_dev(sc->sc_dev,
491 "could not open Tx bulk pipe 0x%02x\n", epaddr[i]);
492 goto fail;
493 }
494 }
495
496 /* Map 802.11 access categories to USB pipes. */
497 sc->ac2idx[WME_AC_BK] =
498 sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
499 sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
500 sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
501
502 fail:
503 if (error != 0)
504 urtwn_close_pipes(sc);
505 return (error);
506 }
507
508 static void
509 urtwn_close_pipes(struct urtwn_softc *sc)
510 {
511 int i;
512
513 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
514
515 /* Close Rx pipe. */
516 if (sc->rx_pipe != NULL) {
517 usbd_abort_pipe(sc->rx_pipe);
518 usbd_close_pipe(sc->rx_pipe);
519 sc->rx_pipe = NULL;
520 }
521 /* Close Tx pipes. */
522 for (i = 0; i < R92C_MAX_EPOUT; i++) {
523 if (sc->tx_pipe[i] == NULL)
524 continue;
525 usbd_abort_pipe(sc->tx_pipe[i]);
526 usbd_close_pipe(sc->tx_pipe[i]);
527 sc->tx_pipe[i] = NULL;
528 }
529 }
530
531 static int
532 urtwn_alloc_rx_list(struct urtwn_softc *sc)
533 {
534 struct urtwn_rx_data *data;
535 int i, error = 0;
536
537 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
538
539 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
540 data = &sc->rx_data[i];
541
542 data->sc = sc; /* Backpointer for callbacks. */
543
544 data->xfer = usbd_alloc_xfer(sc->sc_udev);
545 if (data->xfer == NULL) {
546 aprint_error_dev(sc->sc_dev,
547 "could not allocate xfer\n");
548 error = ENOMEM;
549 break;
550 }
551
552 data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
553 if (data->buf == NULL) {
554 aprint_error_dev(sc->sc_dev,
555 "could not allocate xfer buffer\n");
556 error = ENOMEM;
557 break;
558 }
559 }
560 if (error != 0)
561 urtwn_free_rx_list(sc);
562 return (error);
563 }
564
565 static void
566 urtwn_free_rx_list(struct urtwn_softc *sc)
567 {
568 int i;
569
570 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
571
572 /* NB: Caller must abort pipe first. */
573 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
574 if (sc->rx_data[i].xfer != NULL) {
575 usbd_free_xfer(sc->rx_data[i].xfer);
576 sc->rx_data[i].xfer = NULL;
577 }
578 }
579 }
580
581 static int
582 urtwn_alloc_tx_list(struct urtwn_softc *sc)
583 {
584 struct urtwn_tx_data *data;
585 int i, error = 0;
586
587 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
588
589 TAILQ_INIT(&sc->tx_free_list);
590 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
591 data = &sc->tx_data[i];
592
593 data->sc = sc; /* Backpointer for callbacks. */
594
595 data->xfer = usbd_alloc_xfer(sc->sc_udev);
596 if (data->xfer == NULL) {
597 aprint_error_dev(sc->sc_dev,
598 "could not allocate xfer\n");
599 error = ENOMEM;
600 goto fail;
601 }
602
603 data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
604 if (data->buf == NULL) {
605 aprint_error_dev(sc->sc_dev,
606 "could not allocate xfer buffer\n");
607 error = ENOMEM;
608 goto fail;
609 }
610
611 /* Append this Tx buffer to our free list. */
612 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
613 }
614 return (0);
615
616 fail:
617 urtwn_free_tx_list(sc);
618 return (error);
619 }
620
621 static void
622 urtwn_free_tx_list(struct urtwn_softc *sc)
623 {
624 struct urtwn_tx_data *data;
625 int i;
626
627 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
628
629 /* NB: Caller must abort pipe first. */
630 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
631 data = &sc->tx_data[i];
632
633 if (data->xfer != NULL) {
634 usbd_free_xfer(data->xfer);
635 data->xfer = NULL;
636 }
637 }
638 }
639
640 static void
641 urtwn_task(void *arg)
642 {
643 struct urtwn_softc *sc = arg;
644 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
645 struct urtwn_host_cmd *cmd;
646 int s;
647
648 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
649
650 /* Process host commands. */
651 s = splusb();
652 mutex_spin_enter(&sc->sc_task_mtx);
653 while (ring->next != ring->cur) {
654 cmd = &ring->cmd[ring->next];
655 mutex_spin_exit(&sc->sc_task_mtx);
656 splx(s);
657 /* Invoke callback. */
658 cmd->cb(sc, cmd->data);
659 s = splusb();
660 mutex_spin_enter(&sc->sc_task_mtx);
661 ring->queued--;
662 ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
663 }
664 mutex_spin_exit(&sc->sc_task_mtx);
665 wakeup(&sc->cmdq);
666 splx(s);
667 }
668
669 static void
670 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
671 void *arg, int len)
672 {
673 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
674 struct urtwn_host_cmd *cmd;
675 int s;
676
677 DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
678 device_xname(sc->sc_dev), __func__, cb, arg, len));
679
680 s = splusb();
681 mutex_spin_enter(&sc->sc_task_mtx);
682 cmd = &ring->cmd[ring->cur];
683 cmd->cb = cb;
684 KASSERT(len <= sizeof(cmd->data));
685 memcpy(cmd->data, arg, len);
686 ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
687
688 /* If there is no pending command already, schedule a task. */
689 if (!sc->sc_dying && ++ring->queued == 1) {
690 mutex_spin_exit(&sc->sc_task_mtx);
691 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
692 } else
693 mutex_spin_exit(&sc->sc_task_mtx);
694 splx(s);
695 }
696
697 static void
698 urtwn_wait_async(struct urtwn_softc *sc)
699 {
700
701 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
702
703 /* Wait for all queued asynchronous commands to complete. */
704 while (sc->cmdq.queued > 0)
705 tsleep(&sc->cmdq, 0, "endtask", 0);
706 }
707
708 static int
709 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
710 int len)
711 {
712 usb_device_request_t req;
713 usbd_status error;
714
715 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
716 req.bRequest = R92C_REQ_REGS;
717 USETW(req.wValue, addr);
718 USETW(req.wIndex, 0);
719 USETW(req.wLength, len);
720 error = usbd_do_request(sc->sc_udev, &req, buf);
721 if (error != USBD_NORMAL_COMPLETION) {
722 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
723 device_xname(sc->sc_dev), __func__, error, addr, len));
724 }
725 return (error);
726 }
727
728 static void
729 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
730 {
731
732 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
733 device_xname(sc->sc_dev), __func__, addr, val));
734
735 urtwn_write_region_1(sc, addr, &val, 1);
736 }
737
738 static void
739 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
740 {
741 uint8_t buf[2];
742
743 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
744 device_xname(sc->sc_dev), __func__, addr, val));
745
746 buf[0] = (uint8_t)val;
747 buf[1] = (uint8_t)(val >> 8);
748 urtwn_write_region_1(sc, addr, buf, 2);
749 }
750
751 static void
752 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
753 {
754 uint8_t buf[4];
755
756 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
757 device_xname(sc->sc_dev), __func__, addr, val));
758
759 buf[0] = (uint8_t)val;
760 buf[1] = (uint8_t)(val >> 8);
761 buf[2] = (uint8_t)(val >> 16);
762 buf[3] = (uint8_t)(val >> 24);
763 urtwn_write_region_1(sc, addr, buf, 4);
764 }
765
766 static int
767 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
768 {
769
770 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
771 device_xname(sc->sc_dev), __func__, addr, len));
772
773 return urtwn_write_region_1(sc, addr, buf, len);
774 }
775
776 static int
777 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
778 int len)
779 {
780 usb_device_request_t req;
781 usbd_status error;
782
783 req.bmRequestType = UT_READ_VENDOR_DEVICE;
784 req.bRequest = R92C_REQ_REGS;
785 USETW(req.wValue, addr);
786 USETW(req.wIndex, 0);
787 USETW(req.wLength, len);
788 error = usbd_do_request(sc->sc_udev, &req, buf);
789 if (error != USBD_NORMAL_COMPLETION) {
790 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
791 device_xname(sc->sc_dev), __func__, error, addr, len));
792 }
793 return (error);
794 }
795
796 static uint8_t
797 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
798 {
799 uint8_t val;
800
801 if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
802 return (0xff);
803
804 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
805 device_xname(sc->sc_dev), __func__, addr, val));
806 return (val);
807 }
808
809 static uint16_t
810 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
811 {
812 uint8_t buf[2];
813 uint16_t val;
814
815 if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
816 return (0xffff);
817
818 val = LE_READ_2(&buf[0]);
819 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
820 device_xname(sc->sc_dev), __func__, addr, val));
821 return (val);
822 }
823
824 static uint32_t
825 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
826 {
827 uint8_t buf[4];
828 uint32_t val;
829
830 if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
831 return (0xffffffff);
832
833 val = LE_READ_4(&buf[0]);
834 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
835 device_xname(sc->sc_dev), __func__, addr, val));
836 return (val);
837 }
838
839 static int
840 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
841 {
842 struct r92c_fw_cmd cmd;
843 uint8_t *cp;
844 int fwcur;
845 int ntries;
846
847 DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
848 device_xname(sc->sc_dev), __func__, id, buf, len));
849
850 mutex_enter(&sc->sc_fwcmd_mtx);
851 fwcur = sc->fwcur;
852 sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
853 mutex_exit(&sc->sc_fwcmd_mtx);
854
855 /* Wait for current FW box to be empty. */
856 for (ntries = 0; ntries < 100; ntries++) {
857 if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
858 break;
859 DELAY(1);
860 }
861 if (ntries == 100) {
862 aprint_error_dev(sc->sc_dev,
863 "could not send firmware command %d\n", id);
864 return (ETIMEDOUT);
865 }
866
867 memset(&cmd, 0, sizeof(cmd));
868 KASSERT(len <= sizeof(cmd.msg));
869 memcpy(cmd.msg, buf, len);
870
871 /* Write the first word last since that will trigger the FW. */
872 cp = (uint8_t *)&cmd;
873 if (len >= 4) {
874 cmd.id = id | R92C_CMD_FLAG_EXT;
875 urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
876 urtwn_write_4(sc, R92C_HMEBOX(fwcur),
877 cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
878 } else {
879 cmd.id = id;
880 urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
881 }
882
883 return (0);
884 }
885
886 static void
887 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
888 {
889
890 urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
891 SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
892 }
893
894 static uint32_t
895 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
896 {
897 uint32_t reg[R92C_MAX_CHAINS], val;
898
899 reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
900 if (chain != 0) {
901 reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
902 }
903
904 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
905 reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
906 DELAY(1000);
907
908 urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
909 RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
910 R92C_HSSI_PARAM2_READ_EDGE);
911 DELAY(1000);
912
913 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
914 reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
915 DELAY(1000);
916
917 if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
918 val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
919 } else {
920 val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
921 }
922 return (MS(val, R92C_LSSI_READBACK_DATA));
923 }
924
925 static int
926 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
927 {
928 int ntries;
929
930 urtwn_write_4(sc, R92C_LLT_INIT,
931 SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
932 SM(R92C_LLT_INIT_ADDR, addr) |
933 SM(R92C_LLT_INIT_DATA, data));
934 /* Wait for write operation to complete. */
935 for (ntries = 0; ntries < 20; ntries++) {
936 if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
937 R92C_LLT_INIT_OP_NO_ACTIVE) {
938 /* Done */
939 return (0);
940 }
941 DELAY(5);
942 }
943 return (ETIMEDOUT);
944 }
945
946 static uint8_t
947 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
948 {
949 uint32_t reg;
950 int ntries;
951
952 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
953 reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
954 reg &= ~R92C_EFUSE_CTRL_VALID;
955 urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
956
957 /* Wait for read operation to complete. */
958 for (ntries = 0; ntries < 100; ntries++) {
959 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
960 if (reg & R92C_EFUSE_CTRL_VALID) {
961 /* Done */
962 return (MS(reg, R92C_EFUSE_CTRL_DATA));
963 }
964 DELAY(5);
965 }
966 aprint_error_dev(sc->sc_dev,
967 "could not read efuse byte at address 0x%04x\n", addr);
968 return (0xff);
969 }
970
971 static void
972 urtwn_efuse_read(struct urtwn_softc *sc)
973 {
974 uint8_t *rom = (uint8_t *)&sc->rom;
975 uint32_t reg;
976 uint16_t addr = 0;
977 uint8_t off, msk;
978 int i;
979
