if_urtwn.c revision 1.7 1 /* $NetBSD: if_urtwn.c,v 1.7 2013/01/05 01:30:16 christos Exp $ */
2 /* $OpenBSD: if_urtwn.c,v 1.20 2011/11/26 06:39:33 ckuethe Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 /*
21 * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
22 */
23
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_urtwn.c,v 1.7 2013/01/05 01:30:16 christos Exp $");
26
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41 #include <sys/intr.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdivar.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67
68 #include <dev/usb/if_urtwnreg.h>
69 #include <dev/usb/if_urtwnvar.h>
70 #include <dev/usb/if_urtwn_data.h>
71
72 #ifdef USB_DEBUG
73 #define URTWN_DEBUG
74 #endif
75
76 #ifdef URTWN_DEBUG
77 #define DBG_INIT __BIT(0)
78 #define DBG_FN __BIT(1)
79 #define DBG_TX __BIT(2)
80 #define DBG_RX __BIT(3)
81 #define DBG_STM __BIT(4)
82 #define DBG_RF __BIT(5)
83 #define DBG_REG __BIT(6)
84 #define DBG_ALL 0xffffffffU
85 u_int urtwn_debug = DBG_TX|DBG_RX|DBG_STM;
86 #define DPRINTFN(n, s) \
87 do { if (urtwn_debug & (n)) printf s; } while (/*CONSTCOND*/0)
88 #else
89 #define DPRINTFN(n, s)
90 #endif
91
92 static const struct usb_devno urtwn_devs[] = {
93 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_1 },
94 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8188CU_2 },
95 { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RTL8192CU },
96 { USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_RTL8192CU },
97 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_1 },
98 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CE_2 },
99 { USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8188CU },
100 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8188CU },
101 { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192CU },
102 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_1 },
103 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_2 },
104 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_3 },
105 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_4 },
106 { USB_VENDOR_CHICONY, USB_PRODUCT_CHICONY_RTL8188CUS_5 },
107 { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192CU },
108 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8188CU },
109 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_1 },
110 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_2 },
111 { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_RTL8192CU_3 },
112 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8188CU },
113 { USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192CU },
114 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8188CU },
115 { USB_VENDOR_FEIXUN, USB_PRODUCT_FEIXUN_RTL8192CU },
116 { USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUP150 },
117 { USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192CU },
118 { USB_VENDOR_HP3, USB_PRODUCT_HP3_RTL8188CU },
119 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000M },
120 { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_RTL8192CU },
121 { USB_VENDOR_NETGEAR4, USB_PRODUCT_NETGEAR4_RTL8188CU },
122 { USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RTL8188CU },
123 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_1 },
124 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_2 },
125 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8192CU },
126 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_3 },
127 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CU_4 },
128 { USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_RTL8188CUS },
129 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_0 },
130 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CE_1 },
131 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CTV },
132 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_0 },
133 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_1 },
134 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_2 },
135 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CU_COMBO },
136 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188CUS },
137 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU },
138 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8188RU_2 },
139 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8191CU },
140 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CE },
141 { USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192CU },
142 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU },
143 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8188CU_2 },
144 { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_RTL8192CU },
145 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8188CU },
146 { USB_VENDOR_TRENDNET, USB_PRODUCT_TRENDNET_RTL8192CU },
147 { USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RTL8192CU }
148 };
149
150 static int urtwn_match(device_t, cfdata_t, void *);
151 static void urtwn_attach(device_t, device_t, void *);
152 static int urtwn_detach(device_t, int);
153 static int urtwn_activate(device_t, enum devact);
154
155 CFATTACH_DECL_NEW(urtwn, sizeof(struct urtwn_softc), urtwn_match,
156 urtwn_attach, urtwn_detach, urtwn_activate);
157
158 static int urtwn_open_pipes(struct urtwn_softc *);
159 static void urtwn_close_pipes(struct urtwn_softc *);
160 static int urtwn_alloc_rx_list(struct urtwn_softc *);
161 static void urtwn_free_rx_list(struct urtwn_softc *);
162 static int urtwn_alloc_tx_list(struct urtwn_softc *);
163 static void urtwn_free_tx_list(struct urtwn_softc *);
164 static void urtwn_task(void *);
165 static void urtwn_do_async(struct urtwn_softc *,
166 void (*)(struct urtwn_softc *, void *), void *, int);
167 static void urtwn_wait_async(struct urtwn_softc *);
168 static int urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
169 int);
170 static int urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *,
171 int);
172 static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int);
173 static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
174 static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t);
175 static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
176 static void urtwn_efuse_read(struct urtwn_softc *);
177 static int urtwn_read_chipid(struct urtwn_softc *);
178 static void urtwn_read_rom(struct urtwn_softc *);
179 static int urtwn_media_change(struct ifnet *);
180 static int urtwn_ra_init(struct urtwn_softc *);
181 static void urtwn_tsf_sync_enable(struct urtwn_softc *);
182 static void urtwn_set_led(struct urtwn_softc *, int, int);
183 static void urtwn_calib_to(void *);
184 static void urtwn_calib_to_cb(struct urtwn_softc *, void *);
185 static void urtwn_next_scan(void *);
186 static int urtwn_newstate(struct ieee80211com *, enum ieee80211_state,
187 int);
188 static void urtwn_newstate_cb(struct urtwn_softc *, void *);
189 static int urtwn_wme_update(struct ieee80211com *);
190 static void urtwn_wme_update_cb(struct urtwn_softc *, void *);
191 static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
192 static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
193 static void urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int);
194 static void urtwn_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
195 static void urtwn_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
196 static int urtwn_tx(struct urtwn_softc *, struct mbuf *,
197 struct ieee80211_node *);
198 static void urtwn_start(struct ifnet *);
199 static void urtwn_watchdog(struct ifnet *);
200 static int urtwn_ioctl(struct ifnet *, u_long, void *);
201 static int urtwn_power_on(struct urtwn_softc *);
202 static int urtwn_llt_init(struct urtwn_softc *);
203 static void urtwn_fw_reset(struct urtwn_softc *);
204 static int urtwn_fw_loadpage(struct urtwn_softc *, int, uint8_t *, int);
205 static int urtwn_load_firmware(struct urtwn_softc *);
206 static int urtwn_dma_init(struct urtwn_softc *);
207 static void urtwn_mac_init(struct urtwn_softc *);
208 static void urtwn_bb_init(struct urtwn_softc *);
209 static void urtwn_rf_init(struct urtwn_softc *);
210 static void urtwn_cam_init(struct urtwn_softc *);
211 static void urtwn_pa_bias_init(struct urtwn_softc *);
212 static void urtwn_rxfilter_init(struct urtwn_softc *);
213 static void urtwn_edca_init(struct urtwn_softc *);
214 static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]);
215 static void urtwn_get_txpower(struct urtwn_softc *, int, u_int, u_int,
216 uint16_t[]);
217 static void urtwn_set_txpower(struct urtwn_softc *, u_int, u_int);
218 static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *,
219 u_int);
220 static void urtwn_iq_calib(struct urtwn_softc *, bool);
221 static void urtwn_lc_calib(struct urtwn_softc *);
222 static void urtwn_temp_calib(struct urtwn_softc *);
223 static int urtwn_init(struct ifnet *);
224 static void urtwn_stop(struct ifnet *, int);
225 static void urtwn_chip_stop(struct urtwn_softc *);
226
227 /* Aliases. */
228 #define urtwn_bb_write urtwn_write_4
229 #define urtwn_bb_read urtwn_read_4
230
231 static int
232 urtwn_match(device_t parent, cfdata_t match, void *aux)
233 {
234 struct usb_attach_arg *uaa = aux;
235
236 return ((usb_lookup(urtwn_devs, uaa->vendor, uaa->product) != NULL) ?
237 UMATCH_VENDOR_PRODUCT : UMATCH_NONE);
238 }
239
240 static void
241 urtwn_attach(device_t parent, device_t self, void *aux)
242 {
243 struct urtwn_softc *sc = device_private(self);
244 struct ieee80211com *ic = &sc->sc_ic;
245 struct ifnet *ifp = &sc->sc_if;
246 struct usb_attach_arg *uaa = aux;
247 char *devinfop;
248 int i, error;
249
250 sc->sc_dev = self;
251 sc->sc_udev = uaa->device;
252
253 aprint_naive("\n");
254 aprint_normal("\n");
255
256 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
257 aprint_normal_dev(self, "%s\n", devinfop);
258 usbd_devinfo_free(devinfop);
259
260 mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
261 mutex_init(&sc->sc_tx_mtx, MUTEX_DEFAULT, IPL_NET);
262 mutex_init(&sc->sc_fwcmd_mtx, MUTEX_DEFAULT, IPL_NONE);
263
264 usb_init_task(&sc->sc_task, urtwn_task, sc);
265
266 callout_init(&sc->sc_scan_to, 0);
267 callout_setfunc(&sc->sc_scan_to, urtwn_next_scan, sc);
268 callout_init(&sc->sc_calib_to, 0);
269 callout_setfunc(&sc->sc_calib_to, urtwn_calib_to, sc);
270
271 error = usbd_set_config_no(sc->sc_udev, 1, 0);
272 if (error != 0) {
273 aprint_error_dev(self, "failed to set configuration"
274 ", err=%s\n", usbd_errstr(error));
275 goto fail;
276 }
277
278 /* Get the first interface handle. */
279 error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
280 if (error != 0) {
281 aprint_error_dev(self, "could not get interface handle\n");
282 goto fail;
283 }
284
285 error = urtwn_read_chipid(sc);
286 if (error != 0) {
287 aprint_error_dev(self, "unsupported test chip\n");
288 goto fail;
289 }
290
291 /* Determine number of Tx/Rx chains. */
292 if (sc->chip & URTWN_CHIP_92C) {
293 sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
294 sc->nrxchains = 2;
295 } else {
296 sc->ntxchains = 1;
297 sc->nrxchains = 1;
298 }
299 urtwn_read_rom(sc);
300
301 aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
302 (sc->chip & URTWN_CHIP_92C) ? "8192CU" :
303 (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
304 (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
305 "8188CUS", sc->ntxchains, sc->nrxchains,
306 ether_sprintf(ic->ic_myaddr));
307
308 error = urtwn_open_pipes(sc);
309 if (error != 0) {
310 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
311 goto fail;
312 }
313 aprint_normal_dev(self, "%d rx pipe%s, %d tx pipe%s\n",
314 sc->rx_npipe, sc->rx_npipe > 1 ? "s" : "",
315 sc->tx_npipe, sc->tx_npipe > 1 ? "s" : "");
316
317 /*
318 * Setup the 802.11 device.
319 */
320 ic->ic_ifp = ifp;
321 ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
322 ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
323 ic->ic_state = IEEE80211_S_INIT;
324
325 /* Set device capabilities. */
326 ic->ic_caps =
327 IEEE80211_C_MONITOR | /* Monitor mode supported. */
328 IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
329 IEEE80211_C_SHSLOT | /* Short slot time supported. */
330 IEEE80211_C_WME | /* 802.11e */
331 IEEE80211_C_WPA; /* 802.11i */
332
333 /* Set supported .11b and .11g rates. */
334 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
335 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
336
337 /* Set supported .11b and .11g channels (1 through 14). */
338 for (i = 1; i <= 14; i++) {
339 ic->ic_channels[i].ic_freq =
340 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
341 ic->ic_channels[i].ic_flags =
342 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
343 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
344 }
345
346 ifp->if_softc = sc;
347 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
348 ifp->if_init = urtwn_init;
349 ifp->if_ioctl = urtwn_ioctl;
350 ifp->if_start = urtwn_start;
351 ifp->if_watchdog = urtwn_watchdog;
352 IFQ_SET_READY(&ifp->if_snd);
353 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
354
355 if_attach(ifp);
356 ieee80211_ifattach(ic);
357 /* override default methods */
358 ic->ic_wme.wme_update = urtwn_wme_update;
359
360 /* Override state transition machine. */
361 sc->sc_newstate = ic->ic_newstate;
362 ic->ic_newstate = urtwn_newstate;
363 ieee80211_media_init(ic, urtwn_media_change, ieee80211_media_status);
364
365 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
366 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
367 &sc->sc_drvbpf);
368
369 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
370 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
371 sc->sc_rxtap.wr_ihdr.it_present = htole32(URTWN_RX_RADIOTAP_PRESENT);
372
373 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
374 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
375 sc->sc_txtap.wt_ihdr.it_present = htole32(URTWN_TX_RADIOTAP_PRESENT);
376
377 ieee80211_announce(ic);
378
379 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
380
