if_zyd.c revision 1.16.2.1 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.16.2.1 2009/05/13 17:21:35 jym Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.16.2.1 2009/05/13 17:21:35 jym Exp $");
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_zydreg.h>
71
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p) \
92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 struct usb_devno dev;
95 uint8_t rev;
96 #define ZYD_ZD1211 0
97 #define ZYD_ZD1211B 1
98 } zyd_devs[] = {
99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
100 ZYD_ZD1211_DEV(ABOCOM, WL54),
101 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
107 ZYD_ZD1211_DEV(SAGEM, XG760A),
108 ZYD_ZD1211_DEV(SENAO, NUB8301),
109 ZYD_ZD1211_DEV(SITECOMEU, WL113),
110 ZYD_ZD1211_DEV(SWEEX, ZD1211),
111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
114 ZYD_ZD1211_DEV(TWINMOS, G240),
115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
119 ZYD_ZD1211_DEV(ZCOM, ZD1211),
120 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
121 ZYD_ZD1211_DEV(ZYXEL, AG225H),
122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
136 #if 0 /* Shall we needs? */
137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
141 #endif
142 ZYD_ZD1211B_DEV(USR, USR5423),
143 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
146 ZYD_ZD1211B_DEV(ZYXEL, M202),
147 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
149 };
150 #define zyd_lookup(v, p) \
151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152
153 USB_DECLARE_DRIVER(zyd);
154
155 Static int zyd_attachhook(void *);
156 Static int zyd_complete_attach(struct zyd_softc *);
157 Static int zyd_open_pipes(struct zyd_softc *);
158 Static void zyd_close_pipes(struct zyd_softc *);
159 Static int zyd_alloc_tx_list(struct zyd_softc *);
160 Static void zyd_free_tx_list(struct zyd_softc *);
161 Static int zyd_alloc_rx_list(struct zyd_softc *);
162 Static void zyd_free_rx_list(struct zyd_softc *);
163 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int zyd_media_change(struct ifnet *);
165 Static void zyd_next_scan(void *);
166 Static void zyd_task(void *);
167 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 void *, int, u_int);
170 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void zyd_lock_phy(struct zyd_softc *);
176 Static void zyd_unlock_phy(struct zyd_softc *);
177 Static int zyd_rfmd_init(struct zyd_rf *);
178 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int zyd_al2230_init(struct zyd_rf *);
181 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int zyd_al2230_init_b(struct zyd_rf *);
184 Static int zyd_al7230B_init(struct zyd_rf *);
185 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2210_init(struct zyd_rf *);
188 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int zyd_gct_init(struct zyd_rf *);
191 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_maxim_init(struct zyd_rf *);
194 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_maxim2_init(struct zyd_rf *);
197 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int zyd_hw_init(struct zyd_softc *);
202 Static int zyd_read_eeprom(struct zyd_softc *);
203 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int zyd_switch_radio(struct zyd_softc *, int);
206 Static void zyd_set_led(struct zyd_softc *, int, int);
207 Static int zyd_set_rxfilter(struct zyd_softc *);
208 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t zyd_plcp_signal(int);
211 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 struct ieee80211_node *);
217 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 struct ieee80211_node *);
219 Static void zyd_start(struct ifnet *);
220 Static void zyd_watchdog(struct ifnet *);
221 Static int zyd_ioctl(struct ifnet *, u_long, void *);
222 Static int zyd_init(struct ifnet *);
223 Static void zyd_stop(struct ifnet *, int);
224 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void zyd_iter_func(void *, struct ieee80211_node *);
226 Static void zyd_amrr_timeout(void *);
227 Static void zyd_newassoc(struct ieee80211_node *, int);
228
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 { 4, { 2, 4, 11, 22 } };
231
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234
235 USB_MATCH(zyd)
236 {
237 USB_MATCH_START(zyd, uaa);
238
239 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 struct zyd_softc *sc = xsc;
247 firmware_handle_t fwh;
248 const char *fwname;
249 u_char *fw;
250 size_t size;
251 int error;
252
253 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 aprint_error_dev(sc->sc_dev,
256 "failed to open firmware %s (error=%d)\n", fwname, error);
257 return error;
258 }
259 size = firmware_get_size(fwh);
260 fw = firmware_malloc(size);
261 if (fw == NULL) {
262 aprint_error_dev(sc->sc_dev,
263 "failed to allocate firmware memory\n");
264 firmware_close(fwh);
265 return ENOMEM;
266 }
267 error = firmware_read(fwh, 0, fw, size);
268 firmware_close(fwh);
269 if (error != 0) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to read firmware (error %d)\n", error);
272 firmware_free(fw, 0);
273 return error;
274 }
275
276 error = zyd_loadfirmware(sc, fw, size);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "could not load firmware (error=%d)\n", error);
280 firmware_free(fw, 0);
281 return ENXIO;
282 }
283
284 firmware_free(fw, 0);
285 sc->sc_flags |= ZD1211_FWLOADED;
286
287 /* complete the attach process */
288 if ((error = zyd_complete_attach(sc)) == 0)
289 sc->attached = 1;
290 return error;
291 }
292
293 USB_ATTACH(zyd)
294 {
295 USB_ATTACH_START(zyd, sc, uaa);
296 char *devinfop;
297 usb_device_descriptor_t* ddesc;
298 struct ifnet *ifp = &sc->sc_if;
299
300 sc->sc_dev = self;
301 sc->sc_udev = uaa->device;
302 sc->sc_flags = 0;
303
304 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
305 USB_ATTACH_SETUP;
306 aprint_normal_dev(self, "%s\n", devinfop);
307 usbd_devinfo_free(devinfop);
308
309 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
310
311 ddesc = usbd_get_device_descriptor(sc->sc_udev);
312 if (UGETW(ddesc->bcdDevice) < 0x4330) {
313 aprint_error_dev(self, "device version mismatch: 0x%x "
314 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
315 USB_ATTACH_ERROR_RETURN;
316 }
317
318 ifp->if_softc = sc;
319 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 ifp->if_init = zyd_init;
321 ifp->if_ioctl = zyd_ioctl;
322 ifp->if_start = zyd_start;
323 ifp->if_watchdog = zyd_watchdog;
324 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
325 IFQ_SET_READY(&ifp->if_snd);
326 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
327
328 if_attach(ifp);
329 /* XXXX: alloc temporarily until the layer2 can be configured. */
330 if_alloc_sadl(ifp);
331
332 SIMPLEQ_INIT(&sc->sc_rqh);
333
334 USB_ATTACH_SUCCESS_RETURN;
335 }
336
337 Static int
338 zyd_complete_attach(struct zyd_softc *sc)
339 {
340 struct ieee80211com *ic = &sc->sc_ic;
341 struct ifnet *ifp = &sc->sc_if;
342 usbd_status error;
343 int i;
344
345 usb_init_task(&sc->sc_task, zyd_task, sc);
346 usb_callout_init(sc->sc_scan_ch);
347
348 sc->amrr.amrr_min_success_threshold = 1;
349 sc->amrr.amrr_max_success_threshold = 10;
350 usb_callout_init(sc->sc_amrr_ch);
351
352 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
353 if (error != 0) {
354 aprint_error_dev(sc->sc_dev, "setting config no failed\n");
355 goto fail;
356 }
357
358 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
359 &sc->sc_iface);
360 if (error != 0) {
361 aprint_error_dev(sc->sc_dev,
362 "getting interface handle failed\n");
363 goto fail;
364 }
365
366 if ((error = zyd_open_pipes(sc)) != 0) {
367 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
368 goto fail;
369 }
370
371 if ((error = zyd_read_eeprom(sc)) != 0) {
