if_zyd.c revision 1.17.2.2 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.17.2.2 2009/03/24 21:25:04 bouyer Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.17.2.2 2009/03/24 21:25:04 bouyer Exp $");
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_zydreg.h>
71
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p) \
92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 struct usb_devno dev;
95 uint8_t rev;
96 #define ZYD_ZD1211 0
97 #define ZYD_ZD1211B 1
98 } zyd_devs[] = {
99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
100 ZYD_ZD1211_DEV(ABOCOM, WL54),
101 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
107 ZYD_ZD1211_DEV(SAGEM, XG760A),
108 ZYD_ZD1211_DEV(SENAO, NUB8301),
109 ZYD_ZD1211_DEV(SITECOMEU, WL113),
110 ZYD_ZD1211_DEV(SWEEX, ZD1211),
111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
114 ZYD_ZD1211_DEV(TWINMOS, G240),
115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
119 ZYD_ZD1211_DEV(ZCOM, ZD1211),
120 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
121 ZYD_ZD1211_DEV(ZYXEL, AG225H),
122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
136 #if 0 /* Shall we needs? */
137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
141 #endif
142 ZYD_ZD1211B_DEV(USR, USR5423),
143 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
146 ZYD_ZD1211B_DEV(ZYXEL, M202),
147 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
149 };
150 #define zyd_lookup(v, p) \
151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152
153 USB_DECLARE_DRIVER(zyd);
154
155 Static int zyd_attachhook(void *);
156 Static int zyd_complete_attach(struct zyd_softc *);
157 Static int zyd_open_pipes(struct zyd_softc *);
158 Static void zyd_close_pipes(struct zyd_softc *);
159 Static int zyd_alloc_tx_list(struct zyd_softc *);
160 Static void zyd_free_tx_list(struct zyd_softc *);
161 Static int zyd_alloc_rx_list(struct zyd_softc *);
162 Static void zyd_free_rx_list(struct zyd_softc *);
163 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int zyd_media_change(struct ifnet *);
165 Static void zyd_next_scan(void *);
166 Static void zyd_task(void *);
167 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 void *, int, u_int);
170 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void zyd_lock_phy(struct zyd_softc *);
176 Static void zyd_unlock_phy(struct zyd_softc *);
177 Static int zyd_rfmd_init(struct zyd_rf *);
178 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int zyd_al2230_init(struct zyd_rf *);
181 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int zyd_al2230_init_b(struct zyd_rf *);
184 Static int zyd_al7230B_init(struct zyd_rf *);
185 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2210_init(struct zyd_rf *);
188 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int zyd_gct_init(struct zyd_rf *);
191 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_maxim_init(struct zyd_rf *);
194 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_maxim2_init(struct zyd_rf *);
197 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int zyd_hw_init(struct zyd_softc *);
202 Static int zyd_read_eeprom(struct zyd_softc *);
203 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int zyd_switch_radio(struct zyd_softc *, int);
206 Static void zyd_set_led(struct zyd_softc *, int, int);
207 Static int zyd_set_rxfilter(struct zyd_softc *);
208 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t zyd_plcp_signal(int);
211 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 struct ieee80211_node *);
217 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 struct ieee80211_node *);
219 Static void zyd_start(struct ifnet *);
220 Static void zyd_watchdog(struct ifnet *);
221 Static int zyd_ioctl(struct ifnet *, u_long, caddr_t);
222 Static int zyd_init(struct ifnet *);
223 Static void zyd_stop(struct ifnet *, int);
224 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void zyd_iter_func(void *, struct ieee80211_node *);
226 Static void zyd_amrr_timeout(void *);
227 Static void zyd_newassoc(struct ieee80211_node *, int);
228
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 { 4, { 2, 4, 11, 22 } };
231
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234
235 USB_MATCH(zyd)
236 {
237 USB_MATCH_START(zyd, uaa);
238
239 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 struct zyd_softc *sc = xsc;
247 firmware_handle_t fwh;
248 const char *fwname;
249 u_char *fw;
250 size_t size;
251 int error;
252
253 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 printf("%s: failed to open firmware %s (error=%d)\n",
256 USBDEVNAME(sc->sc_dev), fwname, error);
257 return error;
258 }
259 size = firmware_get_size(fwh);
260 fw = firmware_malloc(size);
261 if (fw == NULL) {
262 printf("%s: failed to allocate firmware memory\n",
263 USBDEVNAME(sc->sc_dev));
264 firmware_close(fwh);
265 return ENOMEM;;
266 }
267 error = firmware_read(fwh, 0, fw, size);
268 firmware_close(fwh);
269 if (error != 0) {
270 printf("%s: failed to read firmware (error %d)\n",
271 USBDEVNAME(sc->sc_dev), error);
272 firmware_free(fw, 0);
273 return error;
274 }
275
276 error = zyd_loadfirmware(sc, fw, size);
277 if (error != 0) {
278 printf("%s: could not load firmware (error=%d)\n",
279 USBDEVNAME(sc->sc_dev), error);
280 firmware_free(fw, 0);
281 return ENXIO;
282 }
283
284 firmware_free(fw, 0);
285 sc->sc_flags |= ZD1211_FWLOADED;
286
287 /* complete the attach process */
288 if ((error = zyd_complete_attach(sc)) == 0)
289 sc->attached = 1;
290 return error;
291 }
292
293 USB_ATTACH(zyd)
294 {
295 USB_ATTACH_START(zyd, sc, uaa);
296 char *devinfop;
297 usb_device_descriptor_t* ddesc;
298 struct ifnet *ifp = &sc->sc_if;
299
300 sc->sc_udev = uaa->device;
301 sc->sc_flags = 0;
302
303 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
304 USB_ATTACH_SETUP;
305 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
306 usbd_devinfo_free(devinfop);
307
308 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
309
310 ddesc = usbd_get_device_descriptor(sc->sc_udev);
311 if (UGETW(ddesc->bcdDevice) < 0x4330) {
312 printf("%s: device version mismatch: 0x%x (only >= 43.30 supported)\n",
313 USBDEVNAME(sc->sc_dev), UGETW(ddesc->bcdDevice));
314 USB_ATTACH_ERROR_RETURN;
315 }
316
317 ifp->if_softc = sc;
318 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
319 ifp->if_init = zyd_init;
320 ifp->if_ioctl = zyd_ioctl;
321 ifp->if_start = zyd_start;
322 ifp->if_watchdog = zyd_watchdog;
323 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
324 IFQ_SET_READY(&ifp->if_snd);
325 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
326
327 if_attach(ifp);
328 /* XXXX: alloc temporarily until the layer2 can be configured. */
329 if_alloc_sadl(ifp);
330
331 SIMPLEQ_INIT(&sc->sc_rqh);
332
333 USB_ATTACH_SUCCESS_RETURN;
334 }
335
336 Static int
337 zyd_complete_attach(struct zyd_softc *sc)
338 {
339 struct ieee80211com *ic = &sc->sc_ic;
340 struct ifnet *ifp = &sc->sc_if;
341 usbd_status error;
342 int i;
343
344 usb_init_task(&sc->sc_task, zyd_task, sc);
345 usb_callout_init(sc->sc_scan_ch);
346
347 sc->amrr.amrr_min_success_threshold = 1;
348 sc->amrr.amrr_max_success_threshold = 10;
349 usb_callout_init(sc->sc_amrr_ch);
350
351 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
352 if (error != 0) {
353 printf("%s: setting config no failed\n", USBDEVNAME(sc->sc_dev));
354 goto fail;
355 }
356
357 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
358 &sc->sc_iface);
359 if (error != 0) {
360 printf("%s: getting interface handle failed\n", USBDEVNAME(sc->sc_dev));
361 goto fail;
362 }
363
364 if ((error = zyd_open_pipes(sc)) != 0) {
365 printf("%s: could not open pipes\n", USBDEVNAME(sc->sc_dev));
366 goto fail;
367 }
368
369 if ((error = zyd_read_eeprom(sc)) != 0) {
370 printf("%s: could not read EEPROM\n", USBDEVNAME(sc->sc_dev));
371 goto fail;
372 }
373
374 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
375 printf("%s: could not attach RF\n", USBDEVNAME(sc->sc_dev));
376 goto fail;
377 }
378
379 if ((error = zyd_hw_init(sc)) != 0) {