381 SET(sc->sc_flags, URTWN_FLAG_ATTACHED);
382 return;
383
384 fail:
385 sc->sc_dying = 1;
386 aprint_error_dev(self, "attach failed\n");
387 }
388
389 static int
390 urtwn_detach(device_t self, int flags)
391 {
392 struct urtwn_softc *sc = device_private(self);
393 struct ifnet *ifp = &sc->sc_if;
394 int s;
395
396 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
397
398 s = splusb();
399
400 sc->sc_dying = 1;
401
402 callout_stop(&sc->sc_scan_to);
403 callout_stop(&sc->sc_calib_to);
404
405 if (ISSET(sc->sc_flags, URTWN_FLAG_ATTACHED)) {
406 usb_rem_task(sc->sc_udev, &sc->sc_task);
407 urtwn_stop(ifp, 0);
408
409 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
410 bpf_detach(ifp);
411 ieee80211_ifdetach(&sc->sc_ic);
412 if_detach(ifp);
413
414 /* Abort and close Tx/Rx pipes. */
415 urtwn_close_pipes(sc);
416 }
417
418 splx(s);
419
420 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
421
422 callout_destroy(&sc->sc_scan_to);
423 callout_destroy(&sc->sc_calib_to);
424 mutex_destroy(&sc->sc_fwcmd_mtx);
425 mutex_destroy(&sc->sc_tx_mtx);
426 mutex_destroy(&sc->sc_task_mtx);
427
428 return (0);
429 }
430
431 static int
432 urtwn_activate(device_t self, enum devact act)
433 {
434 struct urtwn_softc *sc = device_private(self);
435
436 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
437
438 switch (act) {
439 case DVACT_DEACTIVATE:
440 if_deactivate(sc->sc_ic.ic_ifp);
441 return (0);
442 default:
443 return (EOPNOTSUPP);
444 }
445 }
446
447 static int
448 urtwn_open_pipes(struct urtwn_softc *sc)
449 {
450 /* Bulk-out endpoints addresses (from highest to lowest prio). */
451 static const uint8_t epaddr[] = { 0x02, 0x03, 0x05 };
452 usb_interface_descriptor_t *id;
453 usb_endpoint_descriptor_t *ed;
454 int i, ntx = 0, error;
455
456 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
457
458 /* Determine the number of bulk-out pipes. */
459 id = usbd_get_interface_descriptor(sc->sc_iface);
460 for (i = 0; i < id->bNumEndpoints; i++) {
461 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
462 if (ed != NULL &&
463 UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK &&
464 UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
465 ntx++;
466 }
467 DPRINTFN(DBG_INIT, ("%s: %s: found %d bulk-out pipes\n",
468 device_xname(sc->sc_dev), __func__, ntx));
469 if (ntx == 0 || ntx > R92C_MAX_EPOUT) {
470 aprint_error_dev(sc->sc_dev,
471 "%d: invalid number of Tx bulk pipes\n", ntx);
472 return (EIO);
473 }
474 sc->rx_npipe = 1;
475 sc->tx_npipe = ntx;
476
477 /* Open bulk-in pipe at address 0x81. */
478 error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
479 &sc->rx_pipe);
480 if (error != 0) {
481 aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe\n");
482 goto fail;
483 }
484
485 /* Open bulk-out pipes (up to 3). */
486 for (i = 0; i < ntx; i++) {
487 error = usbd_open_pipe(sc->sc_iface, epaddr[i],
488 USBD_EXCLUSIVE_USE, &sc->tx_pipe[i]);
489 if (error != 0) {
490 aprint_error_dev(sc->sc_dev,
491 "could not open Tx bulk pipe 0x%02x\n", epaddr[i]);
492 goto fail;
493 }
494 }
495
496 /* Map 802.11 access categories to USB pipes. */
497 sc->ac2idx[WME_AC_BK] =
498 sc->ac2idx[WME_AC_BE] = (ntx == 3) ? 2 : ((ntx == 2) ? 1 : 0);
499 sc->ac2idx[WME_AC_VI] = (ntx == 3) ? 1 : 0;
500 sc->ac2idx[WME_AC_VO] = 0; /* Always use highest prio. */
501
502 fail:
503 if (error != 0)
504 urtwn_close_pipes(sc);
505 return (error);
506 }
507
508 static void
509 urtwn_close_pipes(struct urtwn_softc *sc)
510 {
511 int i;
512
513 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
514
515 /* Close Rx pipe. */
516 if (sc->rx_pipe != NULL) {
517 usbd_abort_pipe(sc->rx_pipe);
518 usbd_close_pipe(sc->rx_pipe);
519 sc->rx_pipe = NULL;
520 }
521 /* Close Tx pipes. */
522 for (i = 0; i < R92C_MAX_EPOUT; i++) {
523 if (sc->tx_pipe[i] == NULL)
524 continue;
525 usbd_abort_pipe(sc->tx_pipe[i]);
526 usbd_close_pipe(sc->tx_pipe[i]);
527 sc->tx_pipe[i] = NULL;
528 }
529 }
530
531 static int
532 urtwn_alloc_rx_list(struct urtwn_softc *sc)
533 {
534 struct urtwn_rx_data *data;
535 int i, error = 0;
536
537 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
538
539 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
540 data = &sc->rx_data[i];
541
542 data->sc = sc; /* Backpointer for callbacks. */
543
544 data->xfer = usbd_alloc_xfer(sc->sc_udev);
545 if (data->xfer == NULL) {
546 aprint_error_dev(sc->sc_dev,
547 "could not allocate xfer\n");
548 error = ENOMEM;
549 break;
550 }
551
552 data->buf = usbd_alloc_buffer(data->xfer, URTWN_RXBUFSZ);
553 if (data->buf == NULL) {
554 aprint_error_dev(sc->sc_dev,
555 "could not allocate xfer buffer\n");
556 error = ENOMEM;
557 break;
558 }
559 }
560 if (error != 0)
561 urtwn_free_rx_list(sc);
562 return (error);
563 }
564
565 static void
566 urtwn_free_rx_list(struct urtwn_softc *sc)
567 {
568 int i;
569
570 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
571
572 /* NB: Caller must abort pipe first. */
573 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
574 if (sc->rx_data[i].xfer != NULL) {
575 usbd_free_xfer(sc->rx_data[i].xfer);
576 sc->rx_data[i].xfer = NULL;
577 }
578 }
579 }
580
581 static int
582 urtwn_alloc_tx_list(struct urtwn_softc *sc)
583 {
584 struct urtwn_tx_data *data;
585 int i, error = 0;
586
587 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
588
589 mutex_enter(&sc->sc_tx_mtx);
590 TAILQ_INIT(&sc->tx_free_list);
591 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
592 data = &sc->tx_data[i];
593
594 data->sc = sc; /* Backpointer for callbacks. */
595
596 data->xfer = usbd_alloc_xfer(sc->sc_udev);
597 if (data->xfer == NULL) {
598 aprint_error_dev(sc->sc_dev,
599 "could not allocate xfer\n");
600 error = ENOMEM;
601 goto fail;
602 }
603
604 data->buf = usbd_alloc_buffer(data->xfer, URTWN_TXBUFSZ);
605 if (data->buf == NULL) {
606 aprint_error_dev(sc->sc_dev,
607 "could not allocate xfer buffer\n");
608 error = ENOMEM;
609 goto fail;
610 }
611
612 /* Append this Tx buffer to our free list. */
613 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
614 }
615 mutex_exit(&sc->sc_tx_mtx);
616 return (0);
617
618 fail:
619 urtwn_free_tx_list(sc);
620 mutex_exit(&sc->sc_tx_mtx);
621 return (error);
622 }
623
624 static void
625 urtwn_free_tx_list(struct urtwn_softc *sc)
626 {
627 struct urtwn_tx_data *data;
628 int i;
629
630 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
631
632 /* NB: Caller must abort pipe first. */
633 for (i = 0; i < URTWN_TX_LIST_COUNT; i++) {
634 data = &sc->tx_data[i];
635
636 if (data->xfer != NULL) {
637 usbd_free_xfer(data->xfer);
638 data->xfer = NULL;
639 }
640 }
641 }
642
643 static void
644 urtwn_task(void *arg)
645 {
646 struct urtwn_softc *sc = arg;
647 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
648 struct urtwn_host_cmd *cmd;
649 int s;
650
651 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
652
653 /* Process host commands. */
654 s = splusb();
655 mutex_spin_enter(&sc->sc_task_mtx);
656 while (ring->next != ring->cur) {
657 cmd = &ring->cmd[ring->next];
658 mutex_spin_exit(&sc->sc_task_mtx);
659 splx(s);
660 /* Invoke callback. */
661 cmd->cb(sc, cmd->data);
662 s = splusb();
663 mutex_spin_enter(&sc->sc_task_mtx);
664 ring->queued--;
665 ring->next = (ring->next + 1) % URTWN_HOST_CMD_RING_COUNT;
666 }
667 mutex_spin_exit(&sc->sc_task_mtx);
668 wakeup(&sc->cmdq);
669 splx(s);
670 }
671
672 static void
673 urtwn_do_async(struct urtwn_softc *sc, void (*cb)(struct urtwn_softc *, void *),
674 void *arg, int len)
675 {
676 struct urtwn_host_cmd_ring *ring = &sc->cmdq;
677 struct urtwn_host_cmd *cmd;
678 int s;
679
680 DPRINTFN(DBG_FN, ("%s: %s: cb=%p, arg=%p, len=%d\n",
681 device_xname(sc->sc_dev), __func__, cb, arg, len));
682
683 s = splusb();
684 mutex_spin_enter(&sc->sc_task_mtx);
685 cmd = &ring->cmd[ring->cur];
686 cmd->cb = cb;
687 KASSERT(len <= sizeof(cmd->data));
688 memcpy(cmd->data, arg, len);
689 ring->cur = (ring->cur + 1) % URTWN_HOST_CMD_RING_COUNT;
690
691 /* If there is no pending command already, schedule a task. */
692 if (!sc->sc_dying && ++ring->queued == 1) {
693 mutex_spin_exit(&sc->sc_task_mtx);
694 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
695 } else
696 mutex_spin_exit(&sc->sc_task_mtx);
697 splx(s);
698 }
699
700 static void
701 urtwn_wait_async(struct urtwn_softc *sc)
702 {
703
704 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
705
706 /* Wait for all queued asynchronous commands to complete. */
707 while (sc->cmdq.queued > 0)
708 tsleep(&sc->cmdq, 0, "endtask", 0);
709 }
710
711 static int
712 urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
713 int len)
714 {
715 usb_device_request_t req;
716 usbd_status error;
717
718 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
719 req.bRequest = R92C_REQ_REGS;
720 USETW(req.wValue, addr);
721 USETW(req.wIndex, 0);
722 USETW(req.wLength, len);
723 error = usbd_do_request(sc->sc_udev, &req, buf);
724 if (error != USBD_NORMAL_COMPLETION) {
725 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
726 device_xname(sc->sc_dev), __func__, error, addr, len));
727 }
728 return (error);
729 }
730
731 static void
732 urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
733 {
734
735 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
736 device_xname(sc->sc_dev), __func__, addr, val));
737
738 urtwn_write_region_1(sc, addr, &val, 1);
739 }
740
741 static void
742 urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
743 {
744 uint8_t buf[2];
745
746 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
747 device_xname(sc->sc_dev), __func__, addr, val));
748
749 buf[0] = (uint8_t)val;
750 buf[1] = (uint8_t)(val >> 8);
751 urtwn_write_region_1(sc, addr, buf, 2);
752 }
753
754 static void
755 urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
756 {
757 uint8_t buf[4];
758
759 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
760 device_xname(sc->sc_dev), __func__, addr, val));
761
762 buf[0] = (uint8_t)val;
763 buf[1] = (uint8_t)(val >> 8);
764 buf[2] = (uint8_t)(val >> 16);
765 buf[3] = (uint8_t)(val >> 24);
766 urtwn_write_region_1(sc, addr, buf, 4);
767 }
768
769 static int
770 urtwn_write_region(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len)
771 {
772
773 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, len=0x%x\n",
774 device_xname(sc->sc_dev), __func__, addr, len));
775
776 return urtwn_write_region_1(sc, addr, buf, len);
777 }
778
779 static int
780 urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
781 int len)
782 {
783 usb_device_request_t req;
784 usbd_status error;
785
786 req.bmRequestType = UT_READ_VENDOR_DEVICE;
787 req.bRequest = R92C_REQ_REGS;
788 USETW(req.wValue, addr);
789 USETW(req.wIndex, 0);
790 USETW(req.wLength, len);
791 error = usbd_do_request(sc->sc_udev, &req, buf);
792 if (error != USBD_NORMAL_COMPLETION) {
793 DPRINTFN(DBG_REG, ("%s: %s: error=%d: addr=0x%x, len=%d\n",
794 device_xname(sc->sc_dev), __func__, error, addr, len));
795 }
796 return (error);
797 }
798
799 static uint8_t
800 urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
801 {
802 uint8_t val;
803
804 if (urtwn_read_region_1(sc, addr, &val, 1) != USBD_NORMAL_COMPLETION)
805 return (0xff);
806
807 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
808 device_xname(sc->sc_dev), __func__, addr, val));
809 return (val);
810 }
811
812 static uint16_t
813 urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
814 {
815 uint8_t buf[2];
816 uint16_t val;
817
818 if (urtwn_read_region_1(sc, addr, buf, 2) != USBD_NORMAL_COMPLETION)
819 return (0xffff);
820
821 val = LE_READ_2(&buf[0]);
822 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
823 device_xname(sc->sc_dev), __func__, addr, val));
824 return (val);
825 }
826
827 static uint32_t
828 urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
829 {
830 uint8_t buf[4];
831 uint32_t val;
832
833 if (urtwn_read_region_1(sc, addr, buf, 4) != USBD_NORMAL_COMPLETION)
834 return (0xffffffff);
835
836 val = LE_READ_4(&buf[0]);
837 DPRINTFN(DBG_REG, ("%s: %s: addr=0x%x, val=0x%x\n",
838 device_xname(sc->sc_dev), __func__, addr, val));
839 return (val);
840 }
841
842 static int
843 urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
844 {
845 struct r92c_fw_cmd cmd;
846 uint8_t *cp;
847 int fwcur;
848 int ntries;
849
850 DPRINTFN(DBG_REG, ("%s: %s: id=%d, buf=%p, len=%d\n",
851 device_xname(sc->sc_dev), __func__, id, buf, len));
852
853 mutex_enter(&sc->sc_fwcmd_mtx);
854 fwcur = sc->fwcur;
855 sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
856 mutex_exit(&sc->sc_fwcmd_mtx);
857
858 /* Wait for current FW box to be empty. */
859 for (ntries = 0; ntries < 100; ntries++) {
860 if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << fwcur)))
861 break;
862 DELAY(1);
863 }
864 if (ntries == 100) {
865 aprint_error_dev(sc->sc_dev,
866 "could not send firmware command %d\n", id);
867 return (ETIMEDOUT);
868 }
869
870 memset(&cmd, 0, sizeof(cmd));
871 KASSERT(len <= sizeof(cmd.msg));
872 memcpy(cmd.msg, buf, len);
873
874 /* Write the first word last since that will trigger the FW. */
875 cp = (uint8_t *)&cmd;
876 if (len >= 4) {
877 cmd.id = id | R92C_CMD_FLAG_EXT;
878 urtwn_write_region(sc, R92C_HMEBOX_EXT(fwcur), &cp[1], 2);
879 urtwn_write_4(sc, R92C_HMEBOX(fwcur),
880 cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
881 } else {
882 cmd.id = id;
883 urtwn_write_region(sc, R92C_HMEBOX(fwcur), cp, len);
884 }
885
886 return (0);
887 }
888
889 static void
890 urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
891 {
892
893 urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
894 SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
895 }
896
897 static uint32_t
898 urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
899 {
900 uint32_t reg[R92C_MAX_CHAINS], val;
901
902 reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
903 if (chain != 0) {
904 reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
905 }
906
907 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
908 reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
