if_urtwn.c revision 1.27 1 /* $NetBSD: if_urtwn.c,v 1.27 2014/02/16 08:17:43 nonaka Exp $ */
2 /* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*-
21 * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
22 */
23
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.27 2014/02/16 08:17:43 nonaka Exp $");
26
27 #ifdef _KERNEL_OPT
28 #include "opt_inet.h"
29 #endif
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_inarp.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdivar.h>
70 #include <dev/usb/usbdi_util.h>
71 #include <dev/usb/usbdevs.h>
72
73 #include <dev/usb/if_urtwnreg.h>
74 #include <dev/usb/if_urtwnvar.h>
75 #include <dev/usb/if_urtwn_data.h>
76
77 /*
78 * The sc_write_mtx locking is to prevent sequences of writes from
79 * being intermingled with each other. I don't know if this is really
80 * needed. I have added it just to be on the safe side.
81 */
82
83 #ifdef URTWN_DEBUG
84 #define DBG_INIT __BIT(0)
85 #define DBG_FN __BIT(1)
86 #define DBG_TX __BIT(2)
87 #define DBG_RX __BIT(3)
88 #define DBG_STM __BIT(4)
89 #define DBG_RF __BIT(5)
90 #define DBG_REG __BIT(6)
91 #define DBG_ALL 0xffffffffU
92 u_int urtwn_debug = 0;
93 #define DPRINTFN(n, s) \
94 do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
95 #else
96 #define DPRINTFN(n, s)
97 #endif
98
99 static const struct usb_devno urtwn_devs[] = {
100 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 },
101 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 },
102 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU },
103 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU },
104 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
105 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
106 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU },
107 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU },
108 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU },
109 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 },
110 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 },
111 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 },
112 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 },
113 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 },
114 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU },
115 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU },
116 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 },
117 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 },
118 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 },
119 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU },
120 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU },
121 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU },
122 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU },
123 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 },
124 { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU },
125 { USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU },
126 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M },
127 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU },
128 { USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU },
129 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU },
130 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 },
131 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 },
132 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU },
133 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 },
134 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 },
135 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS },
136 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 },
137 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 },
138 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV },
139 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 },
140 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 },
141 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 },
142 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO },
143 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS },
144 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU },
145 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 },
146 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU },
147 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE },
148 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU },
149 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU },
150 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 },
151 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU },
152 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CUR2 },
153 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU },
154 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU },
155 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU }
156 };
157
158 static int urtwn_match(device_t, cfdata_t, void *);
159 static void urtwn_attach(device_t, device_t, void *);
160 static int urtwn_detach(device_t, int);
161 static int urtwn_activate(device_t, enum devact);
162
163 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
164 urtwn_attach, urtwn_detach, urtwn_activate);
165
166 static int urtwn_open_pipes(struct urtwn_softc *);
167 static void urtwn_close_pipes(struct urtwn_softc *);
168 static int urtwn_alloc_rx_list(struct urtwn_softc *);
169 static void urtwn_free_rx_list(struct urtwn_softc *);
170 static int urtwn_alloc_tx_list(struct urtwn_softc *);
171 static void urtwn_free_tx_list(struct urtwn_softc *);
172 static void urtwn_task(void *);
173 static void urtwn_do_async(struct urtwn_softc *,
174 void (*)(struct urtwn_softc *, void *), void *, int);
175 static void urtwn_wait_async(struct urtwn_softc *);
176 static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
177 int);
178 static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
179 static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
180 static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
181 static int urtwn_write_region(struct urtwn_softc *, uint16_t, uint8_t *,
182 int);
183 static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
184 int);
185 static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
186 static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
187 static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
188 static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
189 static void urtwn_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t);
190 static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
191 static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
192 static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
193 static void urtwn_efuse_read(struct urtwn_softc *);
194 static int urtwn_read_chipid(struct urtwn_softc *);
195 #ifdef URTWN_DEBUG
196 static void urtwn_dump_rom(struct urtwn_softc *, struct r92c_rom *);
197 #endif
198 static void urtwn_read_rom(struct urtwn_softc *);
199 static int urtwn_media_change(struct ifnet *);
200 static int urtwn_ra_init(struct urtwn_softc *);
201 static int urtwn_get_nettype(struct urtwn_softc *);
202 static void urtwn_set_nettype0_msr(struct urtwn_softc *, uint8_t);
203 static void urtwn_tsf_sync_enable(struct urtwn_softc *);
204 static void urtwn_set_led(struct urtwn_softc *, int, int);
205 static void urtwn_calib_to(void *);
206 static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
207 static void urtwn_next_scan(void *);
208 static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
209 int);
210 static void urtwn_newstate_cb(struct urtwn_softc *, void *);
211 static int urtwn_wme_update(struct ieee80211com *);
212 static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
213 static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
214 static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
215 static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
216 static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
217 static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
218 static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
219 struct ieee80211_node *, struct urtwn_tx_data *);
220 static void urtwn_start(struct ifnet *);
221 static void urtwn_watchdog(struct ifnet *);
222 static int urtwn_ioctl(struct ifnet *, u_long, void *);
223 static int urtwn_power_on(struct urtwn_softc *);
224 static int urtwn_llt_init(struct urtwn_softc *);
225 static void urtwn_fw_reset(struct urtwn_softc *);
226 static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
227 static int urtwn_load_firmware(struct urtwn_softc *);
228 static int urtwn_dma_init(struct urtwn_softc *);
229 static void urtwn_mac_init(struct urtwn_softc *);
230 static void urtwn_bb_init(struct urtwn_softc *);
231 static void urtwn_rf_init(struct urtwn_softc *);
232 static void urtwn_cam_init(struct urtwn_softc *);
233 static void urtwn_pa_bias_init(struct urtwn_softc *);
234 static void urtwn_rxfilter_init(struct urtwn_softc *);
235 static void urtwn_edca_init(struct urtwn_softc *);
236 static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
237 static void urtwn_get_txpower(struct urtwn_softc *, size_t, u_int, u_int,
238 uint16_t[]);
239 static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
240 static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
241 u_int);
242 static void urtwn_iq_calib(struct urtwn_softc *, bool);
243 static void urtwn_lc_calib(struct urtwn_softc *);
244 static void urtwn_temp_calib(struct urtwn_softc *);
245 static int urtwn_init(struct ifnet *);
246 static void urtwn_stop(struct ifnet *, int);
247 static int urtwn_reset(struct ifnet *);
248 static void urtwn_chip_stop(struct urtwn_softc *);
249 static void urtwn_newassoc(struct ieee80211_node *, int);
250
251 /* Aliases. */
252 #define urtwn_bb_write urtwn_write_4
253 #define urtwn_bb_read urtwn_read_4
254
255 static int
256 urtwn_match(device_t parent, cfdata_t match, void *aux)
257 {
258 struct usb_attach_arg *uaa = aux;
259
260 return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
261 UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
262 }
263
264 static void
265 urtwn_attach(device_t parent, device_t self, void *aux)
266 {
267 struct urtwn_softc *sc = device_private(self);
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ifnet *ifp = &sc->sc_if;
270 struct usb_attach_arg *uaa = aux;
271 char *devinfop;
272 size_t i;
273 int error;
274
275 sc->sc_dev = self;
276 sc->sc_udev = uaa->device;
277
278 aprint_naive("\n");
279 aprint_normal("\n");
280
281 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
282
283 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
284 aprint_normal_dev(self, "%s\n", devinfop);
285 usbd_devinfo_free(devinfop);
286
287 mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
288 mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NONE);
289 mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
290 mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE);
291
292 usb_init_task(&sc->sc_task, urtwn_task, sc, 0);
293
294 callout_init(&sc->sc_scan_to, 0);
295 callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
296 callout_init(&sc->sc_calib_to, 0);
297 callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
298
299 error = usbd_set_config_no(sc->sc_udev, 1, 0);
300 if (error != 0) {
301 aprint_error_dev(self, "failed to set configuration"
302 ", err=%s\n", usbd_errstr(error));
303 goto fail;
304 }
305
306 /* Get the first interface handle. */
307 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
308 if (error != 0) {
309 aprint_error_dev(self, "could not get interface handle\n");
310 goto fail;
311 }
312
313 error = urtwn_read_chipid(sc);
314 if (error != 0) {
315 aprint_error_dev(self, "unsupported test chip\n");
316 goto fail;
317 }
318
319 /* Determine number of Tx/Rx chains. */
320 if (sc->chip & URTWN_CHIP_92C) {
321 sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
322 sc->nrxchains = 2;
323 } else {
324 sc->ntxchains = 1;
325 sc->nrxchains = 1;
326 }
327 urtwn_read_rom(sc);
328
329 aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %zdT%zdR, address %s\n",
330 (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
331 (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
332 (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
333 "8188CUS", sc->ntxchains, sc->nrxchains,
334 ether_sprintf(ic->ic_myaddr));
335
336 error = urtwn_open_pipes(sc);
337 if (error != 0) {
338 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
339 goto fail;
340 }
341 aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
342 sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
343 sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
344
345 /*
346 * Setup the 802.11 device.
347 */
348 ic->ic_ifp = ifp;
349 ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
350 ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
351 ic->ic_state = IEEE80211_S_INIT;
352
353 /* Set device capabilities. */
354 ic->ic_caps =
355 IEEE80211_C_MONITOR | /* Monitor mode supported. */
356 IEEE80211_C_IBSS | /* IBSS mode supported */
357 IEEE80211_C_HOSTAP | /* HostAp mode supported */
358 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
359 IEEE80211_C_SHSLOT | /* Short slot time supported. */
360 IEEE80211_C_WME | /* 802.11e */
361 IEEE80211_C_WPA; /* 802.11i */
362
363 /* Set supported .11b and .11g rates. */
364 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
365 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
366
367 /* Set supported .11b and .11g channels (1 through 14). */
368 for (i = 1; i <= 14; i++) {
369 ic->ic_channels[i].ic_freq =
370 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
371 ic->ic_channels[i].ic_flags =
372 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
373 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
374 }
375
376 ifp->if_softc = sc;
377 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
378 ifp->if_init = urtwn_init;
379 ifp->if_ioctl = urtwn_ioctl;
380 ifp->if_start = urtwn_start;
381 ifp->if_watchdog = urtwn_watchdog;
382 IFQ_SET_READY(&ifp->if_snd);
383 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
384
385 if_attach(ifp);
386 ieee80211_ifattach(ic);
387
388 /* override default methods */
389 ic->ic_newassoc = urtwn_newassoc;
390 ic->ic_reset = urtwn_reset;
391 ic->ic_wme.wme_update = urtwn_wme_update;
392
393 /* Override state transition machine. */
394 sc->sc_newstate = ic->ic_newstate;
395 ic->ic_newstate = urtwn_newstate;
396 ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
397
398 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
399 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
400 &sc->sc_drvbpf);
401
402 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
403 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
404 sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
405
406 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
407 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
408 sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
409
410 ieee80211_announce(ic);
411
412 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
413
414 SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
415 return;
416
417 fail:
418 sc->sc_dying = 1;
419 aprint_error_dev(self, "attach failed\n");
420 }
421
422 static int
423 urtwn_detach(device_t self, int flags)
424 {
425 struct urtwn_softc *sc = device_private(self);
426 struct ifnet *ifp = &sc->sc_if;
427 int s;
428
429 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
430
431 s = splusb();
432
433 sc->sc_dying = 1;
434
435 callout_stop(&sc->sc_scan_to);
436 callout_stop(&sc->sc_calib_to);
437
438 if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
439 usb_rem_task(sc->sc_udev, &sc->sc_task);
440 urtwn_stop(ifp, 0);
441
442 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
443 bpf_detach(ifp);
444 ieee80211_ifdetach(&sc->sc_ic);
445 if_detach(ifp);
446
447 /* Abort and close Tx/Rx pipes. */
448 urtwn_close_pipes(sc);
449 }
450
451 splx(s);
452
453 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
454
455 callout_destroy(&sc->sc_scan_to);
456 callout_destroy(&sc->sc_calib_to);
457
458 mutex_destroy(&sc->sc_write_mtx);
459 mutex_destroy(&sc->sc_fwcmd_mtx);
460 mutex_destroy(&sc->sc_tx_mtx);
461 mutex_destroy(&sc->sc_task_mtx);
462
463 return (0);
464 }
465
466 static int
467 urtwn_activate(device_t self, enum devact act)
468 {
469 struct urtwn_softc *sc = device_private(self);
470
471 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
472
473 switch (act) {
474 case DVACT_DEACTIVATE:
475 if_deactivate(sc->sc_ic.ic_ifp);
476 return (0);
477 default:
478 return (EOPNOTSUPP);
479 }
480 }
481
482 static int
483 urtwn_open_pipes(struct urtwn_softc *sc)
484 {
485 /* Bulk-out endpoints addresses (from highest to lowest prio). */
486 static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
487 usb_interface_descriptor_t *id;
488 usb_endpoint_descriptor_t *ed;
489 size_t i, ntx = 0;
490 int error;
491
492 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
493
494 /* Determine the number of bulk-out pipes. */
495 id = usbd_get_interface_descriptor(sc->sc_iface);
496 for (i = 0; i < id->bNumEndpoints; i++) {
497 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
498 if (ed != NULL &&
499 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
500 UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
501 ntx++;
502 }
503 DPRINTFN(DBG_INIT, ("%s: %s: found %zd bulk-out pipes\n",
504 device_xname(sc->sc_dev), __func__, ntx));
505 if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
506 aprint_error_dev(sc->sc_dev,
507 "%zd: invalid number of Tx bulk pipes\n", ntx);
508 return (EIO);
509 }
510 sc->rx_npipe = 1;
511 sc->tx_npipe = ntx;
512
513 /* Open bulk-in pipe at address 0x81. */
514 error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
515 &sc->rx_pipe);
516 if (error != 0) {
517 aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe"
518 ": %d\n", error);
519 goto fail;
520 }
521
522 /* Open bulk-out pipes (up to 3). */
523 for (i = 0; i < ntx; i++) {
524 error = usbd_open_pipe(sc->sc_iface, epaddr[i],
525 USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
526 if (error != 0) {
527 aprint_error_dev(sc->sc_dev,
528 "could not open Tx bulk pipe 0x%02x: %d\n",
529 epaddr[i], error);
530 goto fail;
531 }
532 }
533
534 /* Map 802.11 access categories to USB pipes. */
535 sc->ac2idx[WME_AC_BK] =
536 sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
537 sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
538 sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
539
540 fail:
541 if (error != 0)
542 urtwn_close_pipes(sc);
543 return (error);
544 }
545
546 static void
547 urtwn_close_pipes(struct urtwn_softc *sc)
548 {
549 usbd_pipe_handle pipe;
550 size_t i;
551
552 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
553
554 /* Close Rx pipe. */
555 CTASSERT(sizeof(pipe) == sizeof(void *));
556 pipe = atomic_swap_ptr(&sc->rx_pipe, NULL);
557 if (pipe != NULL) {
558 usbd_abort_pipe(pipe);
559 usbd_close_pipe(pipe);
560 }
561 /* Close Tx pipes. */
562 for (i = 0; i < R92C_MAX_EPOUT; i++) {
563 pipe = atomic_swap_ptr(&sc->tx_pipe[i], NULL);
564 if (pipe != NULL) {
565 usbd_abort_pipe(pipe);
566 usbd_close_pipe(pipe);
567 }
568 }
569 }
570
571 static int
572 urtwn_alloc_rx_list(struct urtwn_softc *sc)
573 {
574 struct urtwn_rx_data *data;
575 size_t i;
576 int error = 0;