380 printf("%s: hardware initialization failed\n", USBDEVNAME(sc->sc_dev));
381 goto fail;
382 }
383
384 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
385 USBDEVNAME(sc->sc_dev), (sc->mac_rev == ZYD_ZD1211) ? "": "B",
386 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
387 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
388
389 ic->ic_ifp = ifp;
390 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
391 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
392 ic->ic_state = IEEE80211_S_INIT;
393
394 /* set device capabilities */
395 ic->ic_caps =
396 IEEE80211_C_MONITOR | /* monitor mode supported */
397 IEEE80211_C_TXPMGT | /* tx power management */
398 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
399 IEEE80211_C_WEP; /* s/w WEP */
400
401 /* set supported .11b and .11g rates */
402 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
403 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
404
405 /* set supported .11b and .11g channels (1 through 14) */
406 for (i = 1; i <= 14; i++) {
407 ic->ic_channels[i].ic_freq =
408 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
409 ic->ic_channels[i].ic_flags =
410 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
411 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
412 }
413
414 if_free_sadl(ifp);
415 ieee80211_ifattach(ic);
416 ic->ic_node_alloc = zyd_node_alloc;
417 ic->ic_newassoc = zyd_newassoc;
418
419 /* override state transition machine */
420 sc->sc_newstate = ic->ic_newstate;
421 ic->ic_newstate = zyd_newstate;
422 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
423
424 #if NBPFILTER > 0
425 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
426 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
427 &sc->sc_drvbpf);
428
429 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
430 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
431 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
432
433 sc->sc_txtap_len = sizeof sc->sc_txtapu;
434 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
435 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
436 #endif
437
438 ieee80211_announce(ic);
439
440 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
441 USBDEV(sc->sc_dev));
442
443 fail: return error;
444 }
445
446 USB_DETACH(zyd)
447 {
448 USB_DETACH_START(zyd, sc);
449 struct ieee80211com *ic = &sc->sc_ic;
450 struct ifnet *ifp = &sc->sc_if;
451 int s;
452
453 if (!sc->attached) {
454 if_free_sadl(ifp);
455 if_detach(ifp);
456 return 0;
457 }
458
459 s = splusb();
460
461 zyd_stop(ifp, 1);
462 usb_rem_task(sc->sc_udev, &sc->sc_task);
463 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
464 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
465
466 zyd_close_pipes(sc);
467
468 sc->attached = 0;
469
470 #if NBPFILTER > 0
471 bpfdetach(ifp);
472 #endif
473 ieee80211_ifdetach(ic);
474 if_detach(ifp);
475
476 splx(s);
477
478 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
479 USBDEV(sc->sc_dev));
480
481 return 0;
482 }
483
484 Static int
485 zyd_open_pipes(struct zyd_softc *sc)
486 {
487 usb_endpoint_descriptor_t *edesc;
488 int isize;
489 usbd_status error;
490
491 /* interrupt in */
492 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
493 if (edesc == NULL)
494 return EINVAL;
495
496 isize = UGETW(edesc->wMaxPacketSize);
497 if (isize == 0) /* should not happen */
498 return EINVAL;
499
500 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
501 if (sc->ibuf == NULL)
502 return ENOMEM;
503
504 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
505 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
506 USBD_DEFAULT_INTERVAL);
507 if (error != 0) {
508 printf("%s: open rx intr pipe failed: %s\n",
509 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
510 goto fail;
511 }
512
513 /* interrupt out (not necessarily an interrupt pipe) */
514 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
515 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
516 if (error != 0) {
517 printf("%s: open tx intr pipe failed: %s\n",
518 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
519 goto fail;
520 }
521
522 /* bulk in */
523 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
524 &sc->zyd_ep[ZYD_ENDPT_BIN]);
525 if (error != 0) {
526 printf("%s: open rx pipe failed: %s\n",
527 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
528 goto fail;
529 }
530
531 /* bulk out */
532 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
533 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
534 if (error != 0) {
535 printf("%s: open tx pipe failed: %s\n",
536 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
537 goto fail;
538 }
539
540 return 0;
541
542 fail: zyd_close_pipes(sc);
543 return error;
544 }
545
546 Static void
547 zyd_close_pipes(struct zyd_softc *sc)
548 {
549 int i;
550
551 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
552 if (sc->zyd_ep[i] != NULL) {
553 usbd_abort_pipe(sc->zyd_ep[i]);
554 usbd_close_pipe(sc->zyd_ep[i]);
555 sc->zyd_ep[i] = NULL;
556 }
557 }
558 if (sc->ibuf != NULL) {
559 free(sc->ibuf, M_USBDEV);
560 sc->ibuf = NULL;
561 }
562 }
563
564 Static int
565 zyd_alloc_tx_list(struct zyd_softc *sc)
566 {
567 int i, error;
568
569 sc->tx_queued = 0;
570
571 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
572 struct zyd_tx_data *data = &sc->tx_data[i];
573
574 data->sc = sc; /* backpointer for callbacks */
575
576 data->xfer = usbd_alloc_xfer(sc->sc_udev);
577 if (data->xfer == NULL) {
578 printf("%s: could not allocate tx xfer\n",
579 USBDEVNAME(sc->sc_dev));
580 error = ENOMEM;
581 goto fail;
582 }
583 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
584 if (data->buf == NULL) {
585 printf("%s: could not allocate tx buffer\n",
586 USBDEVNAME(sc->sc_dev));
587 error = ENOMEM;
588 goto fail;
589 }
590
591 /* clear Tx descriptor */
592 bzero(data->buf, sizeof (struct zyd_tx_desc));
593 }
594 return 0;
595
596 fail: zyd_free_tx_list(sc);
597 return error;
598 }
599
600 Static void
601 zyd_free_tx_list(struct zyd_softc *sc)
602 {
603 int i;
604
605 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
606 struct zyd_tx_data *data = &sc->tx_data[i];
607
608 if (data->xfer != NULL) {
609 usbd_free_xfer(data->xfer);
610 data->xfer = NULL;
611 }
612 if (data->ni != NULL) {
613 ieee80211_free_node(data->ni);
614 data->ni = NULL;
615 }
616 }
617 }
618
619 Static int
620 zyd_alloc_rx_list(struct zyd_softc *sc)
621 {
622 int i, error;
623
624 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
625 struct zyd_rx_data *data = &sc->rx_data[i];
626
627 data->sc = sc; /* backpointer for callbacks */
628
629 data->xfer = usbd_alloc_xfer(sc->sc_udev);
630 if (data->xfer == NULL) {
631 printf("%s: could not allocate rx xfer\n",
632 USBDEVNAME(sc->sc_dev));
633 error = ENOMEM;
634 goto fail;
635 }
636 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
637 if (data->buf == NULL) {
638 printf("%s: could not allocate rx buffer\n",
639 USBDEVNAME(sc->sc_dev));
640 error = ENOMEM;
641 goto fail;
642 }
643 }
644 return 0;
645
646 fail: zyd_free_rx_list(sc);
647 return error;
648 }
649
650 Static void
651 zyd_free_rx_list(struct zyd_softc *sc)
652 {
653 int i;
654
655 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
656 struct zyd_rx_data *data = &sc->rx_data[i];
657
658 if (data->xfer != NULL) {
659 usbd_free_xfer(data->xfer);
660 data->xfer = NULL;
661 }
662 }
663 }
664
665 /* ARGUSED */
666 Static struct ieee80211_node *
667 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
668 {
669 struct zyd_node *zn;
670
671 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
672
673 return (struct ieee80211_node *)zn;
674 }
675
676 Static int
677 zyd_media_change(struct ifnet *ifp)
678 {
679 int error;
680
681 error = ieee80211_media_change(ifp);
682 if (error != ENETRESET)
683 return error;
684
685 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
686 zyd_init(ifp);
687
688 return 0;
689 }
690
691 /*
692 * This function is called periodically (every 200ms) during scanning to
693 * switch from one channel to another.