909 DELAY(1000);
910
911 urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
912 RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
913 R92C_HSSI_PARAM2_READ_EDGE);
914 DELAY(1000);
915
916 urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
917 reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
918 DELAY(1000);
919
920 if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) {
921 val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
922 } else {
923 val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
924 }
925 return (MS(val, R92C_LSSI_READBACK_DATA));
926 }
927
928 static int
929 urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
930 {
931 int ntries;
932
933 urtwn_write_4(sc, R92C_LLT_INIT,
934 SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
935 SM(R92C_LLT_INIT_ADDR, addr) |
936 SM(R92C_LLT_INIT_DATA, data));
937 /* Wait for write operation to complete. */
938 for (ntries = 0; ntries < 20; ntries++) {
939 if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
940 R92C_LLT_INIT_OP_NO_ACTIVE) {
941 /* Done */
942 return (0);
943 }
944 DELAY(5);
945 }
946 return (ETIMEDOUT);
947 }
948
949 static uint8_t
950 urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
951 {
952 uint32_t reg;
953 int ntries;
954
955 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
956 reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
957 reg &= ~R92C_EFUSE_CTRL_VALID;
958 urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
959
960 /* Wait for read operation to complete. */
961 for (ntries = 0; ntries < 100; ntries++) {
962 reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
963 if (reg & R92C_EFUSE_CTRL_VALID) {
964 /* Done */
965 return (MS(reg, R92C_EFUSE_CTRL_DATA));
966 }
967 DELAY(5);
968 }
969 aprint_error_dev(sc->sc_dev,
970 "could not read efuse byte at address 0x%04x\n", addr);
971 return (0xff);
972 }
973
974 static void
975 urtwn_efuse_read(struct urtwn_softc *sc)
976 {
977 uint8_t *rom = (uint8_t *)&sc->rom;
978 uint32_t reg;
979 uint16_t addr = 0;
980 uint8_t off, msk;
981 int i;
982
983 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
984
985 reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
986 if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
987 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
988 reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
989 }
990 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
991 if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
992 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
993 reg | R92C_SYS_FUNC_EN_ELDR);
994 }
995 reg = urtwn_read_2(sc, R92C_SYS_CLKR);
996 if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
997 (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
998 urtwn_write_2(sc, R92C_SYS_CLKR,
999 reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
1000 }
1001 memset(&sc->rom, 0xff, sizeof(sc->rom));
1002 while (addr < 512) {
1003 reg = urtwn_efuse_read_1(sc, addr);
1004 if (reg == 0xff)
1005 break;
1006 addr++;
1007 off = reg >> 4;
1008 msk = reg & 0xf;
1009 for (i = 0; i < 4; i++) {
1010 if (msk & (1U << i))
1011 continue;
1012
1013 rom[off * 8 + i * 2 + 0] = urtwn_efuse_read_1(sc, addr);
1014 addr++;
1015 rom[off * 8 + i * 2 + 1] = urtwn_efuse_read_1(sc, addr);
1016 addr++;
1017 }
1018 }
1019 #ifdef URTWN_DEBUG
1020 if (urtwn_debug & DBG_INIT) {
1021 /* Dump ROM content. */
1022 printf("%s: %s", device_xname(sc->sc_dev), __func__);
1023 for (i = 0; i < (int)sizeof(sc->rom); i++)
1024 printf(":%02x", rom[i]);
1025 printf("\n");
1026 }
1027 #endif
1028 }
1029
1030 static int
1031 urtwn_read_chipid(struct urtwn_softc *sc)
1032 {
1033 uint32_t reg;
1034
1035 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1036
1037 sc->chip = 0;
1038 reg = urtwn_read_4(sc, R92C_SYS_CFG);
1039 if (reg & R92C_SYS_CFG_TRP_VAUX_EN) {
1040 /* test chip, not supported */
1041 return (EIO);
1042 }
1043 if (reg & R92C_SYS_CFG_TYPE_92C) {
1044 sc->chip |= URTWN_CHIP_92C;
1045 /* Check if it is a castrated 8192C. */
1046 if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
1047 R92C_HPON_FSM_CHIP_BONDING_ID) ==
1048 R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) {
1049 sc->chip |= URTWN_CHIP_92C_1T2R;
1050 }
1051 }
1052 if (reg & R92C_SYS_CFG_VENDOR_UMC) {
1053 sc->chip |= URTWN_CHIP_UMC;
1054 if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) {
1055 sc->chip |= URTWN_CHIP_UMC_A_CUT;
1056 }
1057 }
1058 return (0);
1059 }
1060
1061 #ifdef URTWN_DEBUG
1062 static void
1063 urtwn_dump_rom(struct urtwn_softc *sc, struct r92c_rom *rp)
1064 {
1065
1066 aprint_normal_dev(sc->sc_dev,
1067 "id 0x%04x, dbg_sel 0x%x, vid 0x%x, pid 0x%x\n",
1068 rp->id, rp->dbg_sel, rp->vid, rp->pid);
1069
1070 aprint_normal_dev(sc->sc_dev,
1071 "usb_opt 0x%x, ep_setting 0x%x, usb_phy 0x%x\n",
1072 rp->usb_opt, rp->ep_setting, rp->usb_phy);
1073
1074 aprint_normal_dev(sc->sc_dev,
1075 "macaddr %02x:%02x:%02x:%02x:%02x:%02x\n",
1076 rp->macaddr[0], rp->macaddr[1],
1077 rp->macaddr[2], rp->macaddr[3],
1078 rp->macaddr[4], rp->macaddr[5]);
1079
1080 aprint_normal_dev(sc->sc_dev,
1081 "string %s, subcustomer_id 0x%x\n",
1082 rp->string, rp->subcustomer_id);
1083
1084 aprint_normal_dev(sc->sc_dev,
1085 "cck_tx_pwr c0: %d %d %d, c1: %d %d %d\n",
1086 rp->cck_tx_pwr[0][0], rp->cck_tx_pwr[0][1], rp->cck_tx_pwr[0][2],
1087 rp->cck_tx_pwr[1][0], rp->cck_tx_pwr[1][1], rp->cck_tx_pwr[1][2]);
1088
1089 aprint_normal_dev(sc->sc_dev,
1090 "ht40_1s_tx_pwr c0 %d %d %d, c1 %d %d %d\n",
1091 rp->ht40_1s_tx_pwr[0][0], rp->ht40_1s_tx_pwr[0][1],
1092 rp->ht40_1s_tx_pwr[0][2],
1093 rp->ht40_1s_tx_pwr[1][0], rp->ht40_1s_tx_pwr[1][1],
1094 rp->ht40_1s_tx_pwr[1][2]);
1095
1096 aprint_normal_dev(sc->sc_dev,
1097 "ht40_2s_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1098 rp->ht40_2s_tx_pwr_diff[0] & 0xf, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1099 rp->ht40_2s_tx_pwr_diff[2] & 0xf,
1100 rp->ht40_2s_tx_pwr_diff[0] >> 4, rp->ht40_2s_tx_pwr_diff[1] & 0xf,
1101 rp->ht40_2s_tx_pwr_diff[2] >> 4);
1102
1103 aprint_normal_dev(sc->sc_dev,
1104 "ht20_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1105 rp->ht20_tx_pwr_diff[0] & 0xf, rp->ht20_tx_pwr_diff[1] & 0xf,
1106 rp->ht20_tx_pwr_diff[2] & 0xf,
1107 rp->ht20_tx_pwr_diff[0] >> 4, rp->ht20_tx_pwr_diff[1] >> 4,
1108 rp->ht20_tx_pwr_diff[2] >> 4);
1109
1110 aprint_normal_dev(sc->sc_dev,
1111 "ofdm_tx_pwr_diff c0: %d %d %d, c1: %d %d %d\n",
1112 rp->ofdm_tx_pwr_diff[0] & 0xf, rp->ofdm_tx_pwr_diff[1] & 0xf,
1113 rp->ofdm_tx_pwr_diff[2] & 0xf,
1114 rp->ofdm_tx_pwr_diff[0] >> 4, rp->ofdm_tx_pwr_diff[1] >> 4,
1115 rp->ofdm_tx_pwr_diff[2] >> 4);
1116
1117 aprint_normal_dev(sc->sc_dev,
1118 "ht40_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1119 rp->ht40_max_pwr[0] & 0xf, rp->ht40_max_pwr[1] & 0xf,
1120 rp->ht40_max_pwr[2] & 0xf,
1121 rp->ht40_max_pwr[0] >> 4, rp->ht40_max_pwr[1] >> 4,
1122 rp->ht40_max_pwr[2] >> 4);
1123
1124 aprint_normal_dev(sc->sc_dev,
1125 "ht20_max_pwr_offset c0: %d %d %d, c1: %d %d %d\n",
1126 rp->ht20_max_pwr[0] & 0xf, rp->ht20_max_pwr[1] & 0xf,
1127 rp->ht20_max_pwr[2] & 0xf,
1128 rp->ht20_max_pwr[0] >> 4, rp->ht20_max_pwr[1] >> 4,
1129 rp->ht20_max_pwr[2] >> 4);
1130
1131 aprint_normal_dev(sc->sc_dev,
1132 "xtal_calib %d, tssi %d %d, thermal %d\n",
1133 rp->xtal_calib, rp->tssi[0], rp->tssi[1], rp->thermal_meter);
1134
1135 aprint_normal_dev(sc->sc_dev,
1136 "rf_opt1 0x%x, rf_opt2 0x%x, rf_opt3 0x%x, rf_opt4 0x%x\n",
1137 rp->rf_opt1, rp->rf_opt2, rp->rf_opt3, rp->rf_opt4);
1138
1139 aprint_normal_dev(sc->sc_dev,
1140 "channnel_plan %d, version %d customer_id 0x%x\n",
1141 rp->channel_plan, rp->version, rp->curstomer_id);
1142 }
1143 #endif
1144
1145 static void
1146 urtwn_read_rom(struct urtwn_softc *sc)
1147 {
1148 struct ieee80211com *ic = &sc->sc_ic;
1149 struct r92c_rom *rom = &sc->rom;
1150
1151 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1152
1153 /* Read full ROM image. */
1154 urtwn_efuse_read(sc);
1155 #ifdef URTWN_DEBUG
1156 if (urtwn_debug & DBG_REG)
1157 urtwn_dump_rom(sc, rom);
1158 #endif
1159
1160 /* XXX Weird but this is what the vendor driver does. */
1161 sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
1162 sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
1163 sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
1164
1165 DPRINTFN(DBG_INIT,
1166 ("%s: %s: PA setting=0x%x, board=0x%x, regulatory=%d\n",
1167 device_xname(sc->sc_dev), __func__, sc->pa_setting,
1168 sc->board_type, sc->regulatory));
1169
1170 IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
1171 }
1172
1173 static int
1174 urtwn_media_change(struct ifnet *ifp)
1175 {
1176 #ifdef URTWN_DEBUG
1177 struct urtwn_softc *sc = ifp->if_softc;
1178 #endif
1179 int error;
1180
1181 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1182
1183 if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1184 return (error);
1185
1186 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1187 (IFF_UP | IFF_RUNNING)) {
1188 urtwn_init(ifp);
1189 }
1190 return (0);
1191 }
1192
1193 /*
1194 * Initialize rate adaptation in firmware.
1195 */
1196 static int
1197 urtwn_ra_init(struct urtwn_softc *sc)
1198 {
1199 static const uint8_t map[] = {
1200 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
1201 };
1202 struct ieee80211com *ic = &sc->sc_ic;
1203 struct ieee80211_node *ni = ic->ic_bss;
1204 struct ieee80211_rateset *rs = &ni->ni_rates;
1205 struct r92c_fw_cmd_macid_cfg cmd;
1206 uint32_t rates, basicrates;
1207 uint32_t mask;
1208 uint8_t mode;
1209 int maxrate, maxbasicrate, error, i, j;
1210
1211 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1212
1213 /* Get normal and basic rates mask. */
1214 rates = basicrates = 0;
1215 maxrate = maxbasicrate = 0;
1216 for (i = 0; i < rs->rs_nrates; i++) {
1217 /* Convert 802.11 rate to HW rate index. */
1218 for (j = 0; j < (int)__arraycount(map); j++) {
1219 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) {
1220 break;
1221 }
1222 }
1223 if (j == __arraycount(map)) {
1224 /* Unknown rate, skip. */
1225 continue;
1226 }
1227
1228 rates |= 1U << j;
1229 if (j > maxrate) {
1230 maxrate = j;
1231 }
1232
1233 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
1234 basicrates |= 1U << j;
1235 if (j > maxbasicrate) {
1236 maxbasicrate = j;
1237 }
1238 }
1239 }
1240 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1241 mode = R92C_RAID_11B;
1242 } else {
1243 mode = R92C_RAID_11BG;
1244 }
1245 DPRINTFN(DBG_INIT, ("%s: %s: mode=0x%x rates=0x%x, basicrates=0x%x, "
1246 "maxrate=%x, maxbasicrate=%x\n",
1247 device_xname(sc->sc_dev), __func__, mode, rates, basicrates,
1248 maxrate, maxbasicrate));
1249 if (basicrates == 0) {
1250 basicrates |= 1; /* add 1Mbps */
1251 }
1252
1253 /* Set rates mask for group addressed frames. */
1254 cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
1255 mask = (mode << 28) | basicrates;
1256 cmd.mask[0] = (uint8_t)mask;
1257 cmd.mask[1] = (uint8_t)(mask >> 8);
1258 cmd.mask[2] = (uint8_t)(mask >> 16);
1259 cmd.mask[3] = (uint8_t)(mask >> 24);
1260 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1261 if (error != 0) {
1262 aprint_error_dev(sc->sc_dev,
1263 "could not add broadcast station\n");
1264 return (error);
1265 }
1266 /* Set initial MRR rate. */
1267 DPRINTFN(DBG_INIT, ("%s: %s: maxbasicrate=%d\n",
1268 device_xname(sc->sc_dev), __func__, maxbasicrate));
1269 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate);
1270
1271 /* Set rates mask for unicast frames. */
1272 cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
1273 mask = (mode << 28) | rates;
1274 cmd.mask[0] = (uint8_t)mask;
1275 cmd.mask[1] = (uint8_t)(mask >> 8);
1276 cmd.mask[2] = (uint8_t)(mask >> 16);
1277 cmd.mask[3] = (uint8_t)(mask >> 24);
1278 error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
1279 if (error != 0) {
1280 aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
1281 return (error);
1282 }
1283 /* Set initial MRR rate. */
1284 DPRINTFN(DBG_INIT, ("%s: %s: maxrate=%d\n", device_xname(sc->sc_dev),
1285 __func__, maxrate));
1286 urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate);
1287
1288 /* Indicate highest supported rate. */
1289 ni->ni_txrate = rs->rs_nrates - 1;
1290
1291 return (0);
1292 }
1293
1294 static int
1295 urtwn_get_nettype(struct urtwn_softc *sc)
1296 {
1297 struct ieee80211com *ic = &sc->sc_ic;
1298 int type;
1299
1300 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1301
1302 switch (ic->ic_opmode) {
1303 case IEEE80211_M_STA:
1304 type = R92C_CR_NETTYPE_INFRA;
1305 break;
1306
1307 case IEEE80211_M_IBSS:
1308 type = R92C_CR_NETTYPE_ADHOC;
1309 break;
1310
1311 default:
1312 type = R92C_CR_NETTYPE_NOLINK;
1313 break;
1314 }
1315
1316 return (type);
1317 }
1318
1319 static void
1320 urtwn_set_nettype0_msr(struct urtwn_softc *sc, uint8_t type)
1321 {
1322 uint8_t reg;
1323
1324 DPRINTFN(DBG_FN, ("%s: %s: type=%d\n", device_xname(sc->sc_dev),
1325 __func__, type));
1326
1327 reg = urtwn_read_1(sc, R92C_CR + 2) & 0x0c;
1328 urtwn_write_1(sc, R92C_CR + 2, reg | type);
1329 }
1330
1331 static void
1332 urtwn_tsf_sync_enable(struct urtwn_softc *sc)
1333 {
1334 struct ieee80211_node *ni = sc->sc_ic.ic_bss;
1335 uint64_t tsf;
1336
1337 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1338
1339 /* Enable TSF synchronization. */
1340 urtwn_write_1(sc, R92C_BCN_CTRL,
1341 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
1342
1343 /* Correct TSF */
1344 urtwn_write_1(sc, R92C_BCN_CTRL,
1345 urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
1346
1347 /* Set initial TSF. */
1348 tsf = ni->ni_tstamp.tsf;
1349 tsf = le64toh(tsf);
1350 tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
1351 tsf -= IEEE80211_DUR_TU;
1352 urtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
1353 urtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
1354
1355 urtwn_write_1(sc, R92C_BCN_CTRL,
1356 urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
1357 }
1358
1359 static void
1360 urtwn_set_led(struct urtwn_softc *sc, int led, int on)