577
578 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
579
580 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
581 data = &sc->rx_data[i];
582
583 data->sc = sc; /* Backpointer for callbacks. */
584
585 data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 if (data->xfer == NULL) {
587 aprint_error_dev(sc->sc_dev,
588 "could not allocate xfer\n");
589 error = ENOMEM;
590 break;
591 }
592
593 data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
594 if (data->buf == NULL) {
595 aprint_error_dev(sc->sc_dev,
596 "could not allocate xfer buffer\n");
597 error = ENOMEM;
598 break;
599 }
600 }
601 if (error != 0)
602 urtwn_free_rx_list(sc);
603 return (error);
604 }
605
606 static void
607 urtwn_free_rx_list(struct urtwn_softc *sc)
608 {
609 usbd_xfer_handle xfer;
610 size_t i;
611
612 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
613
614 /* NB: Caller must abort pipe first. */
615 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
616 CTASSERT(sizeof(xfer) == sizeof(void *));
617 xfer = atomic_swap_ptr(&sc->rx_data[i].xfer, NULL);
618 if (xfer != NULL)
619 usbd_free_xfer(xfer);
620 }
621 }
622
623 static int
624 urtwn_alloc_tx_list(struct urtwn_softc *sc)
625 {
626 struct urtwn_tx_data *data;
627 size_t i;
628 int error = 0;
629
630 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
631
632 mutex_enter(&sc->sc_tx_mtx);
633 TAILQ_INIT(&sc->tx_free_list);
634 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
635 data = &sc->tx_data[i];
636
637 data->sc = sc; /* Backpointer for callbacks. */
638
639 data->xfer = usbd_alloc_xfer(sc->sc_udev);
640 if (data->xfer == NULL) {
641 aprint_error_dev(sc->sc_dev,
642 "could not allocate xfer\n");
643 error = ENOMEM;
644 goto fail;
645 }
646
647 data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
648 if (data->buf == NULL) {
649 aprint_error_dev(sc->sc_dev,
650 "could not allocate xfer buffer\n");
651 error = ENOMEM;
652 goto fail;
653 }
654
655 /* Append this Tx buffer to our free list. */
656 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
657 }
658 mutex_exit(&sc->sc_tx_mtx);
659 return (0);
660
661 fail:
662 urtwn_free_tx_list(sc);
663 mutex_exit(&sc->sc_tx_mtx);
664 return (error);
665 }
666
667 static void
668 urtwn_free_tx_list(struct urtwn_softc *sc)
669 {
670 usbd_xfer_handle xfer;
671 size_t i;
672
673 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
674
675 /* NB: Caller must abort pipe first. */
676 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
677 CTASSERT(sizeof(xfer) == sizeof(void *));
678 xfer = atomic_swap_ptr(&sc->tx_data[i].xfer, NULL);
679 if (xfer != NULL)
680 usbd_free_xfer(xfer);
681 }
682 }
683
684 static void
685 urtwn_task(void *arg)
686 {
687 struct urtwn_softc *sc = arg;
688 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
689 struct urtwn_host_cmd *cmd;
690 int s;
691
692 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
693
694 /* Process host commands. */
695 s = splusb();
696 mutex_spin_enter(&sc->sc_task_mtx);
697 while (ring->next != ring->cur) {
698 cmd = &ring->cmd[ring->next];
699 mutex_spin_exit(&sc->sc_task_mtx);
700 splx(s);
701 /* Invoke callback with kernel lock held. */
702 cmd->cb(sc, cmd->data);
703 s = splusb();
704 mutex_spin_enter(&sc->sc_task_mtx);
705 ring->queued--;
706 ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
707 }
708 mutex_spin_exit(&sc->sc_task_mtx);
709 wakeup(&sc->cmdq);
710 splx(s);
711 }
712
713 static void
714 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
715 void *arg, int len)
716 {
717 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
718 struct urtwn_host_cmd *cmd;
719 int s;
720
721 DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
722 device_xname(sc->sc_dev), __func__, cb, arg, len));
723
724 s = splusb();
725 mutex_spin_enter(&sc->sc_task_mtx);
726 cmd = &ring->cmd[ring->cur];
727 cmd->cb = cb;
728 KASSERT(len <= sizeof(cmd->data));
729 memcpy(cmd->data, arg, len);
730 ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
731
732 /* If there is no pending command already, schedule a task. */
733 if (!sc->sc_dying && ++ring->queued == 1) {
734 mutex_spin_exit(&sc->sc_task_mtx);
735 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
736 } else
737 mutex_spin_exit(&sc->sc_task_mtx);
738 splx(s);
739 }
740
741 static void
742 urtwn_wait_async(struct urtwn_softc *sc)
743 {
744
745 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
746
747 /* Wait for all queued asynchronous commands to complete. */
748 while (sc->cmdq.queued > 0)
749 tsleep(&sc->cmdq, 0, "endtask", 0);
750 }
751
752 static int
753 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
754 int len)
755 {
756 usb_device_request_t req;
757 usbd_status error;
758
759 KASSERT(mutex_owned(&sc->sc_write_mtx));
760
761 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
762 req.bRequest = R92C_REQ_REGS;
763 USETW(req.wValue, addr);
764 USETW(req.wIndex, 0);
765 USETW(req.wLength, len);
766 error = usbd_do_request(sc->sc_udev, &req, buf);
767 if (error != USBD_NORMAL_COMPLETION) {
768 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
769 device_xname(sc->sc_dev), __func__, error, addr, len));
770 }
771 return (error);
772 }
773
774 static void
775 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
776 {
777
778 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
779 device_xname(sc->sc_dev), __func__, addr, val));
780
781 urtwn_write_region_1(sc, addr, &val, 1);
782 }
783
784 static void
785 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
786 {
787 uint8_t buf[2];
788
789 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
790 device_xname(sc->sc_dev), __func__, addr, val));
791
792 buf[0] = (uint8_t)val;
793 buf[1] = (uint8_t)(val >> 8);
794 urtwn_write_region_1(sc, addr, buf, 2);
795 }
796
797 static void
798 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
799 {
800 uint8_t buf[4];
801
802 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
803 device_xname(sc->sc_dev), __func__, addr, val));
804
805 buf[0] = (uint8_t)val;
806 buf[1] = (uint8_t)(val >> 8);
807 buf[2] = (uint8_t)(val >> 16);
808 buf[3] = (uint8_t)(val >> 24);
809 urtwn_write_region_1(sc, addr, buf, 4);
810 }
811
812 static int
813 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
814 {
815
816 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
817 device_xname(sc->sc_dev), __func__, addr, len));
818
819 return urtwn_write_region_1(sc, addr, buf, len);
820 }
821
822 static int
823 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
824 int len)
825 {
826 usb_device_request_t req;
827 usbd_status error;
828
829 req.bmRequestType = UT_READ_VENDOR_DEVICE;
830 req.bRequest = R92C_REQ_REGS;
831 USETW(req.wValue, addr);
832 USETW(req.wIndex, 0);
833 USETW(req.wLength, len);
834 error = usbd_do_request(sc->sc_udev, &req, buf);
835 if (error != USBD_NORMAL_COMPLETION) {
836 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
837 device_xname(sc->sc_dev), __func__, error, addr, len));
838 }
839 return (error);
840 }
841
842 static uint8_t
843 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
844 {
845 uint8_t val;
846
847 if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
848 return (0xff);
849
850 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
851 device_xname(sc->sc_dev), __func__, addr, val));
852 return (val);
853 }
854
855 static uint16_t
856 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
857 {
858 uint8_t buf[2];
859 uint16_t val;
860
861 if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
862 return (0xffff);
863
864 val = LE_READ_2(&buf[0]);
865 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
866 device_xname(sc->sc_dev), __func__, addr, val));
867 return (val);
868 }
869
870 static uint32_t
871 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
872 {
873 uint8_t buf[4];
874 uint32_t val;
875
876 if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
877 return (0xffffffff);
878
879 val = LE_READ_4(&buf[0]);
880 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
881 device_xname(sc->sc_dev), __func__, addr, val));
882 return (val);
883 }
884
885 static int
886 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
887 {
888 struct r92c_fw_cmd cmd;
889 uint8_t *cp;
890 int fwcur;
891 int ntries;
892
893 DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
894 device_xname(sc->sc_dev), __func__, id, buf, len));
895
896 KASSERT(mutex_owned(&sc->sc_write_mtx));
897
898 mutex_enter(&sc->sc_fwcmd_mtx);
899 fwcur = sc->fwcur;
900 sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
901 mutex_exit(&sc->sc_fwcmd_mtx);
902
903 /* Wait for current FW box to be empty. */
904 for (ntries = 0; ntries < 100; ntries++) {
905 if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
906 break;
907 DELAY(1);
908 }
909 if (ntries == 100) {
910 aprint_error_dev(sc->sc_dev,
911 "could not send firmware command %d\n", id);
912 return (ETIMEDOUT);
913 }
914
915 memset(&cmd, 0, sizeof(cmd));
916 KASSERT(len <= sizeof(cmd.msg));
917 memcpy(cmd.msg, buf, len);
918
919 /* Write the first word last since that will trigger the FW. */
920 cp = (uint8_t *)&cmd;
921 if (len >= 4) {
922 cmd.id = id | R92C_CMD_FLAG_EXT;
923 urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
924 urtwn_write_4(sc, R92C_HMEBOX(fwcur),
925 cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
926 } else {
927 cmd.id = id;
928 urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
929 }
930
931 return (0);
932 }
933
934 static void
935 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
936 {
937
938 urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
939 SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
940 }
941
942 static uint32_t
943 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
944 {
945 uint32_t reg[R92C_MAX_CHAINS], val;
946
947 reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
948 if (chain != 0) {
949 reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
950 }
951
952 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
953 reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
954 DELAY(1000);
955
956 urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
957 RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
958 R92C_HSSI_PARAM2_READ_EDGE);
959 DELAY(1000);
960
961 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
962 reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
963 DELAY(1000);
964
965 if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
966 val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
967 } else {
968 val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
969 }
970 return (MS(val, R92C_LSSI_READBACK_DATA));
971 }
972
973 static int
974 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
975 {
976 int ntries;
977
978 KASSERT(mutex_owned(&sc->sc_write_mtx));
979
980 urtwn_write_4(sc, R92C_LLT_INIT,
981 SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
982 SM(R92C_LLT_INIT_ADDR, addr) |
983 SM(R92C_LLT_INIT_DATA, data));
984 /* Wait for write operation to complete. */
985 for (ntries = 0; ntries < 20; ntries++) {
986 if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
987 R92C_LLT_INIT_OP_NO_ACTIVE) {
988 /* Done */
989 return (0);
990 }
991 DELAY(5);
992 }
993 return (ETIMEDOUT);
994 }
995
996 static uint8_t
997 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
998 {
999 uint32_t reg;
1000 int ntries;
1001
1002 KASSERT(mutex_owned(&sc->sc_write_mtx));
1003
1004 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1005 reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
1006 reg &= ~R92C_EFUSE_CTRL_VALID;
1007 urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
1008
1009 /* Wait for read operation to complete. */
1010 for (ntries = 0; ntries < 100; ntries++) {
1011 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
1012 if (reg & R92C_EFUSE_CTRL_VALID) {
1013 /* Done */
1014 return (MS(reg, R92C_EFUSE_CTRL_DATA));
1015 }
1016 DELAY(5);
1017 }
1018 aprint_error_dev(sc->sc_dev,
1019 "could not read efuse byte at address 0x%04x\n", addr);
1020 return (0xff);
1021 }
1022
1023 static void
1024 urtwn_efuse_read(struct urtwn_softc *sc)
1025 {
1026 uint8_t *rom = (uint8_t *)&sc->rom;
1027 uint32_t reg;
1028 uint16_t addr = 0;
1029 uint8_t off, msk;
1030 size_t i;
1031
1032 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1033
1034 KASSERT(mutex_owned(&sc->sc_write_mtx));
1035
1036 reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
1037 if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
1038 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
1039 reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
1040 }
1041 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
1042 if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
1043 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
1044 reg | R92C_SYS_FUNC_EN_ELDR);
1045 }
1046 reg = urtwn_read_2(sc, R92C_SYS_CLKR);
1047 if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
1048 (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
1049 urtwn_write_2(sc, R92C_SYS_CLKR,
1050 reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
1051 }
1052 memset(&sc->rom, 0xff, sizeof(sc->rom));
1053 while (addr < 512) {
1054 reg = urtwn_efuse_read_1(sc, addr);
1055 if (reg == 0xff)
1056 break;
1057 addr++;
1058 off = reg >> 4;
1059 msk = reg & 0xf;
1060 for (i = 0; i < 4; i++) {
1061 if (msk & (1U << i))
1062 continue;
1063
1064 rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
1065 addr++;
1066 rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
1067 addr++;
1068 }
1069 }
1070 #ifdef URTWN_DEBUG
1071 if (urtwn_debug & DBG_INIT) {
1072 /* Dump ROM content. */
1073 printf("%s: %s", device_xname(sc->sc_dev), __func__);
1074 for (i = 0; i < (int)sizeof(sc->rom); i++)
1075 printf(":%02x", rom[i]);
1076 printf("\n");
1077 }
1078 #endif
1079 }
1080
1081 static int
1082 urtwn_read_chipid(struct urtwn_softc *sc)
1083 {
1084 uint32_t reg;
1085
1086 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1087
1088 sc->chip = 0;
1089 reg = urtwn_read_4(sc, R92C_SYS_CFG);
1090 if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
1091 /* test chip, not supported */
1092 return (EIO);
1093 }
1094 if (reg & R92C_SYS_CFG_TYPE_92C) {
1095 sc->chip |= URTWN_CHIP_92C;
1096 /* Check if it is a castrated 8192C. */
1097 if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1098 R92C_HPON_FSM_CHIP_BONDING_ID) ==
1099 R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
1100 sc->chip |= URTWN_CHIP_92C_1T2R;
1101 }
1102 }
1103 if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1104 sc->chip |= URTWN_CHIP_UMC;
1105 if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
1106 sc->chip |= URTWN_CHIP_UMC_A_CUT;
1107 }
1108 }
1109 return (0);
1110 }
1111
1112 #ifdef URTWN_DEBUG
1113 static void
1114 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
1115 {
1116
1117 aprint_normal_dev(sc->sc_dev,
1118 "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
1119 rp->id, rp->dbg_sel, rp->vid, rp->pid);
1120
1121 aprint_normal_dev(sc->sc_dev,
1122 "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
1123 rp->usb_opt, rp->ep_setting, rp->usb_phy);
1124
1125 aprint_normal_dev(sc->sc_dev,
1126 "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
1127 rp->macaddr[0], rp->macaddr[1],
1128 rp->macaddr[2], rp->macaddr[3],
1129 rp->macaddr[4], rp->macaddr[5]);
1130
1131 aprint_normal_dev(sc->sc_dev,
1132 "string %s, subcustomer_id 0x%x\n",
1133 rp->string, rp->subcustomer_id);
1134
1135 aprint_normal_dev(sc->sc_dev,
1136 "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
1137 rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
1138 rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
1139
1140 aprint_normal_dev(sc->sc_dev,
1141 "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
1142 rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
1143 rp->ht40_1s_tx_pwr[0][2],
1144 rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
1145 rp->ht40_1s_tx_pwr[1][2]);
1146
1147 aprint_normal_dev(sc->sc_dev,
1148 "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1149 rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1150 rp->ht40_2s_tx_pwr_diff[2] & 0xf,
1151 rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1152 rp->ht40_2s_tx_pwr_diff[2] >> 4);
1153
1154 aprint_normal_dev(sc->sc_dev,
1155 "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1156 rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
1157 rp->ht20_tx_pwr_diff[2] & 0xf,
1158 rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
1159 rp->ht20_tx_pwr_diff[2] >> 4);
1160
1161 aprint_normal_dev(sc->sc_dev,
1162 "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1163 rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
1164 rp->ofdm_tx_pwr_diff[2] & 0xf,
1165 rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
1166 rp->ofdm_tx_pwr_diff[2] >> 4);
1167
1168 aprint_normal_dev(sc->sc_dev,
1169 "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1170 rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
1171 rp->ht40_max_pwr[2] & 0xf,
1172 rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
1173 rp->ht40_max_pwr[2] >> 4);
1174
1175 aprint_normal_dev(sc->sc_dev,
1176 "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1177 rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
1178 rp->ht20_max_pwr[2] & 0xf,
1179 rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
1180 rp->ht20_max_pwr[2] >> 4);
1181
1182 aprint_normal_dev(sc->sc_dev,
1183 "xtal_calib %d, tssi %d %d, thermal %d\n",
1184 rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
1185
1186 aprint_normal_dev(sc->sc_dev,
1187 "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
1188 rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
1189
1190 aprint_normal_dev(sc->sc_dev,
1191 "channnel_plan %d, version %d customer_id 0x%x\n",
1192 rp->channel_plan, rp->version, rp->curstomer_id);
1193 }
1194 #endif
1195
1196 static void
1197 urtwn_read_rom(struct urtwn_softc *sc)
1198 {
1199 struct ieee80211com *ic = &sc->sc_ic;
1200 struct r92c_rom *rom = &sc->rom;
1201
1202 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1203
1204 mutex_enter(&sc->sc_write_mtx);
1205
1206 /* Read full ROM image. */
1207 urtwn_efuse_read(sc);
1208 #ifdef URTWN_DEBUG
1209 if (urtwn_debug & DBG_REG)
1210 urtwn_dump_rom(sc, rom);
1211 #endif
1212
1213 /* XXX Weird but this is what the vendor driver does. */
1214 sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1215 sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1216 sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1217
1218 DPRINTFN(DBG_INIT,
1219 ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
1220 device_xname(sc->sc_dev), __func__, sc->pa_setting,
1221 sc->board_type, sc->regulatory));
1222
1223 IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
1224
1225 mutex_exit(&sc->sc_write_mtx);
1226 }
1227
1228 static int
1229 urtwn_media_change(struct ifnet *ifp)
1230 {
1231 #ifdef URTWN_DEBUG
1232 struct urtwn_softc *sc = ifp->if_softc;
1233 #endif
1234 int error;
1235
1236 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1237
1238 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1239 return (error);
1240
1241 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1242 (IFF_UP | IFF_RUNNING)) {
1243 urtwn_init(ifp);
1244 }
1245 return (0);
1246 }
1247
1248 /*
1249 * Initialize rate adaptation in firmware.
