if_urtwn.c revision 1.24 1 /* $NetBSD: if_urtwn.c,v 1.24 2013/04/07 02:53:19 nonaka Exp $ */
2 /* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*-
21 * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
22 */
23
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.24 2013/04/07 02:53:19 nonaka Exp $");
26
27 #ifdef _KERNEL_OPT
28 #include "opt_inet.h"
29 #endif
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_inarp.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdivar.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_urtwnreg.h>
74 #include <dev/usb/if_urtwnvar.h>
75 #include <dev/usb/if_urtwn_data.h>
76
77 /*
78 * The sc_write_mtx locking is to prevent sequences of writes from
79 * being intermingled with each other. I don't know if this is really
80 * needed. I have added it just to be on the safe side.
81 */
82
83 #ifdef URTWN_DEBUG
84 #define DBG_INIT __BIT(0)
85 #define DBG_FN __BIT(1)
86 #define DBG_TX __BIT(2)
87 #define DBG_RX __BIT(3)
88 #define DBG_STM __BIT(4)
89 #define DBG_RF __BIT(5)
90 #define DBG_REG __BIT(6)
91 #define DBG_ALL 0xffffffffU
92 u_int urtwn_debug = 0;
93 #define DPRINTFN(n, s) \
94 do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
95 #else
96 #define DPRINTFN(n, s)
97 #endif
98
99 static const struct usb_devno urtwn_devs[] = {
100 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 },
101 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 },
102 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU },
103 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU },
104 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
105 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
106 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU },
107 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU },
108 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU },
109 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 },
110 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 },
111 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 },
112 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 },
113 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 },
114 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU },
115 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU },
116 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 },
117 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 },
118 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 },
119 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU },
120 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU },
121 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU },
122 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU },
123 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 },
124 { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU },
125 { USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU },
126 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M },
127 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU },
128 { USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU },
129 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 },
132 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU },
133 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 },
134 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 },
135 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS },
136 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 },
137 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 },
138 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV },
139 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 },
140 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 },
141 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 },
142 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO },
143 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS },
144 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU },
145 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 },
146 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU },
147 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE },
148 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU },
149 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU },
150 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 },
151 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU },
152 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU },
153 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU },
154 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU }
155 };
156
157 static int urtwn_match(device_t, cfdata_t, void *);
158 static void urtwn_attach(device_t, device_t, void *);
159 static int urtwn_detach(device_t, int);
160 static int urtwn_activate(device_t, enum devact);
161
162 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
163 urtwn_attach, urtwn_detach, urtwn_activate);
164
165 static int urtwn_open_pipes(struct urtwn_softc *);
166 static void urtwn_close_pipes(struct urtwn_softc *);
167 static int urtwn_alloc_rx_list(struct urtwn_softc *);
168 static void urtwn_free_rx_list(struct urtwn_softc *);
169 static int urtwn_alloc_tx_list(struct urtwn_softc *);
170 static void urtwn_free_tx_list(struct urtwn_softc *);
171 static void urtwn_task(void *);
172 static void urtwn_do_async(struct urtwn_softc *,
173 void (*)(struct urtwn_softc *, void *), void *, int);
174 static void urtwn_wait_async(struct urtwn_softc *);
175 static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
176 int);
177 static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
178 static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
179 static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
180 static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *,
181 int);
182 static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
183 int);
184 static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
185 static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
186 static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
187 static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
188 static void urtwn_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t);
189 static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
190 static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
191 static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
192 static void urtwn_efuse_read(struct urtwn_softc *);
193 static int urtwn_read_chipid(struct urtwn_softc *);
194 #ifdef URTWN_DEBUG
195 static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *);
196 #endif
197 static void urtwn_read_rom(struct urtwn_softc *);
198 static int urtwn_media_change(struct ifnet *);
199 static int urtwn_ra_init(struct urtwn_softc *);
200 static int urtwn_get_nettype(struct urtwn_softc *);
201 static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t);
202 static void urtwn_tsf_sync_enable(struct urtwn_softc *);
203 static void urtwn_set_led(struct urtwn_softc *, int, int);
204 static void urtwn_calib_to(void *);
205 static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
206 static void urtwn_next_scan(void *);
207 static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
208 int);
209 static void urtwn_newstate_cb(struct urtwn_softc *, void *);
210 static int urtwn_wme_update(struct ieee80211com *);
211 static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
212 static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
213 static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
214 static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
215 static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
216 static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
217 static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
218 struct ieee80211_node *, struct urtwn_tx_data *);
219 static void urtwn_start(struct ifnet *);
220 static void urtwn_watchdog(struct ifnet *);
221 static int urtwn_ioctl(struct ifnet *, u_long, void *);
222 static int urtwn_power_on(struct urtwn_softc *);
223 static int urtwn_llt_init(struct urtwn_softc *);
224 static void urtwn_fw_reset(struct urtwn_softc *);
225 static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
226 static int urtwn_load_firmware(struct urtwn_softc *);
227 static int urtwn_dma_init(struct urtwn_softc *);
228 static void urtwn_mac_init(struct urtwn_softc *);
229 static void urtwn_bb_init(struct urtwn_softc *);
230 static void urtwn_rf_init(struct urtwn_softc *);
231 static void urtwn_cam_init(struct urtwn_softc *);
232 static void urtwn_pa_bias_init(struct urtwn_softc *);
233 static void urtwn_rxfilter_init(struct urtwn_softc *);
234 static void urtwn_edca_init(struct urtwn_softc *);
235 static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
236 static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int,
237 uint16_t[]);
238 static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
239 static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
240 u_int);
241 static void urtwn_iq_calib(struct urtwn_softc *, bool);
242 static void urtwn_lc_calib(struct urtwn_softc *);
243 static void urtwn_temp_calib(struct urtwn_softc *);
244 static int urtwn_init(struct ifnet *);
245 static void urtwn_stop(struct ifnet *, int);
246 static int urtwn_reset(struct ifnet *);
247 static void urtwn_chip_stop(struct urtwn_softc *);
248
249 /* Aliases. */
250 #define urtwn_bb_write urtwn_write_4
251 #define urtwn_bb_read urtwn_read_4
252
253 static int
254 urtwn_match(device_t parent, cfdata_t match, void *aux)
255 {
256 struct usb_attach_arg *uaa = aux;
257
258 return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
259 UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
260 }
261
262 static void
263 urtwn_attach(device_t parent, device_t self, void *aux)
264 {
265 struct urtwn_softc *sc = device_private(self);
266 struct ieee80211com *ic = &sc->sc_ic;
267 struct ifnet *ifp = &sc->sc_if;
268 struct usb_attach_arg *uaa = aux;
269 char *devinfop;
270 size_t i;
271 int error;
272
273 sc->sc_dev = self;
274 sc->sc_udev = uaa->device;
275
276 aprint_naive("\n");
277 aprint_normal("\n");
278
279 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
280
281 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
282 aprint_normal_dev(self, "%s\n", devinfop);
283 usbd_devinfo_free(devinfop);
284
285 mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
286 mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE);
287 mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
288 mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE);
289
290 usb_init_task(&sc->sc_task, urtwn_task, sc, 0);
291
292 callout_init(&sc->sc_scan_to, 0);
293 callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
294 callout_init(&sc->sc_calib_to, 0);
295 callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
296
297 error = usbd_set_config_no(sc->sc_udev, 1, 0);
298 if (error != 0) {
299 aprint_error_dev(self, "failed to set configuration"
300 ", err=%s\n", usbd_errstr(error));
301 goto fail;
302 }
303
304 /* Get the first interface handle. */
305 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
306 if (error != 0) {
307 aprint_error_dev(self, "could not get interface handle\n");
308 goto fail;
309 }
310
311 error = urtwn_read_chipid(sc);
312 if (error != 0) {
313 aprint_error_dev(self, "unsupported test chip\n");
314 goto fail;
315 }
316
317 /* Determine number of Tx/Rx chains. */
318 if (sc->chip & URTWN_CHIP_92C) {
319 sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
320 sc->nrxchains = 2;
321 } else {
322 sc->ntxchains = 1;
323 sc->nrxchains = 1;
324 }
325 urtwn_read_rom(sc);
326
327 aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n",
328 (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
329 (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
330 (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
331 "8188CUS", sc->ntxchains, sc->nrxchains,
332 ether_sprintf(ic->ic_myaddr));
333
334 error = urtwn_open_pipes(sc);
335 if (error != 0) {
336 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
337 goto fail;
338 }
339 aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
340 sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
341 sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
342
343 /*
344 * Setup the 802.11 device.
345 */
346 ic->ic_ifp = ifp;
347 ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
348 ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
349 ic->ic_state = IEEE80211_S_INIT;
350
351 /* Set device capabilities. */
352 ic->ic_caps =
353 IEEE80211_C_MONITOR | /* Monitor mode supported. */
354 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
355 IEEE80211_C_SHSLOT | /* Short slot time supported. */
356 IEEE80211_C_WME | /* 802.11e */
357 IEEE80211_C_WPA; /* 802.11i */
358
359 /* Set supported .11b and .11g rates. */
360 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
361 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
362
363 /* Set supported .11b and .11g channels (1 through 14). */
364 for (i = 1; i <= 14; i++) {
365 ic->ic_channels[i].ic_freq =
366 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
367 ic->ic_channels[i].ic_flags =
368 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
369 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
370 }
371
372 ifp->if_softc = sc;
373 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
374 ifp->if_init = urtwn_init;
375 ifp->if_ioctl = urtwn_ioctl;
376 ifp->if_start = urtwn_start;
377 ifp->if_watchdog = urtwn_watchdog;
378 IFQ_SET_READY(&ifp->if_snd);
379 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
380
381 if_attach(ifp);
382 ieee80211_ifattach(ic);
383
384 /* override default methods */
385 ic->ic_reset = urtwn_reset;
386 ic->ic_wme.wme_update = urtwn_wme_update;
387
388 /* Override state transition machine. */
389 sc->sc_newstate = ic->ic_newstate;
390 ic->ic_newstate = urtwn_newstate;
391 ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
392
393 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
394 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
395 &sc->sc_drvbpf);
396
397 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
398 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
399 sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
400
401 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
402 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
403 sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
404
405 ieee80211_announce(ic);
406
407 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
408
409 SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
410 return;
411
412 fail:
413 sc->sc_dying = 1;
414 aprint_error_dev(self, "attach failed\n");
415 }
416
417 static int
418 urtwn_detach(device_t self, int flags)
419 {
420 struct urtwn_softc *sc = device_private(self);
421 struct ifnet *ifp = &sc->sc_if;
422 int s;
423
424 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
425
426 s = splusb();
427
428 sc->sc_dying = 1;
429
430 callout_stop(&sc->sc_scan_to);
431 callout_stop(&sc->sc_calib_to);
432
433 if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
434 usb_rem_task(sc->sc_udev, &sc->sc_task);
435 urtwn_stop(ifp, 0);
436
437 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
438 bpf_detach(ifp);
439 ieee80211_ifdetach(&sc->sc_ic);
440 if_detach(ifp);
441
442 /* Abort and close Tx/Rx pipes. */
443 urtwn_close_pipes(sc);
444 }
445
446 splx(s);
447
448 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
449
450 callout_destroy(&sc->sc_scan_to);
451 callout_destroy(&sc->sc_calib_to);
452
453 mutex_destroy(&sc->sc_write_mtx);
454 mutex_destroy(&sc->sc_fwcmd_mtx);
455 mutex_destroy(&sc->sc_tx_mtx);
456 mutex_destroy(&sc->sc_task_mtx);
457
458 return (0);
459 }
460
461 static int
462 urtwn_activate(device_t self, enum devact act)
463 {
464 struct urtwn_softc *sc = device_private(self);
465
466 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
467
468 switch (act) {
469 case DVACT_DEACTIVATE:
470 if_deactivate(sc->sc_ic.ic_ifp);
471 return (0);
472 default:
473 return (EOPNOTSUPP);
474 }
475 }
476
477 static int
478 urtwn_open_pipes(struct urtwn_softc *sc)
479 {
480 /* Bulk-out endpoints addresses (from highest to lowest prio). */
481 static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
482 usb_interface_descriptor_t *id;
483 usb_endpoint_descriptor_t *ed;
484 size_t i, ntx = 0;
485 int error;
486
487 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
488
489 /* Determine the number of bulk-out pipes. */
490 id = usbd_get_interface_descriptor(sc->sc_iface);
491 for (i = 0; i < id->bNumEndpoints; i++) {
492 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
493 if (ed != NULL &&
494 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
495 UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
496 ntx++;
497 }
498 DPRINTFN(DBG_INIT, ("%s: %s: found %zd bulk-out pipes\n",
499 device_xname(sc->sc_dev), __func__, ntx));
500 if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
501 aprint_error_dev(sc->sc_dev,
502 "%zd: invalid number of Tx bulk pipes\n", ntx);
503 return (EIO);
504 }
505 sc->rx_npipe = 1;
506 sc->tx_npipe = ntx;
507
508 /* Open bulk-in pipe at address 0x81. */
509 error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
510 &sc->rx_pipe);
511 if (error != 0) {
512 aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe"
513 ": %d\n", error);
514 goto fail;
515 }
516
517 /* Open bulk-out pipes (up to 3). */
518 for (i = 0; i < ntx; i++) {
519 error = usbd_open_pipe(sc->sc_iface, epaddr[i],
520 USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
521 if (error != 0) {
522 aprint_error_dev(sc->sc_dev,
523 "could not open Tx bulk pipe 0x%02x: %d\n",
524 epaddr[i], error);
525 goto fail;
526 }
527 }
528
529 /* Map 802.11 access categories to USB pipes. */
530 sc->ac2idx[WME_AC_BK] =
531 sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
532 sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
533 sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
534
535 fail:
536 if (error != 0)
537 urtwn_close_pipes(sc);
538 return (error);
539 }
540
541 static void
542 urtwn_close_pipes(struct urtwn_softc *sc)
543 {
544 usbd_pipe_handle pipe;
545 size_t i;
546
547 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
548
549 /* Close Rx pipe. */
550 CTASSERT(sizeof(pipe) == sizeof(void *));
551 pipe = atomic_swap_ptr(&sc->rx_pipe, NULL);
552 if (pipe != NULL) {
553 usbd_abort_pipe(pipe);
554 usbd_close_pipe(pipe);
555 }
556 /* Close Tx pipes. */
557 for (i = 0; i < R92C_MAX_EPOUT; i++) {
558 pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL);
559 if (pipe != NULL) {
560 usbd_abort_pipe(pipe);
561 usbd_close_pipe(pipe);
562 }
563 }
564 }
565
566 static int
567 urtwn_alloc_rx_list(struct urtwn_softc *sc)
568 {
569 struct urtwn_rx_data *data;
570 size_t i;
571 int error = 0;
572
573 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
574
575 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
576 data = &sc->rx_data[i];
577
578 data->sc = sc; /* Backpointer for callbacks. */
579