372 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
373 goto fail;
374 }
375
376 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
377 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
378 goto fail;
379 }
380
381 if ((error = zyd_hw_init(sc)) != 0) {
382 aprint_error_dev(sc->sc_dev,
383 "hardware initialization failed\n");
384 goto fail;
385 }
386
387 aprint_normal_dev(sc->sc_dev,
388 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
389 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
390 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
391 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
392
393 ic->ic_ifp = ifp;
394 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
395 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
396 ic->ic_state = IEEE80211_S_INIT;
397
398 /* set device capabilities */
399 ic->ic_caps =
400 IEEE80211_C_MONITOR | /* monitor mode supported */
401 IEEE80211_C_TXPMGT | /* tx power management */
402 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
403 IEEE80211_C_WEP; /* s/w WEP */
404
405 /* set supported .11b and .11g rates */
406 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
407 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
408
409 /* set supported .11b and .11g channels (1 through 14) */
410 for (i = 1; i <= 14; i++) {
411 ic->ic_channels[i].ic_freq =
412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
413 ic->ic_channels[i].ic_flags =
414 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
415 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
416 }
417
418 if_free_sadl(ifp);
419 ieee80211_ifattach(ic);
420 ic->ic_node_alloc = zyd_node_alloc;
421 ic->ic_newassoc = zyd_newassoc;
422
423 /* override state transition machine */
424 sc->sc_newstate = ic->ic_newstate;
425 ic->ic_newstate = zyd_newstate;
426 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
427
428 #if NBPFILTER > 0
429 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
430 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 &sc->sc_drvbpf);
432
433 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
436
437 sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
440 #endif
441
442 ieee80211_announce(ic);
443
444 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
445 USBDEV(sc->sc_dev));
446
447 fail: return error;
448 }
449
450 USB_DETACH(zyd)
451 {
452 USB_DETACH_START(zyd, sc);
453 struct ieee80211com *ic = &sc->sc_ic;
454 struct ifnet *ifp = &sc->sc_if;
455 int s;
456
457 if (!sc->attached) {
458 if_free_sadl(ifp);
459 if_detach(ifp);
460 return 0;
461 }
462
463 s = splusb();
464
465 zyd_stop(ifp, 1);
466 usb_rem_task(sc->sc_udev, &sc->sc_task);
467 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
468 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
469
470 zyd_close_pipes(sc);
471
472 sc->attached = 0;
473
474 #if NBPFILTER > 0
475 bpfdetach(ifp);
476 #endif
477 ieee80211_ifdetach(ic);
478 if_detach(ifp);
479
480 splx(s);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 USBDEV(sc->sc_dev));
484
485 return 0;
486 }
487
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 usb_endpoint_descriptor_t *edesc;
492 int isize;
493 usbd_status error;
494
495 /* interrupt in */
496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 if (edesc == NULL)
498 return EINVAL;
499
500 isize = UGETW(edesc->wMaxPacketSize);
501 if (isize == 0) /* should not happen */
502 return EINVAL;
503
504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 if (sc->ibuf == NULL)
506 return ENOMEM;
507
508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 USBD_DEFAULT_INTERVAL);
511 if (error != 0) {
512 printf("%s: open rx intr pipe failed: %s\n",
513 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
514 goto fail;
515 }
516
517 /* interrupt out (not necessarily an interrupt pipe) */
518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 if (error != 0) {
521 printf("%s: open tx intr pipe failed: %s\n",
522 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
523 goto fail;
524 }
525
526 /* bulk in */
527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 if (error != 0) {
530 printf("%s: open rx pipe failed: %s\n",
531 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
532 goto fail;
533 }
534
535 /* bulk out */
536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 if (error != 0) {
539 printf("%s: open tx pipe failed: %s\n",
540 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
541 goto fail;
542 }
543
544 return 0;
545
546 fail: zyd_close_pipes(sc);
547 return error;
548 }
549
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 int i;
554
555 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 if (sc->zyd_ep[i] != NULL) {
557 usbd_abort_pipe(sc->zyd_ep[i]);
558 usbd_close_pipe(sc->zyd_ep[i]);
559 sc->zyd_ep[i] = NULL;
560 }
561 }
562 if (sc->ibuf != NULL) {
563 free(sc->ibuf, M_USBDEV);
564 sc->ibuf = NULL;
565 }
566 }
567
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 int i, error;
572
573 sc->tx_queued = 0;
574
575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 struct zyd_tx_data *data = &sc->tx_data[i];
577
578 data->sc = sc; /* backpointer for callbacks */
579
580 data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 if (data->xfer == NULL) {
582 printf("%s: could not allocate tx xfer\n",
583 USBDEVNAME(sc->sc_dev));
584 error = ENOMEM;
585 goto fail;
586 }
587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 if (data->buf == NULL) {
589 printf("%s: could not allocate tx buffer\n",
590 USBDEVNAME(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 /* clear Tx descriptor */
596 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
597 }
598 return 0;
599
600 fail: zyd_free_tx_list(sc);
601 return error;
602 }
603
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 int i;
608
609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 struct zyd_tx_data *data = &sc->tx_data[i];
611
612 if (data->xfer != NULL) {
613 usbd_free_xfer(data->xfer);
614 data->xfer = NULL;
615 }
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620 }
621 }
622
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 int i, error;
627
628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 struct zyd_rx_data *data = &sc->rx_data[i];
630
631 data->sc = sc; /* backpointer for callbacks */
632
633 data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 if (data->xfer == NULL) {
635 printf("%s: could not allocate rx xfer\n",
636 USBDEVNAME(sc->sc_dev));
637 error = ENOMEM;
638 goto fail;
639 }
640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 if (data->buf == NULL) {
642 printf("%s: could not allocate rx buffer\n",
643 USBDEVNAME(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647 }
648 return 0;
649
650 fail: zyd_free_rx_list(sc);
651 return error;
652 }
653
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 int i;
658
659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 struct zyd_rx_data *data = &sc->rx_data[i];
661
662 if (data->xfer != NULL) {
663 usbd_free_xfer(data->xfer);
664 data->xfer = NULL;
665 }
666 }
667 }
668
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 struct zyd_node *zn;
674
675 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
676
677 return (struct ieee80211_node *)zn;
678 }
679
680 Static int
681 zyd_media_change(struct ifnet *ifp)
682 {
683 int error;
684
685 error = ieee80211_media_change(ifp);
686 if (error != ENETRESET)
687 return error;
688
689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 zyd_init(ifp);
691
692 return 0;
693 }
694
695 /*
696 * This function is called periodically (every 200ms) during scanning to
697 * switch from one channel to another.