1250 */
1251 static int
1252 urtwn_ra_init(struct urtwn_softc *sc)
1253 {
1254 static const uint8_t map[] = {
1255 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
1256 };
1257 struct ieee80211com *ic = &sc->sc_ic;
1258 struct ieee80211_node *ni = ic->ic_bss;
1259 struct ieee80211_rateset *rs = &ni->ni_rates;
1260 struct r92c_fw_cmd_macid_cfg cmd;
1261 uint32_t rates, basicrates;
1262 uint32_t mask;
1263 uint8_t mode;
1264 size_t maxrate, maxbasicrate, i, j;
1265 int error;
1266
1267 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1268
1269 KASSERT(mutex_owned(&sc->sc_write_mtx));
1270
1271 /* Get normal and basic rates mask. */
1272 rates = basicrates = 0;
1273 maxrate = maxbasicrate = 0;
1274 for (i = 0; i < rs->rs_nrates; i++) {
1275 /* Convert 802.11 rate to HW rate index. */
1276 for (j = 0; j < __arraycount(map); j++) {
1277 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
1278 break;
1279 }
1280 }
1281 if (j == __arraycount(map)) {
1282 /* Unknown rate, skip. */
1283 continue;
1284 }
1285
1286 rates |= 1U << j;
1287 if (j > maxrate) {
1288 maxrate = j;
1289 }
1290
1291 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1292 basicrates |= 1U << j;
1293 if (j > maxbasicrate) {
1294 maxbasicrate = j;
1295 }
1296 }
1297 }
1298 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1299 mode = R92C_RAID_11B;
1300 } else {
1301 mode = R92C_RAID_11BG;
1302 }
1303 DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
1304 "maxrate=%zx, maxbasicrate=%zx\n",
1305 device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
1306 maxrate, maxbasicrate));
1307 if (basicrates == 0) {
1308 basicrates |= 1; /* add 1Mbps */
1309 }
1310
1311 /* Set rates mask for group addressed frames. */
1312 cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1313 mask = (mode << 28) | basicrates;
1314 cmd.mask[0] = (uint8_t)mask;
1315 cmd.mask[1] = (uint8_t)(mask >> 8);
1316 cmd.mask[2] = (uint8_t)(mask >> 16);
1317 cmd.mask[3] = (uint8_t)(mask >> 24);
1318 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1319 if (error != 0) {
1320 aprint_error_dev(sc->sc_dev,
1321 "could not add broadcast station\n");
1322 return (error);
1323 }
1324 /* Set initial MRR rate. */
1325 DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%zd\n",
1326 device_xname(sc->sc_dev), __func__, maxbasicrate));
1327 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
1328
1329 /* Set rates mask for unicast frames. */
1330 cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1331 mask = (mode << 28) | rates;
1332 cmd.mask[0] = (uint8_t)mask;
1333 cmd.mask[1] = (uint8_t)(mask >> 8);
1334 cmd.mask[2] = (uint8_t)(mask >> 16);
1335 cmd.mask[3] = (uint8_t)(mask >> 24);
1336 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1337 if (error != 0) {
1338 aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
1339 return (error);
1340 }
1341 /* Set initial MRR rate. */
1342 DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%zd\n", device_xname(sc->sc_dev),
1343 __func__, maxrate));
1344 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
1345
1346 /* Indicate highest supported rate. */
1347 ni->ni_txrate = rs->rs_nrates - 1;
1348
1349 return (0);
1350 }
1351
1352 static int
1353 urtwn_get_nettype(struct urtwn_softc *sc)
1354 {
1355 struct ieee80211com *ic = &sc->sc_ic;
1356 int type;
1357
1358 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1359
1360 switch (ic->ic_opmode) {
1361 case IEEE80211_M_STA:
1362 type = R92C_CR_NETTYPE_INFRA;
1363 break;
1364
1365 case IEEE80211_M_IBSS:
1366 type = R92C_CR_NETTYPE_ADHOC;
1367 break;
1368
1369 default:
1370 type = R92C_CR_NETTYPE_NOLINK;
1371 break;
1372 }
1373
1374 return (type);
1375 }
1376
1377 static void
1378 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
1379 {
1380 uint8_t reg;
1381
1382 DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
1383 __func__, type));
1384
1385 KASSERT(mutex_owned(&sc->sc_write_mtx));
1386
1387 reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
1388 urtwn_write_1(sc, R92C_CR + 2, reg | type);
1389 }
1390
1391 static void
1392 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1393 {
1394 struct ieee80211_node *ni = sc->sc_ic.ic_bss;
1395 uint64_t tsf;
1396
1397 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1398
1399 KASSERT(mutex_owned(&sc->sc_write_mtx));
1400
1401 /* Enable TSF synchronization. */
1402 urtwn_write_1(sc, R92C_BCN_CTRL,
1403 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1404
1405 /* Correct TSF */
1406 urtwn_write_1(sc, R92C_BCN_CTRL,
1407 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1408
1409 /* Set initial TSF. */
1410 tsf = ni->ni_tstamp.tsf;
1411 tsf = le64toh(tsf);
1412 tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
1413 tsf -= IEEE80211_DUR_TU;
1414 urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
1415 urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
1416
1417 urtwn_write_1(sc, R92C_BCN_CTRL,
1418 urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1419 }
1420
1421 static void
1422 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1423 {
1424 uint8_t reg;
1425
1426 DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
1427 __func__, led, on));
1428
1429 KASSERT(mutex_owned(&sc->sc_write_mtx));
1430
1431 if (led == URTWN_LED_LINK) {
1432 reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1433 if (!on) {
1434 reg |= R92C_LEDCFG0_DIS;
1435 }
1436 urtwn_write_1(sc, R92C_LEDCFG0, reg);
1437 sc->ledlink = on; /* Save LED state. */
1438 }
1439 }
1440
1441 static void
1442 urtwn_calib_to(void *arg)
1443 {
1444 struct urtwn_softc *sc = arg;
1445
1446 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1447
1448 if (sc->sc_dying)
1449 return;
1450
1451 /* Do it in a process context. */
1452 urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
1453 }
1454
1455 /* ARGSUSED */
1456 static void
1457 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
1458 {
1459 struct r92c_fw_cmd_rssi cmd;
1460
1461 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1462
1463 if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
1464 goto restart_timer;
1465
1466 mutex_enter(&sc->sc_write_mtx);
1467 if (sc->avg_pwdb != -1) {
1468 /* Indicate Rx signal strength to FW for rate adaptation. */
1469 memset(&cmd, 0, sizeof(cmd));
1470 cmd.macid = 0; /* BSS. */
1471 cmd.pwdb = sc->avg_pwdb;
1472 DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
1473 device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
1474 urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
1475 }
1476
1477 /* Do temperature compensation. */
1478 urtwn_temp_calib(sc);
1479 mutex_exit(&sc->sc_write_mtx);
1480
1481 restart_timer:
1482 if (!sc->sc_dying) {
1483 /* Restart calibration timer. */
1484 callout_schedule(&sc->sc_calib_to, hz);
1485 }
1486 }
1487
1488 static void
1489 urtwn_next_scan(void *arg)
1490 {
1491 struct urtwn_softc *sc = arg;
1492 int s;
1493
1494 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1495
1496 if (sc->sc_dying)
1497 return;
1498
1499 s = splnet();
1500 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1501 ieee80211_next_scan(&sc->sc_ic);
1502 splx(s);
1503 }
1504
1505 static void
1506 urtwn_newassoc(struct ieee80211_node *ni, int isnew)
1507 {
1508 DPRINTFN(DBG_FN, ("%s: new node %s\n", __func__,
1509 ether_sprintf(ni->ni_macaddr)));
1510 /* start with lowest Tx rate */
1511 ni->ni_txrate = 0;
1512 }
1513
1514 static int
1515 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1516 {
1517 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1518 struct urtwn_cmd_newstate cmd;
1519
1520 DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
1521 device_xname(sc->sc_dev), __func__,
1522 ieee80211_state_name[nstate], nstate, arg));
1523
1524 callout_stop(&sc->sc_scan_to);
1525 callout_stop(&sc->sc_calib_to);
1526
1527 /* Do it in a process context. */
1528 cmd.state = nstate;
1529 cmd.arg = arg;
1530 urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
1531 return (0);
1532 }
1533
1534 static void
1535 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
1536 {
1537 struct urtwn_cmd_newstate *cmd = arg;
1538 struct ieee80211com *ic = &sc->sc_ic;
1539 struct ieee80211_node *ni;
1540 enum ieee80211_state ostate = ic->ic_state;
1541 enum ieee80211_state nstate = cmd->state;
1542 uint32_t reg;
1543 uint8_t sifs_time, msr;
1544 int s;
1545
1546 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
1547 device_xname(sc->sc_dev), __func__,
1548 ieee80211_state_name[ostate], ostate,
1549 ieee80211_state_name[nstate], nstate));
1550
1551 s = splnet();
1552 mutex_enter(&sc->sc_write_mtx);
1553
1554 callout_stop(&sc->sc_scan_to);
1555 callout_stop(&sc->sc_calib_to);
1556
1557 switch (ostate) {
1558 case IEEE80211_S_INIT:
1559 break;
1560
1561 case IEEE80211_S_SCAN:
1562 if (nstate != IEEE80211_S_SCAN) {
1563 /*
1564 * End of scanning
1565 */
1566 /* flush 4-AC Queue after site_survey */
1567 urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
1568
1569 /* Allow Rx from our BSSID only. */
1570 urtwn_write_4(sc, R92C_RCR,
1571 urtwn_read_4(sc, R92C_RCR) |
1572 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1573 }
1574 break;
1575
1576 case IEEE80211_S_AUTH:
1577 case IEEE80211_S_ASSOC:
1578 break;
1579
1580 case IEEE80211_S_RUN:
1581 /* Turn link LED off. */
1582 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1583
1584 /* Set media status to 'No Link'. */
1585 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1586
1587 /* Stop Rx of data frames. */
1588 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1589
1590 /* Reset TSF. */
1591 urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1592
1593 /* Disable TSF synchronization. */
1594 urtwn_write_1(sc, R92C_BCN_CTRL,
1595 urtwn_read_1(sc, R92C_BCN_CTRL) |
1596 R92C_BCN_CTRL_DIS_TSF_UDT0);
1597
1598 /* Back to 20MHz mode */
1599 urtwn_set_chan(sc, ic->ic_curchan,
1600 IEEE80211_HTINFO_2NDCHAN_NONE);
1601
1602 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1603 ic->ic_opmode == IEEE80211_M_HOSTAP) {
1604 /* Stop BCN */
1605 urtwn_write_1(sc, R92C_BCN_CTRL,
1606 urtwn_read_1(sc, R92C_BCN_CTRL) &
1607 ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
1608 }
1609
1610 /* Reset EDCA parameters. */
1611 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1612 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1613 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1614 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1615
1616 /* flush all cam entries */
1617 urtwn_cam_init(sc);
1618 break;
1619 }
1620
1621 switch (nstate) {
1622 case IEEE80211_S_INIT:
1623 /* Turn link LED off. */
1624 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1625 break;
1626