580 data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 if (data->xfer == NULL) {
582 aprint_error_dev(sc->sc_dev,
583 "could not allocate xfer\n");
584 error = ENOMEM;
585 break;
586 }
587
588 data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
589 if (data->buf == NULL) {
590 aprint_error_dev(sc->sc_dev,
591 "could not allocate xfer buffer\n");
592 error = ENOMEM;
593 break;
594 }
595 }
596 if (error != 0)
597 urtwn_free_rx_list(sc);
598 return (error);
599 }
600
601 static void
602 urtwn_free_rx_list(struct urtwn_softc *sc)
603 {
604 usbd_xfer_handle xfer;
605 size_t i;
606
607 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
608
609 /* NB: Caller must abort pipe first. */
610 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
611 CTASSERT(sizeof(xfer) == sizeof(void *));
612 xfer = atomic_swap_ptr(&sc->rx_data[i].xfer, NULL);
613 if (xfer != NULL)
614 usbd_free_xfer(xfer);
615 }
616 }
617
618 static int
619 urtwn_alloc_tx_list(struct urtwn_softc *sc)
620 {
621 struct urtwn_tx_data *data;
622 size_t i;
623 int error = 0;
624
625 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
626
627 mutex_enter(&sc->sc_tx_mtx);
628 TAILQ_INIT(&sc->tx_free_list);
629 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
630 data = &sc->tx_data[i];
631
632 data->sc = sc; /* Backpointer for callbacks. */
633
634 data->xfer = usbd_alloc_xfer(sc->sc_udev);
635 if (data->xfer == NULL) {
636 aprint_error_dev(sc->sc_dev,
637 "could not allocate xfer\n");
638 error = ENOMEM;
639 goto fail;
640 }
641
642 data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
643 if (data->buf == NULL) {
644 aprint_error_dev(sc->sc_dev,
645 "could not allocate xfer buffer\n");
646 error = ENOMEM;
647 goto fail;
648 }
649
650 /* Append this Tx buffer to our free list. */
651 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
652 }
653 mutex_exit(&sc->sc_tx_mtx);
654 return (0);
655
656 fail:
657 urtwn_free_tx_list(sc);
658 mutex_exit(&sc->sc_tx_mtx);
659 return (error);
660 }
661
662 static void
663 urtwn_free_tx_list(struct urtwn_softc *sc)
664 {
665 usbd_xfer_handle xfer;
666 size_t i;
667
668 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
669
670 /* NB: Caller must abort pipe first. */
671 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
672 CTASSERT(sizeof(xfer) == sizeof(void *));
673 xfer = atomic_swap_ptr(&sc->tx_data[i].xfer, NULL);
674 if (xfer != NULL)
675 usbd_free_xfer(xfer);
676 }
677 }
678
679 static void
680 urtwn_task(void *arg)
681 {
682 struct urtwn_softc *sc = arg;
683 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
684 struct urtwn_host_cmd *cmd;
685 int s;
686
687 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
688
689 /* Process host commands. */
690 s = splusb();
691 mutex_spin_enter(&sc->sc_task_mtx);
692 while (ring->next != ring->cur) {
693 cmd = &ring->cmd[ring->next];
694 mutex_spin_exit(&sc->sc_task_mtx);
695 splx(s);
696 /* Invoke callback with kernel lock held. */
697 cmd->cb(sc, cmd->data);
698 s = splusb();
699 mutex_spin_enter(&sc->sc_task_mtx);
700 ring->queued--;
701 ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
702 }
703 mutex_spin_exit(&sc->sc_task_mtx);
704 wakeup(&sc->cmdq);
705 splx(s);
706 }
707
708 static void
709 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
710 void *arg, int len)
711 {
712 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
713 struct urtwn_host_cmd *cmd;
714 int s;
715
716 DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
717 device_xname(sc->sc_dev), __func__, cb, arg, len));
718
719 s = splusb();
720 mutex_spin_enter(&sc->sc_task_mtx);
721 cmd = &ring->cmd[ring->cur];
722 cmd->cb = cb;
723 KASSERT(len <= sizeof(cmd->data));
724 memcpy(cmd->data, arg, len);
725 ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
726
727 /* If there is no pending command already, schedule a task. */
728 if (!sc->sc_dying && ++ring->queued == 1) {
729 mutex_spin_exit(&sc->sc_task_mtx);
730 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
731 } else
732 mutex_spin_exit(&sc->sc_task_mtx);
733 splx(s);
734 }
735
736 static void
737 urtwn_wait_async(struct urtwn_softc *sc)
738 {
739
740 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
741
742 /* Wait for all queued asynchronous commands to complete. */
743 while (sc->cmdq.queued > 0)
744 tsleep(&sc->cmdq, 0, "endtask", 0);
745 }
746
747 static int
748 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
749 int len)
750 {
751 usb_device_request_t req;
752 usbd_status error;
753
754 KASSERT(mutex_owned(&sc->sc_write_mtx));
755
756 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
757 req.bRequest = R92C_REQ_REGS;
758 USETW(req.wValue, addr);
759 USETW(req.wIndex, 0);
760 USETW(req.wLength, len);
761 error = usbd_do_request(sc->sc_udev, &req, buf);
762 if (error != USBD_NORMAL_COMPLETION) {
763 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
764 device_xname(sc->sc_dev), __func__, error, addr, len));
765 }
766 return (error);
767 }
768
769 static void
770 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
771 {
772
773 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
774 device_xname(sc->sc_dev), __func__, addr, val));
775
776 urtwn_write_region_1(sc, addr, &val, 1);
777 }
778
779 static void
780 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
781 {
782 uint8_t buf[2];
783
784 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
785 device_xname(sc->sc_dev), __func__, addr, val));
786
787 buf[0] = (uint8_t)val;
788 buf[1] = (uint8_t)(val >> 8);
789 urtwn_write_region_1(sc, addr, buf, 2);
790 }
791
792 static void
793 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
794 {
795 uint8_t buf[4];
796
797 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
798 device_xname(sc->sc_dev), __func__, addr, val));
799
800 buf[0] = (uint8_t)val;
801 buf[1] = (uint8_t)(val >> 8);
802 buf[2] = (uint8_t)(val >> 16);
803 buf[3] = (uint8_t)(val >> 24);
804 urtwn_write_region_1(sc, addr, buf, 4);
805 }
806
807 static int
808 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
809 {
810
811 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
812 device_xname(sc->sc_dev), __func__, addr, len));
813
814 return urtwn_write_region_1(sc, addr, buf, len);
815 }
816
817 static int
818 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
819 int len)
820 {
821 usb_device_request_t req;
822 usbd_status error;
823
824 req.bmRequestType = UT_READ_VENDOR_DEVICE;
825 req.bRequest = R92C_REQ_REGS;
826 USETW(req.wValue, addr);
827 USETW(req.wIndex, 0);
828 USETW(req.wLength, len);
829 error = usbd_do_request(sc->sc_udev, &req, buf);
830 if (error != USBD_NORMAL_COMPLETION) {
831 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
832 device_xname(sc->sc_dev), __func__, error, addr, len));
833 }
834 return (error);
835 }
836
837 static uint8_t
838 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
839 {
840 uint8_t val;
841
842 if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
843 return (0xff);
844
845 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
846 device_xname(sc->sc_dev), __func__, addr, val));
847 return (val);
848 }
849
850 static uint16_t
851 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
852 {
853 uint8_t buf[2];
854 uint16_t val;
855
856 if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
857 return (0xffff);
858
859 val = LE_READ_2(&buf[0]);
860 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
861 device_xname(sc->sc_dev), __func__, addr, val));
862 return (val);
863 }
864
865 static uint32_t
866 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
867 {
868 uint8_t buf[4];
869 uint32_t val;
870
871 if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
872 return (0xffffffff);
873
874 val = LE_READ_4(&buf[0]);
875 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
876 device_xname(sc->sc_dev), __func__, addr, val));
877 return (val);
878 }
879
880 static int
881 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
882 {
883 struct r92c_fw_cmd cmd;
884 uint8_t *cp;
885 int fwcur;
886 int ntries;
887
888 DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
889 device_xname(sc->sc_dev), __func__, id, buf, len));
890
891 KASSERT(mutex_owned(&sc->sc_write_mtx));
892
893 mutex_enter(&sc->sc_fwcmd_mtx);
894 fwcur = sc->fwcur;
895 sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
896 mutex_exit(&sc->sc_fwcmd_mtx);
897
898 /* Wait for current FW box to be empty. */
899 for (ntries = 0; ntries < 100; ntries++) {
900 if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
901 break;
902 DELAY(1);
903 }
904 if (ntries == 100) {
905 aprint_error_dev(sc->sc_dev,
906 "could not send firmware command %d\n", id);
907 return (ETIMEDOUT);
908 }
909
910 memset(&cmd, 0, sizeof(cmd));
911 KASSERT(len <= sizeof(cmd.msg));
912 memcpy(cmd.msg, buf, len);
913
914 /* Write the first word last since that will trigger the FW. */
915 cp = (uint8_t *)&cmd;
916 if (len >= 4) {
917 cmd.id = id | R92C_CMD_FLAG_EXT;
918 urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
919 urtwn_write_4(sc, R92C_HMEBOX(fwcur),
920 cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
921 } else {
922 cmd.id = id;
923 urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
924 }
925
926 return (0);
927 }
928
929 static void
930 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
931 {
932
933 urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
934 SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
935 }
936
937 static uint32_t
938 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
939 {
940 uint32_t reg[R92C_MAX_CHAINS], val;
941
942 reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
943 if (chain != 0) {
944 reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
945 }
946
947 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
948 reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
949 DELAY(1000);
950
951 urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
952 RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
953 R92C_HSSI_PARAM2_READ_EDGE);
954 DELAY(1000);
955
956 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
957 reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
958 DELAY(1000);
959
960 if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
961 val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
962 } else {
963 val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
964 }
965 return (MS(val, R92C_LSSI_READBACK_DATA));
966 }
967
968 static int
969 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
970 {
971 int ntries;
972
973 KASSERT(mutex_owned(&sc->sc_write_mtx));
974
975 urtwn_write_4(sc, R92C_LLT_INIT,
976 SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
977 SM(R92C_LLT_INIT_ADDR, addr) |
978 SM(R92C_LLT_INIT_DATA, data));
979 /* Wait for write operation to complete. */
980 for (ntries = 0; ntries < 20; ntries++) {
981 if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
982 R92C_LLT_INIT_OP_NO_ACTIVE) {
983 /* Done */
984 return (0);
985 }
986 DELAY(5);
987 }
988 return (ETIMEDOUT);
989 }
990
991 static uint8_t
992 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
993 {
994 uint32_t reg;
995 int ntries;
996
997 KASSERT(mutex_owned(&sc->sc_write_mtx));
998
999 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1000 reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
1001 reg &= ~R92C_EFUSE_CTRL_VALID;
1002 urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
1003
1004 /* Wait for read operation to complete. */
1005 for (ntries = 0; ntries < 100; ntries++) {
1006 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1007 if (reg & R92C_EFUSE_CTRL_VALID) {
1008 /* Done */
1009 return (MS(reg, R92C_EFUSE_CTRL_DATA));
1010 }
1011 DELAY(5);
1012 }
1013 aprint_error_dev(sc->sc_dev,
1014 "could not read efuse byte at address 0x%04x\n", addr);
1015 return (0xff);
1016 }
1017
1018 static void
1019 urtwn_efuse_read(struct urtwn_softc *sc)
1020 {
1021 uint8_t *rom = (uint8_t *)&sc->rom;
1022 uint32_t reg;
1023 uint16_t addr = 0;
1024 uint8_t off, msk;
1025 size_t i;
1026
1027 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1028
1029 KASSERT(mutex_owned(&sc->sc_write_mtx));
1030
1031 reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
1032 if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
1033 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
1034 reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
1035 }
1036 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
1037 if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
1038 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
1039 reg | R92C_SYS_FUNC_EN_ELDR);
1040 }
1041 reg = urtwn_read_2(sc, R92C_SYS_CLKR);
1042 if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
1043 (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
1044 urtwn_write_2(sc, R92C_SYS_CLKR,
1045 reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
1046 }
1047 memset(&sc->rom, 0xff, sizeof(sc->rom));
1048 while (addr < 512) {
1049 reg = urtwn_efuse_read_1(sc, addr);
1050 if (reg == 0xff)
1051 break;
1052 addr++;
1053 off = reg >> 4;
1054 msk = reg & 0xf;
1055 for (i = 0; i < 4; i++) {
1056 if (msk & (1U << i))
1057 continue;
1058
1059 rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
1060 addr++;
1061 rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
1062 addr++;
1063 }
1064 }
1065 #ifdef URTWN_DEBUG
1066 if (urtwn_debug & DBG_INIT) {
1067 /* Dump ROM content. */
1068 printf("%s: %s", device_xname(sc->sc_dev), __func__);
1069 for (i = 0; i < (int)sizeof(sc->rom); i++)
1070 printf(":%02x", rom[i]);
1071 printf("\n");
1072 }
1073 #endif
1074 }
1075
1076 static int
1077 urtwn_read_chipid(struct urtwn_softc *sc)
1078 {
1079 uint32_t reg;
1080
1081 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1082
1083 sc->chip = 0;
1084 reg = urtwn_read_4(sc, R92C_SYS_CFG);
1085 if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
1086 /* test chip, not supported */
1087 return (EIO);
1088 }
1089 if (reg & R92C_SYS_CFG_TYPE_92C) {
1090 sc->chip |= URTWN_CHIP_92C;
1091 /* Check if it is a castrated 8192C. */
1092 if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1093 R92C_HPON_FSM_CHIP_BONDING_ID) ==
1094 R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
1095 sc->chip |= URTWN_CHIP_92C_1T2R;
1096 }
1097 }
1098 if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1099 sc->chip |= URTWN_CHIP_UMC;
1100 if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
1101 sc->chip |= URTWN_CHIP_UMC_A_CUT;
1102 }
1103 }
1104 return (0);
1105 }
1106
1107 #ifdef URTWN_DEBUG
1108 static void
1109 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
1110 {
1111
1112 aprint_normal_dev(sc->sc_dev,
1113 "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
1114 rp->id, rp->dbg_sel, rp->vid, rp->pid);
1115
1116 aprint_normal_dev(sc->sc_dev,
1117 "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
1118 rp->usb_opt, rp->ep_setting, rp->usb_phy);
1119
1120 aprint_normal_dev(sc->sc_dev,
1121 "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
1122 rp->macaddr[0], rp->macaddr[1],
1123 rp->macaddr[2], rp->macaddr[3],
1124 rp->macaddr[4], rp->macaddr[5]);
1125
1126 aprint_normal_dev(sc->sc_dev,
1127 "string %s, subcustomer_id 0x%x\n",
1128 rp->string, rp->subcustomer_id);
1129
1130 aprint_normal_dev(sc->sc_dev,
1131 "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
1132 rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
1133 rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
1134
1135 aprint_normal_dev(sc->sc_dev,
1136 "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
1137 rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
1138 rp->ht40_1s_tx_pwr[0][2],
1139 rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
1140 rp->ht40_1s_tx_pwr[1][2]);
1141
1142 aprint_normal_dev(sc->sc_dev,
1143 "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1144 rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1145 rp->ht40_2s_tx_pwr_diff[2] & 0xf,
1146 rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1147 rp->ht40_2s_tx_pwr_diff[2] >> 4);
1148
1149 aprint_normal_dev(sc->sc_dev,
1150 "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1151 rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
1152 rp->ht20_tx_pwr_diff[2] & 0xf,
1153 rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
1154 rp->ht20_tx_pwr_diff[2] >> 4);
1155
1156 aprint_normal_dev(sc->sc_dev,
1157 "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1158 rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
1159 rp->ofdm_tx_pwr_diff[2] & 0xf,
1160 rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
1161 rp->ofdm_tx_pwr_diff[2] >> 4);
1162
1163 aprint_normal_dev(sc->sc_dev,
1164 "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1165 rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
1166 rp->ht40_max_pwr[2] & 0xf,
1167 rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
1168 rp->ht40_max_pwr[2] >> 4);
1169
1170 aprint_normal_dev(sc->sc_dev,
1171 "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1172 rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
1173 rp->ht20_max_pwr[2] & 0xf,
1174 rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
1175 rp->ht20_max_pwr[2] >> 4);
1176
1177 aprint_normal_dev(sc->sc_dev,
1178 "xtal_calib %d, tssi %d %d, thermal %d\n",
1179 rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
1180
1181 aprint_normal_dev(sc->sc_dev,
1182 "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
1183 rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
1184
1185 aprint_normal_dev(sc->sc_dev,
1186 "channnel_plan %d, version %d customer_id 0x%x\n",
1187 rp->channel_plan, rp->version, rp->curstomer_id);
1188 }
1189 #endif
1190
1191 static void
1192 urtwn_read_rom(struct urtwn_softc *sc)
1193 {
1194 struct ieee80211com *ic = &sc->sc_ic;
1195 struct r92c_rom *rom = &sc->rom;
1196
1197 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1198
1199 mutex_enter(&sc->sc_write_mtx);
1200
1201 /* Read full ROM image. */
1202 urtwn_efuse_read(sc);
1203 #ifdef URTWN_DEBUG
1204 if (urtwn_debug & DBG_REG)
1205 urtwn_dump_rom(sc, rom);
1206 #endif
1207
1208 /* XXX Weird but this is what the vendor driver does. */
1209 sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1210 sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1211 sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1212
1213 DPRINTFN(DBG_INIT,
1214 ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
1215 device_xname(sc->sc_dev), __func__, sc->pa_setting,
1216 sc->board_type, sc->regulatory));
1217
1218 IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
1219
1220 mutex_exit(&sc->sc_write_mtx);
1221 }
1222
1223 static int
1224 urtwn_media_change(struct ifnet *ifp)
1225 {
1226 #ifdef URTWN_DEBUG
1227 struct urtwn_softc *sc = ifp->if_softc;
1228 #endif
1229 int error;
1230
1231 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1232
1233 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1234 return (error);
1235
1236 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1237 (IFF_UP | IFF_RUNNING)) {
1238 urtwn_init(ifp);
1239 }
1240 return (0);
1241 }
1242
1243 /*
1244 * Initialize rate adaptation in firmware.