980 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
981
982 reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
983 if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
984 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
985 reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
986 }
987 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
988 if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
989 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
990 reg | R92C_SYS_FUNC_EN_ELDR);
991 }
992 reg = urtwn_read_2(sc, R92C_SYS_CLKR);
993 if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
994 (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
995 urtwn_write_2(sc, R92C_SYS_CLKR,
996 reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
997 }
998 memset(&sc->rom, 0xff, sizeof(sc->rom));
999 while (addr < 512) {
1000 reg = urtwn_efuse_read_1(sc, addr);
1001 if (reg == 0xff)
1002 break;
1003 addr++;
1004 off = reg >> 4;
1005 msk = reg & 0xf;
1006 for (i = 0; i < 4; i++) {
1007 if (msk & (1U << i))
1008 continue;
1009
1010 rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
1011 addr++;
1012 rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
1013 addr++;
1014 }
1015 }
1016 #ifdef URTWN_DEBUG
1017 if (urtwn_debug & DBG_INIT) {
1018 /* Dump ROM content. */
1019 printf("%s: %s", device_xname(sc->sc_dev), __func__);
1020 for (i = 0; i < (int)sizeof(sc->rom); i++)
1021 printf(":%02x", rom[i]);
1022 printf("\n");
1023 }
1024 #endif
1025 }
1026
1027 static int
1028 urtwn_read_chipid(struct urtwn_softc *sc)
1029 {
1030 uint32_t reg;
1031
1032 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1033
1034 sc->chip = 0;
1035 reg = urtwn_read_4(sc, R92C_SYS_CFG);
1036 if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
1037 /* test chip, not supported */
1038 return (EIO);
1039 }
1040 if (reg & R92C_SYS_CFG_TYPE_92C) {
1041 sc->chip |= URTWN_CHIP_92C;
1042 /* Check if it is a castrated 8192C. */
1043 if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1044 R92C_HPON_FSM_CHIP_BONDING_ID) ==
1045 R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
1046 sc->chip |= URTWN_CHIP_92C_1T2R;
1047 }
1048 }
1049 if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1050 sc->chip |= URTWN_CHIP_UMC;
1051 if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
1052 sc->chip |= URTWN_CHIP_UMC_A_CUT;
1053 }
1054 }
1055 return (0);
1056 }
1057
1058 #ifdef URTWN_DEBUG
1059 static void
1060 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
1061 {
1062
1063 aprint_normal_dev(sc->sc_dev,
1064 "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
1065 rp->id, rp->dbg_sel, rp->vid, rp->pid);
1066
1067 aprint_normal_dev(sc->sc_dev,
1068 "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
1069 rp->usb_opt, rp->ep_setting, rp->usb_phy);
1070
1071 aprint_normal_dev(sc->sc_dev,
1072 "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
1073 rp->macaddr[0], rp->macaddr[1],
1074 rp->macaddr[2], rp->macaddr[3],
1075 rp->macaddr[4], rp->macaddr[5]);
1076
1077 aprint_normal_dev(sc->sc_dev,
1078 "string %s, subcustomer_id 0x%x\n",
1079 rp->string, rp->subcustomer_id);
1080
1081 aprint_normal_dev(sc->sc_dev,
1082 "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
1083 rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
1084 rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
1085
1086 aprint_normal_dev(sc->sc_dev,
1087 "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
1088 rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
1089 rp->ht40_1s_tx_pwr[0][2],
1090 rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
1091 rp->ht40_1s_tx_pwr[1][2]);
1092
1093 aprint_normal_dev(sc->sc_dev,
1094 "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1095 rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1096 rp->ht40_2s_tx_pwr_diff[2] & 0xf,
1097 rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1098 rp->ht40_2s_tx_pwr_diff[2] >> 4);
1099
1100 aprint_normal_dev(sc->sc_dev,
1101 "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1102 rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
1103 rp->ht20_tx_pwr_diff[2] & 0xf,
1104 rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
1105 rp->ht20_tx_pwr_diff[2] >> 4);
1106
1107 aprint_normal_dev(sc->sc_dev,
1108 "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1109 rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
1110 rp->ofdm_tx_pwr_diff[2] & 0xf,
1111 rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
1112 rp->ofdm_tx_pwr_diff[2] >> 4);
1113
1114 aprint_normal_dev(sc->sc_dev,
1115 "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1116 rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
1117 rp->ht40_max_pwr[2] & 0xf,
1118 rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
1119 rp->ht40_max_pwr[2] >> 4);
1120
1121 aprint_normal_dev(sc->sc_dev,
1122 "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1123 rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
1124 rp->ht20_max_pwr[2] & 0xf,
1125 rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
1126 rp->ht20_max_pwr[2] >> 4);
1127
1128 aprint_normal_dev(sc->sc_dev,
1129 "xtal_calib %d, tssi %d %d, thermal %d\n",
1130 rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
1131
1132 aprint_normal_dev(sc->sc_dev,
1133 "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
1134 rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
1135
1136 aprint_normal_dev(sc->sc_dev,
1137 "channnel_plan %d, version %d customer_id 0x%x\n",
1138 rp->channel_plan, rp->version, rp->curstomer_id);
1139 }
1140 #endif
1141
1142 static void
1143 urtwn_read_rom(struct urtwn_softc *sc)
1144 {
1145 struct ieee80211com *ic = &sc->sc_ic;
1146 struct r92c_rom *rom = &sc->rom;
1147
1148 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1149
1150 /* Read full ROM image. */
1151 urtwn_efuse_read(sc);
1152 #ifdef URTWN_DEBUG
1153 if (urtwn_debug & DBG_REG)
1154 urtwn_dump_rom(sc, rom);
1155 #endif
1156
1157 /* XXX Weird but this is what the vendor driver does. */
1158 sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1159 sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1160 sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1161
1162 DPRINTFN(DBG_INIT,
1163 ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
1164 device_xname(sc->sc_dev), __func__, sc->pa_setting,
1165 sc->board_type, sc->regulatory));
1166
1167 IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
1168 }
1169
1170 static int
1171 urtwn_media_change(struct ifnet *ifp)
1172 {
1173 #ifdef URTWN_DEBUG
1174 struct urtwn_softc *sc = ifp->if_softc;
1175 #endif
1176 int error;
1177
1178 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1179
1180 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1181 return (error);
1182
1183 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1184 (IFF_UP | IFF_RUNNING)) {
1185 urtwn_init(ifp);
1186 }
1187 return (0);
1188 }
1189
1190 /*
1191 * Initialize rate adaptation in firmware.
1192 */
1193 static int
1194 urtwn_ra_init(struct urtwn_softc *sc)
1195 {
1196 static const uint8_t map[] = {
1197 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
1198 };
1199 struct ieee80211com *ic = &sc->sc_ic;
1200 struct ieee80211_node *ni = ic->ic_bss;
1201 struct ieee80211_rateset *rs = &ni->ni_rates;
1202 struct r92c_fw_cmd_macid_cfg cmd;
1203 uint32_t rates, basicrates;
1204 uint32_t mask;
1205 uint8_t mode;
1206 int maxrate, maxbasicrate, error, i, j;
1207
1208 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1209
1210 /* Get normal and basic rates mask. */
1211 rates = basicrates = 0;
1212 maxrate = maxbasicrate = 0;
1213 for (i = 0; i < rs->rs_nrates; i++) {
1214 /* Convert 802.11 rate to HW rate index. */
1215 for (j = 0; j < (int)__arraycount(map); j++) {
1216 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
1217 break;
1218 }
1219 }
1220 if (j == __arraycount(map)) {
1221 /* Unknown rate, skip. */
1222 continue;
1223 }
1224
1225 rates |= 1U << j;
1226 if (j > maxrate) {
1227 maxrate = j;
1228 }
1229
1230 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1231 basicrates |= 1U << j;
1232 if (j > maxbasicrate) {
1233 maxbasicrate = j;
1234 }
1235 }
1236 }
1237 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1238 mode = R92C_RAID_11B;
1239 } else {
1240 mode = R92C_RAID_11BG;
1241 }
1242 DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
1243 "maxrate=%x, maxbasicrate=%x\n",
1244 device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
1245 maxrate, maxbasicrate));
1246 if (basicrates == 0) {
1247 basicrates |= 1; /* add 1Mbps */
1248 }
1249
1250 /* Set rates mask for group addressed frames. */
1251 cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1252 mask = (mode << 28) | basicrates;
1253 cmd.mask[0] = (uint8_t)mask;
1254 cmd.mask[1] = (uint8_t)(mask >> 8);
1255 cmd.mask[2] = (uint8_t)(mask >> 16);
1256 cmd.mask[3] = (uint8_t)(mask >> 24);
1257 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1258 if (error != 0) {
1259 aprint_error_dev(sc->sc_dev,
1260 "could not add broadcast station\n");
1261 return (error);
1262 }
1263 /* Set initial MRR rate. */
1264 DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%d\n",
1265 device_xname(sc->sc_dev), __func__, maxbasicrate));
1266 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
1267
1268 /* Set rates mask for unicast frames. */
1269 cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1270 mask = (mode << 28) | rates;
1271 cmd.mask[0] = (uint8_t)mask;
1272 cmd.mask[1] = (uint8_t)(mask >> 8);
1273 cmd.mask[2] = (uint8_t)(mask >> 16);
1274 cmd.mask[3] = (uint8_t)(mask >> 24);
1275 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1276 if (error != 0) {
1277 aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
1278 return (error);
1279 }
1280 /* Set initial MRR rate. */
1281 DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%d\n", device_xname(sc->sc_dev),
1282 __func__, maxrate));
1283 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
1284
1285 /* Indicate highest supported rate. */
1286 ni->ni_txrate = rs->rs_nrates - 1;
1287
1288 return (0);
1289 }
1290
1291 static int
1292 urtwn_get_nettype(struct urtwn_softc *sc)
1293 {
1294 struct ieee80211com *ic = &sc->sc_ic;
1295 int type;
1296
1297 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1298
1299 switch (ic->ic_opmode) {
1300 case IEEE80211_M_STA:
1301 type = R92C_CR_NETTYPE_INFRA;
1302 break;
1303
1304 case IEEE80211_M_IBSS:
1305 type = R92C_CR_NETTYPE_ADHOC;
1306 break;
1307
1308 default:
1309 type = R92C_CR_NETTYPE_NOLINK;
1310 break;
1311 }
1312
1313 return (type);
1314 }
1315
1316 static void
1317 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
1318 {
1319 uint8_t reg;
1320
1321 DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
1322 __func__, type));
1323
1324 reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
1325 urtwn_write_1(sc, R92C_CR + 2, reg | type);
1326 }
1327
1328 static void
1329 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1330 {
1331 struct ieee80211_node *ni = sc->sc_ic.ic_bss;
1332 uint64_t tsf;
1333
1334 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1335
1336 /* Enable TSF synchronization. */
1337 urtwn_write_1(sc, R92C_BCN_CTRL,
1338 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1339
1340 /* Correct TSF */
1341 urtwn_write_1(sc, R92C_BCN_CTRL,
1342 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1343
1344 /* Set initial TSF. */
1345 tsf = ni->ni_tstamp.tsf;
1346 tsf = le64toh(tsf);
1347 tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
1348 tsf -= IEEE80211_DUR_TU;
1349 urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
1350 urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
1351
1352 urtwn_write_1(sc, R92C_BCN_CTRL,
1353 urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1354 }
1355
1356 static void
1357 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1358 {
1359 uint8_t reg;
1360
1361 DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
1362 __func__, led, on));
1363
1364 if (led == URTWN_LED_LINK) {
1365 reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1366 if (!on) {
1367 reg |= R92C_LEDCFG0_DIS;
1368 }
1369 urtwn_write_1(sc, R92C_LEDCFG0, reg);
1370 sc->ledlink = on; /* Save LED state. */
1371 }
1372 }
1373
1374 static void
1375 urtwn_calib_to(void *arg)
1376 {
1377 struct urtwn_softc *sc = arg;
1378
1379 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1380
1381 if (sc->sc_dying)
1382 return;
1383
1384 /* Do it in a process context. */
1385 urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
1386 }
1387
1388 /* ARGSUSED */
1389 static void
1390 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
1391 {
1392 struct r92c_fw_cmd_rssi cmd;
1393
1394 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1395
1396 if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
1397 goto restart_timer;
1398
1399 if (sc->avg_pwdb != -1) {
1400 /* Indicate Rx signal strength to FW for rate adaptation. */