698 */
699 Static void
700 zyd_next_scan(void *arg)
701 {
702 struct zyd_softc *sc = arg;
703 struct ieee80211com *ic = &sc->sc_ic;
704
705 if (ic->ic_state == IEEE80211_S_SCAN)
706 ieee80211_next_scan(ic);
707 }
708
709 Static void
710 zyd_task(void *arg)
711 {
712 struct zyd_softc *sc = arg;
713 struct ieee80211com *ic = &sc->sc_ic;
714 enum ieee80211_state ostate;
715
716 ostate = ic->ic_state;
717
718 switch (sc->sc_state) {
719 case IEEE80211_S_INIT:
720 if (ostate == IEEE80211_S_RUN) {
721 /* turn link LED off */
722 zyd_set_led(sc, ZYD_LED1, 0);
723
724 /* stop data LED from blinking */
725 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
726 }
727 break;
728
729 case IEEE80211_S_SCAN:
730 zyd_set_chan(sc, ic->ic_curchan);
731 usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
732 break;
733
734 case IEEE80211_S_AUTH:
735 case IEEE80211_S_ASSOC:
736 zyd_set_chan(sc, ic->ic_curchan);
737 break;
738
739 case IEEE80211_S_RUN:
740 {
741 struct ieee80211_node *ni = ic->ic_bss;
742
743 zyd_set_chan(sc, ic->ic_curchan);
744
745 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 /* turn link LED on */
747 zyd_set_led(sc, ZYD_LED1, 1);
748
749 /* make data LED blink upon Tx */
750 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
751
752 zyd_set_bssid(sc, ni->ni_bssid);
753 }
754
755 if (ic->ic_opmode == IEEE80211_M_STA) {
756 /* fake a join to init the tx rate */
757 zyd_newassoc(ni, 1);
758 }
759
760 /* start automatic rate control timer */
761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
763
764 break;
765 }
766 }
767
768 sc->sc_newstate(ic, sc->sc_state, -1);
769 }
770
771 Static int
772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 struct zyd_softc *sc = ic->ic_ifp->if_softc;
775
776 usb_rem_task(sc->sc_udev, &sc->sc_task);
777 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
778 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
779
780 /* do it in a process context */
781 sc->sc_state = nstate;
782 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
783
784 return 0;
785 }
786
787 Static int
788 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
789 void *odata, int olen, u_int flags)
790 {
791 usbd_xfer_handle xfer;
792 struct zyd_cmd cmd;
793 struct rq rq;
794 uint16_t xferflags;
795 usbd_status error;
796 int s = 0;
797
798 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
799 return ENOMEM;
800
801 cmd.code = htole16(code);
802 bcopy(idata, cmd.data, ilen);
803
804 xferflags = USBD_FORCE_SHORT_XFER;
805 if (!(flags & ZYD_CMD_FLAG_READ))
806 xferflags |= USBD_SYNCHRONOUS;
807 else {
808 s = splusb();
809 rq.idata = idata;
810 rq.odata = odata;
811 rq.len = olen / sizeof (struct zyd_pair);
812 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
813 }
814
815 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
816 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
817 error = usbd_transfer(xfer);
818 if (error != USBD_IN_PROGRESS && error != 0) {
819 if (flags & ZYD_CMD_FLAG_READ)
820 splx(s);
821 printf("%s: could not send command (error=%s)\n",
822 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
823 (void)usbd_free_xfer(xfer);
824 return EIO;
825 }
826 if (!(flags & ZYD_CMD_FLAG_READ)) {
827 (void)usbd_free_xfer(xfer);
828 return 0; /* write: don't wait for reply */
829 }
830 /* wait at most one second for command reply */
831 error = tsleep(odata, PCATCH, "zydcmd", hz);
832 if (error == EWOULDBLOCK)
833 printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
834 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
835 splx(s);
836
837 (void)usbd_free_xfer(xfer);
838 return error;
839 }
840
841 Static int
842 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
843 {
844 struct zyd_pair tmp;
845 int error;
846
847 reg = htole16(reg);
848 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
849 ZYD_CMD_FLAG_READ);
850 if (error == 0)
851 *val = le16toh(tmp.val);
852 return error;
853 }
854
855 Static int
856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
857 {
858 struct zyd_pair tmp[2];
859 uint16_t regs[2];
860 int error;
861
862 regs[0] = htole16(ZYD_REG32_HI(reg));
863 regs[1] = htole16(ZYD_REG32_LO(reg));
864 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
865 ZYD_CMD_FLAG_READ);
866 if (error == 0)
867 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
868 return error;
869 }
870
871 Static int
872 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
873 {
874 struct zyd_pair pair;
875
876 pair.reg = htole16(reg);
877 pair.val = htole16(val);
878
879 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
880 }
881
882 Static int
883 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
884 {
885 struct zyd_pair pair[2];
886
887 pair[0].reg = htole16(ZYD_REG32_HI(reg));
888 pair[0].val = htole16(val >> 16);
889 pair[1].reg = htole16(ZYD_REG32_LO(reg));
890 pair[1].val = htole16(val & 0xffff);
891
892 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
893 }
894
895 Static int
896 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
897 {
898 struct zyd_rf *rf = &sc->sc_rf;
899 struct zyd_rfwrite req;
900 uint16_t cr203;
901 int i;
902
903 (void)zyd_read16(sc, ZYD_CR203, &cr203);
904 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
905
906 req.code = htole16(2);
907 req.width = htole16(rf->width);
908 for (i = 0; i < rf->width; i++) {
909 req.bit[i] = htole16(cr203);
910 if (val & (1 << (rf->width - 1 - i)))
911 req.bit[i] |= htole16(ZYD_RF_DATA);
912 }
913 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
914 }
915
916 Static void
917 zyd_lock_phy(struct zyd_softc *sc)
918 {
919 uint32_t tmp;
920
921 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
922 tmp &= ~ZYD_UNLOCK_PHY_REGS;
923 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
924 }
925
926 Static void
927 zyd_unlock_phy(struct zyd_softc *sc)
928 {
929 uint32_t tmp;
930
931 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
932 tmp |= ZYD_UNLOCK_PHY_REGS;
933 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
934 }
935
936 /*
937 * RFMD RF methods.
938 */
939 Static int
940 zyd_rfmd_init(struct zyd_rf *rf)
941 {
942 #define N(a) (sizeof (a) / sizeof ((a)[0]))
943 struct zyd_softc *sc = rf->rf_sc;
944 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
945 static const uint32_t rfini[] = ZYD_RFMD_RF;
946 int i, error;
947
948 /* init RF-dependent PHY registers */
949 for (i = 0; i < N(phyini); i++) {
950 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
951 if (error != 0)
952 return error;
953 }
954
955 /* init RFMD radio */
956 for (i = 0; i < N(rfini); i++) {
957 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
958 return error;
959 }
960 return 0;
961 #undef N
962 }
963
964 Static int
965 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
966 {
967 struct zyd_softc *sc = rf->rf_sc;
968
969 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
970 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
971
972 return 0;
973 }
974
975 Static int
976 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
977 {
978 struct zyd_softc *sc = rf->rf_sc;
979 static const struct {
980 uint32_t r1, r2;
981 } rfprog[] = ZYD_RFMD_CHANTABLE;
982
983 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
985
986 return 0;
987 }
988
989 /*
990 * AL2230 RF methods.
991 */
992 Static int
993 zyd_al2230_init(struct zyd_rf *rf)
994 {
995 #define N(a) (sizeof (a) / sizeof ((a)[0]))
996 struct zyd_softc *sc = rf->rf_sc;
997 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 static const uint32_t rfini[] = ZYD_AL2230_RF;
999 int i, error;
1000
1001 /* init RF-dependent PHY registers */
1002 for (i = 0; i < N(phyini); i++) {
1003 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1004 if (error != 0)
1005 return error;
1006 }
1007
1008 /* init AL2230 radio */
1009 for (i = 0; i < N(rfini); i++) {
1010 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1011 return error;
1012 }
1013 return 0;
1014 #undef N
1015 }
1016
1017 Static int
1018 zyd_al2230_init_b(struct zyd_rf *rf)
1019 {
1020 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1021 struct zyd_softc *sc = rf->rf_sc;
1022 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1023 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1024 int i, error;
1025
1026 /* init RF-dependent PHY registers */
1027 for (i = 0; i < N(phyini); i++) {
1028 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1029 if (error != 0)
1030 return error;
1031 }
1032
1033 /* init AL2230 radio */
1034 for (i = 0; i < N(rfini); i++) {
1035 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1036 return error;
1037 }
1038 return 0;
1039 #undef N
1040 }
1041
1042 Static int
1043 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1044 {
1045 struct zyd_softc *sc = rf->rf_sc;
1046 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1047
1048 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1049 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1050
1051 return 0;
1052 }
1053
1054 Static int
1055 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1056 {
1057 struct zyd_softc *sc = rf->rf_sc;
1058 static const struct {
1059 uint32_t r1, r2, r3;
1060 } rfprog[] = ZYD_AL2230_CHANTABLE;
1061
1062 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1063 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1064 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1065
1066 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1067 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * AL7230B RF methods.
1074 */
1075 Static int
1076 zyd_al7230B_init(struct zyd_rf *rf)
1077 {
1078 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1079 struct zyd_softc *sc = rf->rf_sc;
1080 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1081 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1082 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1083 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1084 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1085 int i, error;
1086
1087 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1088
1089 /* init RF-dependent PHY registers, part one */
1090 for (i = 0; i < N(phyini_1); i++) {
1091 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1092 if (error != 0)
1093 return error;
1094 }
1095 /* init AL7230B radio, part one */
1096 for (i = 0; i < N(rfini_1); i++) {
1097 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1098 return error;
1099 }
1100 /* init RF-dependent PHY registers, part two */
1101 for (i = 0; i < N(phyini_2); i++) {
1102 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1103 if (error != 0)
1104 return error;
1105 }
1106 /* init AL7230B radio, part two */
1107 for (i = 0; i < N(rfini_2); i++) {
1108 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1109 return error;
1110 }
1111 /* init RF-dependent PHY registers, part three */
1112 for (i = 0; i < N(phyini_3); i++) {
1113 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1114 if (error != 0)
1115 return error;
1116 }
1117
1118 return 0;
1119 #undef N
1120 }
1121
1122 Static int
1123 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1124 {
1125 struct zyd_softc *sc = rf->rf_sc;
1126
1127 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1128 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1129
1130 return 0;
1131 }
1132
1133 Static int
1134 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1135 {
1136 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1137 struct zyd_softc *sc = rf->rf_sc;
1138 static const struct {
1139 uint32_t r1, r2;
1140 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1141 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1142 int i, error;
1143
1144 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1145 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1146
1147 for (i = 0; i < N(rfsc); i++) {
1148 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1149 return error;
1150 }
1151
1152 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1153 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1154 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1155 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1156 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1157
1158 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1159 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1160 (void)zyd_rfwrite(sc, 0x3c9000);
1161
1162 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1163 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1164 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1165
1166 return 0;
1167 #undef N
1168 }
1169
1170 /*
1171 * AL2210 RF methods.