1245 */
1246 static int
1247 urtwn_ra_init(struct urtwn_softc *sc)
1248 {
1249 static const uint8_t map[] = {
1250 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
1251 };
1252 struct ieee80211com *ic = &sc->sc_ic;
1253 struct ieee80211_node *ni = ic->ic_bss;
1254 struct ieee80211_rateset *rs = &ni->ni_rates;
1255 struct r92c_fw_cmd_macid_cfg cmd;
1256 uint32_t rates, basicrates;
1257 uint32_t mask;
1258 uint8_t mode;
1259 size_t maxrate, maxbasicrate, i, j;
1260 int error;
1261
1262 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1263
1264 KASSERT(mutex_owned(&sc->sc_write_mtx));
1265
1266 /* Get normal and basic rates mask. */
1267 rates = basicrates = 0;
1268 maxrate = maxbasicrate = 0;
1269 for (i = 0; i < rs->rs_nrates; i++) {
1270 /* Convert 802.11 rate to HW rate index. */
1271 for (j = 0; j < __arraycount(map); j++) {
1272 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
1273 break;
1274 }
1275 }
1276 if (j == __arraycount(map)) {
1277 /* Unknown rate, skip. */
1278 continue;
1279 }
1280
1281 rates |= 1U << j;
1282 if (j > maxrate) {
1283 maxrate = j;
1284 }
1285
1286 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1287 basicrates |= 1U << j;
1288 if (j > maxbasicrate) {
1289 maxbasicrate = j;
1290 }
1291 }
1292 }
1293 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1294 mode = R92C_RAID_11B;
1295 } else {
1296 mode = R92C_RAID_11BG;
1297 }
1298 DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
1299 "maxrate=%zx, maxbasicrate=%zx\n",
1300 device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
1301 maxrate, maxbasicrate));
1302 if (basicrates == 0) {
1303 basicrates |= 1; /* add 1Mbps */
1304 }
1305
1306 /* Set rates mask for group addressed frames. */
1307 cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1308 mask = (mode << 28) | basicrates;
1309 cmd.mask[0] = (uint8_t)mask;
1310 cmd.mask[1] = (uint8_t)(mask >> 8);
1311 cmd.mask[2] = (uint8_t)(mask >> 16);
1312 cmd.mask[3] = (uint8_t)(mask >> 24);
1313 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1314 if (error != 0) {
1315 aprint_error_dev(sc->sc_dev,
1316 "could not add broadcast station\n");
1317 return (error);
1318 }
1319 /* Set initial MRR rate. */
1320 DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%zd\n",
1321 device_xname(sc->sc_dev), __func__, maxbasicrate));
1322 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
1323
1324 /* Set rates mask for unicast frames. */
1325 cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1326 mask = (mode << 28) | rates;
1327 cmd.mask[0] = (uint8_t)mask;
1328 cmd.mask[1] = (uint8_t)(mask >> 8);
1329 cmd.mask[2] = (uint8_t)(mask >> 16);
1330 cmd.mask[3] = (uint8_t)(mask >> 24);
1331 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1332 if (error != 0) {
1333 aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
1334 return (error);
1335 }
1336 /* Set initial MRR rate. */
1337 DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%zd\n", device_xname(sc->sc_dev),
1338 __func__, maxrate));
1339 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
1340
1341 /* Indicate highest supported rate. */
1342 ni->ni_txrate = rs->rs_nrates - 1;
1343
1344 return (0);
1345 }
1346
1347 static int
1348 urtwn_get_nettype(struct urtwn_softc *sc)
1349 {
1350 struct ieee80211com *ic = &sc->sc_ic;
1351 int type;
1352
1353 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1354
1355 switch (ic->ic_opmode) {
1356 case IEEE80211_M_STA:
1357 type = R92C_CR_NETTYPE_INFRA;
1358 break;
1359
1360 case IEEE80211_M_IBSS:
1361 type = R92C_CR_NETTYPE_ADHOC;
1362 break;
1363
1364 default:
1365 type = R92C_CR_NETTYPE_NOLINK;
1366 break;
1367 }
1368
1369 return (type);
1370 }
1371
1372 static void
1373 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
1374 {
1375 uint8_t reg;
1376
1377 DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
1378 __func__, type));
1379
1380 KASSERT(mutex_owned(&sc->sc_write_mtx));
1381
1382 reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
1383 urtwn_write_1(sc, R92C_CR + 2, reg | type);
1384 }
1385
1386 static void
1387 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1388 {
1389 struct ieee80211_node *ni = sc->sc_ic.ic_bss;
1390 uint64_t tsf;
1391
1392 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1393
1394 KASSERT(mutex_owned(&sc->sc_write_mtx));
1395
1396 /* Enable TSF synchronization. */
1397 urtwn_write_1(sc, R92C_BCN_CTRL,
1398 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1399
1400 /* Correct TSF */
1401 urtwn_write_1(sc, R92C_BCN_CTRL,
1402 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1403
1404 /* Set initial TSF. */
1405 tsf = ni->ni_tstamp.tsf;
1406 tsf = le64toh(tsf);
1407 tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
1408 tsf -= IEEE80211_DUR_TU;
1409 urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
1410 urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
1411
1412 urtwn_write_1(sc, R92C_BCN_CTRL,
1413 urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1414 }
1415
1416 static void
1417 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1418 {
1419 uint8_t reg;
1420
1421 DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
1422 __func__, led, on));
1423
1424 KASSERT(mutex_owned(&sc->sc_write_mtx));
1425
1426 if (led == URTWN_LED_LINK) {
1427 reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1428 if (!on) {
1429 reg |= R92C_LEDCFG0_DIS;
1430 }
1431 urtwn_write_1(sc, R92C_LEDCFG0, reg);
1432 sc->ledlink = on; /* Save LED state. */
1433 }
1434 }
1435
1436 static void
1437 urtwn_calib_to(void *arg)
1438 {
1439 struct urtwn_softc *sc = arg;
1440
1441 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1442
1443 if (sc->sc_dying)
1444 return;
1445
1446 /* Do it in a process context. */
1447 urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
1448 }
1449
1450 /* ARGSUSED */
1451 static void
1452 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
1453 {
1454 struct r92c_fw_cmd_rssi cmd;
1455
1456 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1457
1458 if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
1459 goto restart_timer;
1460
1461 mutex_enter(&sc->sc_write_mtx);
1462 if (sc->avg_pwdb != -1) {
1463 /* Indicate Rx signal strength to FW for rate adaptation. */
1464 memset(&cmd, 0, sizeof(cmd));
1465 cmd.macid = 0; /* BSS. */
1466 cmd.pwdb = sc->avg_pwdb;
1467 DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
1468 device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
1469 urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
1470 }
1471
1472 /* Do temperature compensation. */
1473 urtwn_temp_calib(sc);
1474 mutex_exit(&sc->sc_write_mtx);
1475
1476 restart_timer:
1477 if (!sc->sc_dying) {
1478 /* Restart calibration timer. */
1479 callout_schedule(&sc->sc_calib_to, hz);
1480 }
1481 }
1482
1483 static void
1484 urtwn_next_scan(void *arg)
1485 {
1486 struct urtwn_softc *sc = arg;
1487 int s;
1488
1489 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1490
1491 if (sc->sc_dying)
1492 return;
1493
1494 s = splnet();
1495 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1496 ieee80211_next_scan(&sc->sc_ic);
1497 splx(s);
1498 }
1499
1500 static int
1501 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1502 {
1503 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1504 struct urtwn_cmd_newstate cmd;
1505
1506 DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
1507 device_xname(sc->sc_dev), __func__,
1508 ieee80211_state_name[nstate], nstate, arg));
1509
1510 callout_stop(&sc->sc_scan_to);
1511 callout_stop(&sc->sc_calib_to);
1512
1513 /* Do it in a process context. */
1514 cmd.state = nstate;
1515 cmd.arg = arg;
1516 urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
1517 return (0);
1518 }
1519
1520 static void
1521 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
1522 {
1523 struct urtwn_cmd_newstate *cmd = arg;
1524 struct ieee80211com *ic = &sc->sc_ic;
1525 struct ieee80211_node *ni;
1526 enum ieee80211_state ostate = ic->ic_state;
1527 enum ieee80211_state nstate = cmd->state;
1528 uint32_t reg;
1529 uint8_t sifs_time;
1530 int s;
1531
1532 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
1533 device_xname(sc->sc_dev), __func__,
1534 ieee80211_state_name[ostate], ostate,
1535 ieee80211_state_name[nstate], nstate));
1536
1537 s = splnet();
1538 mutex_enter(&sc->sc_write_mtx);
1539
1540 callout_stop(&sc->sc_scan_to);
1541 callout_stop(&sc->sc_calib_to);
1542
1543 switch (ostate) {
1544 case IEEE80211_S_INIT:
1545 break;
1546
1547 case IEEE80211_S_SCAN:
1548 if (nstate != IEEE80211_S_SCAN) {
1549 /*
1550 * End of scanning
1551 */
1552 /* flush 4-AC Queue after site_survey */
1553 urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
1554
1555 /* Allow Rx from our BSSID only. */
1556 urtwn_write_4(sc, R92C_RCR,
1557 urtwn_read_4(sc, R92C_RCR) |
1558 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1559 }
1560 break;
1561
1562 case IEEE80211_S_AUTH:
1563 case IEEE80211_S_ASSOC:
1564 break;
1565
1566 case IEEE80211_S_RUN:
1567 /* Turn link LED off. */
1568 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1569
1570 /* Set media status to 'No Link'. */
1571 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1572
1573 /* Stop Rx of data frames. */
1574 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1575
1576 /* Reset TSF. */
1577 urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1578
1579 /* Disable TSF synchronization. */
1580 urtwn_write_1(sc, R92C_BCN_CTRL,
1581 urtwn_read_1(sc, R92C_BCN_CTRL) |
1582 R92C_BCN_CTRL_DIS_TSF_UDT0);
1583
1584 /* Back to 20MHz mode */
1585 urtwn_set_chan(sc, ic->ic_curchan,
1586 IEEE80211_HTINFO_2NDCHAN_NONE);
1587
1588 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1589 ic->ic_opmode == IEEE80211_M_HOSTAP) {
1590 /* Stop BCN */
1591 urtwn_write_1(sc, R92C_BCN_CTRL,
1592 urtwn_read_1(sc, R92C_BCN_CTRL) &
1593 ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
1594 }
1595
1596 /* Reset EDCA parameters. */
1597 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1598 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1599 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1600 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1601
1602 /* flush all cam entries */
1603 urtwn_cam_init(sc);
1604 break;
1605 }
1606
1607 switch (nstate) {
1608 case IEEE80211_S_INIT:
1609 /* Turn link LED off. */
1610 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1611 break;
1612
1613 case IEEE80211_S_SCAN:
1614 if (ostate != IEEE80211_S_SCAN) {
1615 /*
1616 * Begin of scanning
1617 */
1618
1619 /* Set gain for scanning. */
1620 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1621 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1622 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1623
1624 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1625 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1626 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1627
1628 /* Set media status to 'No Link'. */
1629 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1630
1631 /* Allow Rx from any BSSID. */
1632 urtwn_write_4(sc, R92C_RCR,
1633 urtwn_read_4(sc, R92C_RCR) &
1634 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1635
1636 /* Stop Rx of data frames. */
1637 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1638
1639 /* Disable update TSF */
1640 urtwn_write_1(sc, R92C_BCN_CTRL,
1641 urtwn_read_1(sc, R92C_BCN_CTRL) |
1642 R92C_BCN_CTRL_DIS_TSF_UDT0);
1643 }
1644
1645 /* Make link LED blink during scan. */
1646 urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1647
1648 /* Pause AC Tx queues. */
1649 urtwn_write_1(sc, R92C_TXPAUSE,
1650 urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1651
1652 urtwn_set_chan(sc, ic->ic_curchan,
1653 IEEE80211_HTINFO_2NDCHAN_NONE);
1654
1655 /* Start periodic scan. */
1656 if (!sc->sc_dying)
1657 callout_schedule(&sc->sc_scan_to, hz / 5);
1658 break;
1659
1660 case IEEE80211_S_AUTH:
1661 /* Set initial gain under link. */
1662 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1663 #ifdef doaslinux
1664 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1665 #else
1666 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1667 #endif
1668 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1669
1670 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1671 #ifdef doaslinux
1672 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1673 #else
1674 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1675 #endif
1676 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1677
1678 /* Set media status to 'No Link'. */
1679 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1680
1681 /* Allow Rx from any BSSID. */
1682 urtwn_write_4(sc, R92C_RCR,
1683 urtwn_read_4(sc, R92C_RCR) &
1684 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1685
1686 urtwn_set_chan(sc, ic->ic_curchan,
1687 IEEE80211_HTINFO_2NDCHAN_NONE);
1688 break;
1689
1690 case IEEE80211_S_ASSOC:
1691 break;
1692
1693 case IEEE80211_S_RUN:
1694 ni = ic->ic_bss;
1695
1696 /* XXX: Set 20MHz mode */
1697 urtwn_set_chan(sc, ic->ic_curchan,
1698 IEEE80211_HTINFO_2NDCHAN_NONE);
1699
1700 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1701 /* Back to 20MHz mode */
1702 urtwn_set_chan(sc, ic->ic_curchan,
1703 IEEE80211_HTINFO_2NDCHAN_NONE);
1704
1705 /* Set media status to 'No Link'. */
1706 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1707
1708 /* Enable Rx of data frames. */
1709 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1710
1711 /* Allow Rx from any BSSID. */
1712 urtwn_write_4(sc, R92C_RCR,
1713 urtwn_read_4(sc, R92C_RCR) &
1714 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1715
1716 /* Accept Rx data/control/management frames */
1717 urtwn_write_4(sc, R92C_RCR,
1718 urtwn_read_4(sc, R92C_RCR) |
1719 R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF);
1720
1721 /* Turn link LED on. */
1722 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1723 break;
1724 }
1725
1726 /* Set media status to 'Associated'. */
1727 urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
1728
1729 /* Set BSSID. */
1730 urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1731 urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1732
1733 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1734 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1735 } else {
1736 /* 802.11b/g */
1737 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1738 }
1739
1740 /* Enable Rx of data frames. */
1741 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1742
1743 /* Set beacon interval. */
1744 urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1745
1746 if (ic->ic_opmode == IEEE80211_M_STA) {
1747 /* Allow Rx from our BSSID only. */
1748 urtwn_write_4(sc, R92C_RCR,
1749 urtwn_read_4(sc, R92C_RCR) |
1750 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1751
1752 /* Enable TSF synchronization. */
1753 urtwn_tsf_sync_enable(sc);
1754 }
1755
1756 sifs_time = 10;
1757 urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
1758 urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
1759 urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
1760 urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
1761 urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
1762 urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
1763
1764 /* Intialize rate adaptation. */
1765 urtwn_ra_init(sc);
1766
1767 /* Turn link LED on. */
1768 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1769
1770 /* Reset average RSSI. */
1771 sc->avg_pwdb = -1;
1772
1773 /* Reset temperature calibration state machine. */
1774 sc->thcal_state = 0;
1775 sc->thcal_lctemp = 0;
1776
1777 /* Start periodic calibration. */
1778 if (!sc->sc_dying)
1779 callout_schedule(&sc->sc_calib_to, hz);
1780 break;
1781 }
1782
1783 (*sc->sc_newstate)(ic, nstate, cmd->arg);
1784
1785 mutex_exit(&sc->sc_write_mtx);
1786 splx(s);
1787 }
1788
1789 static int
1790 urtwn_wme_update(struct ieee80211com *ic)
1791 {
1792 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1793
1794 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1795
1796 /* don't override default WME values if WME is not actually enabled */
1797 if (!(ic->ic_flags & IEEE80211_F_WME))
1798 return (0);
1799
1800 /* Do it in a process context. */
1801 urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
1802 return (0);
1803 }
1804
1805 static void
1806 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
1807 {
1808 static const uint16_t ac2reg[WME_NUM_AC] = {
1809 R92C_EDCA_BE_PARAM,
1810 R92C_EDCA_BK_PARAM,
1811 R92C_EDCA_VI_PARAM,
1812 R92C_EDCA_VO_PARAM
1813 };
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 const struct wmeParams *wmep;
1816 int ac, aifs, slottime;
1817 int s;
1818
1819 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
1820 __func__));
1821
1822 s = splnet();
1823 mutex_enter(&sc->sc_write_mtx);
1824 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1825 for (ac = 0; ac < WME_NUM_AC; ac++) {
1826 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1827 /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
1828 aifs = wmep->wmep_aifsn * slottime + 10;
1829 urtwn_write_4(sc, ac2reg[ac],
1830 SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
1831 SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
1832 SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
1833 SM(R92C_EDCA_PARAM_AIFS, aifs));
1834 }
1835 mutex_exit(&sc->sc_write_mtx);
1836 splx(s);
1837 }
1838
1839 static void
1840 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1841 {
1842 int pwdb;
1843
1844 DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
1845 device_xname(sc->sc_dev), __func__, rate, rssi));
1846
1847 /* Convert antenna signal to percentage. */
1848 if (rssi <= -100 || rssi >= 20)
1849 pwdb = 0;
1850 else if (rssi >= 0)
1851 pwdb = 100;
1852 else
1853 pwdb = 100 + rssi;
1854 if (rate <= 3) {
1855 /* CCK gain is smaller than OFDM/MCS gain. */
1856 pwdb += 6;
1857 if (pwdb > 100)
1858 pwdb = 100;
1859 if (pwdb <= 14)
1860 pwdb -= 4;
1861 else if (pwdb <= 26)
1862 pwdb -= 8;
1863 else if (pwdb <= 34)
1864 pwdb -= 6;
1865 else if (pwdb <= 42)
1866 pwdb -= 2;
1867 }
1868 if (sc->avg_pwdb == -1) /* Init. */
1869 sc->avg_pwdb = pwdb;
1870 else if (sc->avg_pwdb < pwdb)
1871 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1872 else
1873 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1874
1875 DPRINTFN(DBG_RF, ("%s: %s: rate=%d rssi=%d PWDB=%d EMA=%d\n",
1876 device_xname(sc->sc_dev), __func__,
1877 rate, rssi, pwdb, sc->avg_pwdb));
1878 }
1879
1880 static int8_t
1881 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1882 {
1883 static const int8_t cckoff[] = { 16, -12, -26, -46 };
1884 struct r92c_rx_phystat *phy;
1885 struct r92c_rx_cck *cck;
1886 uint8_t rpt;
1887 int8_t rssi;
1888
1889 DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
1890 __func__, rate));
1891
1892 if (rate <= 3) {
1893 cck = (struct r92c_rx_cck *)physt;
1894 if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
1895 rpt = (cck->agc_rpt >> 5) & 0x3;
1896 rssi = (cck->agc_rpt & 0x1f) << 1;
1897 } else {
1898 rpt = (cck->agc_rpt >> 6) & 0x3;
1899 rssi = cck->agc_rpt & 0x3e;
1900 }
1901 rssi = cckoff[rpt] - rssi;
1902 } else { /* OFDM/HT. */
1903 phy = (struct r92c_rx_phystat *)physt;
1904 rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1905 }
1906 return (rssi);
1907 }
1908
1909 static void
1910 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1911 {
1912 struct ieee80211com *ic = &sc->sc_ic;
1913 struct ifnet *ifp = ic->ic_ifp;
1914 struct ieee80211_frame *wh;
1915 struct ieee80211_node *ni;
1916 struct r92c_rx_stat *stat;
1917 uint32_t rxdw0, rxdw3;
1918 struct mbuf *m;
1919 uint8_t rate;
1920 int8_t rssi = 0;
1921 int s, infosz;
1922
1923 DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
1924 device_xname(sc->sc_dev), __func__, buf, pktlen));
1925
1926 stat = (struct r92c_rx_stat *)buf;
1927 rxdw0 = le32toh(stat->rxdw0);
1928 rxdw3 = le32toh(stat->rxdw3);
1929
1930 if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1931 /*
1932 * This should not happen since we setup our Rx filter
1933 * to not receive these frames.
1934 */
1935 DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
1936 device_xname(sc->sc_dev), __func__));
1937 ifp->if_ierrors++;
1938 return;
1939 }
1940 /*
1941 * XXX: This will drop most control packets. Do we really
1942 * want this in IEEE80211_M_MONITOR mode?