1627 case IEEE80211_S_SCAN:
1628 if (ostate != IEEE80211_S_SCAN) {
1629 /*
1630 * Begin of scanning
1631 */
1632
1633 /* Set gain for scanning. */
1634 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1635 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1636 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1637
1638 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1639 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1640 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1641
1642 /* Set media status to 'No Link'. */
1643 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1644
1645 /* Allow Rx from any BSSID. */
1646 urtwn_write_4(sc, R92C_RCR,
1647 urtwn_read_4(sc, R92C_RCR) &
1648 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1649
1650 /* Stop Rx of data frames. */
1651 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1652
1653 /* Disable update TSF */
1654 urtwn_write_1(sc, R92C_BCN_CTRL,
1655 urtwn_read_1(sc, R92C_BCN_CTRL) |
1656 R92C_BCN_CTRL_DIS_TSF_UDT0);
1657 }
1658
1659 /* Make link LED blink during scan. */
1660 urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1661
1662 /* Pause AC Tx queues. */
1663 urtwn_write_1(sc, R92C_TXPAUSE,
1664 urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1665
1666 urtwn_set_chan(sc, ic->ic_curchan,
1667 IEEE80211_HTINFO_2NDCHAN_NONE);
1668
1669 /* Start periodic scan. */
1670 if (!sc->sc_dying)
1671 callout_schedule(&sc->sc_scan_to, hz / 5);
1672 break;
1673
1674 case IEEE80211_S_AUTH:
1675 /* Set initial gain under link. */
1676 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1677 #ifdef doaslinux
1678 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1679 #else
1680 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1681 #endif
1682 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1683
1684 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1685 #ifdef doaslinux
1686 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1687 #else
1688 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1689 #endif
1690 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1691
1692 /* Set media status to 'No Link'. */
1693 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1694
1695 /* Allow Rx from any BSSID. */
1696 urtwn_write_4(sc, R92C_RCR,
1697 urtwn_read_4(sc, R92C_RCR) &
1698 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1699
1700 urtwn_set_chan(sc, ic->ic_curchan,
1701 IEEE80211_HTINFO_2NDCHAN_NONE);
1702 break;
1703
1704 case IEEE80211_S_ASSOC:
1705 break;
1706
1707 case IEEE80211_S_RUN:
1708 ni = ic->ic_bss;
1709
1710 /* XXX: Set 20MHz mode */
1711 urtwn_set_chan(sc, ic->ic_curchan,
1712 IEEE80211_HTINFO_2NDCHAN_NONE);
1713
1714 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1715 /* Back to 20MHz mode */
1716 urtwn_set_chan(sc, ic->ic_curchan,
1717 IEEE80211_HTINFO_2NDCHAN_NONE);
1718
1719 /* Set media status to 'No Link'. */
1720 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1721
1722 /* Enable Rx of data frames. */
1723 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1724
1725 /* Allow Rx from any BSSID. */
1726 urtwn_write_4(sc, R92C_RCR,
1727 urtwn_read_4(sc, R92C_RCR) &
1728 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1729
1730 /* Accept Rx data/control/management frames */
1731 urtwn_write_4(sc, R92C_RCR,
1732 urtwn_read_4(sc, R92C_RCR) |
1733 R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF);
1734
1735 /* Turn link LED on. */
1736 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1737 break;
1738 }
1739
1740 /* Set media status to 'Associated'. */
1741 urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
1742
1743 /* Set BSSID. */
1744 urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1745 urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1746
1747 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1748 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1749 } else {
1750 /* 802.11b/g */
1751 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1752 }
1753
1754 /* Enable Rx of data frames. */
1755 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1756
1757 /* Set beacon interval. */
1758 urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1759
1760 msr = urtwn_read_1(sc, R92C_MSR);
1761 msr &= 0xfc;
1762 switch (ic->ic_opmode) {
1763 case IEEE80211_M_STA:
1764 /* Allow Rx from our BSSID only. */
1765 urtwn_write_4(sc, R92C_RCR,
1766 urtwn_read_4(sc, R92C_RCR) |
1767 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1768
1769 /* Enable TSF synchronization. */
1770 urtwn_tsf_sync_enable(sc);
1771
1772 msr |= R92C_MSR_INFRA;
1773 break;
1774 default:
1775 msr |= R92C_MSR_ADHOC;
1776 break;
1777 case IEEE80211_M_HOSTAP:
1778 urtwn_write_2(sc, R92C_BCNTCFG, 0x000f);
1779
1780 /* Allow Rx from any BSSID. */
1781 urtwn_write_4(sc, R92C_RCR,
1782 urtwn_read_4(sc, R92C_RCR) &
1783 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1784
1785 /* Reset TSF timer to zero. */
1786 reg = urtwn_read_4(sc, R92C_TCR);
1787 reg &= ~0x01;
1788 urtwn_write_4(sc, R92C_TCR, reg);
1789 reg |= 0x01;
1790 urtwn_write_4(sc, R92C_TCR, reg);
1791
1792 msr |= R92C_MSR_AP;
1793 break;
1794 }
1795 urtwn_write_1(sc, R92C_MSR, msr);
1796
1797 sifs_time = 10;
1798 urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
1799 urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
1800 urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
1801 urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
1802 urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
1803 urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
1804
1805 /* Intialize rate adaptation. */
1806 urtwn_ra_init(sc);
1807
1808 /* Turn link LED on. */
1809 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1810
1811 /* Reset average RSSI. */
1812 sc->avg_pwdb = -1;
1813
1814 /* Reset temperature calibration state machine. */
1815 sc->thcal_state = 0;
1816 sc->thcal_lctemp = 0;
1817
1818 /* Start periodic calibration. */
1819 if (!sc->sc_dying)
1820 callout_schedule(&sc->sc_calib_to, hz);
1821 break;
1822 }
1823
1824 (*sc->sc_newstate)(ic, nstate, cmd->arg);
1825
1826 mutex_exit(&sc->sc_write_mtx);
1827 splx(s);
1828 }
1829
1830 static int
1831 urtwn_wme_update(struct ieee80211com *ic)
1832 {
1833 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1834
1835 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1836
1837 /* don't override default WME values if WME is not actually enabled */
1838 if (!(ic->ic_flags & IEEE80211_F_WME))
1839 return (0);
1840
1841 /* Do it in a process context. */
1842 urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
1843 return (0);
1844 }
1845
1846 static void
1847 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
1848 {
1849 static const uint16_t ac2reg[WME_NUM_AC] = {
1850 R92C_EDCA_BE_PARAM,
1851 R92C_EDCA_BK_PARAM,
1852 R92C_EDCA_VI_PARAM,
1853 R92C_EDCA_VO_PARAM
1854 };
1855 struct ieee80211com *ic = &sc->sc_ic;
1856 const struct wmeParams *wmep;
1857 int ac, aifs, slottime;
1858 int s;
1859
1860 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
1861 __func__));
1862
1863 s = splnet();
1864 mutex_enter(&sc->sc_write_mtx);
1865 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1866 for (ac = 0; ac < WME_NUM_AC; ac++) {
1867 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1868 /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
1869 aifs = wmep->wmep_aifsn * slottime + 10;
1870 urtwn_write_4(sc, ac2reg[ac],
1871 SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
1872 SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
1873 SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
1874 SM(R92C_EDCA_PARAM_AIFS, aifs));
1875 }
1876 mutex_exit(&sc->sc_write_mtx);
1877 splx(s);
1878 }
1879
1880 static void
1881 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1882 {
1883 int pwdb;
1884
1885 DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
1886 device_xname(sc->sc_dev), __func__, rate, rssi));
1887
1888 /* Convert antenna signal to percentage. */
1889 if (rssi <= -100 || rssi >= 20)
1890 pwdb = 0;
1891 else if (rssi >= 0)
1892 pwdb = 100;
1893 else
1894 pwdb = 100 + rssi;
1895 if (rate <= 3) {
1896 /* CCK gain is smaller than OFDM/MCS gain. */
1897 pwdb += 6;
1898 if (pwdb > 100)
1899 pwdb = 100;
1900 if (pwdb <= 14)
1901 pwdb -= 4;
1902 else if (pwdb <= 26)
1903 pwdb -= 8;
1904 else if (pwdb <= 34)
1905 pwdb -= 6;
1906 else if (pwdb <= 42)
1907 pwdb -= 2;
1908 }
1909 if (sc->avg_pwdb == -1) /* Init. */
1910 sc->avg_pwdb = pwdb;
1911 else if (sc->avg_pwdb < pwdb)
1912 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1913 else
1914 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1915
1916 DPRINTFN(DBG_RF, ("%s: %s: rate=%d rssi=%d PWDB=%d EMA=%d\n",
1917 device_xname(sc->sc_dev), __func__,
1918 rate, rssi, pwdb, sc->avg_pwdb));
1919 }
1920
1921 static int8_t
1922 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1923 {
1924 static const int8_t cckoff[] = { 16, -12, -26, -46 };
1925 struct r92c_rx_phystat *phy;
1926 struct r92c_rx_cck *cck;
1927 uint8_t rpt;
1928 int8_t rssi;
1929
1930 DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
1931 __func__, rate));
1932
1933 if (rate <= 3) {
1934 cck = (struct r92c_rx_cck *)physt;
1935 if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
1936 rpt = (cck->agc_rpt >> 5) & 0x3;
1937 rssi = (cck->agc_rpt & 0x1f) << 1;
1938 } else {
1939 rpt = (cck->agc_rpt >> 6) & 0x3;
1940 rssi = cck->agc_rpt & 0x3e;
1941 }
1942 rssi = cckoff[rpt] - rssi;
1943 } else { /* OFDM/HT. */
1944 phy = (struct r92c_rx_phystat *)physt;
1945 rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1946 }
1947 return (rssi);
1948 }
1949
1950 static void
1951 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1952 {
1953 struct ieee80211com *ic = &sc->sc_ic;
1954 struct ifnet *ifp = ic->ic_ifp;
1955 struct ieee80211_frame *wh;
1956 struct ieee80211_node *ni;
1957 struct r92c_rx_stat *stat;
1958 uint32_t rxdw0, rxdw3;
1959 struct mbuf *m;
1960 uint8_t rate;
1961 int8_t rssi = 0;
1962 int s, infosz;
1963
1964 DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
1965 device_xname(sc->sc_dev), __func__, buf, pktlen));
1966
1967 stat = (struct r92c_rx_stat *)buf;
1968 rxdw0 = le32toh(stat->rxdw0);
1969 rxdw3 = le32toh(stat->rxdw3);
1970
1971 if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1972 /*
1973 * This should not happen since we setup our Rx filter
1974 * to not receive these frames.
1975 */
1976 DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
1977 device_xname(sc->sc_dev), __func__));
1978 ifp->if_ierrors++;
1979 return;
1980 }
1981 /*
1982 * XXX: This will drop most control packets. Do we really
1983 * want this in IEEE80211_M_MONITOR mode?