1172 */
1173 Static int
1174 zyd_al2210_init(struct zyd_rf *rf)
1175 {
1176 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1177 struct zyd_softc *sc = rf->rf_sc;
1178 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1179 static const uint32_t rfini[] = ZYD_AL2210_RF;
1180 uint32_t tmp;
1181 int i, error;
1182
1183 (void)zyd_write32(sc, ZYD_CR18, 2);
1184
1185 /* init RF-dependent PHY registers */
1186 for (i = 0; i < N(phyini); i++) {
1187 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1188 if (error != 0)
1189 return error;
1190 }
1191 /* init AL2210 radio */
1192 for (i = 0; i < N(rfini); i++) {
1193 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1194 return error;
1195 }
1196 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1197 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1198 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1199 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1200 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1201 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1202 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 (void)zyd_write32(sc, ZYD_CR18, 3);
1204
1205 return 0;
1206 #undef N
1207 }
1208
1209 Static int
1210 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1211 {
1212 /* vendor driver does nothing for this RF chip */
1213
1214 return 0;
1215 }
1216
1217 Static int
1218 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1219 {
1220 struct zyd_softc *sc = rf->rf_sc;
1221 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1222 uint32_t tmp;
1223
1224 (void)zyd_write32(sc, ZYD_CR18, 2);
1225 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1226 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1227 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1228 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1229 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1230
1231 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1232 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1233
1234 /* actually set the channel */
1235 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1236
1237 (void)zyd_write32(sc, ZYD_CR18, 3);
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * GCT RF methods.
1244 */
1245 Static int
1246 zyd_gct_init(struct zyd_rf *rf)
1247 {
1248 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1249 struct zyd_softc *sc = rf->rf_sc;
1250 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1251 static const uint32_t rfini[] = ZYD_GCT_RF;
1252 int i, error;
1253
1254 /* init RF-dependent PHY registers */
1255 for (i = 0; i < N(phyini); i++) {
1256 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1257 if (error != 0)
1258 return error;
1259 }
1260 /* init cgt radio */
1261 for (i = 0; i < N(rfini); i++) {
1262 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1263 return error;
1264 }
1265 return 0;
1266 #undef N
1267 }
1268
1269 Static int
1270 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1271 {
1272 /* vendor driver does nothing for this RF chip */
1273
1274 return 0;
1275 }
1276
1277 Static int
1278 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1279 {
1280 struct zyd_softc *sc = rf->rf_sc;
1281 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1282
1283 (void)zyd_rfwrite(sc, 0x1c0000);
1284 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1285 (void)zyd_rfwrite(sc, 0x1c0008);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Maxim RF methods.
1292 */
1293 Static int
1294 zyd_maxim_init(struct zyd_rf *rf)
1295 {
1296 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1297 struct zyd_softc *sc = rf->rf_sc;
1298 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1299 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1300 uint16_t tmp;
1301 int i, error;
1302
1303 /* init RF-dependent PHY registers */
1304 for (i = 0; i < N(phyini); i++) {
1305 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1306 if (error != 0)
1307 return error;
1308 }
1309 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1310 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1311
1312 /* init maxim radio */
1313 for (i = 0; i < N(rfini); i++) {
1314 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1315 return error;
1316 }
1317 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1319
1320 return 0;
1321 #undef N
1322 }
1323
1324 Static int
1325 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1326 {
1327 /* vendor driver does nothing for this RF chip */
1328
1329 return 0;
1330 }
1331
1332 Static int
1333 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1334 {
1335 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1336 struct zyd_softc *sc = rf->rf_sc;
1337 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1338 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1339 static const struct {
1340 uint32_t r1, r2;
1341 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1342 uint16_t tmp;
1343 int i, error;
1344
1345 /*
1346 * Do the same as we do when initializing it, except for the channel
1347 * values coming from the two channel tables.
1348 */
1349
1350 /* init RF-dependent PHY registers */
1351 for (i = 0; i < N(phyini); i++) {
1352 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1353 if (error != 0)
1354 return error;
1355 }
1356 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1357 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1358
1359 /* first two values taken from the chantables */
1360 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1361 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1362
1363 /* init maxim radio - skipping the two first values */
1364 for (i = 2; i < N(rfini); i++) {
1365 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1366 return error;
1367 }
1368 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1369 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1370
1371 return 0;
1372 #undef N
1373 }
1374
1375 /*
1376 * Maxim2 RF methods.
1377 */
1378 Static int
1379 zyd_maxim2_init(struct zyd_rf *rf)
1380 {
1381 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1382 struct zyd_softc *sc = rf->rf_sc;
1383 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1384 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1385 uint16_t tmp;
1386 int i, error;
1387
1388 /* init RF-dependent PHY registers */
1389 for (i = 0; i < N(phyini); i++) {
1390 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1391 if (error != 0)
1392 return error;
1393 }
1394 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1395 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1396
1397 /* init maxim2 radio */
1398 for (i = 0; i < N(rfini); i++) {
1399 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1400 return error;
1401 }
1402 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1403 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1404
1405 return 0;
1406 #undef N
1407 }
1408
1409 Static int
1410 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1411 {
1412 /* vendor driver does nothing for this RF chip */
1413
1414 return 0;
1415 }
1416
1417 Static int
1418 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1419 {
1420 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1421 struct zyd_softc *sc = rf->rf_sc;
1422 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1423 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1424 static const struct {
1425 uint32_t r1, r2;
1426 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1427 uint16_t tmp;
1428 int i, error;
1429
1430 /*
1431 * Do the same as we do when initializing it, except for the channel
1432 * values coming from the two channel tables.