1361 {
1362 uint8_t reg;
1363
1364 DPRINTFN(DBG_FN, ("%s: %s: led=%d, on=%d\n", device_xname(sc->sc_dev),
1365 __func__, led, on));
1366
1367 if (led == URTWN_LED_LINK) {
1368 reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
1369 if (!on) {
1370 reg |= R92C_LEDCFG0_DIS;
1371 }
1372 urtwn_write_1(sc, R92C_LEDCFG0, reg);
1373 sc->ledlink = on; /* Save LED state. */
1374 }
1375 }
1376
1377 static void
1378 urtwn_calib_to(void *arg)
1379 {
1380 struct urtwn_softc *sc = arg;
1381
1382 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1383
1384 if (sc->sc_dying)
1385 return;
1386
1387 /* Do it in a process context. */
1388 urtwn_do_async(sc, urtwn_calib_to_cb, NULL, 0);
1389 }
1390
1391 /* ARGSUSED */
1392 static void
1393 urtwn_calib_to_cb(struct urtwn_softc *sc, void *arg)
1394 {
1395 struct r92c_fw_cmd_rssi cmd;
1396
1397 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1398
1399 if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
1400 goto restart_timer;
1401
1402 if (sc->avg_pwdb != -1) {
1403 /* Indicate Rx signal strength to FW for rate adaptation. */
1404 memset(&cmd, 0, sizeof(cmd));
1405 cmd.macid = 0; /* BSS. */
1406 cmd.pwdb = sc->avg_pwdb;
1407 DPRINTFN(DBG_RF, ("%s: %s: sending RSSI command avg=%d\n",
1408 device_xname(sc->sc_dev), __func__, sc->avg_pwdb));
1409 urtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
1410 }
1411
1412 /* Do temperature compensation. */
1413 urtwn_temp_calib(sc);
1414
1415 restart_timer:
1416 if (!sc->sc_dying) {
1417 /* Restart calibration timer. */
1418 callout_schedule(&sc->sc_calib_to, hz);
1419 }
1420 }
1421
1422 static void
1423 urtwn_next_scan(void *arg)
1424 {
1425 struct urtwn_softc *sc = arg;
1426
1427 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1428
1429 if (sc->sc_dying)
1430 return;
1431
1432 if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
1433 ieee80211_next_scan(&sc->sc_ic);
1434 }
1435
1436 static int
1437 urtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1438 {
1439 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1440 struct urtwn_cmd_newstate cmd;
1441
1442 DPRINTFN(DBG_FN, ("%s: %s: nstate=%s(%d), arg=%d\n",
1443 device_xname(sc->sc_dev), __func__,
1444 ieee80211_state_name[nstate], nstate, arg));
1445
1446 callout_stop(&sc->sc_scan_to);
1447 callout_stop(&sc->sc_calib_to);
1448
1449 /* Do it in a process context. */
1450 cmd.state = nstate;
1451 cmd.arg = arg;
1452 urtwn_do_async(sc, urtwn_newstate_cb, &cmd, sizeof(cmd));
1453 return (0);
1454 }
1455
1456 static void
1457 urtwn_newstate_cb(struct urtwn_softc *sc, void *arg)
1458 {
1459 struct urtwn_cmd_newstate *cmd = arg;
1460 struct ieee80211com *ic = &sc->sc_ic;
1461 struct ieee80211_node *ni;
1462 enum ieee80211_state ostate = ic->ic_state;
1463 enum ieee80211_state nstate = cmd->state;
1464 uint32_t reg;
1465 uint8_t sifs_time;
1466 int s;
1467
1468 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s: %s(%d)->%s(%d)\n",
1469 device_xname(sc->sc_dev), __func__,
1470 ieee80211_state_name[ostate], ostate,
1471 ieee80211_state_name[nstate], nstate));
1472
1473 s = splnet();
1474
1475 switch (ostate) {
1476 case IEEE80211_S_INIT:
1477 break;
1478
1479 case IEEE80211_S_SCAN:
1480 if (nstate != IEEE80211_S_SCAN) {
1481 /*
1482 * End of scanning
1483 */
1484 /* flush 4-AC Queue after site_survey */
1485 urtwn_write_1(sc, R92C_TXPAUSE, 0x0);
1486
1487 /* Allow Rx from our BSSID only. */
1488 urtwn_write_4(sc, R92C_RCR,
1489 urtwn_read_4(sc, R92C_RCR) |
1490 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1491 }
1492 break;
1493
1494 case IEEE80211_S_AUTH:
1495 case IEEE80211_S_ASSOC:
1496 break;
1497
1498 case IEEE80211_S_RUN:
1499 /* Turn link LED off. */
1500 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1501
1502 /* Set media status to 'No Link'. */
1503 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1504
1505 /* Stop Rx of data frames. */
1506 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1507
1508 /* Reset TSF. */
1509 urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
1510
1511 /* Disable TSF synchronization. */
1512 urtwn_write_1(sc, R92C_BCN_CTRL,
1513 urtwn_read_1(sc, R92C_BCN_CTRL) |
1514 R92C_BCN_CTRL_DIS_TSF_UDT0);
1515
1516 /* Back to 20MHz mode */
1517 urtwn_set_chan(sc, ic->ic_bss->ni_chan,
1518 IEEE80211_HTINFO_2NDCHAN_NONE);
1519
1520 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1521 ic->ic_opmode == IEEE80211_M_HOSTAP) {
1522 /* Stop BCN */
1523 urtwn_write_1(sc, R92C_BCN_CTRL,
1524 urtwn_read_1(sc, R92C_BCN_CTRL) &
1525 ~(R92C_BCN_CTRL_EN_BCN | R92C_BCN_CTRL_TXBCN_RPT));
1526 }
1527
1528 /* Reset EDCA parameters. */
1529 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
1530 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
1531 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
1532 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
1533
1534 /* flush all cam entries */
1535 urtwn_cam_init(sc);
1536 break;
1537 }
1538
1539 switch (nstate) {
1540 case IEEE80211_S_INIT:
1541 /* Turn link LED off. */
1542 urtwn_set_led(sc, URTWN_LED_LINK, 0);
1543 break;
1544
1545 case IEEE80211_S_SCAN:
1546 if (ostate != IEEE80211_S_SCAN) {
1547 /*
1548 * Begin of scanning
1549 */
1550
1551 /* Set gain for scanning. */
1552 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1553 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1554 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1555
1556 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1557 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
1558 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1559
1560 /* Set media status to 'No Link'. */
1561 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1562
1563 /* Allow Rx from any BSSID. */
1564 urtwn_write_4(sc, R92C_RCR,
1565 urtwn_read_4(sc, R92C_RCR) &
1566 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1567
1568 /* Stop Rx of data frames. */
1569 urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
1570
1571 /* Disable update TSF */
1572 urtwn_write_1(sc, R92C_BCN_CTRL,
1573 urtwn_read_1(sc, R92C_BCN_CTRL) |
1574 R92C_BCN_CTRL_DIS_TSF_UDT0);
1575 }
1576
1577 /* Make link LED blink during scan. */
1578 urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
1579
1580 /* Pause AC Tx queues. */
1581 urtwn_write_1(sc, R92C_TXPAUSE,
1582 urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
1583
1584 urtwn_set_chan(sc, ic->ic_curchan,
1585 IEEE80211_HTINFO_2NDCHAN_NONE);
1586
1587 /* Start periodic scan. */
1588 if (!sc->sc_dying)
1589 callout_schedule(&sc->sc_scan_to, hz / 5);
1590 break;
1591
1592 case IEEE80211_S_AUTH:
1593 /* Set initial gain under link. */
1594 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
1595 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1596 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
1597
1598 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
1599 reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
1600 urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
1601
1602 /* Set media status to 'No Link'. */
1603 urtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
1604
1605 /* Allow Rx from any BSSID. */
1606 urtwn_write_4(sc, R92C_RCR,
1607 urtwn_read_4(sc, R92C_RCR) &
1608 ~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
1609
1610 urtwn_set_chan(sc, ic->ic_curchan,
1611 IEEE80211_HTINFO_2NDCHAN_NONE);
1612 break;
1613
1614 case IEEE80211_S_ASSOC:
1615 break;
1616
1617 case IEEE80211_S_RUN:
1618 ni = ic->ic_bss;
1619
1620 /* XXX: Set 20MHz mode */
1621 urtwn_set_chan(sc, ic->ic_curchan,
1622 IEEE80211_HTINFO_2NDCHAN_NONE);
1623
1624 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1625 /* Back to 20MHz mode */
1626 urtwn_set_chan(sc, ic->ic_ibss_chan,
1627 IEEE80211_HTINFO_2NDCHAN_NONE);
1628
1629 /* Enable Rx of data frames. */
1630 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1631
1632 /* Turn link LED on. */
1633 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1634 break;
1635 }
1636
1637 /* Set media status to 'Associated'. */
1638 urtwn_set_nettype0_msr(sc, urtwn_get_nettype(sc));
1639
1640 /* Set BSSID. */
1641 urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
1642 urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
1643
1644 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1645 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
1646 } else {
1647 /* 802.11b/g */
1648 urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
1649 }
1650
1651 /* Enable Rx of data frames. */
1652 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
1653
1654 /* Set beacon interval. */
1655 urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
1656
1657 if (ic->ic_opmode == IEEE80211_M_STA) {
1658 /* Allow Rx from our BSSID only. */
1659 urtwn_write_4(sc, R92C_RCR,
1660 urtwn_read_4(sc, R92C_RCR) |
1661 R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
1662
1663 /* Enable TSF synchronization. */
1664 urtwn_tsf_sync_enable(sc);
1665 }
1666
1667 sifs_time = 10;
1668 urtwn_write_1(sc, R92C_SIFS_CCK + 1, sifs_time);
1669 urtwn_write_1(sc, R92C_SIFS_OFDM + 1, sifs_time);
1670 urtwn_write_1(sc, R92C_SPEC_SIFS + 1, sifs_time);
1671 urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, sifs_time);
1672 urtwn_write_1(sc, R92C_R2T_SIFS + 1, sifs_time);
1673 urtwn_write_1(sc, R92C_T2T_SIFS + 1, sifs_time);
1674
1675 /* Intialize rate adaptation. */
1676 urtwn_ra_init(sc);
1677
1678 /* Turn link LED on. */
1679 urtwn_set_led(sc, URTWN_LED_LINK, 1);
1680
1681 /* Reset average RSSI. */
1682 sc->avg_pwdb = -1;
1683
1684 /* Reset temperature calibration state machine. */
1685 sc->thcal_state = 0;
1686 sc->thcal_lctemp = 0;
1687
1688 /* Start periodic calibration. */
1689 if (!sc->sc_dying)
1690 callout_schedule(&sc->sc_calib_to, hz);
1691 break;
1692 }
1693
1694 (*sc->sc_newstate)(ic, nstate, cmd->arg);
1695
1696 splx(s);
1697 }
1698
1699 static int
1700 urtwn_wme_update(struct ieee80211com *ic)
1701 {
1702 struct urtwn_softc *sc = ic->ic_ifp->if_softc;
1703
1704 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
1705
1706 /* don't override default WME values if WME is not actually enabled */
1707 if (!(ic->ic_flags & IEEE80211_F_WME))
1708 return (0);
1709
1710 /* Do it in a process context. */
1711 urtwn_do_async(sc, urtwn_wme_update_cb, NULL, 0);
1712 return (0);
1713 }
1714
1715 static void
1716 urtwn_wme_update_cb(struct urtwn_softc *sc, void *arg)
1717 {
1718 static const uint16_t ac2reg[WME_NUM_AC] = {
1719 R92C_EDCA_BE_PARAM,
1720 R92C_EDCA_BK_PARAM,
1721 R92C_EDCA_VI_PARAM,
1722 R92C_EDCA_VO_PARAM
1723 };
1724 struct ieee80211com *ic = &sc->sc_ic;
1725 const struct wmeParams *wmep;
1726 int ac, aifs, slottime;
1727 int s;
1728
1729 DPRINTFN(DBG_FN|DBG_STM, ("%s: %s\n", device_xname(sc->sc_dev),
1730 __func__));
1731
1732 s = splnet();
1733 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1734 for (ac = 0; ac < WME_NUM_AC; ac++) {
1735 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1736 /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
1737 aifs = wmep->wmep_aifsn * slottime + 10;
1738 urtwn_write_4(sc, ac2reg[ac],
1739 SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
1740 SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
1741 SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
1742 SM(R92C_EDCA_PARAM_AIFS, aifs));
1743 }
1744 splx(s);
1745 }
1746
1747 static void
1748 urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
1749 {
1750 int pwdb;
1751
1752 DPRINTFN(DBG_FN, ("%s: %s: rate=%d, rsst=%d\n",
1753 device_xname(sc->sc_dev), __func__, rate, rssi));
1754
1755 /* Convert antenna signal to percentage. */
1756 if (rssi <= -100 || rssi >= 20)
1757 pwdb = 0;
1758 else if (rssi >= 0)
1759 pwdb = 100;
1760 else
1761 pwdb = 100 + rssi;
1762 if (rate <= 3) {
1763 /* CCK gain is smaller than OFDM/MCS gain. */
1764 pwdb += 6;
1765 if (pwdb > 100)
1766 pwdb = 100;
1767 if (pwdb <= 14)
1768 pwdb -= 4;
1769 else if (pwdb <= 26)
1770 pwdb -= 8;
1771 else if (pwdb <= 34)
1772 pwdb -= 6;
1773 else if (pwdb <= 42)
1774 pwdb -= 2;
1775 }
1776 if (sc->avg_pwdb == -1) /* Init. */
1777 sc->avg_pwdb = pwdb;
1778 else if (sc->avg_pwdb < pwdb)
1779 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
1780 else
1781 sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
1782
1783 DPRINTFN(DBG_RF, ("%s: %s: PWDB=%d EMA=%d\n", device_xname(sc->sc_dev),
1784 __func__, pwdb, sc->avg_pwdb));
1785 }
1786
1787 static int8_t
1788 urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
1789 {
1790 static const int8_t cckoff[] = { 16, -12, -26, -46 };
1791 struct r92c_rx_phystat *phy;
1792 struct r92c_rx_cck *cck;
1793 uint8_t rpt;
1794 int8_t rssi;
1795
1796 DPRINTFN(DBG_FN, ("%s: %s: rate=%d\n", device_xname(sc->sc_dev),
1797 __func__, rate));
1798
1799 if (rate <= 3) {
1800 cck = (struct r92c_rx_cck *)physt;
1801 if (ISSET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR)) {
1802 rpt = (cck->agc_rpt >> 5) & 0x3;
1803 rssi = (cck->agc_rpt & 0x1f) << 1;
1804 } else {
1805 rpt = (cck->agc_rpt >> 6) & 0x3;
1806 rssi = cck->agc_rpt & 0x3e;
1807 }
1808 rssi = cckoff[rpt] - rssi;
1809 } else { /* OFDM/HT. */
1810 phy = (struct r92c_rx_phystat *)physt;
1811 rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
1812 }
1813 return (rssi);
1814 }
1815
1816 static void
1817 urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen)
1818 {
1819 struct ieee80211com *ic = &sc->sc_ic;
1820 struct ifnet *ifp = ic->ic_ifp;
1821 struct ieee80211_frame *wh;
1822 struct ieee80211_node *ni;
1823 struct r92c_rx_stat *stat;
1824 uint32_t rxdw0, rxdw3;
1825 struct mbuf *m;
1826 uint8_t rate;
1827 int8_t rssi = 0;
1828 int s, infosz;
1829
1830 DPRINTFN(DBG_FN, ("%s: %s: buf=%p, pktlen=%d\n",
1831 device_xname(sc->sc_dev), __func__, buf, pktlen));
1832
1833 stat = (struct r92c_rx_stat *)buf;
1834 rxdw0 = le32toh(stat->rxdw0);
1835 rxdw3 = le32toh(stat->rxdw3);
1836
1837 if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
1838 /*
1839 * This should not happen since we setup our Rx filter
1840 * to not receive these frames.