694 */
695 Static void
696 zyd_next_scan(void *arg)
697 {
698 struct zyd_softc *sc = arg;
699 struct ieee80211com *ic = &sc->sc_ic;
700
701 if (ic->ic_state == IEEE80211_S_SCAN)
702 ieee80211_next_scan(ic);
703 }
704
705 Static void
706 zyd_task(void *arg)
707 {
708 struct zyd_softc *sc = arg;
709 struct ieee80211com *ic = &sc->sc_ic;
710 enum ieee80211_state ostate;
711
712 ostate = ic->ic_state;
713
714 switch (sc->sc_state) {
715 case IEEE80211_S_INIT:
716 if (ostate == IEEE80211_S_RUN) {
717 /* turn link LED off */
718 zyd_set_led(sc, ZYD_LED1, 0);
719
720 /* stop data LED from blinking */
721 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
722 }
723 break;
724
725 case IEEE80211_S_SCAN:
726 zyd_set_chan(sc, ic->ic_curchan);
727 usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
728 break;
729
730 case IEEE80211_S_AUTH:
731 case IEEE80211_S_ASSOC:
732 zyd_set_chan(sc, ic->ic_curchan);
733 break;
734
735 case IEEE80211_S_RUN:
736 {
737 struct ieee80211_node *ni = ic->ic_bss;
738
739 zyd_set_chan(sc, ic->ic_curchan);
740
741 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
742 /* turn link LED on */
743 zyd_set_led(sc, ZYD_LED1, 1);
744
745 /* make data LED blink upon Tx */
746 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
747
748 zyd_set_bssid(sc, ni->ni_bssid);
749 }
750
751 if (ic->ic_opmode == IEEE80211_M_STA) {
752 /* fake a join to init the tx rate */
753 zyd_newassoc(ni, 1);
754 }
755
756 /* start automatic rate control timer */
757 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
758 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
759
760 break;
761 }
762 }
763
764 sc->sc_newstate(ic, sc->sc_state, -1);
765 }
766
767 Static int
768 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
769 {
770 struct zyd_softc *sc = ic->ic_ifp->if_softc;
771
772 usb_rem_task(sc->sc_udev, &sc->sc_task);
773 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
774 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
775
776 /* do it in a process context */
777 sc->sc_state = nstate;
778 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
779
780 return 0;
781 }
782
783 Static int
784 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
785 void *odata, int olen, u_int flags)
786 {
787 usbd_xfer_handle xfer;
788 struct zyd_cmd cmd;
789 struct rq rq;
790 uint16_t xferflags;
791 usbd_status error;
792 int s = 0;
793
794 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
795 return ENOMEM;
796
797 cmd.code = htole16(code);
798 bcopy(idata, cmd.data, ilen);
799
800 xferflags = USBD_FORCE_SHORT_XFER;
801 if (!(flags & ZYD_CMD_FLAG_READ))
802 xferflags |= USBD_SYNCHRONOUS;
803 else {
804 s = splusb();
805 rq.idata = idata;
806 rq.odata = odata;
807 rq.len = olen / sizeof (struct zyd_pair);
808 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
809 }
810
811 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
812 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
813 error = usbd_transfer(xfer);
814 if (error != USBD_IN_PROGRESS && error != 0) {
815 if (flags & ZYD_CMD_FLAG_READ)
816 splx(s);
817 printf("%s: could not send command (error=%s)\n",
818 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
819 (void)usbd_free_xfer(xfer);
820 return EIO;
821 }
822 if (!(flags & ZYD_CMD_FLAG_READ)) {
823 (void)usbd_free_xfer(xfer);
824 return 0; /* write: don't wait for reply */
825 }
826 /* wait at most one second for command reply */
827 error = tsleep(odata, PCATCH, "zydcmd", hz);
828 if (error == EWOULDBLOCK)
829 printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
830 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
831 splx(s);
832
833 (void)usbd_free_xfer(xfer);
834 return error;
835 }
836
837 Static int
838 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
839 {
840 struct zyd_pair tmp;
841 int error;
842
843 reg = htole16(reg);
844 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
845 ZYD_CMD_FLAG_READ);
846 if (error == 0)
847 *val = le16toh(tmp.val);
848 return error;
849 }
850
851 Static int
852 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
853 {
854 struct zyd_pair tmp[2];
855 uint16_t regs[2];
856 int error;
857
858 regs[0] = htole16(ZYD_REG32_HI(reg));
859 regs[1] = htole16(ZYD_REG32_LO(reg));
860 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
861 ZYD_CMD_FLAG_READ);
862 if (error == 0)
863 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
864 return error;
865 }
866
867 Static int
868 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
869 {
870 struct zyd_pair pair;
871
872 pair.reg = htole16(reg);
873 pair.val = htole16(val);
874
875 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
876 }
877
878 Static int
879 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
880 {
881 struct zyd_pair pair[2];
882
883 pair[0].reg = htole16(ZYD_REG32_HI(reg));
884 pair[0].val = htole16(val >> 16);
885 pair[1].reg = htole16(ZYD_REG32_LO(reg));
886 pair[1].val = htole16(val & 0xffff);
887
888 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
889 }
890
891 Static int
892 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
893 {
894 struct zyd_rf *rf = &sc->sc_rf;
895 struct zyd_rfwrite req;
896 uint16_t cr203;
897 int i;
898
899 (void)zyd_read16(sc, ZYD_CR203, &cr203);
900 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
901
902 req.code = htole16(2);
903 req.width = htole16(rf->width);
904 for (i = 0; i < rf->width; i++) {
905 req.bit[i] = htole16(cr203);
906 if (val & (1 << (rf->width - 1 - i)))
907 req.bit[i] |= htole16(ZYD_RF_DATA);
908 }
909 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
910 }
911
912 Static void
913 zyd_lock_phy(struct zyd_softc *sc)
914 {
915 uint32_t tmp;
916
917 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
918 tmp &= ~ZYD_UNLOCK_PHY_REGS;
919 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
920 }
921
922 Static void
923 zyd_unlock_phy(struct zyd_softc *sc)
924 {
925 uint32_t tmp;
926
927 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
928 tmp |= ZYD_UNLOCK_PHY_REGS;
929 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
930 }
931
932 /*
933 * RFMD RF methods.
934 */
935 Static int
936 zyd_rfmd_init(struct zyd_rf *rf)
937 {
938 #define N(a) (sizeof (a) / sizeof ((a)[0]))
939 struct zyd_softc *sc = rf->rf_sc;
940 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
941 static const uint32_t rfini[] = ZYD_RFMD_RF;
942 int i, error;
943
944 /* init RF-dependent PHY registers */
945 for (i = 0; i < N(phyini); i++) {
946 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
947 if (error != 0)
948 return error;
949 }
950
951 /* init RFMD radio */
952 for (i = 0; i < N(rfini); i++) {
953 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
954 return error;
955 }
956 return 0;
957 #undef N
958 }
959
960 Static int
961 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
962 {
963 struct zyd_softc *sc = rf->rf_sc;
964
965 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
966 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
967
968 return 0;
969 }
970
971 Static int
972 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
973 {
974 struct zyd_softc *sc = rf->rf_sc;
975 static const struct {
976 uint32_t r1, r2;
977 } rfprog[] = ZYD_RFMD_CHANTABLE;
978
979 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
980 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
981
982 return 0;
983 }
984
985 /*
986 * AL2230 RF methods.
987 */
988 Static int
989 zyd_al2230_init(struct zyd_rf *rf)
990 {
991 #define N(a) (sizeof (a) / sizeof ((a)[0]))
992 struct zyd_softc *sc = rf->rf_sc;
993 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
994 static const uint32_t rfini[] = ZYD_AL2230_RF;
995 int i, error;
996
997 /* init RF-dependent PHY registers */
998 for (i = 0; i < N(phyini); i++) {
999 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1000 if (error != 0)
1001 return error;
1002 }
1003
1004 /* init AL2230 radio */
1005 for (i = 0; i < N(rfini); i++) {
1006 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1007 return error;
1008 }
1009 return 0;
1010 #undef N
1011 }
1012
1013 Static int
1014 zyd_al2230_init_b(struct zyd_rf *rf)
1015 {
1016 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1017 struct zyd_softc *sc = rf->rf_sc;
1018 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1019 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1020 int i, error;
1021
1022 /* init RF-dependent PHY registers */
1023 for (i = 0; i < N(phyini); i++) {
1024 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1025 if (error != 0)
1026 return error;
1027 }
1028
1029 /* init AL2230 radio */
1030 for (i = 0; i < N(rfini); i++) {
1031 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1032 return error;
1033 }
1034 return 0;
1035 #undef N
1036 }
1037
1038 Static int
1039 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1040 {
1041 struct zyd_softc *sc = rf->rf_sc;
1042 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1043
1044 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1045 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1046
1047 return 0;
1048 }
1049
1050 Static int
1051 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1052 {
1053 struct zyd_softc *sc = rf->rf_sc;
1054 static const struct {
1055 uint32_t r1, r2, r3;
1056 } rfprog[] = ZYD_AL2230_CHANTABLE;
1057
1058 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1059 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1060 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1061
1062 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1063 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * AL7230B RF methods.