1401 memset(&cmd, 0, sizeof(cmd));
1402 cmd.macid = 0; /* BSS. */
1403 cmd.pwdb = sc->avg_pwdb;
1404 DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
1405 device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
1406 urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
1407 }
1408
1409 /* Do temperature compensation. */
1410 urtwn_temp_calib(sc);
1411
1412 restart_timer:
1413 if (!sc->sc_dying) {
1414 /* Restart calibration timer. */
1415 callout_schedule(&sc->sc_calib_to, hz);
1416 }
1417 }
1418
1419 static void
1420 urtwn_next_scan(void *arg)
1421 {
1422 struct urtwn_softc *sc = arg;
1423
1424 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1425
1426 if (sc->sc_dying)
1427 return;
1428
1429 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1430 ieee80211_next_scan(&sc->sc_ic);
1431 }
1432
1433 static int
1434 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1435 {
1436 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1437 struct urtwn_cmd_newstate cmd;
1438
1439 DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
1440 device_xname(sc->sc_dev), __func__,
1441 ieee80211_state_name[nstate], nstate, arg));
1442
1443 callout_stop(&sc->sc_scan_to);
1444 callout_stop(&sc->sc_calib_to);
1445
1446 /* Do it in a process context. */
1447 cmd.state = nstate;
1448 cmd.arg = arg;
1449 urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
1450 return (0);
1451 }
1452
1453 static void
1454 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
1455 {
1456 struct urtwn_cmd_newstate *cmd = arg;
1457 struct ieee80211com *ic = &sc->sc_ic;
1458 struct ieee80211_node *ni;
1459 enum ieee80211_state ostate = ic->ic_state;
1460 enum ieee80211_state nstate = cmd->state;
1461 uint32_t reg;
1462 uint8_t sifs_time;
1463 int s;
1464
1465 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
1466 device_xname(sc->sc_dev), __func__,
1467 ieee80211_state_name[ostate], ostate,
1468 ieee80211_state_name[nstate], nstate));
1469
1470 s = splnet();
1471
1472 switch (ostate) {
1473 case IEEE80211_S_INIT:
1474 break;
1475
1476 case IEEE80211_S_SCAN:
1477 if (nstate != IEEE80211_S_SCAN) {
1478 /*
1479 * End of scanning
1480 */
1481 /* flush 4-AC Queue after site_survey */
1482 urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
1483
1484 /* Allow Rx from our BSSID only. */
1485 urtwn_write_4(sc, R92C_RCR,
1486 urtwn_read_4(sc, R92C_RCR) |
1487 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1488 }
1489 break;
1490
1491 case IEEE80211_S_AUTH:
1492 case IEEE80211_S_ASSOC:
1493 break;
1494
1495 case IEEE80211_S_RUN:
1496 /* Turn link LED off. */
1497 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1498
1499 /* Set media status to 'No Link'. */
1500 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1501
1502 /* Stop Rx of data frames. */
1503 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1504
1505 /* Reset TSF. */
1506 urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1507
1508 /* Disable TSF synchronization. */
1509 urtwn_write_1(sc, R92C_BCN_CTRL,
1510 urtwn_read_1(sc, R92C_BCN_CTRL) |
1511 R92C_BCN_CTRL_DIS_TSF_UDT0);
1512
1513 /* Back to 20MHz mode */
1514 urtwn_set_chan(sc, ic->ic_bss->ni_chan,
1515 IEEE80211_HTINFO_2NDCHAN_NONE);
1516
1517 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1518 ic->ic_opmode == IEEE80211_M_HOSTAP) {
1519 /* Stop BCN */
1520 urtwn_write_1(sc, R92C_BCN_CTRL,
1521 urtwn_read_1(sc, R92C_BCN_CTRL) &
1522 ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
1523 }
1524
1525 /* Reset EDCA parameters. */
1526 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1527 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1528 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1529 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1530
1531 /* flush all cam entries */
1532 urtwn_cam_init(sc);
1533 break;
1534 }
1535
1536 switch (nstate) {
1537 case IEEE80211_S_INIT:
1538 /* Turn link LED off. */
1539 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1540 break;
1541
1542 case IEEE80211_S_SCAN:
1543 if (ostate != IEEE80211_S_SCAN) {
1544 /*
1545 * Begin of scanning
1546 */
1547
1548 /* Set gain for scanning. */
1549 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1550 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1551 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1552
1553 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1554 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1555 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1556
1557 /* Set media status to 'No Link'. */
1558 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1559
1560 /* Allow Rx from any BSSID. */
1561 urtwn_write_4(sc, R92C_RCR,
1562 urtwn_read_4(sc, R92C_RCR) &
1563 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1564
1565 /* Stop Rx of data frames. */
1566 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1567
1568 /* Disable update TSF */
1569 urtwn_write_1(sc, R92C_BCN_CTRL,
1570 urtwn_read_1(sc, R92C_BCN_CTRL) |
1571 R92C_BCN_CTRL_DIS_TSF_UDT0);
1572 }
1573
1574 /* Make link LED blink during scan. */
1575 urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1576
1577 /* Pause AC Tx queues. */
1578 urtwn_write_1(sc, R92C_TXPAUSE,
1579 urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1580
1581 urtwn_set_chan(sc, ic->ic_curchan,
1582 IEEE80211_HTINFO_2NDCHAN_NONE);
1583
1584 /* Start periodic scan. */
1585 if (!sc->sc_dying)
1586 callout_schedule(&sc->sc_scan_to, hz / 5);
1587 break;
1588
1589 case IEEE80211_S_AUTH:
1590 /* Set initial gain under link. */
1591 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1592 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1593 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1594
1595 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1596 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1597 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1598
1599 /* Set media status to 'No Link'. */
1600 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1601
1602 /* Allow Rx from any BSSID. */
1603 urtwn_write_4(sc, R92C_RCR,
1604 urtwn_read_4(sc, R92C_RCR) &
1605 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1606
1607 urtwn_set_chan(sc, ic->ic_curchan,
1608 IEEE80211_HTINFO_2NDCHAN_NONE);
1609 break;
1610
1611 case IEEE80211_S_ASSOC:
1612 break;
1613
1614 case IEEE80211_S_RUN:
1615 ni = ic->ic_bss;
1616
1617 /* XXX: Set 20MHz mode */
1618 urtwn_set_chan(sc, ic->ic_curchan,
1619 IEEE80211_HTINFO_2NDCHAN_NONE);
1620
1621 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1622 /* Back to 20MHz mode */
1623 urtwn_set_chan(sc, ic->ic_ibss_chan,
1624 IEEE80211_HTINFO_2NDCHAN_NONE);
1625
1626 /* Enable Rx of data frames. */
1627 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1628
1629 /* Turn link LED on. */
1630 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1631 break;
1632 }
1633
1634 /* Set media status to 'Associated'. */
1635 urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
1636
1637 /* Set BSSID. */
1638 urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1639 urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1640
1641 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1642 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1643 } else {
1644 /* 802.11b/g */
1645 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1646 }
1647
1648 /* Enable Rx of data frames. */
1649 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1650
1651 /* Set beacon interval. */
1652 urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1653
1654 if (ic->ic_opmode == IEEE80211_M_STA) {
1655 /* Allow Rx from our BSSID only. */
1656 urtwn_write_4(sc, R92C_RCR,
1657 urtwn_read_4(sc, R92C_RCR) |
1658 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1659
1660 /* Enable TSF synchronization. */
1661 urtwn_tsf_sync_enable(sc);
1662 }
1663
1664 sifs_time = 10;
1665 urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
1666 urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
1667 urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
1668 urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
1669 urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
1670 urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
1671
1672 /* Intialize rate adaptation. */
1673 urtwn_ra_init(sc);
1674
1675 /* Turn link LED on. */
1676 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1677
1678 /* Reset average RSSI. */
1679 sc->avg_pwdb = -1;
1680
1681 /* Reset temperature calibration state machine. */
1682 sc->thcal_state = 0;
1683 sc->thcal_lctemp = 0;
1684
1685 /* Start periodic calibration. */
1686 if (!sc->sc_dying)
1687 callout_schedule(&sc->sc_calib_to, hz);
1688 break;
1689 }
1690
1691 (*sc->sc_newstate)(ic, nstate, cmd->arg);
1692
1693 splx(s);
1694 }
1695
1696 static int
1697 urtwn_wme_update(struct ieee80211com *ic)
1698 {
1699 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1700
1701 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1702
1703 /* don't override default WME values if WME is not actually enabled */
1704 if (!(ic->ic_flags & IEEE80211_F_WME))
1705 return (0);
1706
1707 /* Do it in a process context. */
1708 urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
1709 return (0);
1710 }
1711
1712 static void
1713 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
1714 {
1715 static const uint16_t ac2reg[WME_NUM_AC] = {
1716 R92C_EDCA_BE_PARAM,
1717 R92C_EDCA_BK_PARAM,
1718 R92C_EDCA_VI_PARAM,
1719 R92C_EDCA_VO_PARAM
1720 };
1721 struct ieee80211com *ic = &sc->sc_ic;
1722 const struct wmeParams *wmep;
1723 int ac, aifs, slottime;
1724 int s;
1725
1726 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
1727 __func__));
1728
1729 s = splnet();
1730 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1731 for (ac = 0; ac < WME_NUM_AC; ac++) {
1732 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1733 /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
1734 aifs = wmep->wmep_aifsn * slottime + 10;
1735 urtwn_write_4(sc, ac2reg[ac],
1736 SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
1737 SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
1738 SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
1739 SM(R92C_EDCA_PARAM_AIFS, aifs));
1740 }
1741 splx(s);
1742 }
1743
1744 static void
1745 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1746 {
1747 int pwdb;
1748
1749 DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
1750 device_xname(sc->sc_dev), __func__, rate, rssi));
1751
1752 /* Convert antenna signal to percentage. */
1753 if (rssi <= -100 || rssi >= 20)
1754 pwdb = 0;
1755 else if (rssi >= 0)
1756 pwdb = 100;
1757 else
1758 pwdb = 100 + rssi;
1759 if (rate <= 3) {
1760 /* CCK gain is smaller than OFDM/MCS gain. */
1761 pwdb += 6;
1762 if (pwdb > 100)
1763 pwdb = 100;
1764 if (pwdb <= 14)
1765 pwdb -= 4;
1766 else if (pwdb <= 26)
1767 pwdb -= 8;
1768 else if (pwdb <= 34)
1769 pwdb -= 6;
1770 else if (pwdb <= 42)
1771 pwdb -= 2;
1772 }
1773 if (sc->avg_pwdb == -1) /* Init. */
1774 sc->avg_pwdb = pwdb;
1775 else if (sc->avg_pwdb < pwdb)
1776 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1777 else
1778 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1779
1780 DPRINTFN(DBG_RF, ("%s: %s: PWDB=%d EMA=%d\n", device_xname(sc->sc_dev),
1781 __func__, pwdb, sc->avg_pwdb));
1782 }
1783
1784 static int8_t
1785 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1786 {
1787 static const int8_t cckoff[] = { 16, -12, -26, -46 };
1788 struct r92c_rx_phystat *phy;
1789 struct r92c_rx_cck *cck;
1790 uint8_t rpt;
1791 int8_t rssi;
1792
1793 DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
1794 __func__, rate));
1795
1796 if (rate <= 3) {
1797 cck = (struct r92c_rx_cck *)physt;
1798 if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
1799 rpt = (cck->agc_rpt >> 5) & 0x3;
1800 rssi = (cck->agc_rpt & 0x1f) << 1;
1801 } else {
1802 rpt = (cck->agc_rpt >> 6) & 0x3;
1803 rssi = cck->agc_rpt & 0x3e;
1804 }
1805 rssi = cckoff[rpt] - rssi;
1806 } else { /* OFDM/HT. */
1807 phy = (struct r92c_rx_phystat *)physt;
1808 rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1809 }
1810 return (rssi);
1811 }
1812
1813 static void
1814 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1815 {
1816 struct ieee80211com *ic = &sc->sc_ic;
1817 struct ifnet *ifp = ic->ic_ifp;
1818 struct ieee80211_frame *wh;
1819 struct ieee80211_node *ni;
1820 struct r92c_rx_stat *stat;
1821 uint32_t rxdw0, rxdw3;
1822 struct mbuf *m;
1823 uint8_t rate;
1824 int8_t rssi = 0;
1825 int s, infosz;
1826
1827 DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
1828 device_xname(sc->sc_dev), __func__, buf, pktlen));
1829
1830 stat = (struct r92c_rx_stat *)buf;
1831 rxdw0 = le32toh(stat->rxdw0);
1832 rxdw3 = le32toh(stat->rxdw3);
1833
1834 if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1835 /*
1836 * This should not happen since we setup our Rx filter
1837 * to not receive these frames.