1433 */
1434
1435 /* init RF-dependent PHY registers */
1436 for (i = 0; i < N(phyini); i++) {
1437 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1438 if (error != 0)
1439 return error;
1440 }
1441 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1442 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1443
1444 /* first two values taken from the chantables */
1445 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1447
1448 /* init maxim2 radio - skipping the two first values */
1449 for (i = 2; i < N(rfini); i++) {
1450 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1451 return error;
1452 }
1453 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1454 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1455
1456 return 0;
1457 #undef N
1458 }
1459
1460 Static int
1461 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1462 {
1463 struct zyd_rf *rf = &sc->sc_rf;
1464
1465 rf->rf_sc = sc;
1466
1467 switch (type) {
1468 case ZYD_RF_RFMD:
1469 rf->init = zyd_rfmd_init;
1470 rf->switch_radio = zyd_rfmd_switch_radio;
1471 rf->set_channel = zyd_rfmd_set_channel;
1472 rf->width = 24; /* 24-bit RF values */
1473 break;
1474 case ZYD_RF_AL2230:
1475 if (sc->mac_rev == ZYD_ZD1211B)
1476 rf->init = zyd_al2230_init_b;
1477 else
1478 rf->init = zyd_al2230_init;
1479 rf->switch_radio = zyd_al2230_switch_radio;
1480 rf->set_channel = zyd_al2230_set_channel;
1481 rf->width = 24; /* 24-bit RF values */
1482 break;
1483 case ZYD_RF_AL7230B:
1484 rf->init = zyd_al7230B_init;
1485 rf->switch_radio = zyd_al7230B_switch_radio;
1486 rf->set_channel = zyd_al7230B_set_channel;
1487 rf->width = 24; /* 24-bit RF values */
1488 break;
1489 case ZYD_RF_AL2210:
1490 rf->init = zyd_al2210_init;
1491 rf->switch_radio = zyd_al2210_switch_radio;
1492 rf->set_channel = zyd_al2210_set_channel;
1493 rf->width = 24; /* 24-bit RF values */
1494 break;
1495 case ZYD_RF_GCT:
1496 rf->init = zyd_gct_init;
1497 rf->switch_radio = zyd_gct_switch_radio;
1498 rf->set_channel = zyd_gct_set_channel;
1499 rf->width = 21; /* 21-bit RF values */
1500 break;
1501 case ZYD_RF_MAXIM_NEW:
1502 rf->init = zyd_maxim_init;
1503 rf->switch_radio = zyd_maxim_switch_radio;
1504 rf->set_channel = zyd_maxim_set_channel;
1505 rf->width = 18; /* 18-bit RF values */
1506 break;
1507 case ZYD_RF_MAXIM_NEW2:
1508 rf->init = zyd_maxim2_init;
1509 rf->switch_radio = zyd_maxim2_switch_radio;
1510 rf->set_channel = zyd_maxim2_set_channel;
1511 rf->width = 18; /* 18-bit RF values */
1512 break;
1513 default:
1514 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1515 USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1516 return EINVAL;
1517 }
1518 return 0;
1519 }
1520
1521 Static const char *
1522 zyd_rf_name(uint8_t type)
1523 {
1524 static const char * const zyd_rfs[] = {
1525 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1526 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1527 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1528 "PHILIPS"
1529 };
1530
1531 return zyd_rfs[(type > 15) ? 0 : type];
1532 }
1533
1534 Static int
1535 zyd_hw_init(struct zyd_softc *sc)
1536 {
1537 struct zyd_rf *rf = &sc->sc_rf;
1538 const struct zyd_phy_pair *phyp;
1539 int error;
1540
1541 /* specify that the plug and play is finished */
1542 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1543
1544 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1545 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1546
1547 /* retrieve firmware revision number */
1548 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1549
1550 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1551 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1552
1553 /* disable interrupts */
1554 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1555
1556 /* PHY init */
1557 zyd_lock_phy(sc);
1558 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1559 for (; phyp->reg != 0; phyp++) {
1560 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1561 goto fail;
1562 }
1563 zyd_unlock_phy(sc);
1564
1565 /* HMAC init */
1566 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1567 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1568
1569 if (sc->mac_rev == ZYD_ZD1211) {
1570 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1571 } else {
1572 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1573 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1577 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1579 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1580 }
1581
1582 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1583 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1584 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1586 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1587 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1588 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1589 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1590 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1591 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1593 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1594 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1595 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1596 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1597 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1598 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1599
1600 /* RF chip init */
1601 zyd_lock_phy(sc);
1602 error = (*rf->init)(rf);
1603 zyd_unlock_phy(sc);
1604 if (error != 0) {
1605 printf("%s: radio initialization failed\n",
1606 USBDEVNAME(sc->sc_dev));
1607 goto fail;
1608 }
1609
1610 /* init beacon interval to 100ms */
1611 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1612 goto fail;
1613
1614 fail: return error;
1615 }
1616
1617 Static int
1618 zyd_read_eeprom(struct zyd_softc *sc)
1619 {
1620 struct ieee80211com *ic = &sc->sc_ic;
1621 uint32_t tmp;
1622 uint16_t val;
1623 int i;
1624
1625 /* read MAC address */
1626 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1627 ic->ic_myaddr[0] = tmp & 0xff;
1628 ic->ic_myaddr[1] = tmp >> 8;
1629 ic->ic_myaddr[2] = tmp >> 16;
1630 ic->ic_myaddr[3] = tmp >> 24;
1631 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1632 ic->ic_myaddr[4] = tmp & 0xff;
1633 ic->ic_myaddr[5] = tmp >> 8;
1634
1635 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1636 sc->rf_rev = tmp & 0x0f;
1637 sc->pa_rev = (tmp >> 16) & 0x0f;
1638
1639 /* read regulatory domain (currently unused) */
1640 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1641 sc->regdomain = tmp >> 16;
1642 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1643
1644 /* read Tx power calibration tables */
1645 for (i = 0; i < 7; i++) {
1646 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1647 sc->pwr_cal[i * 2] = val >> 8;
1648 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1649
1650 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1651 sc->pwr_int[i * 2] = val >> 8;
1652 sc->pwr_int[i * 2 + 1] = val & 0xff;
1653
1654 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1655 sc->ofdm36_cal[i * 2] = val >> 8;
1656 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1657
1658 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1659 sc->ofdm48_cal[i * 2] = val >> 8;
1660 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1661
1662 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1663 sc->ofdm54_cal[i * 2] = val >> 8;
1664 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1665 }
1666 return 0;
1667 }
1668
1669 Static int
1670 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1671 {
1672 uint32_t tmp;
1673
1674 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1675 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1676
1677 tmp = addr[5] << 8 | addr[4];
1678 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1679
1680 return 0;
1681 }
1682
1683 Static int
1684 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1685 {
1686 uint32_t tmp;
1687
1688 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1689 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1690
1691 tmp = addr[5] << 8 | addr[4];
1692 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1693
1694 return 0;
1695 }
1696
1697 Static int
1698 zyd_switch_radio(struct zyd_softc *sc, int on)
1699 {
1700 struct zyd_rf *rf = &sc->sc_rf;
1701 int error;
1702
1703 zyd_lock_phy(sc);
1704 error = (*rf->switch_radio)(rf, on);
1705 zyd_unlock_phy(sc);
1706
1707 return error;
1708 }
1709
1710 Static void
1711 zyd_set_led(struct zyd_softc *sc, int which, int on)
1712 {
1713 uint32_t tmp;
1714
1715 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1716 tmp &= ~which;
1717 if (on)
1718 tmp |= which;
1719 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1720 }
1721
1722 Static int
1723 zyd_set_rxfilter(struct zyd_softc *sc)
1724 {
1725 uint32_t rxfilter;
1726
1727 switch (sc->sc_ic.ic_opmode) {
1728 case IEEE80211_M_STA:
1729 rxfilter = ZYD_FILTER_BSS;
1730 break;
1731 case IEEE80211_M_IBSS:
1732 case IEEE80211_M_HOSTAP:
1733 rxfilter = ZYD_FILTER_HOSTAP;
1734 break;
1735 case IEEE80211_M_MONITOR:
1736 rxfilter = ZYD_FILTER_MONITOR;
1737 break;
1738 default:
1739 /* should not get there */
1740 return EINVAL;
1741 }
1742 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1743 }
1744
1745 Static void
1746 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 struct zyd_rf *rf = &sc->sc_rf;
1750 u_int chan;
1751
1752 chan = ieee80211_chan2ieee(ic, c);
1753 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1754 return;
1755
1756 zyd_lock_phy(sc);
1757
1758 (*rf->set_channel)(rf, chan);
1759
1760 /* update Tx power */
1761 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1762 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1763
1764 if (sc->mac_rev == ZYD_ZD1211B) {
1765 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1766 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1768
1769 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1770 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1771 }
1772
1773 zyd_unlock_phy(sc);
1774 }
1775
1776 Static int
1777 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1778 {
1779 /* XXX this is probably broken.. */
1780 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1781 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1782 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1783
1784 return 0;
1785 }
1786
1787 Static uint8_t
1788 zyd_plcp_signal(int rate)
1789 {
1790 switch (rate) {
1791 /* CCK rates (returned values are device-dependent) */
1792 case 2: return 0x0;
1793 case 4: return 0x1;
1794 case 11: return 0x2;
1795 case 22: return 0x3;
1796
1797 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1798 case 12: return 0xb;
1799 case 18: return 0xf;
1800 case 24: return 0xa;
1801 case 36: return 0xe;
1802 case 48: return 0x9;
1803 case 72: return 0xd;
1804 case 96: return 0x8;
1805 case 108: return 0xc;
1806
1807 /* unsupported rates (should not get there) */
1808 default: return 0xff;
1809 }
1810 }
1811
1812 Static void
1813 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1814 {
1815 struct zyd_softc *sc = (struct zyd_softc *)priv;
1816 struct zyd_cmd *cmd;
1817 uint32_t datalen;
1818
1819 if (status != USBD_NORMAL_COMPLETION) {
1820 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1821 return;
1822
1823 if (status == USBD_STALLED) {
1824 usbd_clear_endpoint_stall_async(
1825 sc->zyd_ep[ZYD_ENDPT_IIN]);
1826 }
1827 return;
1828 }
1829
1830 cmd = (struct zyd_cmd *)sc->ibuf;
1831
1832 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1833 struct zyd_notif_retry *retry =
1834 (struct zyd_notif_retry *)cmd->data;
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 struct ifnet *ifp = &sc->sc_if;
1837 struct ieee80211_node *ni;
1838
1839 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1840 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1841 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1842
1843 /*
1844 * Find the node to which the packet was sent and update its
1845 * retry statistics. In BSS mode, this node is the AP we're
1846 * associated to so no lookup is actually needed.