1070 */
1071 Static int
1072 zyd_al7230B_init(struct zyd_rf *rf)
1073 {
1074 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1075 struct zyd_softc *sc = rf->rf_sc;
1076 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1077 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1078 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1079 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1080 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1081 int i, error;
1082
1083 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1084
1085 /* init RF-dependent PHY registers, part one */
1086 for (i = 0; i < N(phyini_1); i++) {
1087 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1088 if (error != 0)
1089 return error;
1090 }
1091 /* init AL7230B radio, part one */
1092 for (i = 0; i < N(rfini_1); i++) {
1093 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1094 return error;
1095 }
1096 /* init RF-dependent PHY registers, part two */
1097 for (i = 0; i < N(phyini_2); i++) {
1098 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1099 if (error != 0)
1100 return error;
1101 }
1102 /* init AL7230B radio, part two */
1103 for (i = 0; i < N(rfini_2); i++) {
1104 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1105 return error;
1106 }
1107 /* init RF-dependent PHY registers, part three */
1108 for (i = 0; i < N(phyini_3); i++) {
1109 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1110 if (error != 0)
1111 return error;
1112 }
1113
1114 return 0;
1115 #undef N
1116 }
1117
1118 Static int
1119 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1120 {
1121 struct zyd_softc *sc = rf->rf_sc;
1122
1123 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1124 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1125
1126 return 0;
1127 }
1128
1129 Static int
1130 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1131 {
1132 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1133 struct zyd_softc *sc = rf->rf_sc;
1134 static const struct {
1135 uint32_t r1, r2;
1136 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1137 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1138 int i, error;
1139
1140 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1141 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1142
1143 for (i = 0; i < N(rfsc); i++) {
1144 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1145 return error;
1146 }
1147
1148 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1149 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1150 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1151 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1152 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1153
1154 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1155 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1156 (void)zyd_rfwrite(sc, 0x3c9000);
1157
1158 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1159 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1160 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1161
1162 return 0;
1163 #undef N
1164 }
1165
1166 /*
1167 * AL2210 RF methods.
1168 */
1169 Static int
1170 zyd_al2210_init(struct zyd_rf *rf)
1171 {
1172 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1173 struct zyd_softc *sc = rf->rf_sc;
1174 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1175 static const uint32_t rfini[] = ZYD_AL2210_RF;
1176 uint32_t tmp;
1177 int i, error;
1178
1179 (void)zyd_write32(sc, ZYD_CR18, 2);
1180
1181 /* init RF-dependent PHY registers */
1182 for (i = 0; i < N(phyini); i++) {
1183 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1184 if (error != 0)
1185 return error;
1186 }
1187 /* init AL2210 radio */
1188 for (i = 0; i < N(rfini); i++) {
1189 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1190 return error;
1191 }
1192 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1193 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1194 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1195 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1196 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1197 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1198 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1199 (void)zyd_write32(sc, ZYD_CR18, 3);
1200
1201 return 0;
1202 #undef N
1203 }
1204
1205 Static int
1206 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1207 {
1208 /* vendor driver does nothing for this RF chip */
1209
1210 return 0;
1211 }
1212
1213 Static int
1214 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1215 {
1216 struct zyd_softc *sc = rf->rf_sc;
1217 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1218 uint32_t tmp;
1219
1220 (void)zyd_write32(sc, ZYD_CR18, 2);
1221 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1222 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1223 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1224 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1225 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1226
1227 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1228 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1229
1230 /* actually set the channel */
1231 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1232
1233 (void)zyd_write32(sc, ZYD_CR18, 3);
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * GCT RF methods.
1240 */
1241 Static int
1242 zyd_gct_init(struct zyd_rf *rf)
1243 {
1244 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1245 struct zyd_softc *sc = rf->rf_sc;
1246 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1247 static const uint32_t rfini[] = ZYD_GCT_RF;
1248 int i, error;
1249
1250 /* init RF-dependent PHY registers */
1251 for (i = 0; i < N(phyini); i++) {
1252 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1253 if (error != 0)
1254 return error;
1255 }
1256 /* init cgt radio */
1257 for (i = 0; i < N(rfini); i++) {
1258 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1259 return error;
1260 }
1261 return 0;
1262 #undef N
1263 }
1264
1265 Static int
1266 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1267 {
1268 /* vendor driver does nothing for this RF chip */
1269
1270 return 0;
1271 }
1272
1273 Static int
1274 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1275 {
1276 struct zyd_softc *sc = rf->rf_sc;
1277 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1278
1279 (void)zyd_rfwrite(sc, 0x1c0000);
1280 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1281 (void)zyd_rfwrite(sc, 0x1c0008);
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * Maxim RF methods.
1288 */
1289 Static int
1290 zyd_maxim_init(struct zyd_rf *rf)
1291 {
1292 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1293 struct zyd_softc *sc = rf->rf_sc;
1294 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1295 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1296 uint16_t tmp;
1297 int i, error;
1298
1299 /* init RF-dependent PHY registers */
1300 for (i = 0; i < N(phyini); i++) {
1301 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1302 if (error != 0)
1303 return error;
1304 }
1305 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1306 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1307
1308 /* init maxim radio */
1309 for (i = 0; i < N(rfini); i++) {
1310 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1311 return error;
1312 }
1313 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1314 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1315
1316 return 0;
1317 #undef N
1318 }
1319
1320 Static int
1321 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1322 {
1323 /* vendor driver does nothing for this RF chip */
1324
1325 return 0;
1326 }
1327
1328 Static int
1329 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1330 {
1331 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1332 struct zyd_softc *sc = rf->rf_sc;
1333 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1334 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1335 static const struct {
1336 uint32_t r1, r2;
1337 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1338 uint16_t tmp;
1339 int i, error;
1340
1341 /*
1342 * Do the same as we do when initializing it, except for the channel
1343 * values coming from the two channel tables.
1344 */
1345
1346 /* init RF-dependent PHY registers */
1347 for (i = 0; i < N(phyini); i++) {
1348 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1349 if (error != 0)
1350 return error;
1351 }
1352 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1353 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1354
1355 /* first two values taken from the chantables */
1356 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1357 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1358
1359 /* init maxim radio - skipping the two first values */
1360 for (i = 2; i < N(rfini); i++) {
1361 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1362 return error;
1363 }
1364 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1365 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1366
1367 return 0;
1368 #undef N
1369 }
1370
1371 /*
1372 * Maxim2 RF methods.
1373 */
1374 Static int
1375 zyd_maxim2_init(struct zyd_rf *rf)
1376 {
1377 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1378 struct zyd_softc *sc = rf->rf_sc;
1379 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1380 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1381 uint16_t tmp;
1382 int i, error;
1383
1384 /* init RF-dependent PHY registers */
1385 for (i = 0; i < N(phyini); i++) {
1386 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1387 if (error != 0)
1388 return error;
1389 }
1390 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1391 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1392
1393 /* init maxim2 radio */
1394 for (i = 0; i < N(rfini); i++) {
1395 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1396 return error;
1397 }
1398 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1400
1401 return 0;
1402 #undef N
1403 }
1404
1405 Static int
1406 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1407 {
1408 /* vendor driver does nothing for this RF chip */
1409
1410 return 0;
1411 }
1412
1413 Static int
1414 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1415 {
1416 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1417 struct zyd_softc *sc = rf->rf_sc;
1418 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1419 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1420 static const struct {
1421 uint32_t r1, r2;
1422 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1423 uint16_t tmp;
1424 int i, error;
1425
1426 /*
1427 * Do the same as we do when initializing it, except for the channel
1428 * values coming from the two channel tables.