1838 */
1839 DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
1840 device_xname(sc->sc_dev), __func__));
1841 ifp->if_ierrors++;
1842 return;
1843 }
1844 if (__predict_false(pktlen < (int)sizeof(*wh))) {
1845 DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
1846 device_xname(sc->sc_dev), __func__, pktlen));
1847 ic->ic_stats.is_rx_tooshort++;
1848 ifp->if_ierrors++;
1849 return;
1850 }
1851 if (__predict_false(pktlen > MCLBYTES)) {
1852 DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
1853 device_xname(sc->sc_dev), __func__, pktlen));
1854 ifp->if_ierrors++;
1855 return;
1856 }
1857
1858 rate = MS(rxdw3, R92C_RXDW3_RATE);
1859 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1860
1861 /* Get RSSI from PHY status descriptor if present. */
1862 if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
1863 rssi = urtwn_get_rssi(sc, rate, &stat[1]);
1864 /* Update our average RSSI. */
1865 urtwn_update_avgrssi(sc, rate, rssi);
1866 }
1867
1868 DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
1869 device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
1870
1871 MGETHDR(m, M_DONTWAIT, MT_DATA);
1872 if (__predict_false(m == NULL)) {
1873 aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
1874 ic->ic_stats.is_rx_nobuf++;
1875 ifp->if_ierrors++;
1876 return;
1877 }
1878 if (pktlen > (int)MHLEN) {
1879 MCLGET(m, M_DONTWAIT);
1880 if (__predict_false(!(m->m_flags & M_EXT))) {
1881 aprint_error_dev(sc->sc_dev,
1882 "couldn't allocate rx mbuf cluster\n");
1883 m_freem(m);
1884 ic->ic_stats.is_rx_nobuf++;
1885 ifp->if_ierrors++;
1886 return;
1887 }
1888 }
1889
1890 /* Finalize mbuf. */
1891 m->m_pkthdr.rcvif = ifp;
1892 wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
1893 memcpy(mtod(m, uint8_t *), wh, pktlen);
1894 m->m_pkthdr.len = m->m_len = pktlen;
1895
1896 s = splnet();
1897 if (__predict_false(sc->sc_drvbpf != NULL)) {
1898 struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1899
1900 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1901 if (!(rxdw3 & R92C_RXDW3_HT)) {
1902 switch (rate) {
1903 /* CCK. */
1904 case 0: tap->wr_rate = 2; break;
1905 case 1: tap->wr_rate = 4; break;
1906 case 2: tap->wr_rate = 11; break;
1907 case 3: tap->wr_rate = 22; break;
1908 /* OFDM. */
1909 case 4: tap->wr_rate = 12; break;
1910 case 5: tap->wr_rate = 18; break;
1911 case 6: tap->wr_rate = 24; break;
1912 case 7: tap->wr_rate = 36; break;
1913 case 8: tap->wr_rate = 48; break;
1914 case 9: tap->wr_rate = 72; break;
1915 case 10: tap->wr_rate = 96; break;
1916 case 11: tap->wr_rate = 108; break;
1917 }
1918 } else if (rate >= 12) { /* MCS0~15. */
1919 /* Bit 7 set means HT MCS instead of rate. */
1920 tap->wr_rate = 0x80 | (rate - 12);
1921 }
1922 tap->wr_dbm_antsignal = rssi;
1923 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1924 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1925
1926 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1927 }
1928
1929 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1930
1931 /* push the frame up to the 802.11 stack */
1932 ieee80211_input(ic, m, ni, rssi, 0);
1933
1934 /* Node is no longer needed. */
1935 ieee80211_free_node(ni);
1936
1937 splx(s);
1938 }
1939
1940 static void
1941 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1942 {
1943 struct urtwn_rx_data *data = priv;
1944 struct urtwn_softc *sc = data->sc;
1945 struct r92c_rx_stat *stat;
1946 uint32_t rxdw0;
1947 uint8_t *buf;
1948 int len, totlen, pktlen, infosz, npkts;
1949
1950 DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
1951 device_xname(sc->sc_dev), __func__, status));
1952
1953 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1954 if (status == USBD_STALLED)
1955 usbd_clear_endpoint_stall_async(sc->rx_pipe);
1956 else if (status != USBD_CANCELLED)
1957 goto resubmit;
1958 return;
1959 }
1960 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1961
1962 if (__predict_false(len < (int)sizeof(*stat))) {
1963 DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
1964 device_xname(sc->sc_dev), __func__, len));
1965 goto resubmit;
1966 }
1967 buf = data->buf;
1968
1969 /* Get the number of encapsulated frames. */
1970 stat = (struct r92c_rx_stat *)buf;
1971 npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
1972 DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
1973 device_xname(sc->sc_dev), __func__, npkts));
1974
1975 /* Process all of them. */
1976 while (npkts-- > 0) {
1977 if (__predict_false(len < (int)sizeof(*stat))) {
1978 DPRINTFN(DBG_RX,
1979 ("%s: %s: len(%d) is short than header\n",
1980 device_xname(sc->sc_dev), __func__, len));
1981 break;
1982 }
1983 stat = (struct r92c_rx_stat *)buf;
1984 rxdw0 = le32toh(stat->rxdw0);
1985
1986 pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
1987 if (__predict_false(pktlen == 0)) {
1988 DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
1989 device_xname(sc->sc_dev), __func__));
1990 break;
1991 }
1992
1993 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1994
1995 /* Make sure everything fits in xfer. */
1996 totlen = sizeof(*stat) + infosz + pktlen;
1997 if (__predict_false(totlen > len)) {
1998 DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
1999 device_xname(sc->sc_dev), __func__, totlen,
2000 (int)sizeof(*stat), infosz, pktlen, len));
2001 break;
2002 }
2003
2004 /* Process 802.11 frame. */
2005 urtwn_rx_frame(sc, buf, pktlen);
2006
2007 /* Next chunk is 128-byte aligned. */
2008 totlen = roundup2(totlen, 128);
2009 buf += totlen;
2010 len -= totlen;
2011 }
2012
2013 resubmit:
2014 /* Setup a new transfer. */
2015 usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
2016 USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
2017 (void)usbd_transfer(xfer);
2018 }
2019
2020 static void
2021 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2022 {
2023 struct urtwn_tx_data *data = priv;
2024 struct urtwn_softc *sc = data->sc;
2025 struct ifnet *ifp = &sc->sc_if;
2026 int s;
2027
2028 DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
2029 device_xname(sc->sc_dev), __func__, status));
2030
2031 mutex_enter(&sc->sc_tx_mtx);
2032 /* Put this Tx buffer back to our free list. */
2033 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2034 mutex_exit(&sc->sc_tx_mtx);
2035
2036 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2037 if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
2038 if (status == USBD_STALLED)
2039 usbd_clear_endpoint_stall_async(data->pipe);
2040 ifp->if_oerrors++;
2041 }
2042 return;
2043 }
2044
2045 ifp->if_opackets++;
2046
2047 s = splnet();
2048 sc->tx_timer = 0;
2049 ifp->if_flags &= ~IFF_OACTIVE;
2050 splx(s);
2051
2052 urtwn_start(ifp);
2053 }
2054
2055 static int
2056 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2057 {
2058 struct ieee80211com *ic = &sc->sc_ic;
2059 struct ieee80211_frame *wh;
2060 struct ieee80211_key *k = NULL;
2061 struct urtwn_tx_data *data;
2062 struct r92c_tx_desc *txd;
2063 usbd_pipe_handle pipe;
2064 uint16_t seq, sum;
2065 uint8_t raid, type, tid, qid;
2066 int i, s, hasqos, xferlen, padsize, error;
2067
2068 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2069
2070 wh = mtod(m, struct ieee80211_frame *);
2071 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2072
2073 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2074 k = ieee80211_crypto_encap(ic, ni, m);
2075 if (k == NULL) {
2076 m_freem(m);
2077 return (ENOBUFS);
2078 }
2079 /* packet header may have moved, reset our local pointer */
2080 wh = mtod(m, struct ieee80211_frame *);
2081 }
2082
2083 if (__predict_false(sc->sc_drvbpf != NULL)) {
2084 struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
2085
2086 tap->wt_flags = 0;
2087 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2088 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2089 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2090 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2091
2092 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2093 }
2094
2095 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2096 /* data frames in 11n mode */
2097 struct ieee80211_qosframe *qwh = (void *)wh;
2098 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
2099 qid = TID_TO_WME_AC(tid);
2100 } else if (type != IEEE80211_FC0_TYPE_DATA) {
2101 /* Use AC_VO for management frames. */
2102 qid = WME_AC_VO;
2103 tid = 0; /* compiler happy */
2104 } else {
2105 /* non-qos data frames */
2106 tid = R92C_TXDW1_QSEL_BE;
2107 qid = WME_AC_BE;
2108 }
2109
2110 /* Get the USB pipe to use for this AC. */
2111 pipe = sc->tx_pipe[sc->ac2idx[qid]];
2112
2113 /* Grab a Tx buffer from our free list. */
2114 mutex_enter(&sc->sc_tx_mtx);
2115 data = TAILQ_FIRST(&sc->tx_free_list);
2116 TAILQ_REMOVE(&sc->tx_free_list, data, next);
2117 mutex_exit(&sc->sc_tx_mtx);
2118
2119 if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
2120 padsize = 8;
2121 else
2122 padsize = 0;
2123
2124 /* Fill Tx descriptor. */
2125 txd = (struct r92c_tx_desc *)data->buf;
2126 memset(txd, 0, sizeof(*txd) + padsize);
2127
2128 txd->txdw0 |= htole32(
2129 SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
2130 SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
2131 R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
2132
2133 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2134 txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
2135
2136 /* fix pad field */
2137 if (padsize > 0) {
2138 DPRINTFN(DBG_TX, ("%s: %s: padding: size=%d\n",
2139 device_xname(sc->sc_dev), __func__, padsize));
2140 txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
2141 }
2142
2143 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2144 type == IEEE80211_FC0_TYPE_DATA) {
2145 if (ic->ic_curmode == IEEE80211_MODE_11B)
2146 raid = R92C_RAID_11B;
2147 else
2148 raid = R92C_RAID_11BG;
2149 DPRINTFN(DBG_TX,
2150 ("%s: %s: data packet: tid=%d, raid=%d\n",
2151 device_xname(sc->sc_dev), __func__, tid, raid));
2152
2153 txd->txdw1 |= htole32(
2154 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2155 SM(R92C_TXDW1_QSEL, tid) |
2156 SM(R92C_TXDW1_RAID, raid) |
2157 R92C_TXDW1_AGGBK);
2158
2159 if (hasqos) {
2160 txd->txdw4 |= htole32(R92C_TXDW4_QOS);
2161 }
2162
2163 if (ic->ic_flags & IEEE80211_F_USEPROT) {
2164 /* for 11g */
2165 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