1984 */
1985 // if (__predict_false(pktlen < (int)sizeof(*wh))) {
1986 if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) {
1987 DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
1988 device_xname(sc->sc_dev), __func__, pktlen));
1989 ic->ic_stats.is_rx_tooshort++;
1990 ifp->if_ierrors++;
1991 return;
1992 }
1993 if (__predict_false(pktlen > MCLBYTES)) {
1994 DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
1995 device_xname(sc->sc_dev), __func__, pktlen));
1996 ifp->if_ierrors++;
1997 return;
1998 }
1999
2000 rate = MS(rxdw3, R92C_RXDW3_RATE);
2001 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
2002
2003 /* Get RSSI from PHY status descriptor if present. */
2004 if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
2005 rssi = urtwn_get_rssi(sc, rate, &stat[1]);
2006 /* Update our average RSSI. */
2007 urtwn_update_avgrssi(sc, rate, rssi);
2008 }
2009
2010 DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
2011 device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
2012
2013 MGETHDR(m, M_DONTWAIT, MT_DATA);
2014 if (__predict_false(m == NULL)) {
2015 aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
2016 ic->ic_stats.is_rx_nobuf++;
2017 ifp->if_ierrors++;
2018 return;
2019 }
2020 if (pktlen > (int)MHLEN) {
2021 MCLGET(m, M_DONTWAIT);
2022 if (__predict_false(!(m->m_flags & M_EXT))) {
2023 aprint_error_dev(sc->sc_dev,
2024 "couldn't allocate rx mbuf cluster\n");
2025 m_freem(m);
2026 ic->ic_stats.is_rx_nobuf++;
2027 ifp->if_ierrors++;
2028 return;
2029 }
2030 }
2031
2032 /* Finalize mbuf. */
2033 m->m_pkthdr.rcvif = ifp;
2034 wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
2035 memcpy(mtod(m, uint8_t *), wh, pktlen);
2036 m->m_pkthdr.len = m->m_len = pktlen;
2037
2038 s = splnet();
2039 if (__predict_false(sc->sc_drvbpf != NULL)) {
2040 struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2041
2042 tap->wr_flags = 0;
2043 if (!(rxdw3 & R92C_RXDW3_HT)) {
2044 switch (rate) {
2045 /* CCK. */
2046 case 0: tap->wr_rate = 2; break;
2047 case 1: tap->wr_rate = 4; break;
2048 case 2: tap->wr_rate = 11; break;
2049 case 3: tap->wr_rate = 22; break;
2050 /* OFDM. */
2051 case 4: tap->wr_rate = 12; break;
2052 case 5: tap->wr_rate = 18; break;
2053 case 6: tap->wr_rate = 24; break;
2054 case 7: tap->wr_rate = 36; break;
2055 case 8: tap->wr_rate = 48; break;
2056 case 9: tap->wr_rate = 72; break;
2057 case 10: tap->wr_rate = 96; break;
2058 case 11: tap->wr_rate = 108; break;
2059 }
2060 } else if (rate >= 12) { /* MCS0~15. */
2061 /* Bit 7 set means HT MCS instead of rate. */
2062 tap->wr_rate = 0x80 | (rate - 12);
2063 }
2064 tap->wr_dbm_antsignal = rssi;
2065 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2066 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2067
2068 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
2069 }
2070
2071 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2072
2073 /* push the frame up to the 802.11 stack */
2074 ieee80211_input(ic, m, ni, rssi, 0);
2075
2076 /* Node is no longer needed. */
2077 ieee80211_free_node(ni);
2078
2079 splx(s);
2080 }
2081
2082 static void
2083 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2084 {
2085 struct urtwn_rx_data *data = priv;
2086 struct urtwn_softc *sc = data->sc;
2087 struct r92c_rx_stat *stat;
2088 uint32_t rxdw0;
2089 uint8_t *buf;
2090 int len, totlen, pktlen, infosz, npkts;
2091
2092 DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
2093 device_xname(sc->sc_dev), __func__, status));
2094
2095 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2096 if (status == USBD_STALLED)
2097 usbd_clear_endpoint_stall_async(sc->rx_pipe);
2098 else if (status != USBD_CANCELLED)
2099 goto resubmit;
2100 return;
2101 }
2102 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2103
2104 if (__predict_false(len < (int)sizeof(*stat))) {
2105 DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
2106 device_xname(sc->sc_dev), __func__, len));
2107 goto resubmit;
2108 }
2109 buf = data->buf;
2110
2111 /* Get the number of encapsulated frames. */
2112 stat = (struct r92c_rx_stat *)buf;
2113 npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
2114 DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
2115 device_xname(sc->sc_dev), __func__, npkts));
2116
2117 /* Process all of them. */
2118 while (npkts-- > 0) {
2119 if (__predict_false(len < (int)sizeof(*stat))) {
2120 DPRINTFN(DBG_RX,
2121 ("%s: %s: len(%d) is short than header\n",
2122 device_xname(sc->sc_dev), __func__, len));
2123 break;
2124 }
2125 stat = (struct r92c_rx_stat *)buf;
2126 rxdw0 = le32toh(stat->rxdw0);
2127
2128 pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
2129 if (__predict_false(pktlen == 0)) {
2130 DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
2131 device_xname(sc->sc_dev), __func__));
2132 break;
2133 }
2134
2135 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
2136
2137 /* Make sure everything fits in xfer. */
2138 totlen = sizeof(*stat) + infosz + pktlen;
2139 if (__predict_false(totlen > len)) {
2140 DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
2141 device_xname(sc->sc_dev), __func__, totlen,
2142 (int)sizeof(*stat), infosz, pktlen, len));
2143 break;
2144 }
2145
2146 /* Process 802.11 frame. */
2147 urtwn_rx_frame(sc, buf, pktlen);
2148
2149 /* Next chunk is 128-byte aligned. */
2150 totlen = roundup2(totlen, 128);
2151 buf += totlen;
2152 len -= totlen;
2153 }
2154
2155 resubmit:
2156 /* Setup a new transfer. */
2157 usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
2158 USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
2159 (void)usbd_transfer(xfer);
2160 }
2161
2162 static void
2163 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2164 {
2165 struct urtwn_tx_data *data = priv;
2166 struct urtwn_softc *sc = data->sc;
2167 struct ifnet *ifp = &sc->sc_if;
2168 usbd_pipe_handle pipe = data->pipe;
2169 int s;
2170
2171 DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
2172 device_xname(sc->sc_dev), __func__, status));
2173
2174 mutex_enter(&sc->sc_tx_mtx);
2175 /* Put this Tx buffer back to our free list. */
2176 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2177 mutex_exit(&sc->sc_tx_mtx);
2178
2179 s = splnet();
2180 sc->tx_timer = 0;
2181 ifp->if_flags &= ~IFF_OACTIVE;
2182
2183 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2184 if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
2185 if (status == USBD_STALLED)
2186 usbd_clear_endpoint_stall_async(pipe);
2187 ifp->if_oerrors++;
2188 }
2189 splx(s);
2190 return;
2191 }
2192
2193 ifp->if_opackets++;
2194 urtwn_start(ifp);
2195
2196 splx(s);
2197 }
2198
2199 static int
2200 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2201 struct urtwn_tx_data *data)
2202 {
2203 struct ieee80211com *ic = &sc->sc_ic;
2204 struct ieee80211_frame *wh;
2205 struct ieee80211_key *k = NULL;
2206 struct r92c_tx_desc *txd;
2207 usbd_pipe_handle pipe;
2208 size_t i, padsize, xferlen;
2209 uint16_t seq, sum;
2210 uint8_t raid, type, tid, qid;
2211 int s, hasqos, error;
2212
2213 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2214
2215 wh = mtod(m, struct ieee80211_frame *);
2216 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2217
2218 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2219 k = ieee80211_crypto_encap(ic, ni, m);
2220 if (k == NULL)
2221 return ENOBUFS;
2222
2223 /* packet header may have moved, reset our local pointer */
2224 wh = mtod(m, struct ieee80211_frame *);
2225 }
2226
2227 if (__predict_false(sc->sc_drvbpf != NULL)) {
2228 struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
2229
2230 tap->wt_flags = 0;
2231 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2232 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2233 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2234 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2235
2236 /* XXX: set tap->wt_rate? */
2237
2238 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2239 }
2240
2241 if ((hasqos = ieee80211_has_qos(wh))) {
2242 /* data frames in 11n mode */
2243 struct ieee80211_qosframe *qwh = (void *)wh;
2244 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
2245 qid = TID_TO_WME_AC(tid);
2246 } else if (type != IEEE80211_FC0_TYPE_DATA) {
2247 /* Use AC_VO for management frames. */
2248 qid = WME_AC_VO;
2249 tid = 0; /* compiler happy */
2250 } else {
2251 /* non-qos data frames */
2252 tid = R92C_TXDW1_QSEL_BE;
2253 qid = WME_AC_BE;
2254 }
2255
2256 /* Get the USB pipe to use for this AC. */
2257 pipe = sc->tx_pipe[sc->ac2idx[qid]];
2258
2259 if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
2260 padsize = 8;
2261 else
2262 padsize = 0;
2263
2264 /* Fill Tx descriptor. */
2265 txd = (struct r92c_tx_desc *)data->buf;
2266 memset(txd, 0, sizeof(*txd) + padsize);
2267
2268 txd->txdw0 |= htole32(
2269 SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
2270 SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
2271 R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
2272
2273 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2274 txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
2275
2276 /* fix pad field */
2277 if (padsize > 0) {
2278 DPRINTFN(DBG_TX, ("%s: %s: padding: size=%zd\n",
2279 device_xname(sc->sc_dev), __func__, padsize));
2280 txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
2281 }
2282
2283 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2284 type == IEEE80211_FC0_TYPE_DATA) {
2285 if (ic->ic_curmode == IEEE80211_MODE_11B)
2286 raid = R92C_RAID_11B;
2287 else
2288 raid = R92C_RAID_11BG;
2289 DPRINTFN(DBG_TX,
2290 ("%s: %s: data packet: tid=%d, raid=%d\n",
2291 device_xname(sc->sc_dev), __func__, tid, raid));
2292
2293 txd->txdw1 |= htole32(
2294 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2295 SM(R92C_TXDW1_QSEL, tid) |
2296 SM(R92C_TXDW1_RAID, raid) |
2297 R92C_TXDW1_AGGBK);
2298
2299 if (hasqos) {
2300 txd->txdw4 |= htole32(R92C_TXDW4_QOS);
2301 }
2302
2303 if (ic->ic_flags & IEEE80211_F_USEPROT) {
2304 /* for 11g */
2305 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
2306 txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
2307 R92C_TXDW4_HWRTSEN);
2308 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
2309 txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
2310 R92C_TXDW4_HWRTSEN);
2311 }
2312 }
2313 /* Send RTS at OFDM24. */
2314 txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
2315 txd->txdw5 |= htole32(0x0001ff00);
2316 /* Send data at OFDM54. */
2317 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
2318 } else if (type == IEEE80211_FC0_TYPE_MGT) {
2319 DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
2320 device_xname(sc->sc_dev), __func__));
2321 txd->txdw1 |= htole32(
2322 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2323 SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
2324 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2325
2326 /* Force CCK1. */
2327 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2328 /* Use 1Mbps */
2329 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2330 } else {
2331 /* broadcast or multicast packets */
2332 DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
2333 device_xname(sc->sc_dev), __func__));
2334 txd->txdw1 |= htole32(
2335 SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
2336 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2337
2338 /* Force CCK1. */
2339 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2340 /* Use 1Mbps */
2341 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2342 }
2343
2344 /* Set sequence number */
2345 seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
2346 txd->txdseq |= htole16(seq);
2347
2348 if (!hasqos) {
2349 /* Use HW sequence numbering for non-QoS frames. */
2350 txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
2351 txd->txdseq |= htole16(0x8000); /* WTF? */
2352 }
2353
2354 /* Compute Tx descriptor checksum. */
2355 sum = 0;
2356 for (i = 0; i < sizeof(*txd) / 2; i++)
2357 sum ^= ((uint16_t *)txd)[i];
2358 txd->txdsum = sum; /* NB: already little endian. */
2359
2360 xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
2361 m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
2362
2363 s = splnet();
2364 data->pipe = pipe;
2365 usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
2366 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
2367 urtwn_txeof);
2368 error = usbd_transfer(data->xfer);
2369 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
2370 error != USBD_IN_PROGRESS)) {
2371 splx(s);
2372 DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
2373 device_xname(sc->sc_dev), __func__, error));
2374 return error;
2375 }
2376 splx(s);
2377 return 0;
2378 }
2379
2380 static void
2381 urtwn_start(struct ifnet *ifp)
2382 {
2383 struct urtwn_softc *sc = ifp->if_softc;
2384 struct ieee80211com *ic = &sc->sc_ic;
2385 struct urtwn_tx_data *data;
2386 struct ether_header *eh;
2387 struct ieee80211_node *ni;
2388 struct mbuf *m;
2389
2390 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2391
2392 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2393 return;
2394
2395 data = NULL;
2396 for (;;) {
2397 mutex_enter(&sc->sc_tx_mtx);
2398 if (data == NULL && !TAILQ_EMPTY(&sc->tx_free_list)) {
2399 data = TAILQ_FIRST(&sc->tx_free_list);
2400 TAILQ_REMOVE(&sc->tx_free_list, data, next);
2401 }
2402 mutex_exit(&sc->sc_tx_mtx);
2403
2404 if (data == NULL) {
2405 ifp->if_flags |= IFF_OACTIVE;
2406 DPRINTFN(DBG_TX, ("%s: empty tx_free_list\n",
2407 device_xname(sc->sc_dev)));
2408 return;
2409 }
2410
2411 /* Send pending management frames first. */
2412 IF_DEQUEUE(&ic->ic_mgtq, m);
2413 if (m != NULL) {
2414 ni = (void *)m->m_pkthdr.rcvif;
2415 m->m_pkthdr.rcvif = NULL;
2416 goto sendit;
2417 }
2418 if (ic->ic_state != IEEE80211_S_RUN)
2419 break;
2420
2421 /* Encapsulate and send data frames. */
2422 IFQ_DEQUEUE(&ifp->if_snd, m);
2423 if (m == NULL)
2424 break;
2425
2426 if (m->m_len < (int)sizeof(*eh) &&
2427 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2428 ifp->if_oerrors++;
2429 continue;
2430 }
2431 eh = mtod(m, struct ether_header *);
2432 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2433 if (ni == NULL) {
2434 m_freem(m);
2435 ifp->if_oerrors++;
2436 continue;
2437 }
2438
2439 bpf_mtap(ifp, m);
2440
2441 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
2442 ieee80211_free_node(ni);
2443 ifp->if_oerrors++;
2444 continue;
2445 }
2446 sendit:
2447 bpf_mtap3(ic->ic_rawbpf, m);
2448
2449 if (urtwn_tx(sc, m, ni, data) != 0) {
2450 m_freem(m);
2451 ieee80211_free_node(ni);
2452 ifp->if_oerrors++;
2453 continue;
2454 }
2455 data = NULL;
2456 m_freem(m);
2457 ieee80211_free_node(ni);
2458 sc->tx_timer = 5;
2459 ifp->if_timer = 1;
2460 }
2461
2462 /* Return the Tx buffer to the free list */
2463 mutex_enter(&sc->sc_tx_mtx);
2464 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2465 mutex_exit(&sc->sc_tx_mtx);
2466 }
2467
2468 static void
2469 urtwn_watchdog(struct ifnet *ifp)
2470 {
2471 struct urtwn_softc *sc = ifp->if_softc;
2472
2473 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2474
2475 ifp->if_timer = 0;
2476
2477 if (sc->tx_timer > 0) {
2478 if (--sc->tx_timer == 0) {
2479 aprint_error_dev(sc->sc_dev, "device timeout\n");
2480 /* urtwn_init(ifp); XXX needs a process context! */
2481 ifp->if_oerrors++;
2482 return;
2483 }
2484 ifp->if_timer = 1;
2485 }
2486 ieee80211_watchdog(&sc->sc_ic);
2487 }
2488
2489 static int
2490 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2491 {
2492 struct urtwn_softc *sc = ifp->if_softc;
2493 struct ieee80211com *ic = &sc->sc_ic;
2494 int s, error = 0;
2495
2496 DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
2497 device_xname(sc->sc_dev), __func__, cmd, data));
2498
2499 s = splnet();
2500
2501 switch (cmd) {
2502 case SIOCSIFFLAGS:
2503 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2504 break;
2505 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2506 case IFF_UP | IFF_RUNNING:
2507 break;
2508 case IFF_UP:
2509 urtwn_init(ifp);
2510 break;
2511 case IFF_RUNNING:
2512 urtwn_stop(ifp, 1);
2513 break;
2514 case 0:
2515 break;
2516 }
2517 break;
2518
2519 case SIOCADDMULTI:
2520 case SIOCDELMULTI:
2521 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2522 /* setup multicast filter, etc */
2523 error = 0;
2524 }
2525 break;
2526
2527 default:
2528 error = ieee80211_ioctl(ic, cmd, data);
2529 break;
2530 }
2531 if (error == ENETRESET) {
2532 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2533 (IFF_UP | IFF_RUNNING) &&
2534 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2535 urtwn_init(ifp);
2536 }
2537 error = 0;
2538 }
2539
2540 splx(s);
2541
2542 return (error);
2543 }
2544
2545 static int
2546 urtwn_power_on(struct urtwn_softc *sc)
2547 {
2548 uint32_t reg;
2549 int ntries;
2550
2551 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2552
2553 KASSERT(mutex_owned(&sc->sc_write_mtx));
2554
2555 /* Wait for autoload done bit. */
2556 for (ntries = 0; ntries < 1000; ntries++) {
2557 if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2558 break;
2559 DELAY(5);
2560 }
2561 if (ntries == 1000) {
2562 aprint_error_dev(sc->sc_dev,
2563 "timeout waiting for chip autoload\n");
2564 return (ETIMEDOUT);
2565 }
2566
2567 /* Unlock ISO/CLK/Power control register. */
2568 urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2569 /* Move SPS into PWM mode. */
2570 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2571 DELAY(100);
2572
2573 reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2574 if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2575 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2576 reg | R92C_LDOV12D_CTRL_LDV12_EN);
2577 DELAY(100);
2578 urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2579 urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2580 ~R92C_SYS_ISO_CTRL_MD2PP);
2581 }
2582
2583 /* Auto enable WLAN. */
2584 urtwn_write_2(sc, R92C_APS_FSMCO,
2585 urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2586 for (ntries = 0; ntries < 1000; ntries++) {
2587 if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2588 R92C_APS_FSMCO_APFM_ONMAC))
2589 break;
2590 DELAY(5);
2591 }
2592 if (ntries == 1000) {
2593 aprint_error_dev(sc->sc_dev,
2594 "timeout waiting for MAC auto ON\n");
2595 return (ETIMEDOUT);
2596 }
2597
2598 /* Enable radio, GPIO and LED functions. */
2599 KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
2600 R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
2601 urtwn_write_2(sc, R92C_APS_FSMCO,
2602 R92C_APS_FSMCO_AFSM_HSUS |
2603 R92C_APS_FSMCO_PDN_EN |
2604 R92C_APS_FSMCO_PFM_ALDN);
2605
2606 /* Release RF digital isolation. */
2607 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2608 urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2609
2610 /* Initialize MAC. */
2611 urtwn_write_1(sc, R92C_APSD_CTRL,
2612 urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2613 for (ntries = 0; ntries < 200; ntries++) {
2614 if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2615 R92C_APSD_CTRL_OFF_STATUS))
2616 break;
2617 DELAY(5);
2618 }
2619 if (ntries == 200) {
2620 aprint_error_dev(sc->sc_dev,
2621 "timeout waiting for MAC initialization\n");
2622 return (ETIMEDOUT);
2623 }
2624
2625 /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2626 reg = urtwn_read_2(sc, R92C_CR);
2627 reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2628 R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2629 R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2630 R92C_CR_ENSEC;
2631 urtwn_write_2(sc, R92C_CR, reg);
2632
2633 urtwn_write_1(sc, 0xfe10, 0x19);
2634 return (0);
2635 }
2636
2637 static int
2638 urtwn_llt_init(struct urtwn_softc *sc)
2639 {
2640 size_t i;
2641 int error;
2642
2643 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2644
2645 KASSERT(mutex_owned(&sc->sc_write_mtx));
2646
2647 /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
2648 for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
2649 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2650 return (error);
2651 }
2652 /* NB: 0xff indicates end-of-list. */
2653 if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2654 return (error);
2655 /*
2656 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
2657 * as ring buffer.