1847 */
1848 if (ic->ic_opmode != IEEE80211_M_STA) {
1849 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1850 if (ni == NULL)
1851 return; /* just ignore */
1852 } else
1853 ni = ic->ic_bss;
1854
1855 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1856
1857 if (le16toh(retry->count) & 0x100)
1858 ifp->if_oerrors++; /* too many retries */
1859
1860 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1861 struct rq *rqp;
1862
1863 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1864 return; /* HMAC interrupt */
1865
1866 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1867 datalen -= sizeof(cmd->code);
1868 datalen -= 2; /* XXX: padding? */
1869
1870 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1871 int i;
1872
1873 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1874 continue;
1875 for (i = 0; i < rqp->len; i++) {
1876 if (*(((const uint16_t *)rqp->idata) + i) !=
1877 (((struct zyd_pair *)cmd->data) + i)->reg)
1878 break;
1879 }
1880 if (i != rqp->len)
1881 continue;
1882
1883 /* copy answer into caller-supplied buffer */
1884 bcopy(cmd->data, rqp->odata,
1885 sizeof(struct zyd_pair) * rqp->len);
1886 wakeup(rqp->odata); /* wakeup caller */
1887
1888 return;
1889 }
1890 return; /* unexpected IORD notification */
1891 } else {
1892 printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1893 le16toh(cmd->code));
1894 }
1895 }
1896
1897 Static void
1898 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1899 {
1900 struct ieee80211com *ic = &sc->sc_ic;
1901 struct ifnet *ifp = &sc->sc_if;
1902 struct ieee80211_node *ni;
1903 struct ieee80211_frame *wh;
1904 const struct zyd_plcphdr *plcp;
1905 const struct zyd_rx_stat *stat;
1906 struct mbuf *m;
1907 int rlen, s;
1908
1909 if (len < ZYD_MIN_FRAGSZ) {
1910 printf("%s: frame too short (length=%d)\n",
1911 USBDEVNAME(sc->sc_dev), len);
1912 ifp->if_ierrors++;
1913 return;
1914 }
1915
1916 plcp = (const struct zyd_plcphdr *)buf;
1917 stat = (const struct zyd_rx_stat *)
1918 (buf + len - sizeof (struct zyd_rx_stat));
1919
1920 if (stat->flags & ZYD_RX_ERROR) {
1921 DPRINTF(("%s: RX status indicated error (%x)\n",
1922 USBDEVNAME(sc->sc_dev), stat->flags));
1923 ifp->if_ierrors++;
1924 return;
1925 }
1926
1927 /* compute actual frame length */
1928 rlen = len - sizeof (struct zyd_plcphdr) -
1929 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1930
1931 /* allocate a mbuf to store the frame */
1932 MGETHDR(m, M_DONTWAIT, MT_DATA);
1933 if (m == NULL) {
1934 printf("%s: could not allocate rx mbuf\n",
1935 USBDEVNAME(sc->sc_dev));
1936 ifp->if_ierrors++;
1937 return;
1938 }
1939 if (rlen > MHLEN) {
1940 MCLGET(m, M_DONTWAIT);
1941 if (!(m->m_flags & M_EXT)) {
1942 printf("%s: could not allocate rx mbuf cluster\n",
1943 USBDEVNAME(sc->sc_dev));
1944 m_freem(m);
1945 ifp->if_ierrors++;
1946 return;
1947 }
1948 }
1949 m->m_pkthdr.rcvif = ifp;
1950 m->m_pkthdr.len = m->m_len = rlen;
1951 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1952
1953 s = splnet();
1954
1955 #if NBPFILTER > 0
1956 if (sc->sc_drvbpf != NULL) {
1957 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1958 static const uint8_t rates[] = {
1959 /* reverse function of zyd_plcp_signal() */
1960 2, 4, 11, 22, 0, 0, 0, 0,
1961 96, 48, 24, 12, 108, 72, 36, 18
1962 };
1963
1964 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1965 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1966 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1967 tap->wr_rssi = stat->rssi;
1968 tap->wr_rate = rates[plcp->signal & 0xf];
1969
1970 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1971 }
1972 #endif
1973
1974 wh = mtod(m, struct ieee80211_frame *);
1975 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1976 ieee80211_input(ic, m, ni, stat->rssi, 0);
1977
1978 /* node is no longer needed */
1979 ieee80211_free_node(ni);
1980
1981 splx(s);
1982 }
1983
1984 Static void
1985 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1986 {
1987 struct zyd_rx_data *data = priv;
1988 struct zyd_softc *sc = data->sc;
1989 struct ifnet *ifp = &sc->sc_if;
1990 const struct zyd_rx_desc *desc;
1991 int len;
1992
1993 if (status != USBD_NORMAL_COMPLETION) {
1994 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1995 return;
1996
1997 if (status == USBD_STALLED)
1998 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1999
2000 goto skip;
2001 }
2002 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2003
2004 if (len < ZYD_MIN_RXBUFSZ) {
2005 printf("%s: xfer too short (length=%d)\n",
2006 USBDEVNAME(sc->sc_dev), len);
2007 ifp->if_ierrors++;
2008 goto skip;
2009 }
2010
2011 desc = (const struct zyd_rx_desc *)
2012 (data->buf + len - sizeof (struct zyd_rx_desc));
2013
2014 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2015 const uint8_t *p = data->buf, *end = p + len;
2016 int i;
2017
2018 DPRINTFN(3, ("received multi-frame transfer\n"));
2019
2020 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2021 const uint16_t len16 = UGETW(desc->len[i]);
2022
2023 if (len16 == 0 || p + len16 > end)
2024 break;
2025
2026 zyd_rx_data(sc, p, len16);
2027 /* next frame is aligned on a 32-bit boundary */
2028 p += (len16 + 3) & ~3;
2029 }
2030 } else {
2031 DPRINTFN(3, ("received single-frame transfer\n"));
2032
2033 zyd_rx_data(sc, data->buf, len);
2034 }
2035
2036 skip: /* setup a new transfer */
2037 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2038 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2039 USBD_NO_TIMEOUT, zyd_rxeof);
2040 (void)usbd_transfer(xfer);
2041 }
2042
2043 Static int
2044 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2045 {
2046 struct ieee80211com *ic = &sc->sc_ic;
2047 struct ifnet *ifp = &sc->sc_if;
2048 struct zyd_tx_desc *desc;
2049 struct zyd_tx_data *data;
2050 struct ieee80211_frame *wh;
2051 struct ieee80211_key *k;
2052 int xferlen, totlen, rate;
2053 uint16_t pktlen;
2054 usbd_status error;
2055
2056 data = &sc->tx_data[0];
2057 desc = (struct zyd_tx_desc *)data->buf;
2058
2059 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2060
2061 wh = mtod(m0, struct ieee80211_frame *);
2062
2063 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2064 k = ieee80211_crypto_encap(ic, ni, m0);
2065 if (k == NULL) {
2066 m_freem(m0);
2067 return ENOBUFS;
2068 }
2069 }
2070
2071 data->ni = ni;
2072
2073 wh = mtod(m0, struct ieee80211_frame *);
2074
2075 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2076 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2077
2078 /* fill Tx descriptor */
2079 desc->len = htole16(totlen);
2080
2081 desc->flags = ZYD_TX_FLAG_BACKOFF;
2082 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2083 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2084 if (totlen > ic->ic_rtsthreshold) {
2085 desc->flags |= ZYD_TX_FLAG_RTS;
2086 } else if (ZYD_RATE_IS_OFDM(rate) &&
2087 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2088 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2089 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2090 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2091 desc->flags |= ZYD_TX_FLAG_RTS;
2092 }
2093 } else
2094 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2095
2096 if ((wh->i_fc[0] &
2097 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2098 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2099 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2100
2101 desc->phy = zyd_plcp_signal(rate);
2102 if (ZYD_RATE_IS_OFDM(rate)) {
2103 desc->phy |= ZYD_TX_PHY_OFDM;
2104 if (ic->ic_curmode == IEEE80211_MODE_11A)
2105 desc->phy |= ZYD_TX_PHY_5GHZ;
2106 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2107 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2108
2109 /* actual transmit length (XXX why +10?) */
2110 pktlen = sizeof (struct zyd_tx_desc) + 10;
2111 if (sc->mac_rev == ZYD_ZD1211)
2112 pktlen += totlen;
2113 desc->pktlen = htole16(pktlen);
2114
2115 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2116 desc->plcp_service = 0;