2166 txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
2167 R92C_TXDW4_HWRTSEN);
2168 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
2169 txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
2170 R92C_TXDW4_HWRTSEN);
2171 }
2172 }
2173 /* Send RTS at OFDM24. */
2174 txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
2175 txd->txdw5 |= htole32(0x0001ff00);
2176 /* Send data at OFDM54. */
2177 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
2178 } else if (type == IEEE80211_FC0_TYPE_MGT) {
2179 DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
2180 device_xname(sc->sc_dev), __func__));
2181 txd->txdw1 |= htole32(
2182 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2183 SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
2184 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2185
2186 /* Force CCK1. */
2187 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2188 /* Use 1Mbps */
2189 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2190 } else {
2191 /* broadcast or multicast packets */
2192 DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
2193 device_xname(sc->sc_dev), __func__));
2194 txd->txdw1 |= htole32(
2195 SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
2196 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2197
2198 /* Force CCK1. */
2199 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2200 /* Use 1Mbps */
2201 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2202 }
2203
2204 /* Set sequence number */
2205 seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
2206 txd->txdseq |= htole16(seq);
2207
2208 if (!hasqos) {
2209 /* Use HW sequence numbering for non-QoS frames. */
2210 txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
2211 txd->txdseq |= htole16(0x8000); /* WTF? */
2212 }
2213
2214 /* Compute Tx descriptor checksum. */
2215 sum = 0;
2216 for (i = 0; i < (int)sizeof(*txd) / 2; i++)
2217 sum ^= ((uint16_t *)txd)[i];
2218 txd->txdsum = sum; /* NB: already little endian. */
2219
2220 xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
2221 m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
2222 m_freem(m);
2223
2224 s = splnet();
2225 data->pipe = pipe;
2226 usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
2227 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
2228 urtwn_txeof);
2229 error = usbd_transfer(data->xfer);
2230 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
2231 error != USBD_IN_PROGRESS)) {
2232 splx(s);
2233 DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
2234 device_xname(sc->sc_dev), __func__, error));
2235 mutex_enter(&sc->sc_tx_mtx);
2236 /* Put this Tx buffer back to our free list. */
2237 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2238 mutex_exit(&sc->sc_tx_mtx);
2239 return (error);
2240 }
2241 splx(s);
2242 ieee80211_free_node(ni);
2243 return (0);
2244 }
2245
2246 static void
2247 urtwn_start(struct ifnet *ifp)
2248 {
2249 struct urtwn_softc *sc = ifp->if_softc;
2250 struct ieee80211com *ic = &sc->sc_ic;
2251 struct ether_header *eh;
2252 struct ieee80211_node *ni;
2253 struct mbuf *m;
2254
2255 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2256
2257 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2258 return;
2259
2260 for (;;) {
2261 mutex_enter(&sc->sc_tx_mtx);
2262 if (TAILQ_EMPTY(&sc->tx_free_list)) {
2263 mutex_exit(&sc->sc_tx_mtx);
2264 ifp->if_flags |= IFF_OACTIVE;
2265 break;
2266 }
2267 mutex_exit(&sc->sc_tx_mtx);
2268
2269 /* Send pending management frames first. */
2270 IF_DEQUEUE(&ic->ic_mgtq, m);
2271 if (m != NULL) {
2272 ni = (void *)m->m_pkthdr.rcvif;
2273 m->m_pkthdr.rcvif = NULL;
2274 goto sendit;
2275 }
2276 if (ic->ic_state != IEEE80211_S_RUN)
2277 break;
2278
2279 /* Encapsulate and send data frames. */
2280 IFQ_DEQUEUE(&ifp->if_snd, m);
2281 if (m == NULL)
2282 break;
2283 if (m->m_len < (int)sizeof(*eh) &&
2284 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2285 ifp->if_oerrors++;
2286 continue;
2287 }
2288 eh = mtod(m, struct ether_header *);
2289 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2290 if (ni == NULL) {
2291 m_freem(m);
2292 ifp->if_oerrors++;
2293 continue;
2294 }
2295
2296 bpf_mtap(ifp, m);
2297
2298 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
2299 ieee80211_free_node(ni);
2300 ifp->if_oerrors++;
2301 continue;
2302 }
2303 sendit:
2304 bpf_mtap3(ic->ic_rawbpf, m);
2305
2306 if (urtwn_tx(sc, m, ni) != 0) {
2307 ieee80211_free_node(ni);
2308 ifp->if_oerrors++;
2309 continue;
2310 }
2311
2312 sc->tx_timer = 5;
2313 ifp->if_timer = 1;
2314 }
2315 }
2316
2317 static void
2318 urtwn_watchdog(struct ifnet *ifp)
2319 {
2320 struct urtwn_softc *sc = ifp->if_softc;
2321
2322 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2323
2324 ifp->if_timer = 0;
2325
2326 if (sc->tx_timer > 0) {
2327 if (--sc->tx_timer == 0) {
2328 aprint_error_dev(sc->sc_dev, "device timeout\n");
2329 /* urtwn_init(ifp); XXX needs a process context! */
2330 ifp->if_oerrors++;
2331 return;
2332 }
2333 ifp->if_timer = 1;
2334 }
2335 ieee80211_watchdog(&sc->sc_ic);
2336 }
2337
2338 static int
2339 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2340 {
2341 struct urtwn_softc *sc = ifp->if_softc;
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 struct ifaddr *ifa;
2344 int s, error = 0;
2345
2346 DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
2347 device_xname(sc->sc_dev), __func__, cmd, data));
2348
2349 s = splnet();
2350
2351 switch (cmd) {
2352 case SIOCSIFADDR:
2353 ifa = (struct ifaddr *)data;
2354 ifp->if_flags |= IFF_UP;
2355 #ifdef INET
2356 if (ifa->ifa_addr->sa_family == AF_INET)
2357 arp_ifinit(&ic->ic_ac, ifa);
2358 #endif
2359 /*FALLTHROUGH*/
2360 case SIOCSIFFLAGS:
2361 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2362 break;
2363 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2364 case IFF_UP|IFF_RUNNING:
2365 break;
2366 case IFF_UP:
2367 urtwn_init(ifp);
2368 break;
2369 case IFF_RUNNING:
2370 urtwn_stop(ifp, 1);
2371 break;
2372 case 0:
2373 break;
2374 }
2375 break;
2376
2377 case SIOCADDMULTI:
2378 case SIOCDELMULTI:
2379 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2380 /* setup multicast filter, etc */
2381 error = 0;
2382 }
2383 break;
2384
2385 case SIOCS80211CHANNEL:
2386 error = ieee80211_ioctl(ic, cmd, data);
2387 if (error == ENETRESET &&
2388 ic->ic_opmode == IEEE80211_M_MONITOR) {
2389 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2390 (IFF_UP | IFF_RUNNING)) {
2391 urtwn_set_chan(sc, ic->ic_ibss_chan,
2392 IEEE80211_HTINFO_2NDCHAN_NONE);
2393 }
2394 error = 0;
2395 }
2396 break;
2397
2398 default:
2399 error = ieee80211_ioctl(ic, cmd, data);
2400 break;
2401 }
2402 if (error == ENETRESET) {
2403 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2404 (IFF_UP | IFF_RUNNING)) {
2405 urtwn_init(ifp);
2406 }
2407 error = 0;
2408 }
2409
2410 splx(s);
2411
2412 return (error);
2413 }
2414
2415 static int
2416 urtwn_power_on(struct urtwn_softc *sc)
2417 {
2418 uint32_t reg;
2419 int ntries;
2420
2421 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2422
2423 /* Wait for autoload done bit. */
2424 for (ntries = 0; ntries < 1000; ntries++) {
2425 if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2426 break;
2427 DELAY(5);
2428 }
2429 if (ntries == 1000) {
2430 aprint_error_dev(sc->sc_dev,
2431 "timeout waiting for chip autoload\n");
2432 return (ETIMEDOUT);
2433 }
2434
2435 /* Unlock ISO/CLK/Power control register. */
2436 urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2437 /* Move SPS into PWM mode. */
2438 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2439 DELAY(100);
2440
2441 reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2442 if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2443 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2444 reg | R92C_LDOV12D_CTRL_LDV12_EN);
2445 DELAY(100);
2446 urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2447 urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2448 ~R92C_SYS_ISO_CTRL_MD2PP);
2449 }
2450
2451 /* Auto enable WLAN. */
2452 urtwn_write_2(sc, R92C_APS_FSMCO,
2453 urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2454 for (ntries = 0; ntries < 1000; ntries++) {
2455 if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2456 R92C_APS_FSMCO_APFM_ONMAC))
2457 break;
2458 DELAY(5);
2459 }
2460 if (ntries == 1000) {
2461 aprint_error_dev(sc->sc_dev,
2462 "timeout waiting for MAC auto ON\n");
2463 return (ETIMEDOUT);
2464 }
2465
2466 /* Enable radio, GPIO and LED functions. */
2467 KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
2468 R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
2469 urtwn_write_2(sc, R92C_APS_FSMCO,
2470 R92C_APS_FSMCO_AFSM_HSUS |
2471 R92C_APS_FSMCO_PDN_EN |
2472 R92C_APS_FSMCO_PFM_ALDN);
2473
2474 /* Release RF digital isolation. */
2475 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2476 urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2477
2478 /* Initialize MAC. */
2479 urtwn_write_1(sc, R92C_APSD_CTRL,
2480 urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2481 for (ntries = 0; ntries < 200; ntries++) {
2482 if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2483 R92C_APSD_CTRL_OFF_STATUS))
2484 break;
2485 DELAY(5);
2486 }
2487 if (ntries == 200) {
2488 aprint_error_dev(sc->sc_dev,
2489 "timeout waiting for MAC initialization\n");
2490 return (ETIMEDOUT);
2491 }
2492
2493 /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2494 reg = urtwn_read_2(sc, R92C_CR);
2495 reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2496 R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2497 R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2498 R92C_CR_ENSEC;
2499 urtwn_write_2(sc, R92C_CR, reg);
2500
2501 urtwn_write_1(sc, 0xfe10, 0x19);
2502 return (0);
2503 }
2504
2505 static int
2506 urtwn_llt_init(struct urtwn_softc *sc)
2507 {
2508 int i, error;
2509
2510 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2511
2512 /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
2513 for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
2514 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2515 return (error);
2516 }
2517 /* NB: 0xff indicates end-of-list. */
2518 if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2519 return (error);
2520 /*
2521 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
2522 * as ring buffer.