2658 */
2659 for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
2660 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2661 return (error);
2662 }
2663 /* Make the last page point to the beginning of the ring buffer. */
2664 error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
2665 return (error);
2666 }
2667
2668 static void
2669 urtwn_fw_reset(struct urtwn_softc *sc)
2670 {
2671 uint16_t reg;
2672 int ntries;
2673
2674 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2675
2676 KASSERT(mutex_owned(&sc->sc_write_mtx));
2677
2678 /* Tell 8051 to reset itself. */
2679 urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2680
2681 /* Wait until 8051 resets by itself. */
2682 for (ntries = 0; ntries < 100; ntries++) {
2683 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2684 if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2685 return;
2686 DELAY(50);
2687 }
2688 /* Force 8051 reset. */
2689 urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2690 }
2691
2692 static int
2693 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
2694 {
2695 uint32_t reg;
2696 int off, mlen, error = 0;
2697
2698 DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
2699 device_xname(sc->sc_dev), __func__, page, buf, len));
2700
2701 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2702 reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2703 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2704
2705 off = R92C_FW_START_ADDR;
2706 while (len > 0) {
2707 if (len > 196)
2708 mlen = 196;
2709 else if (len > 4)
2710 mlen = 4;
2711 else
2712 mlen = 1;
2713 error = urtwn_write_region(sc, off, buf, mlen);
2714 if (error != 0)
2715 break;
2716 off += mlen;
2717 buf += mlen;
2718 len -= mlen;
2719 }
2720 return (error);
2721 }
2722
2723 static int
2724 urtwn_load_firmware(struct urtwn_softc *sc)
2725 {
2726 firmware_handle_t fwh;
2727 const struct r92c_fw_hdr *hdr;
2728 const char *name;
2729 u_char *fw, *ptr;
2730 size_t len;
2731 uint32_t reg;
2732 int mlen, ntries, page, error;
2733
2734 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2735
2736 KASSERT(mutex_owned(&sc->sc_write_mtx));
2737
2738 /* Read firmware image from the filesystem. */
2739 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2740 URTWN_CHIP_UMC_A_CUT)
2741 name = "rtl8192cfwU.bin";
2742 else
2743 name = "rtl8192cfw.bin";
2744 if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
2745 aprint_error_dev(sc->sc_dev,
2746 "failed loadfirmware of file %s (error %d)\n", name, error);
2747 return (error);
2748 }
2749 len = firmware_get_size(fwh);
2750 fw = firmware_malloc(len);
2751 if (fw == NULL) {
2752 aprint_error_dev(sc->sc_dev,
2753 "failed to allocate firmware memory\n");
2754 firmware_close(fwh);
2755 return (ENOMEM);
2756 }
2757 error = firmware_read(fwh, 0, fw, len);
2758 firmware_close(fwh);
2759 if (error != 0) {
2760 aprint_error_dev(sc->sc_dev,
2761 "failed to read firmware (error %d)\n", error);
2762 firmware_free(fw, 0);
2763 return (error);
2764 }
2765
2766 ptr = fw;
2767 hdr = (const struct r92c_fw_hdr *)ptr;
2768 /* Check if there is a valid FW header and skip it. */
2769 if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2770 (le16toh(hdr->signature) >> 4) == 0x92c) {
2771 DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
2772 device_xname(sc->sc_dev), __func__,
2773 le16toh(hdr->version), le16toh(hdr->subversion),
2774 hdr->month, hdr->date, hdr->hour, hdr->minute));
2775 ptr += sizeof(*hdr);
2776 len -= sizeof(*hdr);
2777 }
2778
2779 if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
2780 urtwn_fw_reset(sc);
2781 urtwn_write_1(sc, R92C_MCUFWDL, 0);
2782 }
2783
2784 /* download enabled */
2785 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2786 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2787 R92C_SYS_FUNC_EN_CPUEN);
2788 urtwn_write_1(sc, R92C_MCUFWDL,
2789 urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2790 urtwn_write_1(sc, R92C_MCUFWDL + 2,
2791 urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2792
2793 /* download firmware */
2794 for (page = 0; len > 0; page++) {
2795 mlen = MIN(len, R92C_FW_PAGE_SIZE);
2796 error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2797 if (error != 0) {
2798 aprint_error_dev(sc->sc_dev,
2799 "could not load firmware page %d\n", page);
2800 goto fail;
2801 }
2802 ptr += mlen;
2803 len -= mlen;
2804 }
2805
2806 /* download disable */
2807 urtwn_write_1(sc, R92C_MCUFWDL,
2808 urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2809 urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2810
2811 /* Wait for checksum report. */
2812 for (ntries = 0; ntries < 1000; ntries++) {
2813 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2814 break;
2815 DELAY(5);
2816 }
2817 if (ntries == 1000) {
2818 aprint_error_dev(sc->sc_dev,
2819 "timeout waiting for checksum report\n");
2820 error = ETIMEDOUT;
2821 goto fail;
2822 }
2823
2824 /* Wait for firmware readiness. */
2825 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2826 reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2827 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2828 for (ntries = 0; ntries < 1000; ntries++) {
2829 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2830 break;
2831 DELAY(5);
2832 }
2833 if (ntries == 1000) {
2834 aprint_error_dev(sc->sc_dev,
2835 "timeout waiting for firmware readiness\n");
2836 error = ETIMEDOUT;
2837 goto fail;
2838 }
2839 fail:
2840 firmware_free(fw, 0);
2841 return (error);
2842 }
2843
2844 static int
2845 urtwn_dma_init(struct urtwn_softc *sc)
2846 {
2847 int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2848 uint32_t reg;
2849 int error;
2850
2851 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2852
2853 KASSERT(mutex_owned(&sc->sc_write_mtx));
2854
2855 /* Initialize LLT table. */
2856 error = urtwn_llt_init(sc);
2857 if (error != 0)
2858 return (error);
2859
2860 /* Get Tx queues to USB endpoints mapping. */
2861 hashq = hasnq = haslq = 0;
2862 reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2863 DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
2864 device_xname(sc->sc_dev), __func__, reg));
2865 if (MS(reg, R92C_USB_EP_HQ) != 0)
2866 hashq = 1;
2867 if (MS(reg, R92C_USB_EP_NQ) != 0)
2868 hasnq = 1;
2869 if (MS(reg, R92C_USB_EP_LQ) != 0)
2870 haslq = 1;
2871 nqueues = hashq + hasnq + haslq;
2872 if (nqueues == 0)
2873 return (EIO);
2874 /* Get the number of pages for each queue. */
2875 nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2876 /* The remaining pages are assigned to the high priority queue. */
2877 nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2878
2879 /* Set number of pages for normal priority queue. */
2880 urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2881 urtwn_write_4(sc, R92C_RQPN,
2882 /* Set number of pages for public queue. */
2883 SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2884 /* Set number of pages for high priority queue. */
2885 SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2886 /* Set number of pages for low priority queue. */
2887 SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2888 /* Load values. */
2889 R92C_RQPN_LD);
2890
2891 urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2892 urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2893 urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2894 urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2895 urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2896
2897 /* Set queue to USB pipe mapping. */
2898 reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2899 reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2900 if (nqueues == 1) {
2901 if (hashq) {
2902 reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2903 } else if (hasnq) {
2904 reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2905 } else {
2906 reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2907 }
2908 } else if (nqueues == 2) {
2909 /* All 2-endpoints configs have a high priority queue. */
2910 if (!hashq) {
2911 return (EIO);
2912 }
2913 if (hasnq) {
2914 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2915 } else {
2916 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2917 }
2918 } else {
2919 reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2920 }
2921 urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2922
2923 /* Set Tx/Rx transfer page boundary. */
2924 urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2925
2926 /* Set Tx/Rx transfer page size. */
2927 urtwn_write_1(sc, R92C_PBP,
2928 SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
2929 return (0);
2930 }
2931
2932 static void
2933 urtwn_mac_init(struct urtwn_softc *sc)
2934 {
2935 size_t i;
2936
2937 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2938
2939 KASSERT(mutex_owned(&sc->sc_write_mtx));
2940
2941 /* Write MAC initialization values. */
2942 for (i = 0; i < __arraycount(rtl8192cu_mac); i++)
2943 urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
2944 }
2945
2946 static void
2947 urtwn_bb_init(struct urtwn_softc *sc)
2948 {
2949 const struct urtwn_bb_prog *prog;
2950 uint32_t reg;
2951 size_t i;
2952
2953 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2954
2955 KASSERT(mutex_owned(&sc->sc_write_mtx));
2956
2957 /* Enable BB and RF. */
2958 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2959 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2960 R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2961 R92C_SYS_FUNC_EN_DIO_RF);
2962
2963 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
2964 urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
2965
2966 urtwn_write_1(sc, R92C_RF_CTRL,
2967 R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2968 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2969 R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2970 R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2971
2972 urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2973 urtwn_write_1(sc, 0x15, 0xe9);
2974 urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2975
2976 /* Select BB programming based on board type. */
2977 if (!(sc->chip & URTWN_CHIP_92C)) {
2978 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2979 prog = &rtl8188ce_bb_prog;
2980 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2981 prog = &rtl8188ru_bb_prog;
2982 } else {
2983 prog = &rtl8188cu_bb_prog;
2984 }
2985 } else {
2986 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2987 prog = &rtl8192ce_bb_prog;
2988 } else {
2989 prog = &rtl8192cu_bb_prog;
2990 }
2991 }
2992 /* Write BB initialization values. */
2993 for (i = 0; i < prog->count; i++) {
2994 /* additional delay depend on registers */
2995 switch (prog->regs[i]) {
2996 case 0xfe:
2997 usbd_delay_ms(sc->sc_udev, 50);
2998 break;
2999 case 0xfd:
3000 usbd_delay_ms(sc->sc_udev, 5);
3001 break;
3002 case 0xfc:
3003 usbd_delay_ms(sc->sc_udev, 1);
3004 break;
3005 case 0xfb:
3006 DELAY(50);
3007 break;
3008 case 0xfa:
3009 DELAY(5);
3010 break;
3011 case 0xf9:
3012 DELAY(1);
3013 break;
3014 }
3015 urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
3016 DELAY(1);
3017 }
3018
3019 if (sc->chip & URTWN_CHIP_92C_1T2R) {
3020 /* 8192C 1T only configuration. */
3021 reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
3022 reg = (reg & ~0x00000003) | 0x2;
3023 urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
3024
3025 reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
3026 reg = (reg & ~0x00300033) | 0x00200022;
3027 urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
3028
3029 reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
3030 reg = (reg & ~0xff000000) | (0x45 << 24);
3031 urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
3032
3033 reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
3034 reg = (reg & ~0x000000ff) | 0x23;
3035 urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
3036
3037 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
3038 reg = (reg & ~0x00000030) | (1 << 4);
3039 urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
3040
3041 reg = urtwn_bb_read(sc, 0xe74);
3042 reg = (reg & ~0x0c000000) | (2 << 26);
3043 urtwn_bb_write(sc, 0xe74, reg);
3044 reg = urtwn_bb_read(sc, 0xe78);
3045 reg = (reg & ~0x0c000000) | (2 << 26);
3046 urtwn_bb_write(sc, 0xe78, reg);
3047 reg = urtwn_bb_read(sc, 0xe7c);
3048 reg = (reg & ~0x0c000000) | (2 << 26);
3049 urtwn_bb_write(sc, 0xe7c, reg);
3050 reg = urtwn_bb_read(sc, 0xe80);
3051 reg = (reg & ~0x0c000000) | (2 << 26);
3052 urtwn_bb_write(sc, 0xe80, reg);
3053 reg = urtwn_bb_read(sc, 0xe88);
3054 reg = (reg & ~0x0c000000) | (2 << 26);
3055 urtwn_bb_write(sc, 0xe88, reg);
3056 }
3057
3058 /* Write AGC values. */
3059 for (i = 0; i < prog->agccount; i++) {
3060 urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
3061 DELAY(1);
3062 }
3063
3064 if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
3065 R92C_HSSI_PARAM2_CCK_HIPWR) {
3066 SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
3067 }
3068 }
3069
3070 static void
3071 urtwn_rf_init(struct urtwn_softc *sc)
3072 {
3073 const struct urtwn_rf_prog *prog;
3074 uint32_t reg, mask, saved;
3075 size_t i, j, idx;
3076
3077 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3078
3079 /* Select RF programming based on board type. */
3080 if (!(sc->chip & URTWN_CHIP_92C)) {
3081 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
3082 prog = rtl8188ce_rf_prog;
3083 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3084 prog = rtl8188ru_rf_prog;
3085 } else {
3086 prog = rtl8188cu_rf_prog;
3087 }
3088 } else {
3089 prog = rtl8192ce_rf_prog;
3090 }
3091
3092 for (i = 0; i < sc->nrxchains; i++) {
3093 /* Save RF_ENV control type. */
3094 idx = i / 2;
3095 mask = 0xffffU << ((i % 2) * 16);
3096 saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
3097
3098 /* Set RF_ENV enable. */
3099 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
3100 reg |= 0x100000;
3101 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
3102 DELAY(1);
3103
3104 /* Set RF_ENV output high. */
3105 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
3106 reg |= 0x10;
3107 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
3108 DELAY(1);
3109
3110 /* Set address and data lengths of RF registers. */
3111 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
3112 reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
3113 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
3114 DELAY(1);
3115 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
3116 reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
3117 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
3118 DELAY(1);
3119
3120 /* Write RF initialization values for this chain. */
3121 for (j = 0; j < prog[i].count; j++) {
3122 if (prog[i].regs[j] >= 0xf9 &&
3123 prog[i].regs[j] <= 0xfe) {
3124 /*
3125 * These are fake RF registers offsets that
3126 * indicate a delay is required.