1943 */
1944 // if (__predict_false(pktlen < (int)sizeof(*wh))) {
1945 if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) {
1946 DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
1947 device_xname(sc->sc_dev), __func__, pktlen));
1948 ic->ic_stats.is_rx_tooshort++;
1949 ifp->if_ierrors++;
1950 return;
1951 }
1952 if (__predict_false(pktlen > MCLBYTES)) {
1953 DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
1954 device_xname(sc->sc_dev), __func__, pktlen));
1955 ifp->if_ierrors++;
1956 return;
1957 }
1958
1959 rate = MS(rxdw3, R92C_RXDW3_RATE);
1960 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1961
1962 /* Get RSSI from PHY status descriptor if present. */
1963 if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
1964 rssi = urtwn_get_rssi(sc, rate, &stat[1]);
1965 /* Update our average RSSI. */
1966 urtwn_update_avgrssi(sc, rate, rssi);
1967 }
1968
1969 DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
1970 device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
1971
1972 MGETHDR(m, M_DONTWAIT, MT_DATA);
1973 if (__predict_false(m == NULL)) {
1974 aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
1975 ic->ic_stats.is_rx_nobuf++;
1976 ifp->if_ierrors++;
1977 return;
1978 }
1979 if (pktlen > (int)MHLEN) {
1980 MCLGET(m, M_DONTWAIT);
1981 if (__predict_false(!(m->m_flags & M_EXT))) {
1982 aprint_error_dev(sc->sc_dev,
1983 "couldn't allocate rx mbuf cluster\n");
1984 m_freem(m);
1985 ic->ic_stats.is_rx_nobuf++;
1986 ifp->if_ierrors++;
1987 return;
1988 }
1989 }
1990
1991 /* Finalize mbuf. */
1992 m->m_pkthdr.rcvif = ifp;
1993 wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
1994 memcpy(mtod(m, uint8_t *), wh, pktlen);
1995 m->m_pkthdr.len = m->m_len = pktlen;
1996
1997 s = splnet();
1998 if (__predict_false(sc->sc_drvbpf != NULL)) {
1999 struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2000
2001 tap->wr_flags = 0;
2002 if (!(rxdw3 & R92C_RXDW3_HT)) {
2003 switch (rate) {
2004 /* CCK. */
2005 case 0: tap->wr_rate = 2; break;
2006 case 1: tap->wr_rate = 4; break;
2007 case 2: tap->wr_rate = 11; break;
2008 case 3: tap->wr_rate = 22; break;
2009 /* OFDM. */
2010 case 4: tap->wr_rate = 12; break;
2011 case 5: tap->wr_rate = 18; break;
2012 case 6: tap->wr_rate = 24; break;
2013 case 7: tap->wr_rate = 36; break;
2014 case 8: tap->wr_rate = 48; break;
2015 case 9: tap->wr_rate = 72; break;
2016 case 10: tap->wr_rate = 96; break;
2017 case 11: tap->wr_rate = 108; break;
2018 }
2019 } else if (rate >= 12) { /* MCS0~15. */
2020 /* Bit 7 set means HT MCS instead of rate. */
2021 tap->wr_rate = 0x80 | (rate - 12);
2022 }
2023 tap->wr_dbm_antsignal = rssi;
2024 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2025 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2026
2027 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2028 }
2029
2030 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2031
2032 /* push the frame up to the 802.11 stack */
2033 ieee80211_input(ic, m, ni, rssi, 0);
2034
2035 /* Node is no longer needed. */
2036 ieee80211_free_node(ni);
2037
2038 splx(s);
2039 }
2040
2041 static void
2042 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2043 {
2044 struct urtwn_rx_data *data = priv;
2045 struct urtwn_softc *sc = data->sc;
2046 struct r92c_rx_stat *stat;
2047 uint32_t rxdw0;
2048 uint8_t *buf;
2049 int len, totlen, pktlen, infosz, npkts;
2050
2051 DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
2052 device_xname(sc->sc_dev), __func__, status));
2053
2054 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2055 if (status == USBD_STALLED)
2056 usbd_clear_endpoint_stall_async(sc->rx_pipe);
2057 else if (status != USBD_CANCELLED)
2058 goto resubmit;
2059 return;
2060 }
2061 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2062
2063 if (__predict_false(len < (int)sizeof(*stat))) {
2064 DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
2065 device_xname(sc->sc_dev), __func__, len));
2066 goto resubmit;
2067 }
2068 buf = data->buf;
2069
2070 /* Get the number of encapsulated frames. */
2071 stat = (struct r92c_rx_stat *)buf;
2072 npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
2073 DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
2074 device_xname(sc->sc_dev), __func__, npkts));
2075
2076 /* Process all of them. */
2077 while (npkts-- > 0) {
2078 if (__predict_false(len < (int)sizeof(*stat))) {
2079 DPRINTFN(DBG_RX,
2080 ("%s: %s: len(%d) is short than header\n",
2081 device_xname(sc->sc_dev), __func__, len));
2082 break;
2083 }
2084 stat = (struct r92c_rx_stat *)buf;
2085 rxdw0 = le32toh(stat->rxdw0);
2086
2087 pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
2088 if (__predict_false(pktlen == 0)) {
2089 DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
2090 device_xname(sc->sc_dev), __func__));
2091 break;
2092 }
2093
2094 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
2095
2096 /* Make sure everything fits in xfer. */
2097 totlen = sizeof(*stat) + infosz + pktlen;
2098 if (__predict_false(totlen > len)) {
2099 DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
2100 device_xname(sc->sc_dev), __func__, totlen,
2101 (int)sizeof(*stat), infosz, pktlen, len));
2102 break;
2103 }
2104
2105 /* Process 802.11 frame. */
2106 urtwn_rx_frame(sc, buf, pktlen);
2107
2108 /* Next chunk is 128-byte aligned. */
2109 totlen = roundup2(totlen, 128);
2110 buf += totlen;
2111 len -= totlen;
2112 }
2113
2114 resubmit:
2115 /* Setup a new transfer. */
2116 usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
2117 USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
2118 (void)usbd_transfer(xfer);
2119 }
2120
2121 static void
2122 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2123 {
2124 struct urtwn_tx_data *data = priv;
2125 struct urtwn_softc *sc = data->sc;
2126 struct ifnet *ifp = &sc->sc_if;
2127 usbd_pipe_handle pipe = data->pipe;
2128 int s;
2129
2130 DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
2131 device_xname(sc->sc_dev), __func__, status));
2132
2133 mutex_enter(&sc->sc_tx_mtx);
2134 /* Put this Tx buffer back to our free list. */
2135 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2136 mutex_exit(&sc->sc_tx_mtx);
2137
2138 s = splnet();
2139 sc->tx_timer = 0;
2140 ifp->if_flags &= ~IFF_OACTIVE;
2141
2142 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2143 if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
2144 if (status == USBD_STALLED)
2145 usbd_clear_endpoint_stall_async(pipe);
2146 ifp->if_oerrors++;
2147 }
2148 splx(s);
2149 return;
2150 }
2151
2152 ifp->if_opackets++;
2153 urtwn_start(ifp);
2154
2155 splx(s);
2156 }
2157
2158 static int
2159 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2160 struct urtwn_tx_data *data)
2161 {
2162 struct ieee80211com *ic = &sc->sc_ic;
2163 struct ieee80211_frame *wh;
2164 struct ieee80211_key *k = NULL;
2165 struct r92c_tx_desc *txd;
2166 usbd_pipe_handle pipe;
2167 size_t i, padsize, xferlen;
2168 uint16_t seq, sum;
2169 uint8_t raid, type, tid, qid;
2170 int s, hasqos, error;
2171
2172 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2173
2174 wh = mtod(m, struct ieee80211_frame *);
2175 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2176
2177 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2178 k = ieee80211_crypto_encap(ic, ni, m);
2179 if (k == NULL)
2180 return ENOBUFS;
2181
2182 /* packet header may have moved, reset our local pointer */
2183 wh = mtod(m, struct ieee80211_frame *);
2184 }
2185
2186 if (__predict_false(sc->sc_drvbpf != NULL)) {
2187 struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
2188
2189 tap->wt_flags = 0;
2190 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2191 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2192 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2193 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2194
2195 /* XXX: set tap->wt_rate? */
2196
2197 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2198 }
2199
2200 if ((hasqos = ieee80211_has_qos(wh))) {
2201 /* data frames in 11n mode */
2202 struct ieee80211_qosframe *qwh = (void *)wh;
2203 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
2204 qid = TID_TO_WME_AC(tid);
2205 } else if (type != IEEE80211_FC0_TYPE_DATA) {
2206 /* Use AC_VO for management frames. */
2207 qid = WME_AC_VO;
2208 tid = 0; /* compiler happy */
2209 } else {
2210 /* non-qos data frames */
2211 tid = R92C_TXDW1_QSEL_BE;
2212 qid = WME_AC_BE;
2213 }
2214
2215 /* Get the USB pipe to use for this AC. */
2216 pipe = sc->tx_pipe[sc->ac2idx[qid]];
2217
2218 if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
2219 padsize = 8;
2220 else
2221 padsize = 0;
2222
2223 /* Fill Tx descriptor. */
2224 txd = (struct r92c_tx_desc *)data->buf;
2225 memset(txd, 0, sizeof(*txd) + padsize);
2226
2227 txd->txdw0 |= htole32(
2228 SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
2229 SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
2230 R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
2231
2232 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2233 txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
2234
2235 /* fix pad field */
2236 if (padsize > 0) {
2237 DPRINTFN(DBG_TX, ("%s: %s: padding: size=%zd\n",
2238 device_xname(sc->sc_dev), __func__, padsize));
2239 txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
2240 }
2241
2242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2243 type == IEEE80211_FC0_TYPE_DATA) {
2244 if (ic->ic_curmode == IEEE80211_MODE_11B)
2245 raid = R92C_RAID_11B;
2246 else
2247 raid = R92C_RAID_11BG;
2248 DPRINTFN(DBG_TX,
2249 ("%s: %s: data packet: tid=%d, raid=%d\n",
2250 device_xname(sc->sc_dev), __func__, tid, raid));
2251
2252 txd->txdw1 |= htole32(
2253 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2254 SM(R92C_TXDW1_QSEL, tid) |
2255 SM(R92C_TXDW1_RAID, raid) |
2256 R92C_TXDW1_AGGBK);
2257
2258 if (hasqos) {
2259 txd->txdw4 |= htole32(R92C_TXDW4_QOS);
2260 }
2261
2262 if (ic->ic_flags & IEEE80211_F_USEPROT) {
2263 /* for 11g */
2264 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
2265 txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
2266 R92C_TXDW4_HWRTSEN);