2523 */
2524 for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
2525 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2526 return (error);
2527 }
2528 /* Make the last page point to the beginning of the ring buffer. */
2529 error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
2530 return (error);
2531 }
2532
2533 static void
2534 urtwn_fw_reset(struct urtwn_softc *sc)
2535 {
2536 uint16_t reg;
2537 int ntries;
2538
2539 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2540
2541 /* Tell 8051 to reset itself. */
2542 urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2543
2544 /* Wait until 8051 resets by itself. */
2545 for (ntries = 0; ntries < 100; ntries++) {
2546 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2547 if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2548 return;
2549 DELAY(50);
2550 }
2551 /* Force 8051 reset. */
2552 urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2553 }
2554
2555 static int
2556 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
2557 {
2558 uint32_t reg;
2559 int off, mlen, error = 0;
2560
2561 DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
2562 device_xname(sc->sc_dev), __func__, page, buf, len));
2563
2564 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2565 reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2566 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2567
2568 off = R92C_FW_START_ADDR;
2569 while (len > 0) {
2570 if (len > 196)
2571 mlen = 196;
2572 else if (len > 4)
2573 mlen = 4;
2574 else
2575 mlen = 1;
2576 error = urtwn_write_region(sc, off, buf, mlen);
2577 if (error != 0)
2578 break;
2579 off += mlen;
2580 buf += mlen;
2581 len -= mlen;
2582 }
2583 return (error);
2584 }
2585
2586 static int
2587 urtwn_load_firmware(struct urtwn_softc *sc)
2588 {
2589 firmware_handle_t fwh;
2590 const struct r92c_fw_hdr *hdr;
2591 const char *name;
2592 u_char *fw, *ptr;
2593 size_t len;
2594 uint32_t reg;
2595 int mlen, ntries, page, error;
2596
2597 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2598
2599 /* Read firmware image from the filesystem. */
2600 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2601 URTWN_CHIP_UMC_A_CUT)
2602 name = "rtl8192cfwU.bin";
2603 else
2604 name = "rtl8192cfw.bin";
2605 if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
2606 aprint_error_dev(sc->sc_dev,
2607 "failed loadfirmware of file %s (error %d)\n", name, error);
2608 return (error);
2609 }
2610 len = firmware_get_size(fwh);
2611 fw = firmware_malloc(len);
2612 if (fw == NULL) {
2613 aprint_error_dev(sc->sc_dev,
2614 "failed to allocate firmware memory\n");
2615 firmware_close(fwh);
2616 return (ENOMEM);
2617 }
2618 error = firmware_read(fwh, 0, fw, len);
2619 firmware_close(fwh);
2620 if (error != 0) {
2621 aprint_error_dev(sc->sc_dev,
2622 "failed to read firmware (error %d)\n", error);
2623 firmware_free(fw, 0);
2624 return (error);
2625 }
2626
2627 ptr = fw;
2628 hdr = (const struct r92c_fw_hdr *)ptr;
2629 /* Check if there is a valid FW header and skip it. */
2630 if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2631 (le16toh(hdr->signature) >> 4) == 0x92c) {
2632 DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
2633 device_xname(sc->sc_dev), __func__,
2634 le16toh(hdr->version), le16toh(hdr->subversion),
2635 hdr->month, hdr->date, hdr->hour, hdr->minute));
2636 ptr += sizeof(*hdr);
2637 len -= sizeof(*hdr);
2638 }
2639
2640 if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
2641 urtwn_fw_reset(sc);
2642 urtwn_write_1(sc, R92C_MCUFWDL, 0);
2643 }
2644
2645 /* download enabled */
2646 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2647 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2648 R92C_SYS_FUNC_EN_CPUEN);
2649 urtwn_write_1(sc, R92C_MCUFWDL,
2650 urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2651 urtwn_write_1(sc, R92C_MCUFWDL + 2,
2652 urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2653
2654 /* download firmware */
2655 for (page = 0; len > 0; page++) {
2656 mlen = MIN(len, R92C_FW_PAGE_SIZE);
2657 error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2658 if (error != 0) {
2659 aprint_error_dev(sc->sc_dev,
2660 "could not load firmware page %d\n", page);
2661 goto fail;
2662 }
2663 ptr += mlen;
2664 len -= mlen;
2665 }
2666
2667 /* download disable */
2668 urtwn_write_1(sc, R92C_MCUFWDL,
2669 urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2670 urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2671
2672 /* Wait for checksum report. */
2673 for (ntries = 0; ntries < 1000; ntries++) {
2674 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2675 break;
2676 DELAY(5);
2677 }
2678 if (ntries == 1000) {
2679 aprint_error_dev(sc->sc_dev,
2680 "timeout waiting for checksum report\n");
2681 error = ETIMEDOUT;
2682 goto fail;
2683 }
2684
2685 /* Wait for firmware readiness. */
2686 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2687 reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2688 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2689 for (ntries = 0; ntries < 1000; ntries++) {
2690 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2691 break;
2692 DELAY(5);
2693 }
2694 if (ntries == 1000) {
2695 aprint_error_dev(sc->sc_dev,
2696 "timeout waiting for firmware readiness\n");
2697 error = ETIMEDOUT;
2698 goto fail;
2699 }
2700 fail:
2701 firmware_free(fw, 0);
2702 return (error);
2703 }
2704
2705 static int
2706 urtwn_dma_init(struct urtwn_softc *sc)
2707 {
2708 int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2709 uint32_t reg;
2710 int error;
2711
2712 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2713
2714 /* Initialize LLT table. */
2715 error = urtwn_llt_init(sc);
2716 if (error != 0)
2717 return (error);
2718
2719 /* Get Tx queues to USB endpoints mapping. */
2720 hashq = hasnq = haslq = 0;
2721 reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2722 DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
2723 device_xname(sc->sc_dev), __func__, reg));
2724 if (MS(reg, R92C_USB_EP_HQ) != 0)
2725 hashq = 1;
2726 if (MS(reg, R92C_USB_EP_NQ) != 0)
2727 hasnq = 1;
2728 if (MS(reg, R92C_USB_EP_LQ) != 0)
2729 haslq = 1;
2730 nqueues = hashq + hasnq + haslq;
2731 if (nqueues == 0)
2732 return (EIO);
2733 /* Get the number of pages for each queue. */
2734 nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2735 /* The remaining pages are assigned to the high priority queue. */
2736 nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2737
2738 /* Set number of pages for normal priority queue. */
2739 urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2740 urtwn_write_4(sc, R92C_RQPN,
2741 /* Set number of pages for public queue. */
2742 SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2743 /* Set number of pages for high priority queue. */
2744 SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2745 /* Set number of pages for low priority queue. */
2746 SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2747 /* Load values. */
2748 R92C_RQPN_LD);
2749
2750 urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2751 urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2752 urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2753 urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2754 urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2755
2756 /* Set queue to USB pipe mapping. */
2757 reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2758 reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2759 if (nqueues == 1) {
2760 if (hashq) {
2761 reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2762 } else if (hasnq) {
2763 reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2764 } else {
2765 reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2766 }
2767 } else if (nqueues == 2) {
2768 /* All 2-endpoints configs have a high priority queue. */
2769 if (!hashq) {
2770 return (EIO);
2771 }
2772 if (hasnq) {
2773 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2774 } else {
2775 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2776 }
2777 } else {
2778 reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2779 }
2780 urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2781
2782 /* Set Tx/Rx transfer page boundary. */
2783 urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2784
2785 /* Set Tx/Rx transfer page size. */
2786 urtwn_write_1(sc, R92C_PBP,
2787 SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
2788 return (0);
2789 }
2790
2791 static void
2792 urtwn_mac_init(struct urtwn_softc *sc)
2793 {
2794 int i;
2795
2796 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2797
2798 /* Write MAC initialization values. */
2799 for (i = 0; i < (int)__arraycount(rtl8192cu_mac); i++)
2800 urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
2801 }
2802
2803 static void
2804 urtwn_bb_init(struct urtwn_softc *sc)
2805 {
2806 const struct urtwn_bb_prog *prog;
2807 uint32_t reg;
2808 int i;
2809
2810 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2811
2812 /* Enable BB and RF. */
2813 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2814 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2815 R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2816 R92C_SYS_FUNC_EN_DIO_RF);
2817
2818 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
2819 urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
2820
2821 urtwn_write_1(sc, R92C_RF_CTRL,
2822 R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2823 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2824 R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2825 R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2826
2827 urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2828 urtwn_write_1(sc, 0x15, 0xe9);
2829 urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2830
2831 /* Select BB programming based on board type. */
2832 if (!(sc->chip & URTWN_CHIP_92C)) {
2833 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2834 prog = &rtl8188ce_bb_prog;
2835 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2836 prog = &rtl8188ru_bb_prog;
2837 } else {
2838 prog = &rtl8188cu_bb_prog;
2839 }
2840 } else {
2841 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2842 prog = &rtl8192ce_bb_prog;
2843 } else {
2844 prog = &rtl8192cu_bb_prog;
2845 }
2846 }
2847 /* Write BB initialization values. */
2848 for (i = 0; i < prog->count; i++) {
2849 /* additional delay depend on registers */
2850 switch (prog->regs[i]) {
2851 case 0xfe:
2852 usbd_delay_ms(sc->sc_udev, 50);
2853 break;
2854 case 0xfd:
2855 usbd_delay_ms(sc->sc_udev, 5);
2856 break;
2857 case 0xfc:
2858 usbd_delay_ms(sc->sc_udev, 1);
2859 break;
2860 case 0xfb:
2861 DELAY(50);
2862 break;
2863 case 0xfa:
2864 DELAY(5);
2865 break;
2866 case 0xf9:
2867 DELAY(1);
2868 break;
2869 }
2870 urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
2871 DELAY(1);
2872 }
2873
2874 if (sc->chip & URTWN_CHIP_92C_1T2R) {
2875 /* 8192C 1T only configuration. */
2876 reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
2877 reg = (reg & ~0x00000003) | 0x2;
2878 urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
2879
2880 reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
2881 reg = (reg & ~0x00300033) | 0x00200022;
2882 urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
2883
2884 reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
2885 reg = (reg & ~0xff000000) | (0x45 << 24);
2886 urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
2887
2888 reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
2889 reg = (reg & ~0x000000ff) | 0x23;
2890 urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
2891
2892 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
2893 reg = (reg & ~0x00000030) | (1 << 4);
2894 urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
2895
2896 reg = urtwn_bb_read(sc, 0xe74);
2897 reg = (reg & ~0x0c000000) | (2 << 26);
2898 urtwn_bb_write(sc, 0xe74, reg);
2899 reg = urtwn_bb_read(sc, 0xe78);
2900 reg = (reg & ~0x0c000000) | (2 << 26);
2901 urtwn_bb_write(sc, 0xe78, reg);
2902 reg = urtwn_bb_read(sc, 0xe7c);
2903 reg = (reg & ~0x0c000000) | (2 << 26);
2904 urtwn_bb_write(sc, 0xe7c, reg);
2905 reg = urtwn_bb_read(sc, 0xe80);
2906 reg = (reg & ~0x0c000000) | (2 << 26);
2907 urtwn_bb_write(sc, 0xe80, reg);
2908 reg = urtwn_bb_read(sc, 0xe88);
2909 reg = (reg & ~0x0c000000) | (2 << 26);
2910 urtwn_bb_write(sc, 0xe88, reg);
2911 }
2912
2913 /* Write AGC values. */
2914 for (i = 0; i < prog->agccount; i++) {
2915 urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
2916 DELAY(1);
2917 }
2918
2919 if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
2920 R92C_HSSI_PARAM2_CCK_HIPWR) {
2921 SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
2922 }
2923 }
2924
2925 static void
2926 urtwn_rf_init(struct urtwn_softc *sc)
2927 {
2928 const struct urtwn_rf_prog *prog;
2929 uint32_t reg, mask, saved;
2930 int i, j, idx;
2931
2932 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2933
2934 /* Select RF programming based on board type. */
2935 if (!(sc->chip & URTWN_CHIP_92C)) {
2936 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2937 prog = rtl8188ce_rf_prog;
2938 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2939 prog = rtl8188ru_rf_prog;
2940 } else {
2941 prog = rtl8188cu_rf_prog;
2942 }
2943 } else {
2944 prog = rtl8192ce_rf_prog;
2945 }
2946
2947 for (i = 0; i < sc->nrxchains; i++) {
2948 /* Save RF_ENV control type. */
2949 idx = i / 2;
2950 mask = 0xffffU << ((i % 2) * 16);
2951 saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
2952
2953 /* Set RF_ENV enable. */
2954 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2955 reg |= 0x100000;
2956 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2957 DELAY(1);
2958
2959 /* Set RF_ENV output high. */
2960 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2961 reg |= 0x10;
2962 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2963 DELAY(1);
2964
2965 /* Set address and data lengths of RF registers. */
2966 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2967 reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
2968 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2969 DELAY(1);
2970 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2971 reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
2972 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2973 DELAY(1);
2974
2975 /* Write RF initialization values for this chain. */
2976 for (j = 0; j < prog[i].count; j++) {
2977 if (prog[i].regs[j] >= 0xf9 &&
2978 prog[i].regs[j] <= 0xfe) {
2979 /*
2980 * These are fake RF registers offsets that
2981 * indicate a delay is required.