1841 */
1842 DPRINTFN(DBG_RX, ("%s: %s: CRC error\n",
1843 device_xname(sc->sc_dev), __func__));
1844 ifp->if_ierrors++;
1845 return;
1846 }
1847 if (__predict_false(pktlen < (int)sizeof(*wh))) {
1848 DPRINTFN(DBG_RX, ("%s: %s: packet too short %d\n",
1849 device_xname(sc->sc_dev), __func__, pktlen));
1850 ic->ic_stats.is_rx_tooshort++;
1851 ifp->if_ierrors++;
1852 return;
1853 }
1854 if (__predict_false(pktlen > MCLBYTES)) {
1855 DPRINTFN(DBG_RX, ("%s: %s: packet too big %d\n",
1856 device_xname(sc->sc_dev), __func__, pktlen));
1857 ifp->if_ierrors++;
1858 return;
1859 }
1860
1861 rate = MS(rxdw3, R92C_RXDW3_RATE);
1862 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1863
1864 /* Get RSSI from PHY status descriptor if present. */
1865 if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
1866 rssi = urtwn_get_rssi(sc, rate, &stat[1]);
1867 /* Update our average RSSI. */
1868 urtwn_update_avgrssi(sc, rate, rssi);
1869 }
1870
1871 DPRINTFN(DBG_RX, ("%s: %s: Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
1872 device_xname(sc->sc_dev), __func__, pktlen, rate, infosz, rssi));
1873
1874 MGETHDR(m, M_DONTWAIT, MT_DATA);
1875 if (__predict_false(m == NULL)) {
1876 aprint_error_dev(sc->sc_dev, "couldn't allocate rx mbuf\n");
1877 ic->ic_stats.is_rx_nobuf++;
1878 ifp->if_ierrors++;
1879 return;
1880 }
1881 if (pktlen > (int)MHLEN) {
1882 MCLGET(m, M_DONTWAIT);
1883 if (__predict_false(!(m->m_flags & M_EXT))) {
1884 aprint_error_dev(sc->sc_dev,
1885 "couldn't allocate rx mbuf cluster\n");
1886 m_freem(m);
1887 ic->ic_stats.is_rx_nobuf++;
1888 ifp->if_ierrors++;
1889 return;
1890 }
1891 }
1892
1893 /* Finalize mbuf. */
1894 m->m_pkthdr.rcvif = ifp;
1895 wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
1896 memcpy(mtod(m, uint8_t *), wh, pktlen);
1897 m->m_pkthdr.len = m->m_len = pktlen;
1898
1899 s = splnet();
1900 if (__predict_false(sc->sc_drvbpf != NULL)) {
1901 struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1902
1903 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1904 if (!(rxdw3 & R92C_RXDW3_HT)) {
1905 switch (rate) {
1906 /* CCK. */
1907 case 0: tap->wr_rate = 2; break;
1908 case 1: tap->wr_rate = 4; break;
1909 case 2: tap->wr_rate = 11; break;
1910 case 3: tap->wr_rate = 22; break;
1911 /* OFDM. */
1912 case 4: tap->wr_rate = 12; break;
1913 case 5: tap->wr_rate = 18; break;
1914 case 6: tap->wr_rate = 24; break;
1915 case 7: tap->wr_rate = 36; break;
1916 case 8: tap->wr_rate = 48; break;
1917 case 9: tap->wr_rate = 72; break;
1918 case 10: tap->wr_rate = 96; break;
1919 case 11: tap->wr_rate = 108; break;
1920 }
1921 } else if (rate >= 12) { /* MCS0~15. */
1922 /* Bit 7 set means HT MCS instead of rate. */
1923 tap->wr_rate = 0x80 | (rate - 12);
1924 }
1925 tap->wr_dbm_antsignal = rssi;
1926 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1927 tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1928
1929 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1930 }
1931
1932 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1933
1934 /* push the frame up to the 802.11 stack */
1935 ieee80211_input(ic, m, ni, rssi, 0);
1936
1937 /* Node is no longer needed. */
1938 ieee80211_free_node(ni);
1939
1940 splx(s);
1941 }
1942
1943 static void
1944 urtwn_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1945 {
1946 struct urtwn_rx_data *data = priv;
1947 struct urtwn_softc *sc = data->sc;
1948 struct r92c_rx_stat *stat;
1949 uint32_t rxdw0;
1950 uint8_t *buf;
1951 int len, totlen, pktlen, infosz, npkts;
1952
1953 DPRINTFN(DBG_FN|DBG_RX, ("%s: %s: status=%d\n",
1954 device_xname(sc->sc_dev), __func__, status));
1955
1956 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1957 if (status == USBD_STALLED)
1958 usbd_clear_endpoint_stall_async(sc->rx_pipe);
1959 else if (status != USBD_CANCELLED)
1960 goto resubmit;
1961 return;
1962 }
1963 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1964
1965 if (__predict_false(len < (int)sizeof(*stat))) {
1966 DPRINTFN(DBG_RX, ("%s: %s: xfer too short %d\n",
1967 device_xname(sc->sc_dev), __func__, len));
1968 goto resubmit;
1969 }
1970 buf = data->buf;
1971
1972 /* Get the number of encapsulated frames. */
1973 stat = (struct r92c_rx_stat *)buf;
1974 npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
1975 DPRINTFN(DBG_RX, ("%s: %s: Rx %d frames in one chunk\n",
1976 device_xname(sc->sc_dev), __func__, npkts));
1977
1978 /* Process all of them. */
1979 while (npkts-- > 0) {
1980 if (__predict_false(len < (int)sizeof(*stat))) {
1981 DPRINTFN(DBG_RX,
1982 ("%s: %s: len(%d) is short than header\n",
1983 device_xname(sc->sc_dev), __func__, len));
1984 break;
1985 }
1986 stat = (struct r92c_rx_stat *)buf;
1987 rxdw0 = le32toh(stat->rxdw0);
1988
1989 pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
1990 if (__predict_false(pktlen == 0)) {
1991 DPRINTFN(DBG_RX, ("%s: %s: pktlen is 0 byte\n",
1992 device_xname(sc->sc_dev), __func__));
1993 break;
1994 }
1995
1996 infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
1997
1998 /* Make sure everything fits in xfer. */
1999 totlen = sizeof(*stat) + infosz + pktlen;
2000 if (__predict_false(totlen > len)) {
2001 DPRINTFN(DBG_RX, ("%s: %s: pktlen %d(%d+%d+%d) > %d\n",
2002 device_xname(sc->sc_dev), __func__, totlen,
2003 (int)sizeof(*stat), infosz, pktlen, len));
2004 break;
2005 }
2006
2007 /* Process 802.11 frame. */
2008 urtwn_rx_frame(sc, buf, pktlen);
2009
2010 /* Next chunk is 128-byte aligned. */
2011 totlen = roundup2(totlen, 128);
2012 buf += totlen;
2013 len -= totlen;
2014 }
2015
2016 resubmit:
2017 /* Setup a new transfer. */
2018 usbd_setup_xfer(xfer, sc->rx_pipe, data, data->buf, URTWN_RXBUFSZ,
2019 USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, urtwn_rxeof);
2020 (void)usbd_transfer(xfer);
2021 }
2022
2023 static void
2024 urtwn_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2025 {
2026 struct urtwn_tx_data *data = priv;
2027 struct urtwn_softc *sc = data->sc;
2028 struct ifnet *ifp = &sc->sc_if;
2029 int s;
2030
2031 DPRINTFN(DBG_FN|DBG_TX, ("%s: %s: status=%d\n",
2032 device_xname(sc->sc_dev), __func__, status));
2033
2034 mutex_enter(&sc->sc_tx_mtx);
2035 /* Put this Tx buffer back to our free list. */
2036 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2037 mutex_exit(&sc->sc_tx_mtx);
2038
2039 if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
2040 if (status != USBD_NOT_STARTED && status != USBD_CANCELLED) {
2041 if (status == USBD_STALLED)
2042 usbd_clear_endpoint_stall_async(data->pipe);
2043 ifp->if_oerrors++;
2044 }
2045 return;
2046 }
2047
2048 ifp->if_opackets++;
2049
2050 s = splnet();
2051 sc->tx_timer = 0;
2052 ifp->if_flags &= ~IFF_OACTIVE;
2053 splx(s);
2054
2055 urtwn_start(ifp);
2056 }
2057
2058 static int
2059 urtwn_tx(struct urtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2060 {
2061 struct ieee80211com *ic = &sc->sc_ic;
2062 struct ieee80211_frame *wh;
2063 struct ieee80211_key *k = NULL;
2064 struct urtwn_tx_data *data;
2065 struct r92c_tx_desc *txd;
2066 usbd_pipe_handle pipe;
2067 uint16_t seq, sum;
2068 uint8_t raid, type, tid, qid;
2069 int i, s, hasqos, xferlen, padsize, error;
2070
2071 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2072
2073 wh = mtod(m, struct ieee80211_frame *);
2074 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2075
2076 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2077 k = ieee80211_crypto_encap(ic, ni, m);
2078 if (k == NULL) {
2079 m_freem(m);
2080 return (ENOBUFS);
2081 }
2082 /* packet header may have moved, reset our local pointer */
2083 wh = mtod(m, struct ieee80211_frame *);
2084 }
2085
2086 if (__predict_false(sc->sc_drvbpf != NULL)) {
2087 struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
2088
2089 tap->wt_flags = 0;
2090 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
2091 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
2092 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2093 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2094
2095 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
2096 }
2097
2098 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2099 /* data frames in 11n mode */
2100 struct ieee80211_qosframe *qwh = (void *)wh;
2101 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
2102 qid = TID_TO_WME_AC(tid);
2103 } else if (type != IEEE80211_FC0_TYPE_DATA) {
2104 /* Use AC_VO for management frames. */
2105 qid = WME_AC_VO;
2106 tid = 0; /* compiler happy */
2107 } else {
2108 /* non-qos data frames */
2109 tid = R92C_TXDW1_QSEL_BE;
2110 qid = WME_AC_BE;
2111 }
2112
2113 /* Get the USB pipe to use for this AC. */
2114 pipe = sc->tx_pipe[sc->ac2idx[qid]];
2115
2116 /* Grab a Tx buffer from our free list. */
2117 mutex_enter(&sc->sc_tx_mtx);
2118 data = TAILQ_FIRST(&sc->tx_free_list);
2119 TAILQ_REMOVE(&sc->tx_free_list, data, next);
2120 mutex_exit(&sc->sc_tx_mtx);
2121
2122 if (((sizeof(*txd) + m->m_pkthdr.len) % 64) == 0) /* XXX: 64 */
2123 padsize = 8;
2124 else
2125 padsize = 0;
2126
2127 /* Fill Tx descriptor. */
2128 txd = (struct r92c_tx_desc *)data->buf;
2129 memset(txd, 0, sizeof(*txd) + padsize);
2130
2131 txd->txdw0 |= htole32(
2132 SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
2133 SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
2134 R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
2135
2136 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2137 txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
2138
2139 /* fix pad field */
2140 if (padsize > 0) {
2141 DPRINTFN(DBG_TX, ("%s: %s: padding: size=%d\n",
2142 device_xname(sc->sc_dev), __func__, padsize));
2143 txd->txdw1 |= htole32(SM(R92C_TXDW1_PKTOFF, (padsize / 8)));
2144 }
2145
2146 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2147 type == IEEE80211_FC0_TYPE_DATA) {
2148 if (ic->ic_curmode == IEEE80211_MODE_11B)
2149 raid = R92C_RAID_11B;
2150 else
2151 raid = R92C_RAID_11BG;
2152 DPRINTFN(DBG_TX,
2153 ("%s: %s: data packet: tid=%d, raid=%d\n",
2154 device_xname(sc->sc_dev), __func__, tid, raid));
2155
2156 txd->txdw1 |= htole32(
2157 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2158 SM(R92C_TXDW1_QSEL, tid) |
2159 SM(R92C_TXDW1_RAID, raid) |
2160 R92C_TXDW1_AGGBK);
2161
2162 if (hasqos) {
2163 txd->txdw4 |= htole32(R92C_TXDW4_QOS);
2164 }
2165
2166 if (ic->ic_flags & IEEE80211_F_USEPROT) {
2167 /* for 11g */
2168 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
2169 txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
2170 R92C_TXDW4_HWRTSEN);
2171 } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
2172 txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
2173 R92C_TXDW4_HWRTSEN);
2174 }
2175 }
2176 /* Send RTS at OFDM24. */
2177 txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
2178 txd->txdw5 |= htole32(0x0001ff00);
2179 /* Send data at OFDM54. */
2180 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
2181 } else if (type == IEEE80211_FC0_TYPE_MGT) {
2182 DPRINTFN(DBG_TX, ("%s: %s: mgmt packet\n",
2183 device_xname(sc->sc_dev), __func__));
2184 txd->txdw1 |= htole32(
2185 SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
2186 SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
2187 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2188
2189 /* Force CCK1. */
2190 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2191 /* Use 1Mbps */
2192 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2193 } else {
2194 /* broadcast or multicast packets */
2195 DPRINTFN(DBG_TX, ("%s: %s: bc or mc packet\n",
2196 device_xname(sc->sc_dev), __func__));
2197 txd->txdw1 |= htole32(
2198 SM(R92C_TXDW1_MACID, URTWN_MACID_BC) |
2199 SM(R92C_TXDW1_RAID, R92C_RAID_11B));
2200
2201 /* Force CCK1. */
2202 txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
2203 /* Use 1Mbps */
2204 txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
2205 }
2206
2207 /* Set sequence number */
2208 seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
2209 txd->txdseq |= htole16(seq);
2210
2211 if (!hasqos) {
2212 /* Use HW sequence numbering for non-QoS frames. */
2213 txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
2214 txd->txdseq |= htole16(0x8000); /* WTF? */
2215 }
2216
2217 /* Compute Tx descriptor checksum. */
2218 sum = 0;
2219 for (i = 0; i < (int)sizeof(*txd) / 2; i++)
2220 sum ^= ((uint16_t *)txd)[i];
2221 txd->txdsum = sum; /* NB: already little endian. */
2222
2223 xferlen = sizeof(*txd) + m->m_pkthdr.len + padsize;
2224 m_copydata(m, 0, m->m_pkthdr.len, (char *)&txd[1] + padsize);
2225 m_freem(m);
2226
2227 s = splnet();
2228 data->pipe = pipe;
2229 usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
2230 USBD_FORCE_SHORT_XFER | USBD_NO_COPY, URTWN_TX_TIMEOUT,
2231 urtwn_txeof);
2232 error = usbd_transfer(data->xfer);
2233 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
2234 error != USBD_IN_PROGRESS)) {
2235 splx(s);
2236 DPRINTFN(DBG_TX, ("%s: %s: transfer failed %d\n",
2237 device_xname(sc->sc_dev), __func__, error));
2238 mutex_enter(&sc->sc_tx_mtx);
2239 /* Put this Tx buffer back to our free list. */
2240 TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
2241 mutex_exit(&sc->sc_tx_mtx);
2242 return (error);
2243 }
2244 splx(s);
2245 ieee80211_free_node(ni);
2246 return (0);
2247 }
2248
2249 static void
2250 urtwn_start(struct ifnet *ifp)
2251 {
2252 struct urtwn_softc *sc = ifp->if_softc;
2253 struct ieee80211com *ic = &sc->sc_ic;
2254 struct ether_header *eh;
2255 struct ieee80211_node *ni;
2256 struct mbuf *m;
2257
2258 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2259
2260 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2261 return;
2262
2263 for (;;) {
2264 mutex_enter(&sc->sc_tx_mtx);
2265 if (TAILQ_EMPTY(&sc->tx_free_list)) {
2266 mutex_exit(&sc->sc_tx_mtx);
2267 ifp->if_flags |= IFF_OACTIVE;
2268 break;
2269 }
2270 mutex_exit(&sc->sc_tx_mtx);
2271
2272 /* Send pending management frames first. */
2273 IF_DEQUEUE(&ic->ic_mgtq, m);
2274 if (m != NULL) {
2275 ni = (void *)m->m_pkthdr.rcvif;
2276 m->m_pkthdr.rcvif = NULL;
2277 goto sendit;
2278 }
2279 if (ic->ic_state != IEEE80211_S_RUN)
2280 break;
2281
2282 /* Encapsulate and send data frames. */
2283 IFQ_DEQUEUE(&ifp->if_snd, m);
2284 if (m == NULL)
2285 break;
2286 if (m->m_len < (int)sizeof(*eh) &&
2287 (m = m_pullup(m, sizeof(*eh))) == NULL) {
2288 ifp->if_oerrors++;
2289 continue;
2290 }
2291 eh = mtod(m, struct ether_header *);
2292 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2293 if (ni == NULL) {
2294 m_freem(m);
2295 ifp->if_oerrors++;
2296 continue;
2297 }
2298
2299 bpf_mtap(ifp, m);
2300
2301 if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
2302 ieee80211_free_node(ni);
2303 ifp->if_oerrors++;
2304 continue;
2305 }
2306 sendit:
2307 bpf_mtap3(ic->ic_rawbpf, m);
2308
2309 if (urtwn_tx(sc, m, ni) != 0) {
2310 ieee80211_free_node(ni);
2311 ifp->if_oerrors++;
2312 continue;
2313 }
2314
2315 sc->tx_timer = 5;
2316 ifp->if_timer = 1;
2317 }
2318 }
2319
2320 static void
2321 urtwn_watchdog(struct ifnet *ifp)
2322 {
2323 struct urtwn_softc *sc = ifp->if_softc;
2324
2325 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2326
2327 ifp->if_timer = 0;
2328
2329 if (sc->tx_timer > 0) {
2330 if (--sc->tx_timer == 0) {
2331 aprint_error_dev(sc->sc_dev, "device timeout\n");
2332 /* urtwn_init(ifp); XXX needs a process context! */
2333 ifp->if_oerrors++;
2334 return;
2335 }
2336 ifp->if_timer = 1;
2337 }
2338 ieee80211_watchdog(&sc->sc_ic);
2339 }
2340
2341 static int
2342 urtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2343 {
2344 struct urtwn_softc *sc = ifp->if_softc;
2345 struct ieee80211com *ic = &sc->sc_ic;
2346 struct ifaddr *ifa;
2347 int s, error = 0;
2348
2349 DPRINTFN(DBG_FN, ("%s: %s: cmd=0x%08lx, data=%p\n",
2350 device_xname(sc->sc_dev), __func__, cmd, data));
2351
2352 s = splnet();
2353
2354 switch (cmd) {
2355 case SIOCSIFADDR:
2356 ifa = (struct ifaddr *)data;
2357 ifp->if_flags |= IFF_UP;
2358 #ifdef INET
2359 if (ifa->ifa_addr->sa_family == AF_INET)
2360 arp_ifinit(&ic->ic_ac, ifa);
2361 #endif
2362 /*FALLTHROUGH*/
2363 case SIOCSIFFLAGS:
2364 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2365 break;
2366 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2367 case IFF_UP|IFF_RUNNING:
2368 break;
2369 case IFF_UP:
2370 urtwn_init(ifp);
2371 break;
2372 case IFF_RUNNING:
2373 urtwn_stop(ifp, 1);
2374 break;
2375 case 0:
2376 break;
2377 }
2378 break;
2379
2380 case SIOCADDMULTI:
2381 case SIOCDELMULTI:
2382 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2383 /* setup multicast filter, etc */
2384 error = 0;
2385 }
2386 break;
2387
2388 case SIOCS80211CHANNEL:
2389 error = ieee80211_ioctl(ic, cmd, data);
2390 if (error == ENETRESET &&
2391 ic->ic_opmode == IEEE80211_M_MONITOR) {
2392 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2393 (IFF_UP | IFF_RUNNING)) {
2394 urtwn_set_chan(sc, ic->ic_ibss_chan,
2395 IEEE80211_HTINFO_2NDCHAN_NONE);
2396 }
2397 error = 0;
2398 }
2399 break;
2400
2401 default:
2402 error = ieee80211_ioctl(ic, cmd, data);
2403 break;
2404 }
2405 if (error == ENETRESET) {
2406 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2407 (IFF_UP | IFF_RUNNING)) {
2408 urtwn_init(ifp);
2409 }
2410 error = 0;
2411 }
2412
2413 splx(s);
2414
2415 return (error);
2416 }
2417
2418 static int
2419 urtwn_power_on(struct urtwn_softc *sc)
2420 {
2421 uint32_t reg;
2422 int ntries;
2423
2424 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2425
2426 /* Wait for autoload done bit. */
2427 for (ntries = 0; ntries < 1000; ntries++) {
2428 if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
2429 break;
2430 DELAY(5);
2431 }
2432 if (ntries == 1000) {
2433 aprint_error_dev(sc->sc_dev,
2434 "timeout waiting for chip autoload\n");
2435 return (ETIMEDOUT);
2436 }
2437
2438 /* Unlock ISO/CLK/Power control register. */
2439 urtwn_write_1(sc, R92C_RSV_CTRL, 0);
2440 /* Move SPS into PWM mode. */
2441 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
2442 DELAY(100);
2443
2444 reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
2445 if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
2446 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
2447 reg | R92C_LDOV12D_CTRL_LDV12_EN);
2448 DELAY(100);
2449 urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
2450 urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
2451 ~R92C_SYS_ISO_CTRL_MD2PP);
2452 }
2453
2454 /* Auto enable WLAN. */
2455 urtwn_write_2(sc, R92C_APS_FSMCO,
2456 urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
2457 for (ntries = 0; ntries < 1000; ntries++) {
2458 if (!(urtwn_read_2(sc, R92C_APS_FSMCO) &
2459 R92C_APS_FSMCO_APFM_ONMAC))
2460 break;
2461 DELAY(5);
2462 }
2463 if (ntries == 1000) {
2464 aprint_error_dev(sc->sc_dev,
2465 "timeout waiting for MAC auto ON\n");
2466 return (ETIMEDOUT);
2467 }
2468
2469 /* Enable radio, GPIO and LED functions. */
2470 KASSERT((R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN |
2471 R92C_APS_FSMCO_PFM_ALDN) == 0x0812);
2472 urtwn_write_2(sc, R92C_APS_FSMCO,
2473 R92C_APS_FSMCO_AFSM_HSUS |
2474 R92C_APS_FSMCO_PDN_EN |
2475 R92C_APS_FSMCO_PFM_ALDN);
2476
2477 /* Release RF digital isolation. */
2478 urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
2479 urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
2480
2481 /* Initialize MAC. */
2482 urtwn_write_1(sc, R92C_APSD_CTRL,
2483 urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
2484 for (ntries = 0; ntries < 200; ntries++) {
2485 if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
2486 R92C_APSD_CTRL_OFF_STATUS))
2487 break;
2488 DELAY(5);
2489 }
2490 if (ntries == 200) {
2491 aprint_error_dev(sc->sc_dev,
2492 "timeout waiting for MAC initialization\n");
2493 return (ETIMEDOUT);
2494 }
2495
2496 /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
2497 reg = urtwn_read_2(sc, R92C_CR);
2498 reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
2499 R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
2500 R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
2501 R92C_CR_ENSEC;
2502 urtwn_write_2(sc, R92C_CR, reg);
2503
2504 urtwn_write_1(sc, 0xfe10, 0x19);
2505 return (0);
2506 }
2507
2508 static int
2509 urtwn_llt_init(struct urtwn_softc *sc)
2510 {
2511 int i, error;
2512
2513 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2514
2515 /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
2516 for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
2517 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2518 return (error);
2519 }
2520 /* NB: 0xff indicates end-of-list. */
2521 if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
2522 return (error);
2523 /*
2524 * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
2525 * as ring buffer.