2267 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
2268 txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
2269 R92C_TXDW4_HWRTSEN);
2270 }
2271 }
2272 /* Send RTS at OFDM24. */
2273 txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
2274 txd->txdw5 |= htole32(0x0001ff00);
2275 /* Send data at OFDM54. */
2276 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
2277 } else if (type == IEEE80211_FC0_TYPE_MGT) {
2278 DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
2279 device_xname(sc->sc_dev), __func__));
2280 txd->txdw1 |= htole32(
2281 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2282 SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
2283 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2284
2285 /* Force CCK1. */
2286 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2287 /* Use 1Mbps */
2288 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2289 } else {
2290 /* broadcast or multicast packets */
2291 DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
2292 device_xname(sc->sc_dev), __func__));
2293 txd->txdw1 |= htole32(
2294 SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
2295 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2296
2297 /* Force CCK1. */
2298 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2299 /* Use 1Mbps */
2300 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2301 }
2302
2303 /* Set sequence number */
2304 seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
2305 txd->txdseq |= htole16(seq);
2306
2307 if (!hasqos) {
2308 /* Use HW sequence numbering for non-QoS frames. */
2309 txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
2310 txd->txdseq |= htole16(0x8000); /* WTF? */
2311 }
2312
2313 /* Compute Tx descriptor checksum. */
2314 sum = 0;
2315 for (i = 0; i < sizeof(*txd) / 2; i++)
2316 sum ^= ((uint16_t *)txd)[i];
2317 txd->txdsum = sum; /* NB: already little endian. */
2318
2319 xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
2320 m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
2321
2322 s = splnet();
2323 data->pipe = pipe;
2324 usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
2325 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
2326 urtwn_txeof);
2327 error = usbd_transfer(data->xfer);
2328 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
2329 error != USBD_IN_PROGRESS)) {
2330 splx(s);
2331 DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
2332 device_xname(sc->sc_dev), __func__, error));
2333 return error;
2334 }
2335 splx(s);
2336 return 0;
2337 }
2338
2339 static void
2340 urtwn_start(struct ifnet *ifp)
2341 {
2342 struct urtwn_softc *sc = ifp->if_softc;
2343 struct ieee80211com *ic = &sc->sc_ic;
2344 struct urtwn_tx_data *data;
2345 struct ether_header *eh;
2346 struct ieee80211_node *ni;
2347 struct mbuf *m;
2348
2349 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2350
2351 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2352 return;
2353
2354 data = NULL;
2355 for (;;) {
2356 mutex_enter(&sc->sc_tx_mtx);
2357 if (data == NULL && !TAILQ_EMPTY(&sc->tx_free_list)) {
2358 data = TAILQ_FIRST(&sc->tx_free_list);
2359 TAILQ_REMOVE(&sc->tx_free_list, data, next);
2360 }
2361 mutex_exit(&sc->sc_tx_mtx);
2362
2363 if (data == NULL) {
2364 ifp->if_flags |= IFF_OACTIVE;
2365 DPRINTFN(DBG_TX, ("%s: empty tx_free_list\n",
2366 device_xname(sc->sc_dev)));
2367 return;
2368 }
2369
2370 /* Send pending management frames first. */
2371 IF_DEQUEUE(&ic->ic_mgtq, m);
2372 if (m != NULL) {
2373 ni = (void *)m->m_pkthdr.rcvif;
2374 m->m_pkthdr.rcvif = NULL;
2375 goto sendit;
2376 }
2377 if (ic->ic_state != IEEE80211_S_RUN)
2378 break;
2379
2380 /* Encapsulate and send data frames. */
2381 IFQ_DEQUEUE(&ifp->if_snd, m);
2382 if (m == NULL)
2383 break;
2384
2385 if (m->m_len < (int)sizeof(*eh) &&
2386 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2387 ifp->if_oerrors++;
2388 continue;
2389 }
2390 eh = mtod(m, struct ether_header *);
2391 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2392 if (ni == NULL) {
2393 m_freem(m);
2394 ifp->if_oerrors++;
2395 continue;
2396 }
2397
2398 bpf_mtap(ifp, m);
2399
2400 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
2401 ieee80211_free_node(ni);
2402 ifp->if_oerrors++;
2403 continue;
2404 }
2405 sendit:
2406 bpf_mtap3(ic->ic_rawbpf, m);
2407
2408 if (urtwn_tx(sc, m, ni, data) != 0) {
2409 m_freem(m);
2410 ieee80211_free_node(ni);
2411 ifp->if_oerrors++;
2412 continue;
2413 }
2414 data = NULL;
2415 m_freem(m);
2416 ieee80211_free_node(ni);
2417 sc->tx_timer = 5;
2418 ifp->if_timer = 1;
2419 }
2420
2421 /* Return the Tx buffer to the free list */
2422 mutex_enter(&sc->sc_tx_mtx);
2423 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2424 mutex_exit(&sc->sc_tx_mtx);
2425 }
2426
2427 static void
2428 urtwn_watchdog(struct ifnet *ifp)
2429 {
2430 struct urtwn_softc *sc = ifp->if_softc;
2431
2432 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2433
2434 ifp->if_timer = 0;
2435
2436 if (sc->tx_timer > 0) {
2437 if (--sc->tx_timer == 0) {
2438 aprint_error_dev(sc->sc_dev, "device timeout\n");
2439 /* urtwn_init(ifp); XXX needs a process context! */
2440 ifp->if_oerrors++;
2441 return;
2442 }
2443 ifp->if_timer = 1;
2444 }
2445 ieee80211_watchdog(&sc->sc_ic);
2446 }
2447
2448 static int
2449 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2450 {
2451 struct urtwn_softc *sc = ifp->if_softc;
2452 struct ieee80211com *ic = &sc->sc_ic;
2453 int s, error = 0;
2454
2455 DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
2456 device_xname(sc->sc_dev), __func__, cmd, data));
2457
2458 s = splnet();
2459
2460 switch (cmd) {
2461 case SIOCSIFFLAGS:
2462 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2463 break;
2464 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2465 case IFF_UP | IFF_RUNNING:
2466 break;
2467 case IFF_UP:
2468 urtwn_init(ifp);
2469 break;
2470 case IFF_RUNNING:
2471 urtwn_stop(ifp, 1);
2472 break;
2473 case 0:
2474 break;
2475 }
2476 break;
2477
2478 case SIOCADDMULTI:
2479 case SIOCDELMULTI:
2480 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2481 /* setup multicast filter, etc */
2482 error = 0;
2483 }
2484 break;
2485
2486 default:
2487 error = ieee80211_ioctl(ic, cmd, data);
2488 break;
2489 }
2490 if (error == ENETRESET) {
2491 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2492 (IFF_UP | IFF_RUNNING) &&
2493 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2494 urtwn_init(ifp);
2495 }
2496 error = 0;
2497 }
2498
2499 splx(s);
2500
2501 return (error);
2502 }
2503
2504 static int
2505 urtwn_power_on(struct urtwn_softc *sc)
2506 {
2507 uint32_t reg;
2508 int ntries;
2509
2510 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2511
2512 KASSERT(mutex_owned(&sc->sc_write_mtx));
2513
2514 /* Wait for autoload done bit. */
2515 for (ntries = 0; ntries < 1000; ntries++) {
2516 if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2517 break;
2518 DELAY(5);
2519 }
2520 if (ntries == 1000) {
2521 aprint_error_dev(sc->sc_dev,
2522 "timeout waiting for chip autoload\n");
2523 return (ETIMEDOUT);
2524 }
2525
2526 /* Unlock ISO/CLK/Power control register. */
2527 urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2528 /* Move SPS into PWM mode. */
2529 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2530 DELAY(100);
2531
2532 reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2533 if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2534 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2535 reg | R92C_LDOV12D_CTRL_LDV12_EN);
2536 DELAY(100);
2537 urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2538 urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2539 ~R92C_SYS_ISO_CTRL_MD2PP);
2540 }
2541
2542 /* Auto enable WLAN. */
2543 urtwn_write_2(sc, R92C_APS_FSMCO,
2544 urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2545 for (ntries = 0; ntries < 1000; ntries++) {
2546 if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2547 R92C_APS_FSMCO_APFM_ONMAC))
2548 break;
2549 DELAY(5);
2550 }
2551 if (ntries == 1000) {
2552 aprint_error_dev(sc->sc_dev,
2553 "timeout waiting for MAC auto ON\n");
2554 return (ETIMEDOUT);
2555 }
2556
2557 /* Enable radio, GPIO and LED functions. */
2558 KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
2559 R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
2560 urtwn_write_2(sc, R92C_APS_FSMCO,
2561 R92C_APS_FSMCO_AFSM_HSUS |
2562 R92C_APS_FSMCO_PDN_EN |
2563 R92C_APS_FSMCO_PFM_ALDN);
2564
2565 /* Release RF digital isolation. */
2566 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2567 urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2568
2569 /* Initialize MAC. */
2570 urtwn_write_1(sc, R92C_APSD_CTRL,
2571 urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2572 for (ntries = 0; ntries < 200; ntries++) {
2573 if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2574 R92C_APSD_CTRL_OFF_STATUS))
2575 break;
2576 DELAY(5);
2577 }
2578 if (ntries == 200) {
2579 aprint_error_dev(sc->sc_dev,
2580 "timeout waiting for MAC initialization\n");
2581 return (ETIMEDOUT);
2582 }
2583
2584 /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2585 reg = urtwn_read_2(sc, R92C_CR);
2586 reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2587 R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2588 R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2589 R92C_CR_ENSEC;
2590 urtwn_write_2(sc, R92C_CR, reg);
2591
2592 urtwn_write_1(sc, 0xfe10, 0x19);
2593 return (0);
2594 }
2595
2596 static int
2597 urtwn_llt_init(struct urtwn_softc *sc)
2598 {
2599 size_t i;
2600 int error;
2601
2602 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2603
2604 KASSERT(mutex_owned(&sc->sc_write_mtx));
2605
2606 /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
2607 for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
2608 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2609 return (error);
2610 }
2611 /* NB: 0xff indicates end-of-list. */
2612 if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2613 return (error);
2614 /*
2615 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
2616 * as ring buffer.