2982 */
2983 usbd_delay_ms(sc->sc_udev, 50);
2984 continue;
2985 }
2986 urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
2987 DELAY(1);
2988 }
2989
2990 /* Restore RF_ENV control type. */
2991 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
2992 urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
2993 }
2994
2995 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2996 URTWN_CHIP_UMC_A_CUT) {
2997 urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
2998 urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
2999 }
3000
3001 /* Cache RF register CHNLBW. */
3002 for (i = 0; i < 2; i++) {
3003 sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
3004 }
3005 }
3006
3007 static void
3008 urtwn_cam_init(struct urtwn_softc *sc)
3009 {
3010 uint32_t content, command;
3011 uint8_t idx;
3012 int i;
3013
3014 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3015
3016 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3017 content = (idx & 3)
3018 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3019 | R92C_CAM_VALID;
3020
3021 command = R92C_CAMCMD_POLLING
3022 | R92C_CAMCMD_WRITE
3023 | R92C_CAM_CTL0(idx);
3024
3025 urtwn_write_4(sc, R92C_CAMWRITE, content);
3026 urtwn_write_4(sc, R92C_CAMCMD, command);
3027 }
3028
3029 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3030 for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
3031 if (i == 0) {
3032 content = (idx & 3)
3033 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3034 | R92C_CAM_VALID;
3035 } else {
3036 content = 0;
3037 }
3038
3039 command = R92C_CAMCMD_POLLING
3040 | R92C_CAMCMD_WRITE
3041 | R92C_CAM_CTL0(idx)
3042 | (u_int)i;
3043
3044 urtwn_write_4(sc, R92C_CAMWRITE, content);
3045 urtwn_write_4(sc, R92C_CAMCMD, command);
3046 }
3047 }
3048
3049 /* Invalidate all CAM entries. */
3050 urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
3051 }
3052
3053 static void
3054 urtwn_pa_bias_init(struct urtwn_softc *sc)
3055 {
3056 uint8_t reg;
3057 int i;
3058
3059 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3060
3061 for (i = 0; i < sc->nrxchains; i++) {
3062 if (sc->pa_setting & (1U << i))
3063 continue;
3064
3065 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
3066 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
3067 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
3068 urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
3069 }
3070 if (!(sc->pa_setting & 0x10)) {
3071 reg = urtwn_read_1(sc, 0x16);
3072 reg = (reg & ~0xf0) | 0x90;
3073 urtwn_write_1(sc, 0x16, reg);
3074 }
3075 }
3076
3077 static void
3078 urtwn_rxfilter_init(struct urtwn_softc *sc)
3079 {
3080
3081 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3082
3083 /* Initialize Rx filter. */
3084 /* TODO: use better filter for monitor mode. */
3085 urtwn_write_4(sc, R92C_RCR,
3086 R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
3087 R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
3088 R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
3089 /* Accept all multicast frames. */
3090 urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
3091 urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
3092 /* Accept all management frames. */
3093 urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
3094 /* Reject all control frames. */
3095 urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
3096 /* Accept all data frames. */
3097 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
3098 }
3099
3100 static void
3101 urtwn_edca_init(struct urtwn_softc *sc)
3102 {
3103
3104 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3105
3106 /* set spec SIFS (used in NAV) */
3107 urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
3108 urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
3109
3110 /* set SIFS CCK/OFDM */
3111 urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
3112 urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
3113
3114 /* TXOP */
3115 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
3116 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
3117 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
3118 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
3119 }
3120
3121 static void
3122 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
3123 uint16_t power[URTWN_RIDX_COUNT])
3124 {
3125 uint32_t reg;
3126
3127 DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
3128 __func__, chain));
3129
3130 /* Write per-CCK rate Tx power. */
3131 if (chain == 0) {
3132 reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
3133 reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
3134 urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
3135
3136 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3137 reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
3138 reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
3139 reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
3140 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3141 } else {
3142 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
3143 reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
3144 reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
3145 reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
3146 urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
3147
3148 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3149 reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
3150 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3151 }
3152 /* Write per-OFDM rate Tx power. */
3153 urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
3154 SM(R92C_TXAGC_RATE06, power[ 4]) |
3155 SM(R92C_TXAGC_RATE09, power[ 5]) |
3156 SM(R92C_TXAGC_RATE12, power[ 6]) |
3157 SM(R92C_TXAGC_RATE18, power[ 7]));
3158 urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
3159 SM(R92C_TXAGC_RATE24, power[ 8]) |
3160 SM(R92C_TXAGC_RATE36, power[ 9]) |
3161 SM(R92C_TXAGC_RATE48, power[10]) |
3162 SM(R92C_TXAGC_RATE54, power[11]));
3163 /* Write per-MCS Tx power. */
3164 urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
3165 SM(R92C_TXAGC_MCS00, power[12]) |
3166 SM(R92C_TXAGC_MCS01, power[13]) |
3167 SM(R92C_TXAGC_MCS02, power[14]) |
3168 SM(R92C_TXAGC_MCS03, power[15]));
3169 urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
3170 SM(R92C_TXAGC_MCS04, power[16]) |
3171 SM(R92C_TXAGC_MCS05, power[17]) |
3172 SM(R92C_TXAGC_MCS06, power[18]) |
3173 SM(R92C_TXAGC_MCS07, power[19]));
3174 urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
3175 SM(R92C_TXAGC_MCS08, power[20]) |
3176 SM(R92C_TXAGC_MCS09, power[21]) |
3177 SM(R92C_TXAGC_MCS10, power[22]) |
3178 SM(R92C_TXAGC_MCS11, power[23]));
3179 urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
3180 SM(R92C_TXAGC_MCS12, power[24]) |
3181 SM(R92C_TXAGC_MCS13, power[25]) |
3182 SM(R92C_TXAGC_MCS14, power[26]) |
3183 SM(R92C_TXAGC_MCS15, power[27]));
3184 }
3185
3186 static void
3187 urtwn_get_txpower(struct urtwn_softc *sc, int chain, u_int chan, u_int ht40m,
3188 uint16_t power[URTWN_RIDX_COUNT])
3189 {
3190 struct r92c_rom *rom = &sc->rom;
3191 uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
3192 const struct urtwn_txpwr *base;
3193 int ridx, group;
3194
3195 DPRINTFN(DBG_FN, ("%s: %s: chain=%d, chan=%d\n",
3196 device_xname(sc->sc_dev), __func__, chain, chan));
3197
3198 /* Determine channel group. */
3199 if (chan <= 3) {
3200 group = 0;
3201 } else if (chan <= 9) {
3202 group = 1;
3203 } else {
3204 group = 2;
3205 }
3206
3207 /* Get original Tx power based on board type and RF chain. */
3208 if (!(sc->chip & URTWN_CHIP_92C)) {
3209 if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3210 base = &rtl8188ru_txagc[chain];
3211 } else {
3212 base = &rtl8192cu_txagc[chain];
3213 }
3214 } else {
3215 base = &rtl8192cu_txagc[chain];
3216 }
3217
3218 memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3219 if (sc->regulatory == 0) {
3220 for (ridx = 0; ridx <= 3; ridx++) {
3221 power[ridx] = base->pwr[0][ridx];
3222 }
3223 }
3224 for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3225 if (sc->regulatory == 3) {
3226 power[ridx] = base->pwr[0][ridx];
3227 /* Apply vendor limits. */
3228 if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
3229 maxpow = rom->ht40_max_pwr[group];
3230 } else {
3231 maxpow = rom->ht20_max_pwr[group];
3232 }
3233 maxpow = (maxpow >> (chain * 4)) & 0xf;
3234 if (power[ridx] > maxpow) {
3235 power[ridx] = maxpow;
3236 }
3237 } else if (sc->regulatory == 1) {
3238 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3239 power[ridx] = base->pwr[group][ridx];
3240 }
3241 } else if (sc->regulatory != 2) {
3242 power[ridx] = base->pwr[0][ridx];
3243 }
3244 }
3245
3246 /* Compute per-CCK rate Tx power. */
3247 cckpow = rom->cck_tx_pwr[chain][group];
3248 for (ridx = 0; ridx <= 3; ridx++) {
3249 power[ridx] += cckpow;
3250 if (power[ridx] > R92C_MAX_TX_PWR) {
3251 power[ridx] = R92C_MAX_TX_PWR;
3252 }
3253 }
3254
3255 htpow = rom->ht40_1s_tx_pwr[chain][group];
3256 if (sc->ntxchains > 1) {
3257 /* Apply reduction for 2 spatial streams. */
3258 diff = rom->ht40_2s_tx_pwr_diff[group];
3259 diff = (diff >> (chain * 4)) & 0xf;
3260 htpow = (htpow > diff) ? htpow - diff : 0;
3261 }
3262
3263 /* Compute per-OFDM rate Tx power. */
3264 diff = rom->ofdm_tx_pwr_diff[group];
3265 diff = (diff >> (chain * 4)) & 0xf;
3266 ofdmpow = htpow + diff; /* HT->OFDM correction. */
3267 for (ridx = 4; ridx <= 11; ridx++) {
3268 power[ridx] += ofdmpow;
3269 if (power[ridx] > R92C_MAX_TX_PWR) {
3270 power[ridx] = R92C_MAX_TX_PWR;
3271 }
3272 }
3273
3274 /* Compute per-MCS Tx power. */
3275 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3276 diff = rom->ht20_tx_pwr_diff[group];
3277 diff = (diff >> (chain * 4)) & 0xf;
3278 htpow += diff; /* HT40->HT20 correction. */
3279 }
3280 for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
3281 power[ridx] += htpow;
3282 if (power[ridx] > R92C_MAX_TX_PWR) {
3283 power[ridx] = R92C_MAX_TX_PWR;
3284 }
3285 }
3286 #ifdef URTWN_DEBUG
3287 if (urtwn_debug & DBG_RF) {
3288 /* Dump per-rate Tx power values. */
3289 printf("%s: %s: Tx power for chain %d:\n",
3290 device_xname(sc->sc_dev), __func__, chain);
3291 for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
3292 printf("%s: %s: Rate %d = %u\n",
3293 device_xname(sc->sc_dev), __func__, ridx,
3294 power[ridx]);
3295 }
3296 }
3297 #endif
3298 }
3299
3300 static void
3301 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
3302 {
3303 uint16_t power[URTWN_RIDX_COUNT];
3304 int i;
3305
3306 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3307
3308 for (i = 0; i < sc->ntxchains; i++) {
3309 /* Compute per-rate Tx power values. */
3310 urtwn_get_txpower(sc, i, chan, ht40m, power);
3311 /* Write per-rate Tx power values to hardware. */
3312 urtwn_write_txpower(sc, i, power);
3313 }
3314 }
3315
3316 static void
3317 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
3318 {
3319 struct ieee80211com *ic = &sc->sc_ic;
3320 u_int chan;
3321 int i;
3322
3323 chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
3324
3325 DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
3326 __func__, chan));
3327
3328 if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
3329 chan += 2;
3330 } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
3331 chan -= 2;
3332 }
3333
3334 /* Set Tx power for this new channel. */
3335 urtwn_set_txpower(sc, chan, ht40m);
3336
3337 for (i = 0; i < sc->nrxchains; i++) {
3338 urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3339 RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3340 }
3341
3342 if (ht40m) {
3343 /* Is secondary channel below or above primary? */
3344 int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
3345 uint32_t reg;
3346
3347 urtwn_write_1(sc, R92C_BWOPMODE,
3348 urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3349
3350 reg = urtwn_read_1(sc, R92C_RRSR + 2);
3351 reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3352 urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
3353
3354 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3355 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3356 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3357 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3358
3359 /* Set CCK side band. */
3360 reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3361 reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3362 urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3363
3364 reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3365 reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3366 urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3367
3368 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3369 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3370 ~R92C_FPGA0_ANAPARAM2_CBW20);
3371
3372 reg = urtwn_bb_read(sc, 0x818);
3373 reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3374 urtwn_bb_write(sc, 0x818, reg);
3375
3376 /* Select 40MHz bandwidth. */
3377 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3378 (sc->rf_chnlbw[0] & ~0xfff) | chan);
3379 } else {
3380 urtwn_write_1(sc, R92C_BWOPMODE,
3381 urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3382
3383 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3384 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3385 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3386 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3387
3388 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3389 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3390 R92C_FPGA0_ANAPARAM2_CBW20);
3391
3392 /* Select 20MHz bandwidth. */
3393 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3394 (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
3395 }
3396 }
3397
3398 static void
3399 urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
3400 {
3401
3402 DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
3403 __func__, inited));
3404
3405 /* TODO */
3406 }
3407
3408 static void
3409 urtwn_lc_calib(struct urtwn_softc *sc)
3410 {
3411 uint32_t rf_ac[2];
3412 uint8_t txmode;
3413 int i;
3414
3415 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3416
3417 txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3418 if ((txmode & 0x70) != 0) {
3419 /* Disable all continuous Tx. */
3420 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3421
3422 /* Set RF mode to standby mode. */
3423 for (i = 0; i < sc->nrxchains; i++) {
3424 rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3425 urtwn_rf_write(sc, i, R92C_RF_AC,
3426 RW(rf_ac[i], R92C_RF_AC_MODE,
3427 R92C_RF_AC_MODE_STANDBY));
3428 }
3429 } else {
3430 /* Block all Tx queues. */
3431 urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3432 }
3433 /* Start calibration. */
3434 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3435 urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3436
3437 /* Give calibration the time to complete. */
3438 usbd_delay_ms(sc->sc_udev, 100);
3439
3440 /* Restore configuration. */
3441 if ((txmode & 0x70) != 0) {
3442 /* Restore Tx mode. */
3443 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3444 /* Restore RF mode. */
3445 for (i = 0; i < sc->nrxchains; i++) {
3446 urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3447 }
3448 } else {
3449 /* Unblock all Tx queues. */
3450 urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3451 }
3452 }
3453
3454 static void
3455 urtwn_temp_calib(struct urtwn_softc *sc)
3456 {
3457 int temp;
3458
3459 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3460
3461 if (sc->thcal_state == 0) {
3462 /* Start measuring temperature. */
3463 DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
3464 device_xname(sc->sc_dev), __func__));
3465 urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
3466 sc->thcal_state = 1;
3467 return;
3468 }
3469 sc->thcal_state = 0;
3470
3471 /* Read measured temperature. */
3472 temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
3473 DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
3474 __func__, temp));
3475 if (temp == 0) /* Read failed, skip. */
3476 return;
3477
3478 /*
3479 * Redo LC calibration if temperature changed significantly since
3480 * last calibration.