2526 */
2527 for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
2528 if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
2529 return (error);
2530 }
2531 /* Make the last page point to the beginning of the ring buffer. */
2532 error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
2533 return (error);
2534 }
2535
2536 static void
2537 urtwn_fw_reset(struct urtwn_softc *sc)
2538 {
2539 uint16_t reg;
2540 int ntries;
2541
2542 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2543
2544 /* Tell 8051 to reset itself. */
2545 urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
2546
2547 /* Wait until 8051 resets by itself. */
2548 for (ntries = 0; ntries < 100; ntries++) {
2549 reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
2550 if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
2551 return;
2552 DELAY(50);
2553 }
2554 /* Force 8051 reset. */
2555 urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
2556 }
2557
2558 static int
2559 urtwn_fw_loadpage(struct urtwn_softc *sc, int page, uint8_t *buf, int len)
2560 {
2561 uint32_t reg;
2562 int off, mlen, error = 0;
2563
2564 DPRINTFN(DBG_FN, ("%s: %s: page=%d, buf=%p, len=%d\n",
2565 device_xname(sc->sc_dev), __func__, page, buf, len));
2566
2567 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2568 reg = RW(reg, R92C_MCUFWDL_PAGE, page);
2569 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2570
2571 off = R92C_FW_START_ADDR;
2572 while (len > 0) {
2573 if (len > 196)
2574 mlen = 196;
2575 else if (len > 4)
2576 mlen = 4;
2577 else
2578 mlen = 1;
2579 error = urtwn_write_region(sc, off, buf, mlen);
2580 if (error != 0)
2581 break;
2582 off += mlen;
2583 buf += mlen;
2584 len -= mlen;
2585 }
2586 return (error);
2587 }
2588
2589 static int
2590 urtwn_load_firmware(struct urtwn_softc *sc)
2591 {
2592 firmware_handle_t fwh;
2593 const struct r92c_fw_hdr *hdr;
2594 const char *name;
2595 u_char *fw, *ptr;
2596 size_t len;
2597 uint32_t reg;
2598 int mlen, ntries, page, error;
2599
2600 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2601
2602 /* Read firmware image from the filesystem. */
2603 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2604 URTWN_CHIP_UMC_A_CUT)
2605 name = "rtl8192cfwU.bin";
2606 else
2607 name = "rtl8192cfw.bin";
2608 if ((error = firmware_open("if_urtwn", name, &fwh)) != 0) {
2609 aprint_error_dev(sc->sc_dev,
2610 "failed loadfirmware of file %s (error %d)\n", name, error);
2611 return (error);
2612 }
2613 len = firmware_get_size(fwh);
2614 fw = firmware_malloc(len);
2615 if (fw == NULL) {
2616 aprint_error_dev(sc->sc_dev,
2617 "failed to allocate firmware memory\n");
2618 firmware_close(fwh);
2619 return (ENOMEM);
2620 }
2621 error = firmware_read(fwh, 0, fw, len);
2622 firmware_close(fwh);
2623 if (error != 0) {
2624 aprint_error_dev(sc->sc_dev,
2625 "failed to read firmware (error %d)\n", error);
2626 firmware_free(fw, 0);
2627 return (error);
2628 }
2629
2630 ptr = fw;
2631 hdr = (const struct r92c_fw_hdr *)ptr;
2632 /* Check if there is a valid FW header and skip it. */
2633 if ((le16toh(hdr->signature) >> 4) == 0x88c ||
2634 (le16toh(hdr->signature) >> 4) == 0x92c) {
2635 DPRINTFN(DBG_INIT, ("%s: %s: FW V%d.%d %02d-%02d %02d:%02d\n",
2636 device_xname(sc->sc_dev), __func__,
2637 le16toh(hdr->version), le16toh(hdr->subversion),
2638 hdr->month, hdr->date, hdr->hour, hdr->minute));
2639 ptr += sizeof(*hdr);
2640 len -= sizeof(*hdr);
2641 }
2642
2643 if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
2644 urtwn_fw_reset(sc);
2645 urtwn_write_1(sc, R92C_MCUFWDL, 0);
2646 }
2647
2648 /* download enabled */
2649 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2650 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2651 R92C_SYS_FUNC_EN_CPUEN);
2652 urtwn_write_1(sc, R92C_MCUFWDL,
2653 urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
2654 urtwn_write_1(sc, R92C_MCUFWDL + 2,
2655 urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
2656
2657 /* download firmware */
2658 for (page = 0; len > 0; page++) {
2659 mlen = MIN(len, R92C_FW_PAGE_SIZE);
2660 error = urtwn_fw_loadpage(sc, page, ptr, mlen);
2661 if (error != 0) {
2662 aprint_error_dev(sc->sc_dev,
2663 "could not load firmware page %d\n", page);
2664 goto fail;
2665 }
2666 ptr += mlen;
2667 len -= mlen;
2668 }
2669
2670 /* download disable */
2671 urtwn_write_1(sc, R92C_MCUFWDL,
2672 urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
2673 urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
2674
2675 /* Wait for checksum report. */
2676 for (ntries = 0; ntries < 1000; ntries++) {
2677 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
2678 break;
2679 DELAY(5);
2680 }
2681 if (ntries == 1000) {
2682 aprint_error_dev(sc->sc_dev,
2683 "timeout waiting for checksum report\n");
2684 error = ETIMEDOUT;
2685 goto fail;
2686 }
2687
2688 /* Wait for firmware readiness. */
2689 reg = urtwn_read_4(sc, R92C_MCUFWDL);
2690 reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
2691 urtwn_write_4(sc, R92C_MCUFWDL, reg);
2692 for (ntries = 0; ntries < 1000; ntries++) {
2693 if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
2694 break;
2695 DELAY(5);
2696 }
2697 if (ntries == 1000) {
2698 aprint_error_dev(sc->sc_dev,
2699 "timeout waiting for firmware readiness\n");
2700 error = ETIMEDOUT;
2701 goto fail;
2702 }
2703 fail:
2704 firmware_free(fw, 0);
2705 return (error);
2706 }
2707
2708 static int
2709 urtwn_dma_init(struct urtwn_softc *sc)
2710 {
2711 int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
2712 uint32_t reg;
2713 int error;
2714
2715 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2716
2717 /* Initialize LLT table. */
2718 error = urtwn_llt_init(sc);
2719 if (error != 0)
2720 return (error);
2721
2722 /* Get Tx queues to USB endpoints mapping. */
2723 hashq = hasnq = haslq = 0;
2724 reg = urtwn_read_2(sc, R92C_USB_EP + 1);
2725 DPRINTFN(DBG_INIT, ("%s: %s: USB endpoints mapping 0x%x\n",
2726 device_xname(sc->sc_dev), __func__, reg));
2727 if (MS(reg, R92C_USB_EP_HQ) != 0)
2728 hashq = 1;
2729 if (MS(reg, R92C_USB_EP_NQ) != 0)
2730 hasnq = 1;
2731 if (MS(reg, R92C_USB_EP_LQ) != 0)
2732 haslq = 1;
2733 nqueues = hashq + hasnq + haslq;
2734 if (nqueues == 0)
2735 return (EIO);
2736 /* Get the number of pages for each queue. */
2737 nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
2738 /* The remaining pages are assigned to the high priority queue. */
2739 nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
2740
2741 /* Set number of pages for normal priority queue. */
2742 urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
2743 urtwn_write_4(sc, R92C_RQPN,
2744 /* Set number of pages for public queue. */
2745 SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
2746 /* Set number of pages for high priority queue. */
2747 SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
2748 /* Set number of pages for low priority queue. */
2749 SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
2750 /* Load values. */
2751 R92C_RQPN_LD);
2752
2753 urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2754 urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
2755 urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
2756 urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
2757 urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
2758
2759 /* Set queue to USB pipe mapping. */
2760 reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
2761 reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
2762 if (nqueues == 1) {
2763 if (hashq) {
2764 reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
2765 } else if (hasnq) {
2766 reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
2767 } else {
2768 reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
2769 }
2770 } else if (nqueues == 2) {
2771 /* All 2-endpoints configs have a high priority queue. */
2772 if (!hashq) {
2773 return (EIO);
2774 }
2775 if (hasnq) {
2776 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
2777 } else {
2778 reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
2779 }
2780 } else {
2781 reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
2782 }
2783 urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
2784
2785 /* Set Tx/Rx transfer page boundary. */
2786 urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
2787
2788 /* Set Tx/Rx transfer page size. */
2789 urtwn_write_1(sc, R92C_PBP,
2790 SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128));
2791 return (0);
2792 }
2793
2794 static void
2795 urtwn_mac_init(struct urtwn_softc *sc)
2796 {
2797 int i;
2798
2799 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2800
2801 /* Write MAC initialization values. */
2802 for (i = 0; i < (int)__arraycount(rtl8192cu_mac); i++)
2803 urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
2804 }
2805
2806 static void
2807 urtwn_bb_init(struct urtwn_softc *sc)
2808 {
2809 const struct urtwn_bb_prog *prog;
2810 uint32_t reg;
2811 int i;
2812
2813 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2814
2815 /* Enable BB and RF. */
2816 urtwn_write_2(sc, R92C_SYS_FUNC_EN,
2817 urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
2818 R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
2819 R92C_SYS_FUNC_EN_DIO_RF);
2820
2821 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x83);
2822 urtwn_write_1(sc, R92C_AFE_PLL_CTRL + 1, 0xdb);
2823
2824 urtwn_write_1(sc, R92C_RF_CTRL,
2825 R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
2826 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
2827 R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
2828 R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
2829
2830 urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
2831 urtwn_write_1(sc, 0x15, 0xe9);
2832 urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
2833
2834 /* Select BB programming based on board type. */
2835 if (!(sc->chip & URTWN_CHIP_92C)) {
2836 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2837 prog = &rtl8188ce_bb_prog;
2838 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2839 prog = &rtl8188ru_bb_prog;
2840 } else {
2841 prog = &rtl8188cu_bb_prog;
2842 }
2843 } else {
2844 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2845 prog = &rtl8192ce_bb_prog;
2846 } else {
2847 prog = &rtl8192cu_bb_prog;
2848 }
2849 }
2850 /* Write BB initialization values. */
2851 for (i = 0; i < prog->count; i++) {
2852 /* additional delay depend on registers */
2853 switch (prog->regs[i]) {
2854 case 0xfe:
2855 usbd_delay_ms(sc->sc_udev, 50);
2856 break;
2857 case 0xfd:
2858 usbd_delay_ms(sc->sc_udev, 5);
2859 break;
2860 case 0xfc:
2861 usbd_delay_ms(sc->sc_udev, 1);
2862 break;
2863 case 0xfb:
2864 DELAY(50);
2865 break;
2866 case 0xfa:
2867 DELAY(5);
2868 break;
2869 case 0xf9:
2870 DELAY(1);
2871 break;
2872 }
2873 urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
2874 DELAY(1);
2875 }
2876
2877 if (sc->chip & URTWN_CHIP_92C_1T2R) {
2878 /* 8192C 1T only configuration. */
2879 reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
2880 reg = (reg & ~0x00000003) | 0x2;
2881 urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
2882
2883 reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
2884 reg = (reg & ~0x00300033) | 0x00200022;
2885 urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
2886
2887 reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
2888 reg = (reg & ~0xff000000) | (0x45 << 24);
2889 urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
2890
2891 reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
2892 reg = (reg & ~0x000000ff) | 0x23;
2893 urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
2894
2895 reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
2896 reg = (reg & ~0x00000030) | (1 << 4);
2897 urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
2898
2899 reg = urtwn_bb_read(sc, 0xe74);
2900 reg = (reg & ~0x0c000000) | (2 << 26);
2901 urtwn_bb_write(sc, 0xe74, reg);
2902 reg = urtwn_bb_read(sc, 0xe78);
2903 reg = (reg & ~0x0c000000) | (2 << 26);
2904 urtwn_bb_write(sc, 0xe78, reg);
2905 reg = urtwn_bb_read(sc, 0xe7c);
2906 reg = (reg & ~0x0c000000) | (2 << 26);
2907 urtwn_bb_write(sc, 0xe7c, reg);
2908 reg = urtwn_bb_read(sc, 0xe80);
2909 reg = (reg & ~0x0c000000) | (2 << 26);
2910 urtwn_bb_write(sc, 0xe80, reg);
2911 reg = urtwn_bb_read(sc, 0xe88);
2912 reg = (reg & ~0x0c000000) | (2 << 26);
2913 urtwn_bb_write(sc, 0xe88, reg);
2914 }
2915
2916 /* Write AGC values. */
2917 for (i = 0; i < prog->agccount; i++) {
2918 urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]);
2919 DELAY(1);
2920 }
2921
2922 if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
2923 R92C_HSSI_PARAM2_CCK_HIPWR) {
2924 SET(sc->sc_flags, URTWN_FLAG_CCK_HIPWR);
2925 }
2926 }
2927
2928 static void
2929 urtwn_rf_init(struct urtwn_softc *sc)
2930 {
2931 const struct urtwn_rf_prog *prog;
2932 uint32_t reg, mask, saved;
2933 int i, j, idx;
2934
2935 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
2936
2937 /* Select RF programming based on board type. */
2938 if (!(sc->chip & URTWN_CHIP_92C)) {
2939 if (sc->board_type == R92C_BOARD_TYPE_MINICARD) {
2940 prog = rtl8188ce_rf_prog;
2941 } else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
2942 prog = rtl8188ru_rf_prog;
2943 } else {
2944 prog = rtl8188cu_rf_prog;
2945 }
2946 } else {
2947 prog = rtl8192ce_rf_prog;
2948 }
2949
2950 for (i = 0; i < sc->nrxchains; i++) {
2951 /* Save RF_ENV control type. */
2952 idx = i / 2;
2953 mask = 0xffffU << ((i % 2) * 16);
2954 saved = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & mask;
2955
2956 /* Set RF_ENV enable. */
2957 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2958 reg |= 0x100000;
2959 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2960 DELAY(1);
2961
2962 /* Set RF_ENV output high. */
2963 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
2964 reg |= 0x10;
2965 urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
2966 DELAY(1);
2967
2968 /* Set address and data lengths of RF registers. */
2969 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2970 reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
2971 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2972 DELAY(1);
2973 reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
2974 reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
2975 urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
2976 DELAY(1);
2977
2978 /* Write RF initialization values for this chain. */
2979 for (j = 0; j < prog[i].count; j++) {
2980 if (prog[i].regs[j] >= 0xf9 &&
2981 prog[i].regs[j] <= 0xfe) {
2982 /*
2983 * These are fake RF registers offsets that
2984 * indicate a delay is required.