2617 */
2618 for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
2619 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2620 return (error);
2621 }
2622 /* Make the last page point to the beginning of the ring buffer. */
2623 error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
2624 return (error);
2625 }
2626
2627 static void
2628 urtwn_fw_reset(struct urtwn_softc *sc)
2629 {
2630 uint16_t reg;
2631 int ntries;
2632
2633 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2634
2635 KASSERT(mutex_owned(&sc->sc_write_mtx));
2636
2637 /* Tell 8051 to reset itself. */
2638 urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2639
2640 /* Wait until 8051 resets by itself. */
2641 for (ntries = 0; ntries < 100; ntries++) {
2642 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2643 if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2644 return;
2645 DELAY(50);
2646 }
2647 /* Force 8051 reset. */
2648 urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2649 }
2650
2651 static int
2652 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
2653 {
2654 uint32_t reg;
2655 int off, mlen, error = 0;
2656
2657 DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
2658 device_xname(sc->sc_dev), __func__, page, buf, len));
2659
2660 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2661 reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2662 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2663
2664 off = R92C_FW_START_ADDR;
2665 while (len > 0) {
2666 if (len > 196)
2667 mlen = 196;
2668 else if (len > 4)
2669 mlen = 4;
2670 else
2671 mlen = 1;
2672 error = urtwn_write_region(sc, off, buf, mlen);
2673 if (error != 0)
2674 break;
2675 off += mlen;
2676 buf += mlen;
2677 len -= mlen;
2678 }
2679 return (error);
2680 }
2681
2682 static int
2683 urtwn_load_firmware(struct urtwn_softc *sc)
2684 {
2685 firmware_handle_t fwh;
2686 const struct r92c_fw_hdr *hdr;
2687 const char *name;
2688 u_char *fw, *ptr;
2689 size_t len;
2690 uint32_t reg;
2691 int mlen, ntries, page, error;
2692
2693 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2694
2695 KASSERT(mutex_owned(&sc->sc_write_mtx));
2696
2697 /* Read firmware image from the filesystem. */
2698 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2699 URTWN_CHIP_UMC_A_CUT)
2700 name = "rtl8192cfwU.bin";
2701 else
2702 name = "rtl8192cfw.bin";
2703 if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
2704 aprint_error_dev(sc->sc_dev,
2705 "failed loadfirmware of file %s (error %d)\n", name, error);
2706 return (error);
2707 }
2708 len = firmware_get_size(fwh);
2709 fw = firmware_malloc(len);
2710 if (fw == NULL) {
2711 aprint_error_dev(sc->sc_dev,
2712 "failed to allocate firmware memory\n");
2713 firmware_close(fwh);
2714 return (ENOMEM);
2715 }
2716 error = firmware_read(fwh, 0, fw, len);
2717 firmware_close(fwh);
2718 if (error != 0) {
2719 aprint_error_dev(sc->sc_dev,
2720 "failed to read firmware (error %d)\n", error);
2721 firmware_free(fw, 0);
2722 return (error);
2723 }
2724
2725 ptr = fw;
2726 hdr = (const struct r92c_fw_hdr *)ptr;
2727 /* Check if there is a valid FW header and skip it. */
2728 if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2729 (le16toh(hdr->signature) >> 4) == 0x92c) {
2730 DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
2731 device_xname(sc->sc_dev), __func__,
2732 le16toh(hdr->version), le16toh(hdr->subversion),
2733 hdr->month, hdr->date, hdr->hour, hdr->minute));
2734 ptr += sizeof(*hdr);
2735 len -= sizeof(*hdr);
2736 }
2737
2738 if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
2739 urtwn_fw_reset(sc);
2740 urtwn_write_1(sc, R92C_MCUFWDL, 0);
2741 }
2742
2743 /* download enabled */
2744 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2745 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2746 R92C_SYS_FUNC_EN_CPUEN);
2747 urtwn_write_1(sc, R92C_MCUFWDL,
2748 urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2749 urtwn_write_1(sc, R92C_MCUFWDL + 2,
2750 urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2751
2752 /* download firmware */
2753 for (page = 0; len > 0; page++) {
2754 mlen = MIN(len, R92C_FW_PAGE_SIZE);
2755 error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2756 if (error != 0) {
2757 aprint_error_dev(sc->sc_dev,
2758 "could not load firmware page %d\n", page);
2759 goto fail;
2760 }
2761 ptr += mlen;
2762 len -= mlen;
2763 }
2764
2765 /* download disable */
2766 urtwn_write_1(sc, R92C_MCUFWDL,
2767 urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2768 urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2769
2770 /* Wait for checksum report. */
2771 for (ntries = 0; ntries < 1000; ntries++) {
2772 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2773 break;
2774 DELAY(5);
2775 }
2776 if (ntries == 1000) {
2777 aprint_error_dev(sc->sc_dev,
2778 "timeout waiting for checksum report\n");
2779 error = ETIMEDOUT;
2780 goto fail;
2781 }
2782
2783 /* Wait for firmware readiness. */
2784 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2785 reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2786 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2787 for (ntries = 0; ntries < 1000; ntries++) {
2788 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2789 break;
2790 DELAY(5);
2791 }
2792 if (ntries == 1000) {
2793 aprint_error_dev(sc->sc_dev,
2794 "timeout waiting for firmware readiness\n");
2795 error = ETIMEDOUT;
2796 goto fail;
2797 }
2798 fail:
2799 firmware_free(fw, 0);
2800 return (error);
2801 }
2802
2803 static int
2804 urtwn_dma_init(struct urtwn_softc *sc)
2805 {
2806 int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2807 uint32_t reg;
2808 int error;
2809
2810 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2811
2812 KASSERT(mutex_owned(&sc->sc_write_mtx));
2813
2814 /* Initialize LLT table. */
2815 error = urtwn_llt_init(sc);
2816 if (error != 0)
2817 return (error);
2818
2819 /* Get Tx queues to USB endpoints mapping. */
2820 hashq = hasnq = haslq = 0;
2821 reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2822 DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
2823 device_xname(sc->sc_dev), __func__, reg));
2824 if (MS(reg, R92C_USB_EP_HQ) != 0)
2825 hashq = 1;
2826 if (MS(reg, R92C_USB_EP_NQ) != 0)
2827 hasnq = 1;
2828 if (MS(reg, R92C_USB_EP_LQ) != 0)
2829 haslq = 1;
2830 nqueues = hashq + hasnq + haslq;
2831 if (nqueues == 0)
2832 return (EIO);
2833 /* Get the number of pages for each queue. */
2834 nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2835 /* The remaining pages are assigned to the high priority queue. */
2836 nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2837
2838 /* Set number of pages for normal priority queue. */
2839 urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2840 urtwn_write_4(sc, R92C_RQPN,
2841 /* Set number of pages for public queue. */
2842 SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2843 /* Set number of pages for high priority queue. */
2844 SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2845 /* Set number of pages for low priority queue. */
2846 SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2847 /* Load values. */
2848 R92C_RQPN_LD);
2849
2850 urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2851 urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2852 urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2853 urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2854 urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2855
2856 /* Set queue to USB pipe mapping. */
2857 reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2858 reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2859 if (nqueues == 1) {
2860 if (hashq) {
2861 reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2862 } else if (hasnq) {
2863 reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2864 } else {
2865 reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2866 }
2867 } else if (nqueues == 2) {
2868 /* All 2-endpoints configs have a high priority queue. */
2869 if (!hashq) {
2870 return (EIO);
2871 }
2872 if (hasnq) {
2873 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2874 } else {
2875 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2876 }
2877 } else {
2878 reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2879 }
2880 urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2881
2882 /* Set Tx/Rx transfer page boundary. */
2883 urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2884
2885 /* Set Tx/Rx transfer page size. */
2886 urtwn_write_1(sc, R92C_PBP,
2887 SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
2888 return (0);
2889 }
2890
2891 static void
2892 urtwn_mac_init(struct urtwn_softc *sc)
2893 {
2894 size_t i;
2895
2896 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2897
2898 KASSERT(mutex_owned(&sc->sc_write_mtx));
2899
2900 /* Write MAC initialization values. */
2901 for (i = 0; i < __arraycount(rtl8192cu_mac); i++)
2902 urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
2903 }
2904
2905 static void
2906 urtwn_bb_init(struct urtwn_softc *sc)
2907 {
2908 const struct urtwn_bb_prog *prog;
2909 uint32_t reg;
2910 size_t i;
2911
2912 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2913
2914 KASSERT(mutex_owned(&sc->sc_write_mtx));
2915
2916 /* Enable BB and RF. */
2917 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2918 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2919 R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2920 R92C_SYS_FUNC_EN_DIO_RF);
2921
2922 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
2923 urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
2924
2925 urtwn_write_1(sc, R92C_RF_CTRL,
2926 R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2927 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2928 R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2929 R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2930
2931 urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2932 urtwn_write_1(sc, 0x15, 0xe9);
2933 urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2934
2935 /* Select BB programming based on board type. */
2936 if (!(sc->chip & URTWN_CHIP_92C)) {
2937 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2938 prog = &rtl8188ce_bb_prog;
2939 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2940 prog = &rtl8188ru_bb_prog;
2941 } else {
2942 prog = &rtl8188cu_bb_prog;
2943 }
2944 } else {
2945 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2946 prog = &rtl8192ce_bb_prog;
2947 } else {
2948 prog = &rtl8192cu_bb_prog;
2949 }
2950 }
2951 /* Write BB initialization values. */
2952 for (i = 0; i < prog->count; i++) {
2953 /* additional delay depend on registers */
2954 switch (prog->regs[i]) {
2955 case 0xfe:
2956 usbd_delay_ms(sc->sc_udev, 50);
2957 break;
2958 case 0xfd:
2959 usbd_delay_ms(sc->sc_udev, 5);
2960 break;
2961 case 0xfc:
2962 usbd_delay_ms(sc->sc_udev, 1);
2963 break;
2964 case 0xfb:
2965 DELAY(50);
2966 break;
2967 case 0xfa:
2968 DELAY(5);
2969 break;
2970 case 0xf9:
2971 DELAY(1);
2972 break;
2973 }
2974 urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
2975 DELAY(1);
2976 }
2977
2978 if (sc->chip & URTWN_CHIP_92C_1T2R) {
2979 /* 8192C 1T only configuration. */
2980 reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
2981 reg = (reg & ~0x00000003) | 0x2;
2982 urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
2983
2984 reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
2985 reg = (reg & ~0x00300033) | 0x00200022;
2986 urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
2987
2988 reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
2989 reg = (reg & ~0xff000000) | (0x45 << 24);
2990 urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
2991
2992 reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
2993 reg = (reg & ~0x000000ff) | 0x23;
2994 urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
2995
2996 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
2997 reg = (reg & ~0x00000030) | (1 << 4);
2998 urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
2999
3000 reg = urtwn_bb_read(sc, 0xe74);
3001 reg = (reg & ~0x0c000000) | (2 << 26);
3002 urtwn_bb_write(sc, 0xe74, reg);
3003 reg = urtwn_bb_read(sc, 0xe78);
3004 reg = (reg & ~0x0c000000) | (2 << 26);
3005 urtwn_bb_write(sc, 0xe78, reg);
3006 reg = urtwn_bb_read(sc, 0xe7c);
3007 reg = (reg & ~0x0c000000) | (2 << 26);
3008 urtwn_bb_write(sc, 0xe7c, reg);
3009 reg = urtwn_bb_read(sc, 0xe80);
3010 reg = (reg & ~0x0c000000) | (2 << 26);
3011 urtwn_bb_write(sc, 0xe80, reg);
3012 reg = urtwn_bb_read(sc, 0xe88);
3013 reg = (reg & ~0x0c000000) | (2 << 26);
3014 urtwn_bb_write(sc, 0xe88, reg);
3015 }
3016
3017 /* Write AGC values. */
3018 for (i = 0; i < prog->agccount; i++) {
3019 urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
3020 DELAY(1);
3021 }
3022
3023 if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
3024 R92C_HSSI_PARAM2_CCK_HIPWR) {
3025 SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
3026 }
3027 }
3028
3029 static void
3030 urtwn_rf_init(struct urtwn_softc *sc)
3031 {
3032 const struct urtwn_rf_prog *prog;
3033 uint32_t reg, mask, saved;
3034 size_t i, j, idx;
3035
3036 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3037
3038 /* Select RF programming based on board type. */
3039 if (!(sc->chip & URTWN_CHIP_92C)) {
3040 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
3041 prog = rtl8188ce_rf_prog;
3042 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3043 prog = rtl8188ru_rf_prog;
3044 } else {
3045 prog = rtl8188cu_rf_prog;
3046 }
3047 } else {
3048 prog = rtl8192ce_rf_prog;
3049 }
3050
3051 for (i = 0; i < sc->nrxchains; i++) {
3052 /* Save RF_ENV control type. */
3053 idx = i / 2;
3054 mask = 0xffffU << ((i % 2) * 16);
3055 saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
3056
3057 /* Set RF_ENV enable. */
3058 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
3059 reg |= 0x100000;
3060 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
3061 DELAY(1);
3062
3063 /* Set RF_ENV output high. */
3064 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
3065 reg |= 0x10;
3066 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
3067 DELAY(1);
3068
3069 /* Set address and data lengths of RF registers. */
3070 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
3071 reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
3072 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
3073 DELAY(1);
3074 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
3075 reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
3076 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
3077 DELAY(1);
3078
3079 /* Write RF initialization values for this chain. */
3080 for (j = 0; j < prog[i].count; j++) {
3081 if (prog[i].regs[j] >= 0xf9 &&
3082 prog[i].regs[j] <= 0xfe) {
3083 /*
3084 * These are fake RF registers offsets that
3085 * indicate a delay is required.