1429 */
1430
1431 /* init RF-dependent PHY registers */
1432 for (i = 0; i < N(phyini); i++) {
1433 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1434 if (error != 0)
1435 return error;
1436 }
1437 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1438 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1439
1440 /* first two values taken from the chantables */
1441 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1442 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1443
1444 /* init maxim2 radio - skipping the two first values */
1445 for (i = 2; i < N(rfini); i++) {
1446 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1447 return error;
1448 }
1449 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1450 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1451
1452 return 0;
1453 #undef N
1454 }
1455
1456 Static int
1457 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1458 {
1459 struct zyd_rf *rf = &sc->sc_rf;
1460
1461 rf->rf_sc = sc;
1462
1463 switch (type) {
1464 case ZYD_RF_RFMD:
1465 rf->init = zyd_rfmd_init;
1466 rf->switch_radio = zyd_rfmd_switch_radio;
1467 rf->set_channel = zyd_rfmd_set_channel;
1468 rf->width = 24; /* 24-bit RF values */
1469 break;
1470 case ZYD_RF_AL2230:
1471 if (sc->mac_rev == ZYD_ZD1211B)
1472 rf->init = zyd_al2230_init_b;
1473 else
1474 rf->init = zyd_al2230_init;
1475 rf->switch_radio = zyd_al2230_switch_radio;
1476 rf->set_channel = zyd_al2230_set_channel;
1477 rf->width = 24; /* 24-bit RF values */
1478 break;
1479 case ZYD_RF_AL7230B:
1480 rf->init = zyd_al7230B_init;
1481 rf->switch_radio = zyd_al7230B_switch_radio;
1482 rf->set_channel = zyd_al7230B_set_channel;
1483 rf->width = 24; /* 24-bit RF values */
1484 break;
1485 case ZYD_RF_AL2210:
1486 rf->init = zyd_al2210_init;
1487 rf->switch_radio = zyd_al2210_switch_radio;
1488 rf->set_channel = zyd_al2210_set_channel;
1489 rf->width = 24; /* 24-bit RF values */
1490 break;
1491 case ZYD_RF_GCT:
1492 rf->init = zyd_gct_init;
1493 rf->switch_radio = zyd_gct_switch_radio;
1494 rf->set_channel = zyd_gct_set_channel;
1495 rf->width = 21; /* 21-bit RF values */
1496 break;
1497 case ZYD_RF_MAXIM_NEW:
1498 rf->init = zyd_maxim_init;
1499 rf->switch_radio = zyd_maxim_switch_radio;
1500 rf->set_channel = zyd_maxim_set_channel;
1501 rf->width = 18; /* 18-bit RF values */
1502 break;
1503 case ZYD_RF_MAXIM_NEW2:
1504 rf->init = zyd_maxim2_init;
1505 rf->switch_radio = zyd_maxim2_switch_radio;
1506 rf->set_channel = zyd_maxim2_set_channel;
1507 rf->width = 18; /* 18-bit RF values */
1508 break;
1509 default:
1510 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1511 USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1512 return EINVAL;
1513 }
1514 return 0;
1515 }
1516
1517 Static const char *
1518 zyd_rf_name(uint8_t type)
1519 {
1520 static const char * const zyd_rfs[] = {
1521 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1522 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1523 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1524 "PHILIPS"
1525 };
1526
1527 return zyd_rfs[(type > 15) ? 0 : type];
1528 }
1529
1530 Static int
1531 zyd_hw_init(struct zyd_softc *sc)
1532 {
1533 struct zyd_rf *rf = &sc->sc_rf;
1534 const struct zyd_phy_pair *phyp;
1535 int error;
1536
1537 /* specify that the plug and play is finished */
1538 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1539
1540 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1541 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1542
1543 /* retrieve firmware revision number */
1544 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1545
1546 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1547 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1548
1549 /* disable interrupts */
1550 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1551
1552 /* PHY init */
1553 zyd_lock_phy(sc);
1554 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1555 for (; phyp->reg != 0; phyp++) {
1556 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1557 goto fail;
1558 }
1559 zyd_unlock_phy(sc);
1560
1561 /* HMAC init */
1562 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1563 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1564
1565 if (sc->mac_rev == ZYD_ZD1211) {
1566 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1567 } else {
1568 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1569 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1570 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1571 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1572 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1573 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1574 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1575 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1576 }
1577
1578 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1579 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1580 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1581 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1582 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1583 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1584 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1585 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1587 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1588 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1589 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1590 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1591 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1592 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1593 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1594 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1595
1596 /* RF chip init */
1597 zyd_lock_phy(sc);
1598 error = (*rf->init)(rf);
1599 zyd_unlock_phy(sc);
1600 if (error != 0) {
1601 printf("%s: radio initialization failed\n",
1602 USBDEVNAME(sc->sc_dev));
1603 goto fail;
1604 }
1605
1606 /* init beacon interval to 100ms */
1607 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1608 goto fail;
1609
1610 fail: return error;
1611 }
1612
1613 Static int
1614 zyd_read_eeprom(struct zyd_softc *sc)
1615 {
1616 struct ieee80211com *ic = &sc->sc_ic;
1617 uint32_t tmp;
1618 uint16_t val;
1619 int i;
1620
1621 /* read MAC address */
1622 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1623 ic->ic_myaddr[0] = tmp & 0xff;
1624 ic->ic_myaddr[1] = tmp >> 8;
1625 ic->ic_myaddr[2] = tmp >> 16;
1626 ic->ic_myaddr[3] = tmp >> 24;
1627 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1628 ic->ic_myaddr[4] = tmp & 0xff;
1629 ic->ic_myaddr[5] = tmp >> 8;
1630
1631 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1632 sc->rf_rev = tmp & 0x0f;
1633 sc->pa_rev = (tmp >> 16) & 0x0f;
1634
1635 /* read regulatory domain (currently unused) */
1636 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1637 sc->regdomain = tmp >> 16;
1638 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1639
1640 /* read Tx power calibration tables */
1641 for (i = 0; i < 7; i++) {
1642 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1643 sc->pwr_cal[i * 2] = val >> 8;
1644 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1645
1646 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1647 sc->pwr_int[i * 2] = val >> 8;
1648 sc->pwr_int[i * 2 + 1] = val & 0xff;
1649
1650 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1651 sc->ofdm36_cal[i * 2] = val >> 8;
1652 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1653
1654 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1655 sc->ofdm48_cal[i * 2] = val >> 8;
1656 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1657
1658 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1659 sc->ofdm54_cal[i * 2] = val >> 8;
1660 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1661 }
1662 return 0;
1663 }
1664
1665 Static int
1666 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1667 {
1668 uint32_t tmp;
1669
1670 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1671 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1672
1673 tmp = addr[5] << 8 | addr[4];
1674 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1675
1676 return 0;
1677 }
1678
1679 Static int
1680 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1681 {
1682 uint32_t tmp;
1683
1684 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1685 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1686
1687 tmp = addr[5] << 8 | addr[4];
1688 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1689
1690 return 0;
1691 }
1692
1693 Static int
1694 zyd_switch_radio(struct zyd_softc *sc, int on)
1695 {
1696 struct zyd_rf *rf = &sc->sc_rf;
1697 int error;
1698
1699 zyd_lock_phy(sc);
1700 error = (*rf->switch_radio)(rf, on);
1701 zyd_unlock_phy(sc);
1702
1703 return error;
1704 }
1705
1706 Static void
1707 zyd_set_led(struct zyd_softc *sc, int which, int on)
1708 {
1709 uint32_t tmp;
1710
1711 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1712 tmp &= ~which;
1713 if (on)
1714 tmp |= which;
1715 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1716 }
1717
1718 Static int
1719 zyd_set_rxfilter(struct zyd_softc *sc)
1720 {
1721 uint32_t rxfilter;
1722
1723 switch (sc->sc_ic.ic_opmode) {
1724 case IEEE80211_M_STA:
1725 rxfilter = ZYD_FILTER_BSS;
1726 break;
1727 case IEEE80211_M_IBSS:
1728 case IEEE80211_M_HOSTAP:
1729 rxfilter = ZYD_FILTER_HOSTAP;
1730 break;
1731 case IEEE80211_M_MONITOR:
1732 rxfilter = ZYD_FILTER_MONITOR;
1733 break;
1734 default:
1735 /* should not get there */
1736 return EINVAL;
1737 }
1738 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1739 }
1740
1741 Static void
1742 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1743 {
1744 struct ieee80211com *ic = &sc->sc_ic;
1745 struct zyd_rf *rf = &sc->sc_rf;
1746 u_int chan;
1747
1748 chan = ieee80211_chan2ieee(ic, c);
1749 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1750 return;
1751
1752 zyd_lock_phy(sc);
1753
1754 (*rf->set_channel)(rf, chan);
1755
1756 /* update Tx power */
1757 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1758 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1759
1760 if (sc->mac_rev == ZYD_ZD1211B) {
1761 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1762 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1763 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1764
1765 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1766 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1767 }
1768
1769 zyd_unlock_phy(sc);
1770 }
1771
1772 Static int
1773 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1774 {
1775 /* XXX this is probably broken.. */
1776 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1777 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1778 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1779
1780 return 0;
1781 }
1782
1783 Static uint8_t
1784 zyd_plcp_signal(int rate)
1785 {
1786 switch (rate) {
1787 /* CCK rates (returned values are device-dependent) */
1788 case 2: return 0x0;
1789 case 4: return 0x1;
1790 case 11: return 0x2;
1791 case 22: return 0x3;
1792
1793 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1794 case 12: return 0xb;
1795 case 18: return 0xf;
1796 case 24: return 0xa;
1797 case 36: return 0xe;
1798 case 48: return 0x9;
1799 case 72: return 0xd;
1800 case 96: return 0x8;
1801 case 108: return 0xc;
1802
1803 /* unsupported rates (should not get there) */
1804 default: return 0xff;
1805 }
1806 }
1807
1808 Static void
1809 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1810 {
1811 struct zyd_softc *sc = (struct zyd_softc *)priv;
1812 struct zyd_cmd *cmd;
1813 uint32_t datalen;
1814
1815 if (status != USBD_NORMAL_COMPLETION) {
1816 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1817 return;
1818
1819 if (status == USBD_STALLED) {
1820 usbd_clear_endpoint_stall_async(
1821 sc->zyd_ep[ZYD_ENDPT_IIN]);
1822 }
1823 return;
1824 }
1825
1826 cmd = (struct zyd_cmd *)sc->ibuf;
1827
1828 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1829 struct zyd_notif_retry *retry =
1830 (struct zyd_notif_retry *)cmd->data;
1831 struct ieee80211com *ic = &sc->sc_ic;
1832 struct ifnet *ifp = &sc->sc_if;
1833 struct ieee80211_node *ni;
1834
1835 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1836 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1837 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1838
1839 /*
1840 * Find the node to which the packet was sent and update its
1841 * retry statistics. In BSS mode, this node is the AP we're
1842 * associated to so no lookup is actually needed.