2985 */
2986 usbd_delay_ms(sc->sc_udev, 50);
2987 continue;
2988 }
2989 urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]);
2990 DELAY(1);
2991 }
2992
2993 /* Restore RF_ENV control type. */
2994 reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)) & ~mask;
2995 urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg | saved);
2996 }
2997
2998 if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
2999 URTWN_CHIP_UMC_A_CUT) {
3000 urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
3001 urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
3002 }
3003
3004 /* Cache RF register CHNLBW. */
3005 for (i = 0; i < 2; i++) {
3006 sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
3007 }
3008 }
3009
3010 static void
3011 urtwn_cam_init(struct urtwn_softc *sc)
3012 {
3013 uint32_t content, command;
3014 uint8_t idx;
3015 int i;
3016
3017 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3018
3019 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3020 content = (idx & 3)
3021 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3022 | R92C_CAM_VALID;
3023
3024 command = R92C_CAMCMD_POLLING
3025 | R92C_CAMCMD_WRITE
3026 | R92C_CAM_CTL0(idx);
3027
3028 urtwn_write_4(sc, R92C_CAMWRITE, content);
3029 urtwn_write_4(sc, R92C_CAMCMD, command);
3030 }
3031
3032 for (idx = 0; idx < R92C_CAM_ENTRY_COUNT; idx++) {
3033 for (i = 0; i < /* CAM_CONTENT_COUNT */ 8; i++) {
3034 if (i == 0) {
3035 content = (idx & 3)
3036 | (R92C_CAM_ALGO_AES << R92C_CAM_ALGO_S)
3037 | R92C_CAM_VALID;
3038 } else {
3039 content = 0;
3040 }
3041
3042 command = R92C_CAMCMD_POLLING
3043 | R92C_CAMCMD_WRITE
3044 | R92C_CAM_CTL0(idx)
3045 | (u_int)i;
3046
3047 urtwn_write_4(sc, R92C_CAMWRITE, content);
3048 urtwn_write_4(sc, R92C_CAMCMD, command);
3049 }
3050 }
3051
3052 /* Invalidate all CAM entries. */
3053 urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
3054 }
3055
3056 static void
3057 urtwn_pa_bias_init(struct urtwn_softc *sc)
3058 {
3059 uint8_t reg;
3060 int i;
3061
3062 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3063
3064 for (i = 0; i < sc->nrxchains; i++) {
3065 if (sc->pa_setting & (1U << i))
3066 continue;
3067
3068 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
3069 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
3070 urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
3071 urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
3072 }
3073 if (!(sc->pa_setting & 0x10)) {
3074 reg = urtwn_read_1(sc, 0x16);
3075 reg = (reg & ~0xf0) | 0x90;
3076 urtwn_write_1(sc, 0x16, reg);
3077 }
3078 }
3079
3080 static void
3081 urtwn_rxfilter_init(struct urtwn_softc *sc)
3082 {
3083
3084 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3085
3086 /* Initialize Rx filter. */
3087 /* TODO: use better filter for monitor mode. */
3088 urtwn_write_4(sc, R92C_RCR,
3089 R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
3090 R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
3091 R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
3092 /* Accept all multicast frames. */
3093 urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
3094 urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
3095 /* Accept all management frames. */
3096 urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
3097 /* Reject all control frames. */
3098 urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
3099 /* Accept all data frames. */
3100 urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
3101 }
3102
3103 static void
3104 urtwn_edca_init(struct urtwn_softc *sc)
3105 {
3106
3107 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3108
3109 /* set spec SIFS (used in NAV) */
3110 urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
3111 urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
3112
3113 /* set SIFS CCK/OFDM */
3114 urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
3115 urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
3116
3117 /* TXOP */
3118 urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
3119 urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
3120 urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
3121 urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
3122 }
3123
3124 static void
3125 urtwn_write_txpower(struct urtwn_softc *sc, int chain,
3126 uint16_t power[URTWN_RIDX_COUNT])
3127 {
3128 uint32_t reg;
3129
3130 DPRINTFN(DBG_FN, ("%s: %s: chain=%d\n", device_xname(sc->sc_dev),
3131 __func__, chain));
3132
3133 /* Write per-CCK rate Tx power. */
3134 if (chain == 0) {
3135 reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
3136 reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
3137 urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
3138
3139 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3140 reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
3141 reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
3142 reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
3143 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3144 } else {
3145 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
3146 reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
3147 reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
3148 reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
3149 urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
3150
3151 reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
3152 reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
3153 urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
3154 }
3155 /* Write per-OFDM rate Tx power. */
3156 urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
3157 SM(R92C_TXAGC_RATE06, power[ 4]) |
3158 SM(R92C_TXAGC_RATE09, power[ 5]) |
3159 SM(R92C_TXAGC_RATE12, power[ 6]) |
3160 SM(R92C_TXAGC_RATE18, power[ 7]));
3161 urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
3162 SM(R92C_TXAGC_RATE24, power[ 8]) |
3163 SM(R92C_TXAGC_RATE36, power[ 9]) |
3164 SM(R92C_TXAGC_RATE48, power[10]) |
3165 SM(R92C_TXAGC_RATE54, power[11]));
3166 /* Write per-MCS Tx power. */
3167 urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
3168 SM(R92C_TXAGC_MCS00, power[12]) |
3169 SM(R92C_TXAGC_MCS01, power[13]) |
3170 SM(R92C_TXAGC_MCS02, power[14]) |
3171 SM(R92C_TXAGC_MCS03, power[15]));
3172 urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
3173 SM(R92C_TXAGC_MCS04, power[16]) |
3174 SM(R92C_TXAGC_MCS05, power[17]) |
3175 SM(R92C_TXAGC_MCS06, power[18]) |
3176 SM(R92C_TXAGC_MCS07, power[19]));
3177 urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
3178 SM(R92C_TXAGC_MCS08, power[20]) |
3179 SM(R92C_TXAGC_MCS09, power[21]) |
3180 SM(R92C_TXAGC_MCS10, power[22]) |
3181 SM(R92C_TXAGC_MCS11, power[23]));
3182 urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
3183 SM(R92C_TXAGC_MCS12, power[24]) |
3184 SM(R92C_TXAGC_MCS13, power[25]) |
3185 SM(R92C_TXAGC_MCS14, power[26]) |
3186 SM(R92C_TXAGC_MCS15, power[27]));
3187 }
3188
3189 static void
3190 urtwn_get_txpower(struct urtwn_softc *sc, int chain, u_int chan, u_int ht40m,
3191 uint16_t power[URTWN_RIDX_COUNT])
3192 {
3193 struct r92c_rom *rom = &sc->rom;
3194 uint16_t cckpow, ofdmpow, htpow, diff, maxpow;
3195 const struct urtwn_txpwr *base;
3196 int ridx, group;
3197
3198 DPRINTFN(DBG_FN, ("%s: %s: chain=%d, chan=%d\n",
3199 device_xname(sc->sc_dev), __func__, chain, chan));
3200
3201 /* Determine channel group. */
3202 if (chan <= 3) {
3203 group = 0;
3204 } else if (chan <= 9) {
3205 group = 1;
3206 } else {
3207 group = 2;
3208 }
3209
3210 /* Get original Tx power based on board type and RF chain. */
3211 if (!(sc->chip & URTWN_CHIP_92C)) {
3212 if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) {
3213 base = &rtl8188ru_txagc[chain];
3214 } else {
3215 base = &rtl8192cu_txagc[chain];
3216 }
3217 } else {
3218 base = &rtl8192cu_txagc[chain];
3219 }
3220
3221 memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
3222 if (sc->regulatory == 0) {
3223 for (ridx = 0; ridx <= 3; ridx++) {
3224 power[ridx] = base->pwr[0][ridx];
3225 }
3226 }
3227 for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
3228 if (sc->regulatory == 3) {
3229 power[ridx] = base->pwr[0][ridx];
3230 /* Apply vendor limits. */
3231 if (ht40m != IEEE80211_HTINFO_2NDCHAN_NONE) {
3232 maxpow = rom->ht40_max_pwr[group];
3233 } else {
3234 maxpow = rom->ht20_max_pwr[group];
3235 }
3236 maxpow = (maxpow >> (chain * 4)) & 0xf;
3237 if (power[ridx] > maxpow) {
3238 power[ridx] = maxpow;
3239 }
3240 } else if (sc->regulatory == 1) {
3241 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3242 power[ridx] = base->pwr[group][ridx];
3243 }
3244 } else if (sc->regulatory != 2) {
3245 power[ridx] = base->pwr[0][ridx];
3246 }
3247 }
3248
3249 /* Compute per-CCK rate Tx power. */
3250 cckpow = rom->cck_tx_pwr[chain][group];
3251 for (ridx = 0; ridx <= 3; ridx++) {
3252 power[ridx] += cckpow;
3253 if (power[ridx] > R92C_MAX_TX_PWR) {
3254 power[ridx] = R92C_MAX_TX_PWR;
3255 }
3256 }
3257
3258 htpow = rom->ht40_1s_tx_pwr[chain][group];
3259 if (sc->ntxchains > 1) {
3260 /* Apply reduction for 2 spatial streams. */
3261 diff = rom->ht40_2s_tx_pwr_diff[group];
3262 diff = (diff >> (chain * 4)) & 0xf;
3263 htpow = (htpow > diff) ? htpow - diff : 0;
3264 }
3265
3266 /* Compute per-OFDM rate Tx power. */
3267 diff = rom->ofdm_tx_pwr_diff[group];
3268 diff = (diff >> (chain * 4)) & 0xf;
3269 ofdmpow = htpow + diff; /* HT->OFDM correction. */
3270 for (ridx = 4; ridx <= 11; ridx++) {
3271 power[ridx] += ofdmpow;
3272 if (power[ridx] > R92C_MAX_TX_PWR) {
3273 power[ridx] = R92C_MAX_TX_PWR;
3274 }
3275 }
3276
3277 /* Compute per-MCS Tx power. */
3278 if (ht40m == IEEE80211_HTINFO_2NDCHAN_NONE) {
3279 diff = rom->ht20_tx_pwr_diff[group];
3280 diff = (diff >> (chain * 4)) & 0xf;
3281 htpow += diff; /* HT40->HT20 correction. */
3282 }
3283 for (ridx = 12; ridx < URTWN_RIDX_COUNT; ridx++) {
3284 power[ridx] += htpow;
3285 if (power[ridx] > R92C_MAX_TX_PWR) {
3286 power[ridx] = R92C_MAX_TX_PWR;
3287 }
3288 }
3289 #ifdef URTWN_DEBUG
3290 if (urtwn_debug & DBG_RF) {
3291 /* Dump per-rate Tx power values. */
3292 printf("%s: %s: Tx power for chain %d:\n",
3293 device_xname(sc->sc_dev), __func__, chain);
3294 for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++) {
3295 printf("%s: %s: Rate %d = %u\n",
3296 device_xname(sc->sc_dev), __func__, ridx,
3297 power[ridx]);
3298 }
3299 }
3300 #endif
3301 }
3302
3303 static void
3304 urtwn_set_txpower(struct urtwn_softc *sc, u_int chan, u_int ht40m)
3305 {
3306 uint16_t power[URTWN_RIDX_COUNT];
3307 int i;
3308
3309 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3310
3311 for (i = 0; i < sc->ntxchains; i++) {
3312 /* Compute per-rate Tx power values. */
3313 urtwn_get_txpower(sc, i, chan, ht40m, power);
3314 /* Write per-rate Tx power values to hardware. */
3315 urtwn_write_txpower(sc, i, power);
3316 }
3317 }
3318
3319 static void
3320 urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, u_int ht40m)
3321 {
3322 struct ieee80211com *ic = &sc->sc_ic;
3323 u_int chan;
3324 int i;
3325
3326 chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
3327
3328 DPRINTFN(DBG_FN, ("%s: %s: chan=%d\n", device_xname(sc->sc_dev),
3329 __func__, chan));
3330
3331 if (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE) {
3332 chan += 2;
3333 } else if (ht40m == IEEE80211_HTINFO_2NDCHAN_BELOW){
3334 chan -= 2;
3335 }
3336
3337 /* Set Tx power for this new channel. */
3338 urtwn_set_txpower(sc, chan, ht40m);
3339
3340 for (i = 0; i < sc->nrxchains; i++) {
3341 urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
3342 RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
3343 }
3344
3345 if (ht40m) {
3346 /* Is secondary channel below or above primary? */
3347 int prichlo = (ht40m == IEEE80211_HTINFO_2NDCHAN_ABOVE);
3348 uint32_t reg;
3349
3350 urtwn_write_1(sc, R92C_BWOPMODE,
3351 urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
3352
3353 reg = urtwn_read_1(sc, R92C_RRSR + 2);
3354 reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
3355 urtwn_write_1(sc, R92C_RRSR + 2, (uint8_t)reg);
3356
3357 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3358 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
3359 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3360 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
3361
3362 /* Set CCK side band. */
3363 reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
3364 reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
3365 urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
3366
3367 reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
3368 reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
3369 urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
3370
3371 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3372 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
3373 ~R92C_FPGA0_ANAPARAM2_CBW20);
3374
3375 reg = urtwn_bb_read(sc, 0x818);
3376 reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
3377 urtwn_bb_write(sc, 0x818, reg);
3378
3379 /* Select 40MHz bandwidth. */
3380 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3381 (sc->rf_chnlbw[0] & ~0xfff) | chan);
3382 } else {
3383 urtwn_write_1(sc, R92C_BWOPMODE,
3384 urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
3385
3386 urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
3387 urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
3388 urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
3389 urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
3390
3391 urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
3392 urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
3393 R92C_FPGA0_ANAPARAM2_CBW20);
3394
3395 /* Select 20MHz bandwidth. */
3396 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3397 (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
3398 }
3399 }
3400
3401 static void
3402 urtwn_iq_calib(struct urtwn_softc *sc, bool inited)
3403 {
3404
3405 DPRINTFN(DBG_FN, ("%s: %s: inited=%d\n", device_xname(sc->sc_dev),
3406 __func__, inited));
3407
3408 /* TODO */
3409 }
3410
3411 static void
3412 urtwn_lc_calib(struct urtwn_softc *sc)
3413 {
3414 uint32_t rf_ac[2];
3415 uint8_t txmode;
3416 int i;
3417
3418 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3419
3420 txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
3421 if ((txmode & 0x70) != 0) {
3422 /* Disable all continuous Tx. */
3423 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
3424
3425 /* Set RF mode to standby mode. */
3426 for (i = 0; i < sc->nrxchains; i++) {
3427 rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
3428 urtwn_rf_write(sc, i, R92C_RF_AC,
3429 RW(rf_ac[i], R92C_RF_AC_MODE,
3430 R92C_RF_AC_MODE_STANDBY));
3431 }
3432 } else {
3433 /* Block all Tx queues. */
3434 urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
3435 }
3436 /* Start calibration. */
3437 urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
3438 urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
3439
3440 /* Give calibration the time to complete. */
3441 usbd_delay_ms(sc->sc_udev, 100);
3442
3443 /* Restore configuration. */
3444 if ((txmode & 0x70) != 0) {
3445 /* Restore Tx mode. */
3446 urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
3447 /* Restore RF mode. */
3448 for (i = 0; i < sc->nrxchains; i++) {
3449 urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
3450 }
3451 } else {
3452 /* Unblock all Tx queues. */
3453 urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
3454 }
3455 }
3456
3457 static void
3458 urtwn_temp_calib(struct urtwn_softc *sc)
3459 {
3460 int temp;
3461
3462 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3463
3464 if (sc->thcal_state == 0) {
3465 /* Start measuring temperature. */
3466 DPRINTFN(DBG_RF, ("%s: %s: start measuring temperature\n",
3467 device_xname(sc->sc_dev), __func__));
3468 urtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
3469 sc->thcal_state = 1;
3470 return;
3471 }
3472 sc->thcal_state = 0;
3473
3474 /* Read measured temperature. */
3475 temp = urtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
3476 DPRINTFN(DBG_RF, ("%s: %s: temperature=%d\n", device_xname(sc->sc_dev),
3477 __func__, temp));
3478 if (temp == 0) /* Read failed, skip. */
3479 return;
3480
3481 /*
3482 * Redo LC calibration if temperature changed significantly since
3483 * last calibration.