3481 */
3482 if (sc->thcal_lctemp == 0) {
3483 /* First LC calibration is performed in urtwn_init(). */
3484 sc->thcal_lctemp = temp;
3485 } else if (abs(temp - sc->thcal_lctemp) > 1) {
3486 DPRINTFN(DBG_RF,
3487 ("%s: %s: LC calib triggered by temp: %d -> %d\n",
3488 device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
3489 temp));
3490 urtwn_lc_calib(sc);
3491 /* Record temperature of last LC calibration. */
3492 sc->thcal_lctemp = temp;
3493 }
3494 }
3495
3496 static int
3497 urtwn_init(struct ifnet *ifp)
3498 {
3499 struct urtwn_softc *sc = ifp->if_softc;
3500 struct ieee80211com *ic = &sc->sc_ic;
3501 struct urtwn_rx_data *data;
3502 uint32_t reg;
3503 int i, error;
3504
3505 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3506
3507 urtwn_stop(ifp, 0);
3508
3509 mutex_enter(&sc->sc_task_mtx);
3510 /* Init host async commands ring. */
3511 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3512 mutex_exit(&sc->sc_task_mtx);
3513
3514 mutex_enter(&sc->sc_fwcmd_mtx);
3515 /* Init firmware commands ring. */
3516 sc->fwcur = 0;
3517 mutex_exit(&sc->sc_fwcmd_mtx);
3518
3519 if (!(sc->sc_flags & URTWN_FLAG_INIT_ONCE)) {
3520 /* Allocate Tx/Rx buffers. */
3521 error = urtwn_alloc_rx_list(sc);
3522 if (error != 0) {
3523 aprint_error_dev(sc->sc_dev,
3524 "could not allocate Rx buffers\n");
3525 goto fail;
3526 }
3527 error = urtwn_alloc_tx_list(sc);
3528 if (error != 0) {
3529 aprint_error_dev(sc->sc_dev,
3530 "could not allocate Tx buffers\n");
3531 goto fail;
3532 }
3533 sc->sc_flags |= URTWN_FLAG_INIT_ONCE;
3534 }
3535
3536 /* Power on adapter. */
3537 error = urtwn_power_on(sc);
3538 if (error != 0)
3539 goto fail;
3540
3541 /* Initialize DMA. */
3542 error = urtwn_dma_init(sc);
3543 if (error != 0)
3544 goto fail;
3545
3546 /* Set info size in Rx descriptors (in 64-bit words). */
3547 urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3548
3549 /* Init interrupts. */
3550 urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3551 urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3552
3553 /* Set MAC address. */
3554 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3555 urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
3556
3557 /* Set initial network type. */
3558 reg = urtwn_read_4(sc, R92C_CR);
3559 switch (ic->ic_opmode) {
3560 case IEEE80211_M_STA:
3561 default:
3562 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3563 break;
3564
3565 case IEEE80211_M_IBSS:
3566 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
3567 break;
3568 }
3569 urtwn_write_4(sc, R92C_CR, reg);
3570
3571 urtwn_rxfilter_init(sc);
3572
3573 /* Set response rate */
3574 reg = urtwn_read_4(sc, R92C_RRSR);
3575 reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3576 urtwn_write_4(sc, R92C_RRSR, reg);
3577
3578 /* SIFS (used in NAV) */
3579 urtwn_write_2(sc, R92C_SPEC_SIFS,
3580 SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
3581
3582 /* Set short/long retry limits. */
3583 urtwn_write_2(sc, R92C_RL,
3584 SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3585
3586 /* Initialize EDCA parameters. */
3587 urtwn_edca_init(sc);
3588
3589 /* Setup rate fallback. */
3590 urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3591 urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3592 urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3593 urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3594
3595 urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3596 urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3597 R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3598 /* Set ACK timeout. */
3599 urtwn_write_1(sc, R92C_ACKTO, 0x40);
3600
3601 /* Setup USB aggregation. */
3602 /* Tx */
3603 reg = urtwn_read_4(sc, R92C_TDECTRL);
3604 reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3605 urtwn_write_4(sc, R92C_TDECTRL, reg);
3606 /* Rx */
3607 urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3608 urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3609 R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3610 urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3611 urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
3612 ~R92C_USB_SPECIAL_OPTION_AGG_EN);
3613 urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3614 urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3615
3616 /* Initialize beacon parameters. */
3617 urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3618 urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
3619 urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
3620 urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3621
3622 /* Setup AMPDU aggregation. */
3623 urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
3624 urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3625 urtwn_write_2(sc, 0x4ca, 0x0708);
3626
3627 urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3628 urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
3629
3630 /* Load 8051 microcode. */
3631 error = urtwn_load_firmware(sc);
3632 if (error != 0)
3633 goto fail;
3634 SET(sc->sc_flags, URTWN_FLAG_FWREADY);
3635
3636 /* Initialize MAC/BB/RF blocks. */
3637 urtwn_mac_init(sc);
3638 urtwn_write_4(sc, R92C_RCR,
3639 urtwn_read_4(sc, R92C_RCR) & ~R92C_RCR_ADF);
3640 urtwn_bb_init(sc);
3641 urtwn_rf_init(sc);
3642
3643 /* Turn CCK and OFDM blocks on. */
3644 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3645 reg |= R92C_RFMOD_CCK_EN;
3646 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3647 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3648 reg |= R92C_RFMOD_OFDM_EN;
3649 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3650
3651 /* Clear per-station keys table. */
3652 urtwn_cam_init(sc);
3653
3654 /* Enable hardware sequence numbering. */
3655 urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3656
3657 /* Perform LO and IQ calibrations. */
3658 urtwn_iq_calib(sc, sc->iqk_inited);
3659 sc->iqk_inited = true;
3660
3661 /* Perform LC calibration. */
3662 urtwn_lc_calib(sc);
3663
3664 /* Fix USB interference issue. */
3665 urtwn_write_1(sc, 0xfe40, 0xe0);
3666 urtwn_write_1(sc, 0xfe41, 0x8d);
3667 urtwn_write_1(sc, 0xfe42, 0x80);
3668 urtwn_write_4(sc, 0x20c, 0xfd0320);
3669
3670 urtwn_pa_bias_init(sc);
3671
3672 if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
3673 /* 1T1R */
3674 urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
3675 urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
3676 }
3677
3678 /* Initialize GPIO setting. */
3679 urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3680 urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3681
3682 /* Fix for lower temperature. */
3683 urtwn_write_1(sc, 0x15, 0xe9);
3684
3685 /* Set default channel. */
3686 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
3687 urtwn_set_chan(sc, ic->ic_ibss_chan, IEEE80211_HTINFO_2NDCHAN_NONE);
3688
3689 /* Queue Rx xfers. */
3690 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
3691 data = &sc->rx_data[i];
3692 usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
3693 URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3694 USBD_NO_TIMEOUT, urtwn_rxeof);
3695 error = usbd_transfer(data->xfer);
3696 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
3697 error != USBD_IN_PROGRESS))
3698 goto fail;
3699 }
3700
3701 /* We're ready to go. */
3702 ifp->if_flags &= ~IFF_OACTIVE;
3703 ifp->if_flags |= IFF_RUNNING;
3704
3705 if (ic->ic_opmode == IEEE80211_M_MONITOR)
3706 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3707 else
3708 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3709 return (0);
3710
3711 fail:
3712 urtwn_stop(ifp, 1);
3713 return (error);
3714 }
3715
3716 static void
3717 urtwn_stop(struct ifnet *ifp, int disable)
3718 {
3719 struct urtwn_softc *sc = ifp->if_softc;
3720 struct ieee80211com *ic = &sc->sc_ic;
3721 int i, s;
3722
3723 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3724
3725 sc->tx_timer = 0;
3726 ifp->if_timer = 0;
3727 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3728
3729 s = splusb();
3730 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3731 urtwn_wait_async(sc);
3732 splx(s);
3733
3734 callout_stop(&sc->sc_scan_to);
3735 callout_stop(&sc->sc_calib_to);
3736
3737 /* Abort Tx. */
3738 for (i = 0; i < R92C_MAX_EPOUT; i++) {
3739 if (sc->tx_pipe[i] != NULL)
3740 usbd_abort_pipe(sc->tx_pipe[i]);
3741 }
3742
3743 /* Stop Rx pipe. */
3744 usbd_abort_pipe(sc->rx_pipe);
3745
3746 if (disable)
3747 urtwn_chip_stop(sc);
3748 }
3749
3750 static void
3751 urtwn_chip_stop(struct urtwn_softc *sc)
3752 {
3753 uint32_t reg;
3754 bool disabled = true;
3755
3756 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3757
3758 /*
3759 * RF Off Sequence
3760 */
3761 /* Pause MAC TX queue */
3762 urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
3763
3764 /* Disable RF */
3765 urtwn_rf_write(sc, 0, 0, 0);
3766
3767 urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
3768
3769 /* Reset BB state machine */
3770 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3771 R92C_SYS_FUNC_EN_USBD |
3772 R92C_SYS_FUNC_EN_USBA |
3773 R92C_SYS_FUNC_EN_BB_GLB_RST);
3774 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3775 R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
3776
3777 /*
3778 * Reset digital sequence
3779 */
3780 if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
3781 /* Reset MCU ready status */
3782 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3783 /* If firmware in ram code, do reset */
3784 if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
3785 urtwn_fw_reset(sc);
3786 CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
3787 }
3788 }
3789
3790 /* Reset MAC and Enable 8051 */
3791 urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
3792
3793 /* Reset MCU ready status */
3794 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3795
3796 if (disabled) {
3797 /* Disable MAC clock */
3798 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3799 /* Disable AFE PLL */
3800 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
3801 /* Gated AFE DIG_CLOCK */
3802 urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
3803 /* Isolated digital to PON */
3804 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
3805 }
3806
3807 /*
3808 * Pull GPIO PIN to balance level and LED control
3809 */
3810 /* 1. Disable GPIO[7:0] */
3811 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
3812
3813 reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
3814 reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
3815 urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
3816
3817 /* Disable GPIO[10:8] */
3818 urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
3819
3820 reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
3821 reg |= (((reg & 0x000f) << 4) | 0x0780);
3822 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
3823
3824 /* Disable LED0 & 1 */
3825 urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
3826
3827 /*
3828 * Reset digital sequence
3829 */
3830 if (disabled) {
3831 /* Disable ELDR clock */
3832 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3833 /* Isolated ELDR to PON */
3834 urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
3835 }
3836
3837 /*
3838 * Disable analog sequence
3839 */
3840 if (disabled) {
3841 /* Disable A15 power */
3842 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
3843 /* Disable digital core power */
3844 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
3845 urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
3846 ~R92C_LDOV12D_CTRL_LDV12_EN);
3847 }
3848
3849 /* Enter PFM mode */
3850 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
3851
3852 /* Set USB suspend */
3853 urtwn_write_2(sc, R92C_APS_FSMCO,
3854 R92C_APS_FSMCO_APDM_HOST |
3855 R92C_APS_FSMCO_AFSM_HSUS |
3856 R92C_APS_FSMCO_PFM_ALDN);
3857
3858 urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
3859 }
3860
3861 MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf");
3862
3863 #ifdef _MODULE
3864 #include "ioconf.c"
3865 #endif
3866
3867 static int
3868 if_urtwn_modcmd(modcmd_t cmd, void *aux)
3869 {
3870 int error = 0;
3871
3872 switch (cmd) {
3873 case MODULE_CMD_INIT:
3874 #ifdef _MODULE
3875 error = config_init_component(cfdriver_ioconf_urtwn,
3876 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3877 #endif
3878 return (error);
3879 case MODULE_CMD_FINI:
3880 #ifdef _MODULE
3881 error = config_fini_component(cfdriver_ioconf_urtwn,
3882 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3883 #endif
3884 return (error);
3885 default:
3886 return (ENOTTY);
3887 }
3888 }
3889