1843 */
1844 if (ic->ic_opmode != IEEE80211_M_STA) {
1845 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1846 if (ni == NULL)
1847 return; /* just ignore */
1848 } else
1849 ni = ic->ic_bss;
1850
1851 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1852
1853 if (le16toh(retry->count) & 0x100)
1854 ifp->if_oerrors++; /* too many retries */
1855
1856 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1857 struct rq *rqp;
1858
1859 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1860 return; /* HMAC interrupt */
1861
1862 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1863 datalen -= sizeof(cmd->code);
1864 datalen -= 2; /* XXX: padding? */
1865
1866 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1867 int i;
1868
1869 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1870 continue;
1871 for (i = 0; i < rqp->len; i++) {
1872 if (*(((const uint16_t *)rqp->idata) + i) !=
1873 (((struct zyd_pair *)cmd->data) + i)->reg)
1874 break;
1875 }
1876 if (i != rqp->len)
1877 continue;
1878
1879 /* copy answer into caller-supplied buffer */
1880 bcopy(cmd->data, rqp->odata,
1881 sizeof(struct zyd_pair) * rqp->len);
1882 wakeup(rqp->odata); /* wakeup caller */
1883
1884 return;
1885 }
1886 return; /* unexpected IORD notification */
1887 } else {
1888 printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1889 le16toh(cmd->code));
1890 }
1891 }
1892
1893 Static void
1894 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1895 {
1896 struct ieee80211com *ic = &sc->sc_ic;
1897 struct ifnet *ifp = &sc->sc_if;
1898 struct ieee80211_node *ni;
1899 struct ieee80211_frame *wh;
1900 const struct zyd_plcphdr *plcp;
1901 const struct zyd_rx_stat *stat;
1902 struct mbuf *m;
1903 int rlen, s;
1904
1905 if (len < ZYD_MIN_FRAGSZ) {
1906 printf("%s: frame too short (length=%d)\n",
1907 USBDEVNAME(sc->sc_dev), len);
1908 ifp->if_ierrors++;
1909 return;
1910 }
1911
1912 plcp = (const struct zyd_plcphdr *)buf;
1913 stat = (const struct zyd_rx_stat *)
1914 (buf + len - sizeof (struct zyd_rx_stat));
1915
1916 if (stat->flags & ZYD_RX_ERROR) {
1917 DPRINTF(("%s: RX status indicated error (%x)\n",
1918 USBDEVNAME(sc->sc_dev), stat->flags));
1919 ifp->if_ierrors++;
1920 return;
1921 }
1922
1923 /* compute actual frame length */
1924 rlen = len - sizeof (struct zyd_plcphdr) -
1925 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1926
1927 /* allocate a mbuf to store the frame */
1928 MGETHDR(m, M_DONTWAIT, MT_DATA);
1929 if (m == NULL) {
1930 printf("%s: could not allocate rx mbuf\n",
1931 USBDEVNAME(sc->sc_dev));
1932 ifp->if_ierrors++;
1933 return;
1934 }
1935 if (rlen > MHLEN) {
1936 MCLGET(m, M_DONTWAIT);
1937 if (!(m->m_flags & M_EXT)) {
1938 printf("%s: could not allocate rx mbuf cluster\n",
1939 USBDEVNAME(sc->sc_dev));
1940 m_freem(m);
1941 ifp->if_ierrors++;
1942 return;
1943 }
1944 }
1945 m->m_pkthdr.rcvif = ifp;
1946 m->m_pkthdr.len = m->m_len = rlen;
1947 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1948
1949 s = splnet();
1950
1951 #if NBPFILTER > 0
1952 if (sc->sc_drvbpf != NULL) {
1953 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1954 static const uint8_t rates[] = {
1955 /* reverse function of zyd_plcp_signal() */
1956 2, 4, 11, 22, 0, 0, 0, 0,
1957 96, 48, 24, 12, 108, 72, 36, 18
1958 };
1959
1960 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1961 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1962 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1963 tap->wr_rssi = stat->rssi;
1964 tap->wr_rate = rates[plcp->signal & 0xf];
1965
1966 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1967 }
1968 #endif
1969
1970 wh = mtod(m, struct ieee80211_frame *);
1971 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1972 ieee80211_input(ic, m, ni, stat->rssi, 0);
1973
1974 /* node is no longer needed */
1975 ieee80211_free_node(ni);
1976
1977 splx(s);
1978 }
1979
1980 Static void
1981 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1982 {
1983 struct zyd_rx_data *data = priv;
1984 struct zyd_softc *sc = data->sc;
1985 struct ifnet *ifp = &sc->sc_if;
1986 const struct zyd_rx_desc *desc;
1987 int len;
1988
1989 if (status != USBD_NORMAL_COMPLETION) {
1990 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1991 return;
1992
1993 if (status == USBD_STALLED)
1994 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1995
1996 goto skip;
1997 }
1998 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1999
2000 if (len < ZYD_MIN_RXBUFSZ) {
2001 printf("%s: xfer too short (length=%d)\n",
2002 USBDEVNAME(sc->sc_dev), len);
2003 ifp->if_ierrors++;
2004 goto skip;
2005 }
2006
2007 desc = (const struct zyd_rx_desc *)
2008 (data->buf + len - sizeof (struct zyd_rx_desc));
2009
2010 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2011 const uint8_t *p = data->buf, *end = p + len;
2012 int i;
2013
2014 DPRINTFN(3, ("received multi-frame transfer\n"));
2015
2016 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2017 const uint16_t len16 = UGETW(desc->len[i]);
2018
2019 if (len16 == 0 || p + len16 > end)
2020 break;
2021
2022 zyd_rx_data(sc, p, len16);
2023 /* next frame is aligned on a 32-bit boundary */
2024 p += (len16 + 3) & ~3;
2025 }
2026 } else {
2027 DPRINTFN(3, ("received single-frame transfer\n"));
2028
2029 zyd_rx_data(sc, data->buf, len);
2030 }
2031
2032 skip: /* setup a new transfer */
2033 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2034 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2035 USBD_NO_TIMEOUT, zyd_rxeof);
2036 (void)usbd_transfer(xfer);
2037 }
2038
2039 Static int
2040 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2041 {
2042 struct ieee80211com *ic = &sc->sc_ic;
2043 struct ifnet *ifp = &sc->sc_if;
2044 struct zyd_tx_desc *desc;
2045 struct zyd_tx_data *data;
2046 struct ieee80211_frame *wh;
2047 struct ieee80211_key *k;
2048 int xferlen, totlen, rate;
2049 uint16_t pktlen;
2050 usbd_status error;
2051
2052 data = &sc->tx_data[0];
2053 desc = (struct zyd_tx_desc *)data->buf;
2054
2055 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2056
2057 wh = mtod(m0, struct ieee80211_frame *);
2058
2059 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2060 k = ieee80211_crypto_encap(ic, ni, m0);
2061 if (k == NULL) {
2062 m_freem(m0);
2063 return ENOBUFS;
2064 }
2065 }
2066
2067 data->ni = ni;
2068
2069 wh = mtod(m0, struct ieee80211_frame *);
2070
2071 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2072 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2073
2074 /* fill Tx descriptor */
2075 desc->len = htole16(totlen);
2076
2077 desc->flags = ZYD_TX_FLAG_BACKOFF;
2078 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2079 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2080 if (totlen > ic->ic_rtsthreshold) {
2081 desc->flags |= ZYD_TX_FLAG_RTS;
2082 } else if (ZYD_RATE_IS_OFDM(rate) &&
2083 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2084 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2085 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2086 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2087 desc->flags |= ZYD_TX_FLAG_RTS;
2088 }
2089 } else
2090 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2091
2092 if ((wh->i_fc[0] &
2093 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2094 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2095 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2096
2097 desc->phy = zyd_plcp_signal(rate);
2098 if (ZYD_RATE_IS_OFDM(rate)) {
2099 desc->phy |= ZYD_TX_PHY_OFDM;
2100 if (ic->ic_curmode == IEEE80211_MODE_11A)
2101 desc->phy |= ZYD_TX_PHY_5GHZ;
2102 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2103 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2104
2105 /* actual transmit length (XXX why +10?) */
2106 pktlen = sizeof (struct zyd_tx_desc) + 10;
2107 if (sc->mac_rev == ZYD_ZD1211)
2108 pktlen += totlen;
2109 desc->pktlen = htole16(pktlen);
2110