3086 */
3087 usbd_delay_ms(sc->sc_udev, 50);
3088 continue;
3089 }
3090 urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
3091 DELAY(1);
3092 }
3093
3094 /* Restore RF_ENV control type. */
3095 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
3096 urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
3097 }
3098
3099 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
3100 URTWN_CHIP_UMC_A_CUT) {
3101 urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
3102 urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
3103 }
3104
3105 /* Cache RF register CHNLBW. */
3106 for (i = 0; i < 2; i++) {
3107 sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
3108 }
3109 }
3110
3111 static void
3112 urtwn_cam_init(struct urtwn_softc *sc)
3113 {
3114 uint32_t content, command;
3115 uint8_t idx;
3116 size_t i;
3117
3118 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3119
3120 KASSERT(mutex_owned(&sc->sc_write_mtx));
3121
3122 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3123 content = (idx & 3)
3124 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3125 | R92C_CAM_VALID;
3126
3127 command = R92C_CAMCMD_POLLING
3128 | R92C_CAMCMD_WRITE
3129 | R92C_CAM_CTL0(idx);
3130
3131 urtwn_write_4(sc, R92C_CAMWRITE, content);
3132 urtwn_write_4(sc, R92C_CAMCMD, command);
3133 }
3134
3135 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3136 for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
3137 if (i == 0) {
3138 content = (idx & 3)
3139 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3140 | R92C_CAM_VALID;
3141 } else {
3142 content = 0;
3143 }
3144
3145 command = R92C_CAMCMD_POLLING
3146 | R92C_CAMCMD_WRITE
3147 | R92C_CAM_CTL0(idx)
3148 | i;
3149
3150 urtwn_write_4(sc, R92C_CAMWRITE, content);
3151 urtwn_write_4(sc, R92C_CAMCMD, command);
3152 }
3153 }
3154
3155 /* Invalidate all CAM entries. */
3156 urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
3157 }
3158
3159 static void
3160 urtwn_pa_bias_init(struct urtwn_softc *sc)
3161 {
3162 uint8_t reg;
3163 size_t i;
3164
3165 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3166
3167 KASSERT(mutex_owned(&sc->sc_write_mtx));
3168
3169 for (i = 0; i < sc->nrxchains; i++) {
3170 if (sc->pa_setting & (1U << i))
3171 continue;
3172
3173 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
3174 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
3175 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
3176 urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
3177 }
3178 if (!(sc->pa_setting & 0x10)) {
3179 reg = urtwn_read_1(sc, 0x16);
3180 reg = (reg & ~0xf0) | 0x90;
3181 urtwn_write_1(sc, 0x16, reg);
3182 }
3183 }
3184
3185 static void
3186 urtwn_rxfilter_init(struct urtwn_softc *sc)
3187 {
3188
3189 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3190
3191 KASSERT(mutex_owned(&sc->sc_write_mtx));
3192
3193 /* Initialize Rx filter. */
3194 /* TODO: use better filter for monitor mode. */
3195 urtwn_write_4(sc, R92C_RCR,
3196 R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
3197 R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
3198 R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
3199 /* Accept all multicast frames. */
3200 urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
3201 urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
3202 /* Accept all management frames. */
3203 urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
3204 /* Reject all control frames. */
3205 urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
3206 /* Accept all data frames. */
3207 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
3208 }
3209
3210 static void
3211 urtwn_edca_init(struct urtwn_softc *sc)
3212 {
3213
3214 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3215
3216 KASSERT(mutex_owned(&sc->sc_write_mtx));
3217
3218 /* set spec SIFS (used in NAV) */
3219 urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
3220 urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
3221
3222 /* set SIFS CCK/OFDM */
3223 urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
3224 urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
3225
3226 /* TXOP */
3227 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
3228 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
3229 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
3230 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
3231 }
3232
3233 static void
3234 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
3235 uint16_t power[URTWN_RIDX_COUNT])
3236 {
3237 uint32_t reg;
3238
3239 DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
3240 __func__, chain));
3241
3242 /* Write per-CCK rate Tx power. */
3243 if (chain == 0) {
3244 reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
3245 reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
3246 urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
3247
3248 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3249 reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
3250 reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
3251 reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
3252 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3253 } else {
3254 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
3255 reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
3256 reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
3257 reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
3258 urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
3259
3260 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3261 reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
3262 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3263 }
3264 /* Write per-OFDM rate Tx power. */
3265 urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
3266 SM(R92C_TXAGC_RATE06, power[ 4]) |
3267 SM(R92C_TXAGC_RATE09, power[ 5]) |
3268 SM(R92C_TXAGC_RATE12, power[ 6]) |
3269 SM(R92C_TXAGC_RATE18, power[ 7]));
3270 urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
3271 SM(R92C_TXAGC_RATE24, power[ 8]) |
3272 SM(R92C_TXAGC_RATE36, power[ 9]) |
3273 SM(R92C_TXAGC_RATE48, power[10]) |
3274 SM(R92C_TXAGC_RATE54, power[11]));
3275 /* Write per-MCS Tx power. */
3276 urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
3277 SM(R92C_TXAGC_MCS00, power[12]) |
3278 SM(R92C_TXAGC_MCS01, power[13]) |
3279 SM(R92C_TXAGC_MCS02, power[14]) |
3280 SM(R92C_TXAGC_MCS03, power[15]));
3281 urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
3282 SM(R92C_TXAGC_MCS04, power[16]) |
3283 SM(R92C_TXAGC_MCS05, power[17]) |
3284 SM(R92C_TXAGC_MCS06, power[18]) |
3285 SM(R92C_TXAGC_MCS07, power[19]));
3286 urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
3287 SM(R92C_TXAGC_MCS08, power[20]) |
3288 SM(R92C_TXAGC_MCS09, power[21]) |
3289 SM(R92C_TXAGC_MCS10, power[22]) |
3290 SM(R92C_TXAGC_MCS11, power[23]));
3291 urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
3292 SM(R92C_TXAGC_MCS12, power[24]) |
3293 SM(R92C_TXAGC_MCS13, power[25]) |
3294 SM(R92C_TXAGC_MCS14, power[26]) |
3295 SM(R92C_TXAGC_MCS15, power[27]));
3296 }
3297
3298 static void
3299 urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m,
3300 uint16_t power[URTWN_RIDX_COUNT])
3301 {
3302 struct r92c_rom *rom = &sc->rom;
3303 uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
3304 const struct urtwn_txpwr *base;
3305 int ridx, group;
3306
3307 DPRINTFN(DBG_FN, ("%s: %s: chain=%zd, chan=%d\n",
3308 device_xname(sc->sc_dev), __func__, chain, chan));
3309
3310 /* Determine channel group. */
3311 if (chan <= 3) {
3312 group = 0;
3313 } else if (chan <= 9) {
3314 group = 1;
3315 } else {
3316 group = 2;
3317 }
3318
3319 /* Get original Tx power based on board type and RF chain. */
3320 if (!(sc->chip & URTWN_CHIP_92C)) {
3321 if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3322 base = &rtl8188ru_txagc[chain];
3323 } else {
3324 base = &rtl8192cu_txagc[chain];
3325 }
3326 } else {
3327 base = &rtl8192cu_txagc[chain];
3328 }
3329
3330 memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3331 if (sc->regulatory == 0) {
3332 for (ridx = 0; ridx <= 3; ridx++) {
3333 power[ridx] = base->pwr[0][ridx];
3334 }
3335 }
3336 for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3337 if (sc->regulatory == 3) {
3338 power[ridx] = base->pwr[0][ridx];
3339 /* Apply vendor limits. */
3340 if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
3341 maxpow = rom->ht40_max_pwr[group];
3342 } else {
3343 maxpow = rom->ht20_max_pwr[group];
3344 }
3345 maxpow = (maxpow >> (chain * 4)) & 0xf;
3346 if (power[ridx] > maxpow) {
3347 power[ridx] = maxpow;
3348 }
3349 } else if (sc->regulatory == 1) {
3350 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3351 power[ridx] = base->pwr[group][ridx];
3352 }
3353 } else if (sc->regulatory != 2) {
3354 power[ridx] = base->pwr[0][ridx];
3355 }
3356 }
3357
3358 /* Compute per-CCK rate Tx power. */
3359 cckpow = rom->cck_tx_pwr[chain][group];
3360 for (ridx = 0; ridx <= 3; ridx++) {
3361 power[ridx] += cckpow;
3362 if (power[ridx] > R92C_MAX_TX_PWR) {
3363 power[ridx] = R92C_MAX_TX_PWR;
3364 }
3365 }
3366
3367 htpow = rom->ht40_1s_tx_pwr[chain][group];
3368 if (sc->ntxchains > 1) {
3369 /* Apply reduction for 2 spatial streams. */
3370 diff = rom->ht40_2s_tx_pwr_diff[group];
3371 diff = (diff >> (chain * 4)) & 0xf;
3372 htpow = (htpow > diff) ? htpow - diff : 0;
3373 }
3374
3375 /* Compute per-OFDM rate Tx power. */
3376 diff = rom->ofdm_tx_pwr_diff[group];
3377 diff = (diff >> (chain * 4)) & 0xf;
3378 ofdmpow = htpow + diff; /* HT->OFDM correction. */
3379 for (ridx = 4; ridx <= 11; ridx++) {
3380 power[ridx] += ofdmpow;
3381 if (power[ridx] > R92C_MAX_TX_PWR) {
3382 power[ridx] = R92C_MAX_TX_PWR;
3383 }
3384 }
3385
3386 /* Compute per-MCS Tx power. */
3387 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3388 diff = rom->ht20_tx_pwr_diff[group];
3389 diff = (diff >> (chain * 4)) & 0xf;
3390 htpow += diff; /* HT40->HT20 correction. */
3391 }
3392 for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
3393 power[ridx] += htpow;
3394 if (power[ridx] > R92C_MAX_TX_PWR) {
3395 power[ridx] = R92C_MAX_TX_PWR;
3396 }
3397 }
3398 #ifdef URTWN_DEBUG
3399 if (urtwn_debug & DBG_RF) {
3400 /* Dump per-rate Tx power values. */
3401 printf("%s: %s: Tx power for chain %zd:\n",
3402 device_xname(sc->sc_dev), __func__, chain);
3403 for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
3404 printf("%s: %s: Rate %d = %u\n",
3405 device_xname(sc->sc_dev), __func__, ridx,
3406 power[ridx]);
3407 }
3408 }
3409 #endif
3410 }
3411
3412 static void
3413 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
3414 {
3415 uint16_t power[URTWN_RIDX_COUNT];
3416 size_t i;
3417
3418 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3419
3420 for (i = 0; i < sc->ntxchains; i++) {
3421 /* Compute per-rate Tx power values. */
3422 urtwn_get_txpower(sc, i, chan, ht40m, power);
3423 /* Write per-rate Tx power values to hardware. */
3424 urtwn_write_txpower(sc, i, power);
3425 }
3426 }
3427
3428 static void
3429 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
3430 {
3431 struct ieee80211com *ic = &sc->sc_ic;
3432 u_int chan;
3433 size_t i;
3434
3435 chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
3436
3437 DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
3438 __func__, chan));
3439
3440 KASSERT(mutex_owned(&sc->sc_write_mtx));
3441
3442 if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
3443 chan += 2;
3444 } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
3445 chan -= 2;
3446 }
3447
3448 /* Set Tx power for this new channel. */
3449 urtwn_set_txpower(sc, chan, ht40m);
3450
3451 for (i = 0; i < sc->nrxchains; i++) {
3452 urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3453 RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3454 }
3455
3456 if (ht40m) {
3457 /* Is secondary channel below or above primary? */
3458 int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
3459 uint32_t reg;
3460
3461 urtwn_write_1(sc, R92C_BWOPMODE,
3462 urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3463
3464 reg = urtwn_read_1(sc, R92C_RRSR + 2);
3465 reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3466 urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
3467
3468 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3469 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3470 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3471 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3472
3473 /* Set CCK side band. */
3474 reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3475 reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3476 urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3477
3478 reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3479 reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3480 urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3481
3482 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3483 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3484 ~R92C_FPGA0_ANAPARAM2_CBW20);
3485
3486 reg = urtwn_bb_read(sc, 0x818);
3487 reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3488 urtwn_bb_write(sc, 0x818, reg);
3489
3490 /* Select 40MHz bandwidth. */
3491 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3492 (sc->rf_chnlbw[0] & ~0xfff) | chan);
3493 } else {
3494 urtwn_write_1(sc, R92C_BWOPMODE,
3495 urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3496
3497 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3498 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3499 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3500 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3501
3502 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3503 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3504 R92C_FPGA0_ANAPARAM2_CBW20);
3505
3506 /* Select 20MHz bandwidth. */
3507 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3508 (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
3509 }
3510 }
3511
3512 static void
3513 urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
3514 {
3515
3516 DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
3517 __func__, inited));
3518
3519 /* TODO */
3520 }
3521
3522 static void
3523 urtwn_lc_calib(struct urtwn_softc *sc)
3524 {
3525 uint32_t rf_ac[2];
3526 uint8_t txmode;
3527 size_t i;
3528
3529 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3530
3531 KASSERT(mutex_owned(&sc->sc_write_mtx));
3532
3533 txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3534 if ((txmode & 0x70) != 0) {
3535 /* Disable all continuous Tx. */
3536 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3537
3538 /* Set RF mode to standby mode. */
3539 for (i = 0; i < sc->nrxchains; i++) {
3540 rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3541 urtwn_rf_write(sc, i, R92C_RF_AC,
3542 RW(rf_ac[i], R92C_RF_AC_MODE,
3543 R92C_RF_AC_MODE_STANDBY));
3544 }
3545 } else {
3546 /* Block all Tx queues. */
3547 urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3548 }
3549 /* Start calibration. */
3550 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3551 urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3552
3553 /* Give calibration the time to complete. */
3554 usbd_delay_ms(sc->sc_udev, 100);
3555
3556 /* Restore configuration. */
3557 if ((txmode & 0x70) != 0) {
3558 /* Restore Tx mode. */
3559 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3560 /* Restore RF mode. */
3561 for (i = 0; i < sc->nrxchains; i++) {
3562 urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3563 }
3564 } else {
3565 /* Unblock all Tx queues. */
3566 urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3567 }
3568 }
3569
3570 static void
3571 urtwn_temp_calib(struct urtwn_softc *sc)
3572 {
3573 int temp;
3574
3575 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3576
3577 KASSERT(mutex_owned(&sc->sc_write_mtx));
3578
3579 if (sc->thcal_state == 0) {
3580 /* Start measuring temperature. */
3581 DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
3582 device_xname(sc->sc_dev), __func__));
3583 urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
3584 sc->thcal_state = 1;
3585 return;
3586 }
3587 sc->thcal_state = 0;
3588
3589 /* Read measured temperature. */
3590 temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
3591 DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
3592 __func__, temp));
3593 if (temp == 0) /* Read failed, skip. */
3594 return;
3595
3596 /*
3597 * Redo LC calibration if temperature changed significantly since
3598 * last calibration.