2117 if (rate == 22) {
2118 const int remainder = (16 * totlen) % 22;
2119 if (remainder != 0 && remainder < 7)
2120 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2121 }
2122
2123 #if NBPFILTER > 0
2124 if (sc->sc_drvbpf != NULL) {
2125 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2126
2127 tap->wt_flags = 0;
2128 tap->wt_rate = rate;
2129 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2130 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2131
2132 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2133 }
2134 #endif
2135
2136 m_copydata(m0, 0, m0->m_pkthdr.len,
2137 data->buf + sizeof (struct zyd_tx_desc));
2138
2139 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2140 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2141
2142 m_freem(m0); /* mbuf no longer needed */
2143
2144 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2145 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2146 ZYD_TX_TIMEOUT, zyd_txeof);
2147 error = usbd_transfer(data->xfer);
2148 if (error != USBD_IN_PROGRESS && error != 0) {
2149 ifp->if_oerrors++;
2150 return EIO;
2151 }
2152 sc->tx_queued++;
2153
2154 return 0;
2155 }
2156
2157 Static void
2158 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2159 {
2160 struct zyd_tx_data *data = priv;
2161 struct zyd_softc *sc = data->sc;
2162 struct ifnet *ifp = &sc->sc_if;
2163 int s;
2164
2165 if (status != USBD_NORMAL_COMPLETION) {
2166 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2167 return;
2168
2169 printf("%s: could not transmit buffer: %s\n",
2170 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2171
2172 if (status == USBD_STALLED) {
2173 usbd_clear_endpoint_stall_async(
2174 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2175 }
2176 ifp->if_oerrors++;
2177 return;
2178 }
2179
2180 s = splnet();
2181
2182 /* update rate control statistics */
2183 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2184
2185 ieee80211_free_node(data->ni);
2186 data->ni = NULL;
2187
2188 sc->tx_queued--;
2189 ifp->if_opackets++;
2190
2191 sc->tx_timer = 0;
2192 ifp->if_flags &= ~IFF_OACTIVE;
2193 zyd_start(ifp);
2194
2195 splx(s);
2196 }
2197
2198 Static int
2199 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2200 {
2201 struct ieee80211com *ic = &sc->sc_ic;
2202 struct ifnet *ifp = &sc->sc_if;
2203 struct zyd_tx_desc *desc;
2204 struct zyd_tx_data *data;
2205 struct ieee80211_frame *wh;
2206 struct ieee80211_key *k;
2207 int xferlen, totlen, rate;
2208 uint16_t pktlen;
2209 usbd_status error;
2210
2211 wh = mtod(m0, struct ieee80211_frame *);
2212
2213 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2214 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2215 else
2216 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2217 rate &= IEEE80211_RATE_VAL;
2218
2219 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2220 k = ieee80211_crypto_encap(ic, ni, m0);
2221 if (k == NULL) {
2222 m_freem(m0);
2223 return ENOBUFS;
2224 }
2225
2226 /* packet header may have moved, reset our local pointer */
2227 wh = mtod(m0, struct ieee80211_frame *);
2228 }
2229
2230 data = &sc->tx_data[0];
2231 desc = (struct zyd_tx_desc *)data->buf;
2232
2233 data->ni = ni;
2234
2235 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2236 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2237
2238 /* fill Tx descriptor */
2239 desc->len = htole16(totlen);
2240
2241 desc->flags = ZYD_TX_FLAG_BACKOFF;
2242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2243 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2244 if (totlen > ic->ic_rtsthreshold) {
2245 desc->flags |= ZYD_TX_FLAG_RTS;
2246 } else if (ZYD_RATE_IS_OFDM(rate) &&
2247 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2248 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2249 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2250 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2251 desc->flags |= ZYD_TX_FLAG_RTS;
2252 }
2253 } else
2254 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2255
2256 if ((wh->i_fc[0] &
2257 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2258 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2259 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2260
2261 desc->phy = zyd_plcp_signal(rate);
2262 if (ZYD_RATE_IS_OFDM(rate)) {
2263 desc->phy |= ZYD_TX_PHY_OFDM;
2264 if (ic->ic_curmode == IEEE80211_MODE_11A)
2265 desc->phy |= ZYD_TX_PHY_5GHZ;
2266 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2267 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2268
2269 /* actual transmit length (XXX why +10?) */
2270 pktlen = sizeof (struct zyd_tx_desc) + 10;
2271 if (sc->mac_rev == ZYD_ZD1211)
2272 pktlen += totlen;
2273 desc->pktlen = htole16(pktlen);
2274
2275 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2276 desc->plcp_service = 0;
2277 if (rate == 22) {
2278 const int remainder = (16 * totlen) % 22;
2279 if (remainder != 0 && remainder < 7)
2280 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2281 }
2282
2283 #if NBPFILTER > 0
2284 if (sc->sc_drvbpf != NULL) {
2285 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2286
2287 tap->wt_flags = 0;
2288 tap->wt_rate = rate;
2289 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2290 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2291
2292 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2293 }
2294 #endif
2295
2296 m_copydata(m0, 0, m0->m_pkthdr.len,
2297 data->buf + sizeof (struct zyd_tx_desc));
2298
2299 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2300 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2301
2302 m_freem(m0); /* mbuf no longer needed */
2303
2304 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2305 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2306 ZYD_TX_TIMEOUT, zyd_txeof);
2307 error = usbd_transfer(data->xfer);
2308 if (error != USBD_IN_PROGRESS && error != 0) {
2309 ifp->if_oerrors++;
2310 return EIO;
2311 }
2312 sc->tx_queued++;
2313
2314 return 0;
2315 }
2316
2317 Static void
2318 zyd_start(struct ifnet *ifp)
2319 {
2320 struct zyd_softc *sc = ifp->if_softc;
2321 struct ieee80211com *ic = &sc->sc_ic;
2322 struct ether_header *eh;
2323 struct ieee80211_node *ni;
2324 struct mbuf *m0;
2325
2326 for (;;) {
2327 IF_POLL(&ic->ic_mgtq, m0);
2328 if (m0 != NULL) {
2329 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2330 ifp->if_flags |= IFF_OACTIVE;
2331 break;
2332 }
2333 IF_DEQUEUE(&ic->ic_mgtq, m0);
2334
2335 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2336 m0->m_pkthdr.rcvif = NULL;
2337 #if NBPFILTER > 0
2338 if (ic->ic_rawbpf != NULL)
2339 bpf_mtap(ic->ic_rawbpf, m0);
2340 #endif
2341 if (zyd_tx_mgt(sc, m0, ni) != 0)
2342 break;
2343 } else {
2344 if (ic->ic_state != IEEE80211_S_RUN)
2345 break;
2346 IFQ_POLL(&ifp->if_snd, m0);
2347 if (m0 == NULL)
2348 break;
2349 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2350 ifp->if_flags |= IFF_OACTIVE;
2351 break;
2352 }
2353 IFQ_DEQUEUE(&ifp->if_snd, m0);
2354
2355 if (m0->m_len < sizeof(struct ether_header) &&
2356 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2357 continue;
2358
2359 eh = mtod(m0, struct ether_header *);
2360 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2361 if (ni == NULL) {
2362 m_freem(m0);
2363 continue;
2364 }
2365 #if NBPFILTER > 0
2366 if (ifp->if_bpf != NULL)
2367 bpf_mtap(ifp->if_bpf, m0);
2368 #endif
2369 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2370 ieee80211_free_node(ni);
2371 ifp->if_oerrors++;
2372 continue;
2373 }
2374 #if NBPFILTER > 0
2375 if (ic->ic_rawbpf != NULL)
2376 bpf_mtap(ic->ic_rawbpf, m0);
2377 #endif
2378 if (zyd_tx_data(sc, m0, ni) != 0) {
2379 ieee80211_free_node(ni);
2380 ifp->if_oerrors++;
2381 break;
2382 }
2383 }
2384
2385 sc->tx_timer = 5;
2386 ifp->if_timer = 1;
2387 }
2388 }
2389
2390 Static void
2391 zyd_watchdog(struct ifnet *ifp)
2392 {
2393 struct zyd_softc *sc = ifp->if_softc;