2111 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2112 desc->plcp_service = 0;
2113 if (rate == 22) {
2114 const int remainder = (16 * totlen) % 22;
2115 if (remainder != 0 && remainder < 7)
2116 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2117 }
2118
2119 #if NBPFILTER > 0
2120 if (sc->sc_drvbpf != NULL) {
2121 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2122
2123 tap->wt_flags = 0;
2124 tap->wt_rate = rate;
2125 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2126 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2127
2128 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2129 }
2130 #endif
2131
2132 m_copydata(m0, 0, m0->m_pkthdr.len,
2133 data->buf + sizeof (struct zyd_tx_desc));
2134
2135 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2136 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2137
2138 m_freem(m0); /* mbuf no longer needed */
2139
2140 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2141 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2142 ZYD_TX_TIMEOUT, zyd_txeof);
2143 error = usbd_transfer(data->xfer);
2144 if (error != USBD_IN_PROGRESS && error != 0) {
2145 ifp->if_oerrors++;
2146 return EIO;
2147 }
2148 sc->tx_queued++;
2149
2150 return 0;
2151 }
2152
2153 Static void
2154 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2155 {
2156 struct zyd_tx_data *data = priv;
2157 struct zyd_softc *sc = data->sc;
2158 struct ifnet *ifp = &sc->sc_if;
2159 int s;
2160
2161 if (status != USBD_NORMAL_COMPLETION) {
2162 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2163 return;
2164
2165 printf("%s: could not transmit buffer: %s\n",
2166 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2167
2168 if (status == USBD_STALLED) {
2169 usbd_clear_endpoint_stall_async(
2170 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2171 }
2172 ifp->if_oerrors++;
2173 return;
2174 }
2175
2176 s = splnet();
2177
2178 /* update rate control statistics */
2179 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2180
2181 ieee80211_free_node(data->ni);
2182 data->ni = NULL;
2183
2184 sc->tx_queued--;
2185 ifp->if_opackets++;
2186
2187 sc->tx_timer = 0;
2188 ifp->if_flags &= ~IFF_OACTIVE;
2189 zyd_start(ifp);
2190
2191 splx(s);
2192 }
2193
2194 Static int
2195 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2196 {
2197 struct ieee80211com *ic = &sc->sc_ic;
2198 struct ifnet *ifp = &sc->sc_if;
2199 struct zyd_tx_desc *desc;
2200 struct zyd_tx_data *data;
2201 struct ieee80211_frame *wh;
2202 struct ieee80211_key *k;
2203 int xferlen, totlen, rate;
2204 uint16_t pktlen;
2205 usbd_status error;
2206
2207 wh = mtod(m0, struct ieee80211_frame *);
2208
2209 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2210 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2211 else
2212 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2213 rate &= IEEE80211_RATE_VAL;
2214
2215 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2216 k = ieee80211_crypto_encap(ic, ni, m0);
2217 if (k == NULL) {
2218 m_freem(m0);
2219 return ENOBUFS;
2220 }
2221
2222 /* packet header may have moved, reset our local pointer */
2223 wh = mtod(m0, struct ieee80211_frame *);
2224 }
2225
2226 data = &sc->tx_data[0];
2227 desc = (struct zyd_tx_desc *)data->buf;
2228
2229 data->ni = ni;
2230
2231 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2232 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2233
2234 /* fill Tx descriptor */
2235 desc->len = htole16(totlen);
2236
2237 desc->flags = ZYD_TX_FLAG_BACKOFF;
2238 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2239 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2240 if (totlen > ic->ic_rtsthreshold) {
2241 desc->flags |= ZYD_TX_FLAG_RTS;
2242 } else if (ZYD_RATE_IS_OFDM(rate) &&
2243 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2244 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2245 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2246 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2247 desc->flags |= ZYD_TX_FLAG_RTS;
2248 }
2249 } else
2250 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2251
2252 if ((wh->i_fc[0] &
2253 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2254 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2255 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2256
2257 desc->phy = zyd_plcp_signal(rate);
2258 if (ZYD_RATE_IS_OFDM(rate)) {
2259 desc->phy |= ZYD_TX_PHY_OFDM;
2260 if (ic->ic_curmode == IEEE80211_MODE_11A)
2261 desc->phy |= ZYD_TX_PHY_5GHZ;
2262 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2263 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2264
2265 /* actual transmit length (XXX why +10?) */
2266 pktlen = sizeof (struct zyd_tx_desc) + 10;
2267 if (sc->mac_rev == ZYD_ZD1211)
2268 pktlen += totlen;
2269 desc->pktlen = htole16(pktlen);
2270
2271 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2272 desc->plcp_service = 0;
2273 if (rate == 22) {
2274 const int remainder = (16 * totlen) % 22;
2275 if (remainder != 0 && remainder < 7)
2276 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2277 }
2278
2279 #if NBPFILTER > 0
2280 if (sc->sc_drvbpf != NULL) {
2281 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2282
2283 tap->wt_flags = 0;
2284 tap->wt_rate = rate;
2285 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2286 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2287
2288 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2289 }
2290 #endif
2291
2292 m_copydata(m0, 0, m0->m_pkthdr.len,
2293 data->buf + sizeof (struct zyd_tx_desc));
2294
2295 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2296 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2297
2298 m_freem(m0); /* mbuf no longer needed */
2299
2300 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2301 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2302 ZYD_TX_TIMEOUT, zyd_txeof);
2303 error = usbd_transfer(data->xfer);
2304 if (error != USBD_IN_PROGRESS && error != 0) {
2305 ifp->if_oerrors++;
2306 return EIO;
2307 }
2308 sc->tx_queued++;
2309
2310 return 0;
2311 }
2312
2313 Static void
2314 zyd_start(struct ifnet *ifp)
2315 {
2316 struct zyd_softc *sc = ifp->if_softc;
2317 struct ieee80211com *ic = &sc->sc_ic;
2318 struct ether_header *eh;
2319 struct ieee80211_node *ni;
2320 struct mbuf *m0;
2321
2322 for (;;) {
2323 IF_POLL(&ic->ic_mgtq, m0);
2324 if (m0 != NULL) {
2325 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2326 ifp->if_flags |= IFF_OACTIVE;
2327 break;
2328 }
2329 IF_DEQUEUE(&ic->ic_mgtq, m0);
2330
2331 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2332 m0->m_pkthdr.rcvif = NULL;
2333 #if NBPFILTER > 0
2334 if (ic->ic_rawbpf != NULL)
2335 bpf_mtap(ic->ic_rawbpf, m0);
2336 #endif
2337 if (zyd_tx_mgt(sc, m0, ni) != 0)
2338 break;
2339 } else {
2340 if (ic->ic_state != IEEE80211_S_RUN)
2341 break;
2342 IFQ_POLL(&ifp->if_snd, m0);
2343 if (m0 == NULL)
2344 break;
2345 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2346 ifp->if_flags |= IFF_OACTIVE;
2347 break;
2348 }
2349 IFQ_DEQUEUE(&ifp->if_snd, m0);
2350
2351 if (m0->m_len < sizeof(struct ether_header) &&
2352 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2353 continue;
2354
2355 eh = mtod(m0, struct ether_header *);
2356 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2357 if (ni == NULL) {
2358 m_freem(m0);
2359 continue;
2360 }
2361 #if NBPFILTER > 0
2362 if (ifp->if_bpf != NULL)
2363 bpf_mtap(ifp->if_bpf, m0);
2364 #endif
2365 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2366 ieee80211_free_node(ni);
2367 ifp->if_oerrors++;
2368 continue;
2369 }
2370 #if NBPFILTER > 0
2371 if (ic->ic_rawbpf != NULL)
2372 bpf_mtap(ic->ic_rawbpf, m0);
2373 #endif
2374 if (zyd_tx_data(sc, m0, ni) != 0) {
2375 ieee80211_free_node(ni);
2376 ifp->if_oerrors++;
2377 break;
2378 }
2379 }
2380
2381 sc->tx_timer = 5;
2382 ifp->if_timer = 1;
2383 }
2384 }
2385
2386 Static void