3599 */
3600 if (sc->thcal_lctemp == 0) {
3601 /* First LC calibration is performed in urtwn_init(). */
3602 sc->thcal_lctemp = temp;
3603 } else if (abs(temp - sc->thcal_lctemp) > 1) {
3604 DPRINTFN(DBG_RF,
3605 ("%s: %s: LC calib triggered by temp: %d -> %d\n",
3606 device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
3607 temp));
3608 urtwn_lc_calib(sc);
3609 /* Record temperature of last LC calibration. */
3610 sc->thcal_lctemp = temp;
3611 }
3612 }
3613
3614 static int
3615 urtwn_init(struct ifnet *ifp)
3616 {
3617 struct urtwn_softc *sc = ifp->if_softc;
3618 struct ieee80211com *ic = &sc->sc_ic;
3619 struct urtwn_rx_data *data;
3620 uint32_t reg;
3621 size_t i;
3622 int error;
3623
3624 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3625
3626 urtwn_stop(ifp, 0);
3627
3628 mutex_enter(&sc->sc_write_mtx);
3629
3630 mutex_enter(&sc->sc_task_mtx);
3631 /* Init host async commands ring. */
3632 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3633 mutex_exit(&sc->sc_task_mtx);
3634
3635 mutex_enter(&sc->sc_fwcmd_mtx);
3636 /* Init firmware commands ring. */
3637 sc->fwcur = 0;
3638 mutex_exit(&sc->sc_fwcmd_mtx);
3639
3640 /* Allocate Tx/Rx buffers. */
3641 error = urtwn_alloc_rx_list(sc);
3642 if (error != 0) {
3643 aprint_error_dev(sc->sc_dev,
3644 "could not allocate Rx buffers\n");
3645 goto fail;
3646 }
3647 error = urtwn_alloc_tx_list(sc);
3648 if (error != 0) {
3649 aprint_error_dev(sc->sc_dev,
3650 "could not allocate Tx buffers\n");
3651 goto fail;
3652 }
3653
3654 /* Power on adapter. */
3655 error = urtwn_power_on(sc);
3656 if (error != 0)
3657 goto fail;
3658
3659 /* Initialize DMA. */
3660 error = urtwn_dma_init(sc);
3661 if (error != 0)
3662 goto fail;
3663
3664 /* Set info size in Rx descriptors (in 64-bit words). */
3665 urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3666
3667 /* Init interrupts. */
3668 urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3669 urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3670
3671 /* Set MAC address. */
3672 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3673 urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
3674
3675 /* Set initial network type. */
3676 reg = urtwn_read_4(sc, R92C_CR);
3677 switch (ic->ic_opmode) {
3678 case IEEE80211_M_STA:
3679 default:
3680 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3681 break;
3682
3683 case IEEE80211_M_IBSS:
3684 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
3685 break;
3686 }
3687 urtwn_write_4(sc, R92C_CR, reg);
3688
3689 /* Set response rate */
3690 reg = urtwn_read_4(sc, R92C_RRSR);
3691 reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3692 urtwn_write_4(sc, R92C_RRSR, reg);
3693
3694 /* SIFS (used in NAV) */
3695 urtwn_write_2(sc, R92C_SPEC_SIFS,
3696 SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
3697
3698 /* Set short/long retry limits. */
3699 urtwn_write_2(sc, R92C_RL,
3700 SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3701
3702 /* Initialize EDCA parameters. */
3703 urtwn_edca_init(sc);
3704
3705 /* Setup rate fallback. */
3706 urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3707 urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3708 urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3709 urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3710
3711 urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3712 urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3713 R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3714 /* Set ACK timeout. */
3715 urtwn_write_1(sc, R92C_ACKTO, 0x40);
3716
3717 /* Setup USB aggregation. */
3718 /* Tx */
3719 reg = urtwn_read_4(sc, R92C_TDECTRL);
3720 reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3721 urtwn_write_4(sc, R92C_TDECTRL, reg);
3722 /* Rx */
3723 urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3724 urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3725 R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3726 urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3727 urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
3728 ~R92C_USB_SPECIAL_OPTION_AGG_EN);
3729 urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3730 urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3731
3732 /* Initialize beacon parameters. */
3733 urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3734 urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
3735 urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
3736 urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3737
3738 /* Setup AMPDU aggregation. */
3739 urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
3740 urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3741 urtwn_write_2(sc, 0x4ca, 0x0708);
3742
3743 urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3744 urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
3745
3746 /* Load 8051 microcode. */
3747 error = urtwn_load_firmware(sc);
3748 if (error != 0)
3749 goto fail;
3750 SET(sc->sc_flags, URTWN_FLAG_FWREADY);
3751
3752 /* Initialize MAC/BB/RF blocks. */
3753 /*
3754 * XXX: urtwn_mac_init() sets R92C_RCR[0:15] = R92C_RCR_APM |
3755 * R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_AICV | R92C_RCR_AMF.
3756 * XXX: This setting should be removed from rtl8192cu_mac[].
3757 */
3758 urtwn_mac_init(sc); // sets R92C_RCR[0:15]
3759 urtwn_rxfilter_init(sc); // reset R92C_RCR
3760 urtwn_bb_init(sc);
3761 urtwn_rf_init(sc);
3762
3763 /* Turn CCK and OFDM blocks on. */
3764 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3765 reg |= R92C_RFMOD_CCK_EN;
3766 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3767 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3768 reg |= R92C_RFMOD_OFDM_EN;
3769 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3770
3771 /* Clear per-station keys table. */
3772 urtwn_cam_init(sc);
3773
3774 /* Enable hardware sequence numbering. */
3775 urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3776
3777 /* Perform LO and IQ calibrations. */
3778 urtwn_iq_calib(sc, sc->iqk_inited);
3779 sc->iqk_inited = true;
3780
3781 /* Perform LC calibration. */
3782 urtwn_lc_calib(sc);
3783
3784 /* Fix USB interference issue. */
3785 urtwn_write_1(sc, 0xfe40, 0xe0);
3786 urtwn_write_1(sc, 0xfe41, 0x8d);
3787 urtwn_write_1(sc, 0xfe42, 0x80);
3788 urtwn_write_4(sc, 0x20c, 0xfd0320);
3789
3790 urtwn_pa_bias_init(sc);
3791
3792 if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
3793 /* 1T1R */
3794 urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
3795 urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
3796 }
3797
3798 /* Initialize GPIO setting. */
3799 urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3800 urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3801
3802 /* Fix for lower temperature. */
3803 urtwn_write_1(sc, 0x15, 0xe9);
3804
3805 /* Set default channel. */
3806 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
3807
3808 /* Queue Rx xfers. */
3809 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
3810 data = &sc->rx_data[i];
3811 usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
3812 URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3813 USBD_NO_TIMEOUT, urtwn_rxeof);
3814 error = usbd_transfer(data->xfer);
3815 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
3816 error != USBD_IN_PROGRESS))
3817 goto fail;
3818 }
3819
3820 /* We're ready to go. */
3821 ifp->if_flags &= ~IFF_OACTIVE;
3822 ifp->if_flags |= IFF_RUNNING;
3823
3824 mutex_exit(&sc->sc_write_mtx);
3825
3826 if (ic->ic_opmode == IEEE80211_M_MONITOR)
3827 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3828 else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3829 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3830 urtwn_wait_async(sc);
3831
3832 return (0);
3833
3834 fail:
3835 mutex_exit(&sc->sc_write_mtx);
3836
3837 urtwn_stop(ifp, 1);
3838 return (error);
3839 }
3840
3841 static void
3842 urtwn_stop(struct ifnet *ifp, int disable)
3843 {
3844 struct urtwn_softc *sc = ifp->if_softc;
3845 struct ieee80211com *ic = &sc->sc_ic;
3846 size_t i;
3847 int s;
3848
3849 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3850
3851 s = splusb();
3852 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3853 urtwn_wait_async(sc);
3854 splx(s);
3855
3856 sc->tx_timer = 0;
3857 ifp->if_timer = 0;
3858 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3859
3860 callout_stop(&sc->sc_scan_to);
3861 callout_stop(&sc->sc_calib_to);
3862
3863 /* Abort Tx. */
3864 for (i = 0; i < R92C_MAX_EPOUT; i++) {
3865 if (sc->tx_pipe[i] != NULL)
3866 usbd_abort_pipe(sc->tx_pipe[i]);
3867 }
3868
3869 /* Stop Rx pipe. */
3870 usbd_abort_pipe(sc->rx_pipe);
3871
3872 /* Free Tx/Rx buffers. */
3873 urtwn_free_tx_list(sc);
3874 urtwn_free_rx_list(sc);
3875
3876 if (disable)
3877 urtwn_chip_stop(sc);
3878 }
3879
3880 static int
3881 urtwn_reset(struct ifnet *ifp)
3882 {
3883 struct urtwn_softc *sc = ifp->if_softc;
3884 struct ieee80211com *ic = &sc->sc_ic;
3885
3886 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3887 return ENETRESET;
3888
3889 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
3890
3891 return 0;
3892 }
3893
3894 static void
3895 urtwn_chip_stop(struct urtwn_softc *sc)
3896 {
3897 uint32_t reg;
3898 bool disabled = true;
3899
3900 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3901
3902 mutex_enter(&sc->sc_write_mtx);
3903
3904 /*
3905 * RF Off Sequence
3906 */
3907 /* Pause MAC TX queue */
3908 urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
3909
3910 /* Disable RF */
3911 urtwn_rf_write(sc, 0, 0, 0);
3912
3913 urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
3914
3915 /* Reset BB state machine */
3916 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3917 R92C_SYS_FUNC_EN_USBD |
3918 R92C_SYS_FUNC_EN_USBA |
3919 R92C_SYS_FUNC_EN_BB_GLB_RST);
3920 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3921 R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
3922
3923 /*
3924 * Reset digital sequence
3925 */
3926 if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
3927 /* Reset MCU ready status */
3928 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3929 /* If firmware in ram code, do reset */
3930 if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
3931 urtwn_fw_reset(sc);
3932 CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
3933 }
3934 }
3935
3936 /* Reset MAC and Enable 8051 */
3937 urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
3938
3939 /* Reset MCU ready status */
3940 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3941
3942 if (disabled) {
3943 /* Disable MAC clock */
3944 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3945 /* Disable AFE PLL */
3946 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
3947 /* Gated AFE DIG_CLOCK */
3948 urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
3949 /* Isolated digital to PON */
3950 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
3951 }
3952
3953 /*
3954 * Pull GPIO PIN to balance level and LED control
3955 */
3956 /* 1. Disable GPIO[7:0] */
3957 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
3958
3959 reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
3960 reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
3961 urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
3962
3963 /* Disable GPIO[10:8] */
3964 urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
3965
3966 reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
3967 reg |= (((reg & 0x000f) << 4) | 0x0780);
3968 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
3969
3970 /* Disable LED0 & 1 */
3971 urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
3972
3973 /*
3974 * Reset digital sequence
3975 */
3976 if (disabled) {
3977 /* Disable ELDR clock */
3978 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3979 /* Isolated ELDR to PON */
3980 urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
3981 }
3982
3983 /*
3984 * Disable analog sequence
3985 */
3986 if (disabled) {
3987 /* Disable A15 power */
3988 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
3989 /* Disable digital core power */
3990 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
3991 urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
3992 ~R92C_LDOV12D_CTRL_LDV12_EN);
3993 }
3994
3995 /* Enter PFM mode */
3996 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
3997
3998 /* Set USB suspend */
3999 urtwn_write_2(sc, R92C_APS_FSMCO,
4000 R92C_APS_FSMCO_APDM_HOST |
4001 R92C_APS_FSMCO_AFSM_HSUS |
4002 R92C_APS_FSMCO_PFM_ALDN);
4003
4004 urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
4005
4006 mutex_exit(&sc->sc_write_mtx);
4007 }
4008
4009 MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf");
4010
4011 #ifdef _MODULE
4012 #include "ioconf.c"
4013 #endif
4014
4015 static int
4016 if_urtwn_modcmd(modcmd_t cmd, void *aux)
4017 {
4018 int error = 0;
4019
4020 switch (cmd) {
4021 case MODULE_CMD_INIT:
4022 #ifdef _MODULE
4023 error = config_init_component(cfdriver_ioconf_urtwn,
4024 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
4025 #endif
4026 return (error);
4027 case MODULE_CMD_FINI:
4028 #ifdef _MODULE
4029 error = config_fini_component(cfdriver_ioconf_urtwn,
4030 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
4031 #endif
4032 return (error);
4033 default:
4034 return (ENOTTY);
4035 }
4036 }
4037