3127 */
3128 usbd_delay_ms(sc->sc_udev, 50);
3129 continue;
3130 }
3131 urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
3132 DELAY(1);
3133 }
3134
3135 /* Restore RF_ENV control type. */
3136 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
3137 urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
3138 }
3139
3140 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
3141 URTWN_CHIP_UMC_A_CUT) {
3142 urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
3143 urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
3144 }
3145
3146 /* Cache RF register CHNLBW. */
3147 for (i = 0; i < 2; i++) {
3148 sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
3149 }
3150 }
3151
3152 static void
3153 urtwn_cam_init(struct urtwn_softc *sc)
3154 {
3155 uint32_t content, command;
3156 uint8_t idx;
3157 size_t i;
3158
3159 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3160
3161 KASSERT(mutex_owned(&sc->sc_write_mtx));
3162
3163 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3164 content = (idx & 3)
3165 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3166 | R92C_CAM_VALID;
3167
3168 command = R92C_CAMCMD_POLLING
3169 | R92C_CAMCMD_WRITE
3170 | R92C_CAM_CTL0(idx);
3171
3172 urtwn_write_4(sc, R92C_CAMWRITE, content);
3173 urtwn_write_4(sc, R92C_CAMCMD, command);
3174 }
3175
3176 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3177 for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
3178 if (i == 0) {
3179 content = (idx & 3)
3180 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3181 | R92C_CAM_VALID;
3182 } else {
3183 content = 0;
3184 }
3185
3186 command = R92C_CAMCMD_POLLING
3187 | R92C_CAMCMD_WRITE
3188 | R92C_CAM_CTL0(idx)
3189 | i;
3190
3191 urtwn_write_4(sc, R92C_CAMWRITE, content);
3192 urtwn_write_4(sc, R92C_CAMCMD, command);
3193 }
3194 }
3195
3196 /* Invalidate all CAM entries. */
3197 urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
3198 }
3199
3200 static void
3201 urtwn_pa_bias_init(struct urtwn_softc *sc)
3202 {
3203 uint8_t reg;
3204 size_t i;
3205
3206 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3207
3208 KASSERT(mutex_owned(&sc->sc_write_mtx));
3209
3210 for (i = 0; i < sc->nrxchains; i++) {
3211 if (sc->pa_setting & (1U << i))
3212 continue;
3213
3214 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
3215 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
3216 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
3217 urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
3218 }
3219 if (!(sc->pa_setting & 0x10)) {
3220 reg = urtwn_read_1(sc, 0x16);
3221 reg = (reg & ~0xf0) | 0x90;
3222 urtwn_write_1(sc, 0x16, reg);
3223 }
3224 }
3225
3226 static void
3227 urtwn_rxfilter_init(struct urtwn_softc *sc)
3228 {
3229
3230 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3231
3232 KASSERT(mutex_owned(&sc->sc_write_mtx));
3233
3234 /* Initialize Rx filter. */
3235 /* TODO: use better filter for monitor mode. */
3236 urtwn_write_4(sc, R92C_RCR,
3237 R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
3238 R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
3239 R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
3240 /* Accept all multicast frames. */
3241 urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
3242 urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
3243 /* Accept all management frames. */
3244 urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
3245 /* Reject all control frames. */
3246 urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
3247 /* Accept all data frames. */
3248 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
3249 }
3250
3251 static void
3252 urtwn_edca_init(struct urtwn_softc *sc)
3253 {
3254
3255 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3256
3257 KASSERT(mutex_owned(&sc->sc_write_mtx));
3258
3259 /* set spec SIFS (used in NAV) */
3260 urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
3261 urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
3262
3263 /* set SIFS CCK/OFDM */
3264 urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
3265 urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
3266
3267 /* TXOP */
3268 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
3269 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
3270 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
3271 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
3272 }
3273
3274 static void
3275 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
3276 uint16_t power[URTWN_RIDX_COUNT])
3277 {
3278 uint32_t reg;
3279
3280 DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
3281 __func__, chain));
3282
3283 /* Write per-CCK rate Tx power. */
3284 if (chain == 0) {
3285 reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
3286 reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
3287 urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
3288
3289 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3290 reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
3291 reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
3292 reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
3293 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3294 } else {
3295 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
3296 reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
3297 reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
3298 reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
3299 urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
3300
3301 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3302 reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
3303 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3304 }
3305 /* Write per-OFDM rate Tx power. */
3306 urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
3307 SM(R92C_TXAGC_RATE06, power[ 4]) |
3308 SM(R92C_TXAGC_RATE09, power[ 5]) |
3309 SM(R92C_TXAGC_RATE12, power[ 6]) |
3310 SM(R92C_TXAGC_RATE18, power[ 7]));
3311 urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
3312 SM(R92C_TXAGC_RATE24, power[ 8]) |
3313 SM(R92C_TXAGC_RATE36, power[ 9]) |
3314 SM(R92C_TXAGC_RATE48, power[10]) |
3315 SM(R92C_TXAGC_RATE54, power[11]));
3316 /* Write per-MCS Tx power. */
3317 urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
3318 SM(R92C_TXAGC_MCS00, power[12]) |
3319 SM(R92C_TXAGC_MCS01, power[13]) |
3320 SM(R92C_TXAGC_MCS02, power[14]) |
3321 SM(R92C_TXAGC_MCS03, power[15]));
3322 urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
3323 SM(R92C_TXAGC_MCS04, power[16]) |
3324 SM(R92C_TXAGC_MCS05, power[17]) |
3325 SM(R92C_TXAGC_MCS06, power[18]) |
3326 SM(R92C_TXAGC_MCS07, power[19]));
3327 urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
3328 SM(R92C_TXAGC_MCS08, power[20]) |
3329 SM(R92C_TXAGC_MCS09, power[21]) |
3330 SM(R92C_TXAGC_MCS10, power[22]) |
3331 SM(R92C_TXAGC_MCS11, power[23]));
3332 urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
3333 SM(R92C_TXAGC_MCS12, power[24]) |
3334 SM(R92C_TXAGC_MCS13, power[25]) |
3335 SM(R92C_TXAGC_MCS14, power[26]) |
3336 SM(R92C_TXAGC_MCS15, power[27]));
3337 }
3338
3339 static void
3340 urtwn_get_txpower(struct urtwn_softc *sc, size_t chain, u_int chan, u_int ht40m,
3341 uint16_t power[URTWN_RIDX_COUNT])
3342 {
3343 struct r92c_rom *rom = &sc->rom;
3344 uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
3345 const struct urtwn_txpwr *base;
3346 int ridx, group;
3347
3348 DPRINTFN(DBG_FN, ("%s: %s: chain=%zd, chan=%d\n",
3349 device_xname(sc->sc_dev), __func__, chain, chan));
3350
3351 /* Determine channel group. */
3352 if (chan <= 3) {
3353 group = 0;
3354 } else if (chan <= 9) {
3355 group = 1;
3356 } else {
3357 group = 2;
3358 }
3359
3360 /* Get original Tx power based on board type and RF chain. */
3361 if (!(sc->chip & URTWN_CHIP_92C)) {
3362 if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3363 base = &rtl8188ru_txagc[chain];
3364 } else {
3365 base = &rtl8192cu_txagc[chain];
3366 }
3367 } else {
3368 base = &rtl8192cu_txagc[chain];
3369 }
3370
3371 memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3372 if (sc->regulatory == 0) {
3373 for (ridx = 0; ridx <= 3; ridx++) {
3374 power[ridx] = base->pwr[0][ridx];
3375 }
3376 }
3377 for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3378 if (sc->regulatory == 3) {
3379 power[ridx] = base->pwr[0][ridx];
3380 /* Apply vendor limits. */
3381 if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
3382 maxpow = rom->ht40_max_pwr[group];
3383 } else {
3384 maxpow = rom->ht20_max_pwr[group];
3385 }
3386 maxpow = (maxpow >> (chain * 4)) & 0xf;
3387 if (power[ridx] > maxpow) {
3388 power[ridx] = maxpow;
3389 }
3390 } else if (sc->regulatory == 1) {
3391 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3392 power[ridx] = base->pwr[group][ridx];
3393 }
3394 } else if (sc->regulatory != 2) {
3395 power[ridx] = base->pwr[0][ridx];
3396 }
3397 }
3398
3399 /* Compute per-CCK rate Tx power. */
3400 cckpow = rom->cck_tx_pwr[chain][group];
3401 for (ridx = 0; ridx <= 3; ridx++) {
3402 power[ridx] += cckpow;
3403 if (power[ridx] > R92C_MAX_TX_PWR) {
3404 power[ridx] = R92C_MAX_TX_PWR;
3405 }
3406 }
3407
3408 htpow = rom->ht40_1s_tx_pwr[chain][group];
3409 if (sc->ntxchains > 1) {
3410 /* Apply reduction for 2 spatial streams. */
3411 diff = rom->ht40_2s_tx_pwr_diff[group];
3412 diff = (diff >> (chain * 4)) & 0xf;
3413 htpow = (htpow > diff) ? htpow - diff : 0;
3414 }
3415
3416 /* Compute per-OFDM rate Tx power. */
3417 diff = rom->ofdm_tx_pwr_diff[group];
3418 diff = (diff >> (chain * 4)) & 0xf;
3419 ofdmpow = htpow + diff; /* HT->OFDM correction. */
3420 for (ridx = 4; ridx <= 11; ridx++) {
3421 power[ridx] += ofdmpow;
3422 if (power[ridx] > R92C_MAX_TX_PWR) {
3423 power[ridx] = R92C_MAX_TX_PWR;
3424 }
3425 }
3426
3427 /* Compute per-MCS Tx power. */
3428 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3429 diff = rom->ht20_tx_pwr_diff[group];
3430 diff = (diff >> (chain * 4)) & 0xf;
3431 htpow += diff; /* HT40->HT20 correction. */
3432 }
3433 for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
3434 power[ridx] += htpow;
3435 if (power[ridx] > R92C_MAX_TX_PWR) {
3436 power[ridx] = R92C_MAX_TX_PWR;
3437 }
3438 }
3439 #ifdef URTWN_DEBUG
3440 if (urtwn_debug & DBG_RF) {
3441 /* Dump per-rate Tx power values. */
3442 printf("%s: %s: Tx power for chain %zd:\n",
3443 device_xname(sc->sc_dev), __func__, chain);
3444 for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
3445 printf("%s: %s: Rate %d = %u\n",
3446 device_xname(sc->sc_dev), __func__, ridx,
3447 power[ridx]);
3448 }
3449 }
3450 #endif
3451 }
3452
3453 static void
3454 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
3455 {
3456 uint16_t power[URTWN_RIDX_COUNT];
3457 size_t i;
3458
3459 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3460
3461 for (i = 0; i < sc->ntxchains; i++) {
3462 /* Compute per-rate Tx power values. */
3463 urtwn_get_txpower(sc, i, chan, ht40m, power);
3464 /* Write per-rate Tx power values to hardware. */
3465 urtwn_write_txpower(sc, i, power);
3466 }
3467 }
3468
3469 static void
3470 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
3471 {
3472 struct ieee80211com *ic = &sc->sc_ic;
3473 u_int chan;
3474 size_t i;
3475
3476 chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
3477
3478 DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
3479 __func__, chan));
3480
3481 KASSERT(mutex_owned(&sc->sc_write_mtx));
3482
3483 if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
3484 chan += 2;
3485 } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
3486 chan -= 2;
3487 }
3488
3489 /* Set Tx power for this new channel. */
3490 urtwn_set_txpower(sc, chan, ht40m);
3491
3492 for (i = 0; i < sc->nrxchains; i++) {
3493 urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3494 RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3495 }
3496
3497 if (ht40m) {
3498 /* Is secondary channel below or above primary? */
3499 int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
3500 uint32_t reg;
3501
3502 urtwn_write_1(sc, R92C_BWOPMODE,
3503 urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3504
3505 reg = urtwn_read_1(sc, R92C_RRSR + 2);
3506 reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3507 urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
3508
3509 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3510 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3511 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3512 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3513
3514 /* Set CCK side band. */
3515 reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3516 reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3517 urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3518
3519 reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3520 reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3521 urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3522
3523 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3524 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3525 ~R92C_FPGA0_ANAPARAM2_CBW20);
3526
3527 reg = urtwn_bb_read(sc, 0x818);
3528 reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3529 urtwn_bb_write(sc, 0x818, reg);
3530
3531 /* Select 40MHz bandwidth. */
3532 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3533 (sc->rf_chnlbw[0] & ~0xfff) | chan);
3534 } else {
3535 urtwn_write_1(sc, R92C_BWOPMODE,
3536 urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3537
3538 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3539 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3540 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3541 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3542
3543 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3544 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3545 R92C_FPGA0_ANAPARAM2_CBW20);
3546
3547 /* Select 20MHz bandwidth. */
3548 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3549 (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
3550 }
3551 }
3552
3553 static void
3554 urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
3555 {
3556
3557 DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
3558 __func__, inited));
3559
3560 /* TODO */
3561 }
3562
3563 static void
3564 urtwn_lc_calib(struct urtwn_softc *sc)
3565 {
3566 uint32_t rf_ac[2];
3567 uint8_t txmode;
3568 size_t i;
3569
3570 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3571
3572 KASSERT(mutex_owned(&sc->sc_write_mtx));
3573
3574 txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3575 if ((txmode & 0x70) != 0) {
3576 /* Disable all continuous Tx. */
3577 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3578
3579 /* Set RF mode to standby mode. */
3580 for (i = 0; i < sc->nrxchains; i++) {
3581 rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3582 urtwn_rf_write(sc, i, R92C_RF_AC,
3583 RW(rf_ac[i], R92C_RF_AC_MODE,
3584 R92C_RF_AC_MODE_STANDBY));
3585 }
3586 } else {
3587 /* Block all Tx queues. */
3588 urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3589 }
3590 /* Start calibration. */
3591 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3592 urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3593
3594 /* Give calibration the time to complete. */
3595 usbd_delay_ms(sc->sc_udev, 100);
3596
3597 /* Restore configuration. */
3598 if ((txmode & 0x70) != 0) {
3599 /* Restore Tx mode. */
3600 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3601 /* Restore RF mode. */
3602 for (i = 0; i < sc->nrxchains; i++) {
3603 urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3604 }
3605 } else {
3606 /* Unblock all Tx queues. */
3607 urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3608 }
3609 }
3610
3611 static void
3612 urtwn_temp_calib(struct urtwn_softc *sc)
3613 {
3614 int temp;
3615
3616 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3617
3618 KASSERT(mutex_owned(&sc->sc_write_mtx));
3619
3620 if (sc->thcal_state == 0) {
3621 /* Start measuring temperature. */
3622 DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
3623 device_xname(sc->sc_dev), __func__));
3624 urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
3625 sc->thcal_state = 1;
3626 return;
3627 }
3628 sc->thcal_state = 0;
3629
3630 /* Read measured temperature. */
3631 temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
3632 DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
3633 __func__, temp));
3634 if (temp == 0) /* Read failed, skip. */
3635 return;
3636
3637 /*
3638 * Redo LC calibration if temperature changed significantly since
3639 * last calibration.