2387 zyd_watchdog(struct ifnet *ifp)
2388 {
2389 struct zyd_softc *sc = ifp->if_softc;
2390 struct ieee80211com *ic = &sc->sc_ic;
2391
2392 ifp->if_timer = 0;
2393
2394 if (sc->tx_timer > 0) {
2395 if (--sc->tx_timer == 0) {
2396 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2397 /* zyd_init(ifp); XXX needs a process context ? */
2398 ifp->if_oerrors++;
2399 return;
2400 }
2401 ifp->if_timer = 1;
2402 }
2403
2404 ieee80211_watchdog(ic);
2405 }
2406
2407 Static int
2408 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2409 {
2410 struct zyd_softc *sc = ifp->if_softc;
2411 struct ieee80211com *ic = &sc->sc_ic;
2412 int s, error = 0;
2413
2414 s = splnet();
2415
2416 switch (cmd) {
2417 case SIOCSIFFLAGS:
2418 if (ifp->if_flags & IFF_UP) {
2419 if (!(ifp->if_flags & IFF_RUNNING))
2420 zyd_init(ifp);
2421 } else {
2422 if (ifp->if_flags & IFF_RUNNING)
2423 zyd_stop(ifp, 1);
2424 }
2425 break;
2426
2427 default:
2428 if (!sc->attached)
2429 error = ENOTTY;
2430 else
2431 error = ieee80211_ioctl(ic, cmd, data);
2432 }
2433
2434 if (error == ENETRESET) {
2435 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2436 (IFF_RUNNING | IFF_UP))
2437 zyd_init(ifp);
2438 error = 0;
2439 }
2440
2441 splx(s);
2442
2443 return error;
2444 }
2445
2446 Static int
2447 zyd_init(struct ifnet *ifp)
2448 {
2449 struct zyd_softc *sc = ifp->if_softc;
2450 struct ieee80211com *ic = &sc->sc_ic;
2451 int i, error;
2452
2453 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2454 if ((error = zyd_attachhook(sc)) != 0)
2455 return error;
2456
2457 zyd_stop(ifp, 0);
2458
2459 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2460 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2461 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2462 if (error != 0)
2463 return error;
2464
2465 /* we'll do software WEP decryption for now */
2466 DPRINTF(("setting encryption type\n"));
2467 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2468 if (error != 0)
2469 return error;
2470
2471 /* promiscuous mode */
2472 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2473 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2474
2475 (void)zyd_set_rxfilter(sc);
2476
2477 /* switch radio transmitter ON */
2478 (void)zyd_switch_radio(sc, 1);
2479
2480 /* set basic rates */
2481 if (ic->ic_curmode == IEEE80211_MODE_11B)
2482 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2483 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2484 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2485 else /* assumes 802.11b/g */
2486 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2487
2488 /* set mandatory rates */
2489 if (ic->ic_curmode == IEEE80211_MODE_11B)
2490 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2491 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2492 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2493 else /* assumes 802.11b/g */
2494 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2495
2496 /* set default BSS channel */
2497 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2498 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2499
2500 /* enable interrupts */
2501 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2502
2503 /*
2504 * Allocate Tx and Rx xfer queues.
2505 */
2506 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2507 printf("%s: could not allocate Tx list\n",
2508 USBDEVNAME(sc->sc_dev));
2509 goto fail;
2510 }
2511 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2512 printf("%s: could not allocate Rx list\n",
2513 USBDEVNAME(sc->sc_dev));
2514 goto fail;
2515 }
2516
2517 /*
2518 * Start up the receive pipe.
2519 */
2520 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2521 struct zyd_rx_data *data = &sc->rx_data[i];
2522
2523 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2524 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2525 USBD_NO_TIMEOUT, zyd_rxeof);
2526 error = usbd_transfer(data->xfer);
2527 if (error != USBD_IN_PROGRESS && error != 0) {
2528 printf("%s: could not queue Rx transfer\n",
2529 USBDEVNAME(sc->sc_dev));
2530 goto fail;
2531 }
2532 }
2533
2534 ifp->if_flags &= ~IFF_OACTIVE;
2535 ifp->if_flags |= IFF_RUNNING;
2536
2537 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2538 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2539 else
2540 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2541
2542 return 0;
2543
2544 fail: zyd_stop(ifp, 1);
2545 return error;
2546 }
2547
2548 Static void
2549 zyd_stop(struct ifnet *ifp, int disable)
2550 {
2551 struct zyd_softc *sc = ifp->if_softc;
2552 struct ieee80211com *ic = &sc->sc_ic;
2553
2554 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2555
2556 sc->tx_timer = 0;
2557 ifp->if_timer = 0;
2558 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2559
2560 /* switch radio transmitter OFF */
2561 (void)zyd_switch_radio(sc, 0);
2562
2563 /* disable Rx */
2564 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2565
2566 /* disable interrupts */
2567 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2568
2569 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2570 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2571
2572 zyd_free_rx_list(sc);
2573 zyd_free_tx_list(sc);
2574 }
2575
2576 Static int
2577 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2578 {
2579 usb_device_request_t req;
2580 uint16_t addr;
2581 uint8_t stat;
2582
2583 DPRINTF(("firmware size=%zu\n", size));
2584
2585 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2586 req.bRequest = ZYD_DOWNLOADREQ;
2587 USETW(req.wIndex, 0);
2588
2589 addr = ZYD_FIRMWARE_START_ADDR;
2590 while (size > 0) {
2591 #if 0
2592 const int mlen = min(size, 4096);
2593 #else
2594 /*
2595 * XXXX: When the transfer size is 4096 bytes, it is not
2596 * likely to be able to transfer it.
2597 * The cause is port or machine or chip?
2598 */
2599 const int mlen = min(size, 64);
2600 #endif
2601
2602 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2603 addr));
2604
2605 USETW(req.wValue, addr);
2606 USETW(req.wLength, mlen);
2607 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2608 return EIO;
2609
2610 addr += mlen / 2;
2611 fw += mlen;
2612 size -= mlen;
2613 }
2614
2615 /* check whether the upload succeeded */
2616 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2617 req.bRequest = ZYD_DOWNLOADSTS;
2618 USETW(req.wValue, 0);
2619 USETW(req.wIndex, 0);
2620 USETW(req.wLength, sizeof stat);
2621 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2622 return EIO;
2623
2624 return (stat & 0x80) ? EIO : 0;
2625 }
2626
2627 Static void
2628 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2629 {
2630 struct zyd_softc *sc = arg;
2631 struct zyd_node *zn = (struct zyd_node *)ni;
2632
2633 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2634 }
2635
2636 Static void
2637 zyd_amrr_timeout(void *arg)
2638 {
2639 struct zyd_softc *sc = arg;
2640 struct ieee80211com *ic = &sc->sc_ic;
2641 int s;
2642
2643 s = splnet();
2644 if (ic->ic_opmode == IEEE80211_M_STA)
2645 zyd_iter_func(sc, ic->ic_bss);
2646 else
2647 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2648 splx(s);
2649
2650 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2651 }
2652
2653 Static void
2654 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2655 {
2656 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2657 int i;
2658
2659 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2660
2661 /* set rate to some reasonable initial value */
2662 for (i = ni->ni_rates.rs_nrates - 1;
2663 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2664 i--);
2665 ni->ni_txrate = i;
2666 }
2667
2668 int
2669 zyd_activate(device_ptr_t self, enum devact act)
2670 {
2671 struct zyd_softc *sc = device_private(self);
2672
2673 switch (act) {
2674 case DVACT_ACTIVATE:
2675 break;
2676
2677 case DVACT_DEACTIVATE:
2678 if_deactivate(&sc->sc_if);
2679 break;
2680 }
2681 return 0;
2682 }
2683