3484 */
3485 if (sc->thcal_lctemp == 0) {
3486 /* First LC calibration is performed in urtwn_init(). */
3487 sc->thcal_lctemp = temp;
3488 } else if (abs(temp - sc->thcal_lctemp) > 1) {
3489 DPRINTFN(DBG_RF,
3490 ("%s: %s: LC calib triggered by temp: %d -> %d\n",
3491 device_xname(sc->sc_dev), __func__, sc->thcal_lctemp,
3492 temp));
3493 urtwn_lc_calib(sc);
3494 /* Record temperature of last LC calibration. */
3495 sc->thcal_lctemp = temp;
3496 }
3497 }
3498
3499 static int
3500 urtwn_init(struct ifnet *ifp)
3501 {
3502 struct urtwn_softc *sc = ifp->if_softc;
3503 struct ieee80211com *ic = &sc->sc_ic;
3504 struct urtwn_rx_data *data;
3505 uint32_t reg;
3506 int i, error;
3507
3508 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3509
3510 urtwn_stop(ifp, 0);
3511
3512 mutex_enter(&sc->sc_task_mtx);
3513 /* Init host async commands ring. */
3514 sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
3515 mutex_exit(&sc->sc_task_mtx);
3516
3517 mutex_enter(&sc->sc_fwcmd_mtx);
3518 /* Init firmware commands ring. */
3519 sc->fwcur = 0;
3520 mutex_exit(&sc->sc_fwcmd_mtx);
3521
3522 /* Allocate Tx/Rx buffers. */
3523 error = urtwn_alloc_rx_list(sc);
3524 if (error != 0) {
3525 aprint_error_dev(sc->sc_dev,
3526 "could not allocate Rx buffers\n");
3527 goto fail;
3528 }
3529 error = urtwn_alloc_tx_list(sc);
3530 if (error != 0) {
3531 aprint_error_dev(sc->sc_dev,
3532 "could not allocate Tx buffers\n");
3533 goto fail;
3534 }
3535
3536 /* Power on adapter. */
3537 error = urtwn_power_on(sc);
3538 if (error != 0)
3539 goto fail;
3540
3541 /* Initialize DMA. */
3542 error = urtwn_dma_init(sc);
3543 if (error != 0)
3544 goto fail;
3545
3546 /* Set info size in Rx descriptors (in 64-bit words). */
3547 urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
3548
3549 /* Init interrupts. */
3550 urtwn_write_4(sc, R92C_HISR, 0xffffffff);
3551 urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
3552
3553 /* Set MAC address. */
3554 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3555 urtwn_write_region(sc, R92C_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
3556
3557 /* Set initial network type. */
3558 reg = urtwn_read_4(sc, R92C_CR);
3559 switch (ic->ic_opmode) {
3560 case IEEE80211_M_STA:
3561 default:
3562 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
3563 break;
3564
3565 case IEEE80211_M_IBSS:
3566 reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_ADHOC);
3567 break;
3568 }
3569 urtwn_write_4(sc, R92C_CR, reg);
3570
3571 urtwn_rxfilter_init(sc);
3572
3573 /* Set response rate */
3574 reg = urtwn_read_4(sc, R92C_RRSR);
3575 reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
3576 urtwn_write_4(sc, R92C_RRSR, reg);
3577
3578 /* SIFS (used in NAV) */
3579 urtwn_write_2(sc, R92C_SPEC_SIFS,
3580 SM(R92C_SPEC_SIFS_CCK, 0x10) | SM(R92C_SPEC_SIFS_OFDM, 0x10));
3581
3582 /* Set short/long retry limits. */
3583 urtwn_write_2(sc, R92C_RL,
3584 SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
3585
3586 /* Initialize EDCA parameters. */
3587 urtwn_edca_init(sc);
3588
3589 /* Setup rate fallback. */
3590 urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
3591 urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
3592 urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
3593 urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
3594
3595 urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
3596 urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
3597 R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
3598 /* Set ACK timeout. */
3599 urtwn_write_1(sc, R92C_ACKTO, 0x40);
3600
3601 /* Setup USB aggregation. */
3602 /* Tx */
3603 reg = urtwn_read_4(sc, R92C_TDECTRL);
3604 reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
3605 urtwn_write_4(sc, R92C_TDECTRL, reg);
3606 /* Rx */
3607 urtwn_write_1(sc, R92C_TRXDMA_CTRL,
3608 urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
3609 R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
3610 urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
3611 urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
3612 ~R92C_USB_SPECIAL_OPTION_AGG_EN);
3613 urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
3614 urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
3615
3616 /* Initialize beacon parameters. */
3617 urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
3618 urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
3619 urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
3620 urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
3621
3622 /* Setup AMPDU aggregation. */
3623 urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
3624 urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
3625 urtwn_write_2(sc, 0x4ca, 0x0708);
3626
3627 urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
3628 urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
3629
3630 /* Load 8051 microcode. */
3631 error = urtwn_load_firmware(sc);
3632 if (error != 0)
3633 goto fail;
3634 SET(sc->sc_flags, URTWN_FLAG_FWREADY);
3635
3636 /* Initialize MAC/BB/RF blocks. */
3637 urtwn_mac_init(sc);
3638 urtwn_write_4(sc, R92C_RCR,
3639 urtwn_read_4(sc, R92C_RCR) & ~R92C_RCR_ADF);
3640 urtwn_bb_init(sc);
3641 urtwn_rf_init(sc);
3642
3643 /* Turn CCK and OFDM blocks on. */
3644 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3645 reg |= R92C_RFMOD_CCK_EN;
3646 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3647 reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
3648 reg |= R92C_RFMOD_OFDM_EN;
3649 urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
3650
3651 /* Clear per-station keys table. */
3652 urtwn_cam_init(sc);
3653
3654 /* Enable hardware sequence numbering. */
3655 urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
3656
3657 /* Perform LO and IQ calibrations. */
3658 urtwn_iq_calib(sc, sc->iqk_inited);
3659 sc->iqk_inited = true;
3660
3661 /* Perform LC calibration. */
3662 urtwn_lc_calib(sc);
3663
3664 /* Fix USB interference issue. */
3665 urtwn_write_1(sc, 0xfe40, 0xe0);
3666 urtwn_write_1(sc, 0xfe41, 0x8d);
3667 urtwn_write_1(sc, 0xfe42, 0x80);
3668 urtwn_write_4(sc, 0x20c, 0xfd0320);
3669
3670 urtwn_pa_bias_init(sc);
3671
3672 if (!(sc->chip & (URTWN_CHIP_92C | URTWN_CHIP_92C_1T2R))) {
3673 /* 1T1R */
3674 urtwn_bb_write(sc, R92C_FPGA0_RFPARAM(0),
3675 urtwn_bb_read(sc, R92C_FPGA0_RFPARAM(0)) | __BIT(13));
3676 }
3677
3678 /* Initialize GPIO setting. */
3679 urtwn_write_1(sc, R92C_GPIO_MUXCFG,
3680 urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
3681
3682 /* Fix for lower temperature. */
3683 urtwn_write_1(sc, 0x15, 0xe9);
3684
3685 /* Set default channel. */
3686 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
3687 urtwn_set_chan(sc, ic->ic_ibss_chan, IEEE80211_HTINFO_2NDCHAN_NONE);
3688
3689 /* Queue Rx xfers. */
3690 for (i = 0; i < URTWN_RX_LIST_COUNT; i++) {
3691 data = &sc->rx_data[i];
3692 usbd_setup_xfer(data->xfer, sc->rx_pipe, data, data->buf,
3693 URTWN_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
3694 USBD_NO_TIMEOUT, urtwn_rxeof);
3695 error = usbd_transfer(data->xfer);
3696 if (__predict_false(error != USBD_NORMAL_COMPLETION &&
3697 error != USBD_IN_PROGRESS))
3698 goto fail;
3699 }
3700
3701 /* We're ready to go. */
3702 ifp->if_flags &= ~IFF_OACTIVE;
3703 ifp->if_flags |= IFF_RUNNING;
3704
3705 if (ic->ic_opmode == IEEE80211_M_MONITOR)
3706 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3707 else
3708 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3709 return (0);
3710
3711 fail:
3712 urtwn_stop(ifp, 1);
3713 return (error);
3714 }
3715
3716 static void
3717 urtwn_stop(struct ifnet *ifp, int disable)
3718 {
3719 struct urtwn_softc *sc = ifp->if_softc;
3720 struct ieee80211com *ic = &sc->sc_ic;
3721 int i, s;
3722
3723 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3724
3725 sc->tx_timer = 0;
3726 ifp->if_timer = 0;
3727 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3728
3729 s = splusb();
3730 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3731 urtwn_wait_async(sc);
3732 splx(s);
3733
3734 callout_stop(&sc->sc_scan_to);
3735 callout_stop(&sc->sc_calib_to);
3736
3737 /* Abort Tx. */
3738 for (i = 0; i < R92C_MAX_EPOUT; i++) {
3739 if (sc->tx_pipe[i] != NULL)
3740 usbd_abort_pipe(sc->tx_pipe[i]);
3741 }
3742
3743 /* Stop Rx pipe. */
3744 usbd_abort_pipe(sc->rx_pipe);
3745
3746 /* Free Tx/Rx buffers. */
3747 urtwn_free_tx_list(sc);
3748 urtwn_free_rx_list(sc);
3749
3750 if (disable)
3751 urtwn_chip_stop(sc);
3752 }
3753
3754 static void
3755 urtwn_chip_stop(struct urtwn_softc *sc)
3756 {
3757 uint32_t reg;
3758 bool disabled = true;
3759
3760 DPRINTFN(DBG_FN, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
3761
3762 /*
3763 * RF Off Sequence
3764 */
3765 /* Pause MAC TX queue */
3766 urtwn_write_1(sc, R92C_TXPAUSE, 0xFF);
3767
3768 /* Disable RF */
3769 urtwn_rf_write(sc, 0, 0, 0);
3770
3771 urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF);
3772
3773 /* Reset BB state machine */
3774 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3775 R92C_SYS_FUNC_EN_USBD |
3776 R92C_SYS_FUNC_EN_USBA |
3777 R92C_SYS_FUNC_EN_BB_GLB_RST);
3778 urtwn_write_1(sc, R92C_SYS_FUNC_EN,
3779 R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA);
3780
3781 /*
3782 * Reset digital sequence
3783 */
3784 if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) {
3785 /* Reset MCU ready status */
3786 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3787 /* If firmware in ram code, do reset */
3788 if (ISSET(sc->sc_flags, URTWN_FLAG_FWREADY)) {
3789 urtwn_fw_reset(sc);
3790 CLR(sc->sc_flags, URTWN_FLAG_FWREADY);
3791 }
3792 }
3793
3794 /* Reset MAC and Enable 8051 */
3795 urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
3796
3797 /* Reset MCU ready status */
3798 urtwn_write_1(sc, R92C_MCUFWDL, 0);
3799
3800 if (disabled) {
3801 /* Disable MAC clock */
3802 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3803 /* Disable AFE PLL */
3804 urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80);
3805 /* Gated AFE DIG_CLOCK */
3806 urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F);
3807 /* Isolated digital to PON */
3808 urtwn_write_1(sc, R92C_SYS_ISO_CTRL, 0xF9);
3809 }
3810
3811 /*
3812 * Pull GPIO PIN to balance level and LED control
3813 */
3814 /* 1. Disable GPIO[7:0] */
3815 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL + 2, 0x0000);
3816
3817 reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00;
3818 reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000;
3819 urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg);
3820
3821 /* Disable GPIO[10:8] */
3822 urtwn_write_1(sc, R92C_GPIO_MUXCFG + 3, 0x00);
3823
3824 reg = urtwn_read_2(sc, R92C_GPIO_MUXCFG + 2) & ~0x00f0;
3825 reg |= (((reg & 0x000f) << 4) | 0x0780);
3826 urtwn_write_2(sc, R92C_GPIO_PIN_CTRL+2, reg);
3827
3828 /* Disable LED0 & 1 */
3829 urtwn_write_2(sc, R92C_LEDCFG0, 0x8080);
3830
3831 /*
3832 * Reset digital sequence
3833 */
3834 if (disabled) {
3835 /* Disable ELDR clock */
3836 urtwn_write_2(sc, R92C_SYS_CLKR, 0x70A3);
3837 /* Isolated ELDR to PON */
3838 urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, 0x82);
3839 }
3840
3841 /*
3842 * Disable analog sequence
3843 */
3844 if (disabled) {
3845 /* Disable A15 power */
3846 urtwn_write_1(sc, R92C_LDOA15_CTRL, 0x04);
3847 /* Disable digital core power */
3848 urtwn_write_1(sc, R92C_LDOV12D_CTRL,
3849 urtwn_read_1(sc, R92C_LDOV12D_CTRL) &
3850 ~R92C_LDOV12D_CTRL_LDV12_EN);
3851 }
3852
3853 /* Enter PFM mode */
3854 urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23);
3855
3856 /* Set USB suspend */
3857 urtwn_write_2(sc, R92C_APS_FSMCO,
3858 R92C_APS_FSMCO_APDM_HOST |
3859 R92C_APS_FSMCO_AFSM_HSUS |
3860 R92C_APS_FSMCO_PFM_ALDN);
3861
3862 urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E);
3863 }
3864
3865 MODULE(MODULE_CLASS_DRIVER, if_urtwn, "bpf");
3866
3867 #ifdef _MODULE
3868 #include "ioconf.c"
3869 #endif
3870
3871 static int
3872 if_urtwn_modcmd(modcmd_t cmd, void *aux)
3873 {
3874 int error = 0;
3875
3876 switch (cmd) {
3877 case MODULE_CMD_INIT:
3878 #ifdef _MODULE
3879 error = config_init_component(cfdriver_ioconf_urtwn,
3880 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3881 #endif
3882 return (error);
3883 case MODULE_CMD_FINI:
3884 #ifdef _MODULE
3885 error = config_fini_component(cfdriver_ioconf_urtwn,
3886 cfattach_ioconf_urtwn, cfdata_ioconf_urtwn);
3887 #endif
3888 return (error);
3889 default:
3890 return (ENOTTY);
3891 }
3892 }
3893