2394 struct ieee80211com *ic = &sc->sc_ic;
2395
2396 ifp->if_timer = 0;
2397
2398 if (sc->tx_timer > 0) {
2399 if (--sc->tx_timer == 0) {
2400 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2401 /* zyd_init(ifp); XXX needs a process context ? */
2402 ifp->if_oerrors++;
2403 return;
2404 }
2405 ifp->if_timer = 1;
2406 }
2407
2408 ieee80211_watchdog(ic);
2409 }
2410
2411 Static int
2412 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2413 {
2414 struct zyd_softc *sc = ifp->if_softc;
2415 struct ieee80211com *ic = &sc->sc_ic;
2416 int s, error = 0;
2417
2418 s = splnet();
2419
2420 switch (cmd) {
2421 case SIOCSIFFLAGS:
2422 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2423 break;
2424 /* XXX re-use ether_ioctl() */
2425 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2426 case IFF_UP:
2427 zyd_init(ifp);
2428 break;
2429 case IFF_RUNNING:
2430 zyd_stop(ifp, 1);
2431 break;
2432 default:
2433 break;
2434 }
2435 break;
2436
2437 default:
2438 if (!sc->attached)
2439 error = ENXIO;
2440 else
2441 error = ieee80211_ioctl(ic, cmd, data);
2442 }
2443
2444 if (error == ENETRESET) {
2445 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2446 (IFF_RUNNING | IFF_UP))
2447 zyd_init(ifp);
2448 error = 0;
2449 }
2450
2451 splx(s);
2452
2453 return error;
2454 }
2455
2456 Static int
2457 zyd_init(struct ifnet *ifp)
2458 {
2459 struct zyd_softc *sc = ifp->if_softc;
2460 struct ieee80211com *ic = &sc->sc_ic;
2461 int i, error;
2462
2463 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2464 if ((error = zyd_attachhook(sc)) != 0)
2465 return error;
2466
2467 zyd_stop(ifp, 0);
2468
2469 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2470 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2471 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2472 if (error != 0)
2473 return error;
2474
2475 /* we'll do software WEP decryption for now */
2476 DPRINTF(("setting encryption type\n"));
2477 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2478 if (error != 0)
2479 return error;
2480
2481 /* promiscuous mode */
2482 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2483 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2484
2485 (void)zyd_set_rxfilter(sc);
2486
2487 /* switch radio transmitter ON */
2488 (void)zyd_switch_radio(sc, 1);
2489
2490 /* set basic rates */
2491 if (ic->ic_curmode == IEEE80211_MODE_11B)
2492 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2493 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2494 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2495 else /* assumes 802.11b/g */
2496 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2497
2498 /* set mandatory rates */
2499 if (ic->ic_curmode == IEEE80211_MODE_11B)
2500 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2501 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2502 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2503 else /* assumes 802.11b/g */
2504 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2505
2506 /* set default BSS channel */
2507 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2508 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2509
2510 /* enable interrupts */
2511 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2512
2513 /*
2514 * Allocate Tx and Rx xfer queues.
2515 */
2516 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2517 printf("%s: could not allocate Tx list\n",
2518 USBDEVNAME(sc->sc_dev));
2519 goto fail;
2520 }
2521 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2522 printf("%s: could not allocate Rx list\n",
2523 USBDEVNAME(sc->sc_dev));
2524 goto fail;
2525 }
2526
2527 /*
2528 * Start up the receive pipe.
2529 */
2530 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2531 struct zyd_rx_data *data = &sc->rx_data[i];
2532
2533 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2534 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2535 USBD_NO_TIMEOUT, zyd_rxeof);
2536 error = usbd_transfer(data->xfer);
2537 if (error != USBD_IN_PROGRESS && error != 0) {
2538 printf("%s: could not queue Rx transfer\n",
2539 USBDEVNAME(sc->sc_dev));
2540 goto fail;
2541 }
2542 }
2543
2544 ifp->if_flags &= ~IFF_OACTIVE;
2545 ifp->if_flags |= IFF_RUNNING;
2546
2547 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2548 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2549 else
2550 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2551
2552 return 0;
2553
2554 fail: zyd_stop(ifp, 1);
2555 return error;
2556 }
2557
2558 Static void
2559 zyd_stop(struct ifnet *ifp, int disable)
2560 {
2561 struct zyd_softc *sc = ifp->if_softc;
2562 struct ieee80211com *ic = &sc->sc_ic;
2563
2564 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2565
2566 sc->tx_timer = 0;
2567 ifp->if_timer = 0;
2568 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2569
2570 /* switch radio transmitter OFF */
2571 (void)zyd_switch_radio(sc, 0);
2572
2573 /* disable Rx */
2574 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2575
2576 /* disable interrupts */
2577 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2578
2579 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2580 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2581
2582 zyd_free_rx_list(sc);
2583 zyd_free_tx_list(sc);
2584 }
2585
2586 Static int
2587 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2588 {
2589 usb_device_request_t req;
2590 uint16_t addr;
2591 uint8_t stat;
2592
2593 DPRINTF(("firmware size=%zu\n", size));
2594
2595 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2596 req.bRequest = ZYD_DOWNLOADREQ;
2597 USETW(req.wIndex, 0);
2598
2599 addr = ZYD_FIRMWARE_START_ADDR;
2600 while (size > 0) {
2601 #if 0
2602 const int mlen = min(size, 4096);
2603 #else
2604 /*
2605 * XXXX: When the transfer size is 4096 bytes, it is not
2606 * likely to be able to transfer it.
2607 * The cause is port or machine or chip?
2608 */
2609 const int mlen = min(size, 64);
2610 #endif
2611
2612 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2613 addr));
2614
2615 USETW(req.wValue, addr);
2616 USETW(req.wLength, mlen);
2617 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2618 return EIO;
2619
2620 addr += mlen / 2;
2621 fw += mlen;
2622 size -= mlen;
2623 }
2624
2625 /* check whether the upload succeeded */
2626 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2627 req.bRequest = ZYD_DOWNLOADSTS;
2628 USETW(req.wValue, 0);
2629 USETW(req.wIndex, 0);
2630 USETW(req.wLength, sizeof stat);
2631 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2632 return EIO;
2633
2634 return (stat & 0x80) ? EIO : 0;
2635 }
2636
2637 Static void
2638 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2639 {
2640 struct zyd_softc *sc = arg;
2641 struct zyd_node *zn = (struct zyd_node *)ni;
2642
2643 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2644 }
2645
2646 Static void
2647 zyd_amrr_timeout(void *arg)
2648 {
2649 struct zyd_softc *sc = arg;
2650 struct ieee80211com *ic = &sc->sc_ic;
2651 int s;
2652
2653 s = splnet();
2654 if (ic->ic_opmode == IEEE80211_M_STA)
2655 zyd_iter_func(sc, ic->ic_bss);
2656 else
2657 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2658 splx(s);
2659
2660 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2661 }
2662
2663 Static void
2664 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2665 {
2666 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2667 int i;
2668
2669 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2670
2671 /* set rate to some reasonable initial value */
2672 for (i = ni->ni_rates.rs_nrates - 1;
2673 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2674 i--);
2675 ni->ni_txrate = i;
2676 }
2677
2678 int
2679 zyd_activate(device_ptr_t self, enum devact act)
2680 {
2681 struct zyd_softc *sc = device_private(self);
2682
2683 switch (act) {
2684 case DVACT_ACTIVATE:
2685 break;
2686
2687 case DVACT_DEACTIVATE:
2688 if_deactivate(&sc->sc_if);
2689 break;
2690 }
2691 return 0;
2692 }
2693