3640 */
3641 if (sc->thcal_lctemp == 0) {
3642 /* First LC calibration is performed in urtwn_init(). */
3643 sc->thcal_lctemp = temp;
3644 } else if (abs(temp - sc->thcal_lctemp) > 1) {
3645 DPRINTFN(DBG_RF,
3646 ("%s: %s: LC calib triggered by temp: %d -> %d\n",
3647 device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
3648 temp));
3649 urtwn_lc_calib(sc);
3650 /* Record temperature of last LC calibration. */
3651 sc->thcal_lctemp = temp;
3652 }
3653 }
3654
3655 static int
3656 urtwn_init(struct ifnet *ifp)
3657 {
3658 struct urtwn_softc *sc = ifp->if_softc;
3659 struct ieee80211com *ic = &sc->sc_ic;
3660 struct urtwn_rx_data *data;
3661 uint32_t reg;
3662 size_t i;
3663 int error;
3664
3665 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3666
3667 urtwn_stop(ifp, 0);
3668
3669 mutex_enter(&sc->sc_write_mtx);
3670
3671 mutex_enter(&sc->sc_task_mtx);
3672 /* Init host async commands ring. */
3673 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3674 mutex_exit(&sc->sc_task_mtx);
3675
3676 mutex_enter(&sc->sc_fwcmd_mtx);
3677 /* Init firmware commands ring. */
3678 sc->fwcur = 0;
3679 mutex_exit(&sc->sc_fwcmd_mtx);
3680
3681 /* Allocate Tx/Rx buffers. */
3682 error = urtwn_alloc_rx_list(sc);
3683 if (error != 0) {
3684 aprint_error_dev(sc->sc_dev,
3685 "could not allocate Rx buffers\n");
3686 goto fail;
3687 }
3688 error = urtwn_alloc_tx_list(sc);
3689 if (error != 0) {
3690 aprint_error_dev(sc->sc_dev,
3691 "could not allocate Tx buffers\n");
3692 goto fail;
3693 }
3694
3695 /* Power on adapter. */
3696 error = urtwn_power_on(sc);
3697 if (error != 0)
3698 goto fail;
3699
3700 /* Initialize DMA. */
3701 error = urtwn_dma_init(sc);
3702 if (error != 0)
3703 goto fail;
3704
3705 /* Set info size in Rx descriptors (in 64-bit words). */
3706 urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3707
3708 /* Init interrupts. */
3709 urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3710 urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3711
3712 /* Set MAC address. */
3713 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3714 urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
3715
3716 /* Set initial network type. */
3717 reg = urtwn_read_4(sc, R92C_CR);
3718 switch (ic->ic_opmode) {
3719 case IEEE80211_M_STA:
3720 default:
3721 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3722 break;
3723
3724 case IEEE80211_M_IBSS:
3725 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
3726 break;
3727 }
3728 urtwn_write_4(sc, R92C_CR, reg);
3729
3730 /* Set response rate */
3731 reg = urtwn_read_4(sc, R92C_RRSR);
3732 reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3733 urtwn_write_4(sc, R92C_RRSR, reg);
3734
3735 /* SIFS (used in NAV) */
3736 urtwn_write_2(sc, R92C_SPEC_SIFS,
3737 SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
3738
3739 /* Set short/long retry limits. */
3740 urtwn_write_2(sc, R92C_RL,
3741 SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3742
3743 /* Initialize EDCA parameters. */
3744 urtwn_edca_init(sc);
3745
3746 /* Setup rate fallback. */
3747 urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3748 urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3749 urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3750 urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3751
3752 urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3753 urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3754 R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3755 /* Set ACK timeout. */
3756 urtwn_write_1(sc, R92C_ACKTO, 0x40);
3757
3758 /* Setup USB aggregation. */
3759 /* Tx */
3760 reg = urtwn_read_4(sc, R92C_TDECTRL);
3761 reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3762 urtwn_write_4(sc, R92C_TDECTRL, reg);
3763 /* Rx */
3764 urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3765 urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3766 R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3767 urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3768 urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
3769 ~R92C_USB_SPECIAL_OPTION_AGG_EN);
3770 urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3771 urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3772
3773 /* Initialize beacon parameters. */
3774 urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3775 urtwn_write_1(sc, R92C_DRVERLYINT, R92C_DRIVER_EARLY_INT_TIME);
3776 urtwn_write_1(sc, R92C_BCNDMATIM, R92C_DMA_ATIME_INT_TIME);
3777 urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3778
3779 /* Setup AMPDU aggregation. */
3780 urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
3781 urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3782 urtwn_write_2(sc, 0x4ca, 0x0708);
3783
3784 urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3785 urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
3786
3787 /* Load 8051 microcode. */
3788 error = urtwn_load_firmware(sc);
3789 if (error != 0)
3790 goto fail;
3791 SET(sc->sc_flags, URTWN_FLAG_FWREADY);
3792
3793 /* Initialize MAC/BB/RF blocks. */
3794 /*
3795 * XXX: urtwn_mac_init() sets R92C_RCR[0:15] = R92C_RCR_APM |
3796 * R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_AICV | R92C_RCR_AMF.
3797 * XXX: This setting should be removed from rtl8192cu_mac[].
3798 */
3799 urtwn_mac_init(sc); // sets R92C_RCR[0:15]
3800 urtwn_rxfilter_init(sc); // reset R92C_RCR
3801 urtwn_bb_init(sc);
3802 urtwn_rf_init(sc);
3803
3804 /* Turn CCK and OFDM blocks on. */
3805 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3806 reg |= R92C_RFMOD_CCK_EN;
3807 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3808 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3809 reg |= R92C_RFMOD_OFDM_EN;
3810 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3811
3812 /* Clear per-station keys table. */
3813 urtwn_cam_init(sc);
3814
3815 /* Enable hardware sequence numbering. */
3816 urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3817
3818 /* Perform LO and IQ calibrations. */
3819 urtwn_iq_calib(sc, sc->iqk_inited);
3820 sc->iqk_inited = true;
3821
3822 /* Perform LC calibration. */
3823 urtwn_lc_calib(sc);
3824
3825 /* Fix USB interference issue. */
3826 urtwn_write_1(sc, 0xfe40, 0xe0);
3827 urtwn_write_1(sc, 0xfe41, 0x8d);
3828 urtwn_write_1(sc, 0xfe42, 0x80);
3829 urtwn_write_4(sc, 0x20c, 0xfd0320);
3830
3831 urtwn_pa_bias_init(sc);
3832
3833 if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
3834 /* 1T1R */
3835 urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
3836 urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
3837 }
3838
3839 /* Initialize GPIO setting. */
3840 urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3841 urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3842
3843 /* Fix for lower temperature. */
3844 urtwn_write_1(sc, 0x15, 0xe9);
3845
3846 /* Set default channel. */
3847 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
3848
3849 /* Queue Rx xfers. */
3850 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
3851 data = &sc->rx_data[i];
3852 usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
3853 URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3854 USBD_NO_TIMEOUT, urtwn_rxeof);
3855 error = usbd_transfer(data->xfer);
3856 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
3857 error != USBD_IN_PROGRESS))
3858 goto fail;
3859 }
3860
3861 /* We're ready to go. */
3862 ifp->if_flags &= ~IFF_OACTIVE;
3863 ifp->if_flags |= IFF_RUNNING;
3864
3865 mutex_exit(&sc->sc_write_mtx);
3866
3867 if (ic->ic_opmode == IEEE80211_M_MONITOR)
3868 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3869 else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3870 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3871 urtwn_wait_async(sc);
3872
3873 return (0);
3874
3875 fail:
3876 mutex_exit(&sc->sc_write_mtx);
3877
3878 urtwn_stop(ifp, 1);
3879 return (error);
3880 }
3881
3882 static void
3883 urtwn_stop(struct ifnet *ifp, int disable)
3884 {
3885 struct urtwn_softc *sc = ifp->if_softc;
3886 struct ieee80211com *ic = &sc->sc_ic;
3887 size_t i;
3888 int s;
3889
3890 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3891
3892 s = splusb();
3893 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3894 urtwn_wait_async(sc);
3895 splx(s);
3896
3897 sc->tx_timer = 0;
3898 ifp->if_timer = 0;
3899 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3900
3901 callout_stop(&sc->sc_scan_to);
3902 callout_stop(&sc->sc_calib_to);
3903
3904 /* Abort Tx. */
3905 for (i = 0; i < R92C_MAX_EPOUT; i++) {
3906 if (sc->tx_pipe[i] != NULL)
3907 usbd_abort_pipe(sc->tx_pipe[i]);
3908 }
3909
3910 /* Stop Rx pipe. */
3911 usbd_abort_pipe(sc->rx_pipe);
3912
3913 /* Free Tx/Rx buffers. */
3914 urtwn_free_tx_list(sc);
3915 urtwn_free_rx_list(sc);
3916
3917 if (disable)
3918 urtwn_chip_stop(sc);
3919 }
3920
3921 static int
3922 urtwn_reset(struct ifnet *ifp)
3923 {
3924 struct urtwn_softc *sc = ifp->if_softc;
3925 struct ieee80211com *ic = &sc->sc_ic;
3926
3927 if (ic->ic_opmode != IEEE80211_M_MONITOR)
3928 return ENETRESET;
3929
3930 urtwn_set_chan(sc, ic->ic_curchan, IEEE80211_HTINFO_2NDCHAN_NONE);
3931
3932 return 0;
3933 }
3934
3935 static void
3936 urtwn_chip_stop(struct urtwn_softc *sc)
3937 {
3938 uint32_t reg;
3939 bool disabled = true;
3940
3941 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3942
3943 mutex_enter(&sc->sc_write_mtx);
3944
3945 /*
3946 * RF Off Sequence
3947 */
3948 /* Pause MAC TX queue */
3949 urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
3950
3951 /* Disable RF */
3952 urtwn_rf_write(sc, 0, 0, 0);
3953
3954 urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
3955
3956 /* Reset BB state machine */
3957 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3958 R92C_SYS_FUNC_EN_USBD |
3959 R92C_SYS_FUNC_EN_USBA |
3960 R92C_SYS_FUNC_EN_BB_GLB_RST);
3961 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3962 R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
3963
3964 /*
3965 * Reset digital sequence
3966 */
3967 if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
3968 /* Reset MCU ready status */
3969 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3970 /* If firmware in ram code, do reset */
3971 if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
3972 urtwn_fw_reset(sc);
3973 CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
3974 }
3975 }
3976
3977 /* Reset MAC and Enable 8051 */
3978 urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
3979
3980 /* Reset MCU ready status */
3981 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3982
3983 if (disabled) {
3984 /* Disable MAC clock */
3985 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3986 /* Disable AFE PLL */
3987 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
3988 /* Gated AFE DIG_CLOCK */
3989 urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
3990 /* Isolated digital to PON */
3991 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
3992 }
3993
3994 /*
3995 * Pull GPIO PIN to balance level and LED control
3996 */
3997 /* 1. Disable GPIO[7:0] */
3998 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
3999
4000 reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
4001 reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
4002 urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
4003
4004 /* Disable GPIO[10:8] */
4005 urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
4006
4007 reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
4008 reg |= (((reg & 0x000f) << 4) | 0x0780);
4009 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
4010
4011 /* Disable LED0 & 1 */
4012 urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
4013
4014 /*
4015 * Reset digital sequence
4016 */
4017 if (disabled) {
4018 /* Disable ELDR clock */
4019 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
4020 /* Isolated ELDR to PON */
4021 urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
4022 }
4023
4024 /*
4025 * Disable analog sequence
4026 */
4027 if (disabled) {
4028 /* Disable A15 power */
4029 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
4030 /* Disable digital core power */
4031 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
4032 urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
4033 ~R92C_LDOV12D_CTRL_LDV12_EN);
4034 }
4035
4036 /* Enter PFM mode */
4037 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
4038
4039 /* Set USB suspend */
4040 urtwn_write_2(sc, R92C_APS_FSMCO,
4041 R92C_APS_FSMCO_APDM_HOST |
4042 R92C_APS_FSMCO_AFSM_HSUS |
4043 R92C_APS_FSMCO_PFM_ALDN);
4044
4045 urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
4046
4047 mutex_exit(&sc->sc_write_mtx);
4048 }
4049
4050 MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf");
4051
4052 #ifdef _MODULE
4053 #include "ioconf.c"
4054 #endif
4055
4056 static int
4057 if_urtwn_modcmd(modcmd_t cmd, void *aux)
4058 {
4059 int error = 0;
4060
4061 switch (cmd) {
4062 case MODULE_CMD_INIT:
4063 #ifdef _MODULE
4064 error = config_init_component(cfdriver_ioconf_urtwn,
4065 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
4066 #endif
4067 return (error);
4068 case MODULE_CMD_FINI:
4069 #ifdef _MODULE
4070 error = config_fini_component(cfdriver_ioconf_urtwn,
4071 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
4072 #endif
4073 return (error);
4074 default:
4075 return (ENOTTY);
4076 }
4077 }
4078