if_zyd.c revision 1.24 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.24 2010/01/19 22:07:44 pooka Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.24 2010/01/19 22:07:44 pooka Exp $");
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_zydreg.h>
68
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p) \
87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p) \
89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 struct usb_devno dev;
92 uint8_t rev;
93 #define ZYD_ZD1211 0
94 #define ZYD_ZD1211B 1
95 } zyd_devs[] = {
96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
97 ZYD_ZD1211_DEV(ABOCOM, WL54),
98 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
102 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
103 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
104 ZYD_ZD1211_DEV(SAGEM, XG760A),
105 ZYD_ZD1211_DEV(SENAO, NUB8301),
106 ZYD_ZD1211_DEV(SITECOMEU, WL113),
107 ZYD_ZD1211_DEV(SWEEX, ZD1211),
108 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
111 ZYD_ZD1211_DEV(TWINMOS, G240),
112 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
115 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
116 ZYD_ZD1211_DEV(ZCOM, ZD1211),
117 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
118 ZYD_ZD1211_DEV(ZYXEL, AG225H),
119 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
120
121 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
126 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
127 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
128 ZYD_ZD1211B_DEV(MELCO, KG54L),
129 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
130 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
131 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
132 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
133 #if 0 /* Shall we needs? */
134 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
135 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
136 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
137 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
138 #endif
139 ZYD_ZD1211B_DEV(USR, USR5423),
140 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
141 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
142 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
143 ZYD_ZD1211B_DEV(ZYXEL, M202),
144 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
145 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
146 };
147 #define zyd_lookup(v, p) \
148 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
149
150 int zyd_match(device_t, cfdata_t, void *);
151 void zyd_attach(device_t, device_t, void *);
152 int zyd_detach(device_t, int);
153 int zyd_activate(device_t, enum devact);
154 extern struct cfdriver zyd_cd;
155
156 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
157 zyd_attach, zyd_detach, zyd_activate);
158
159 Static int zyd_attachhook(void *);
160 Static int zyd_complete_attach(struct zyd_softc *);
161 Static int zyd_open_pipes(struct zyd_softc *);
162 Static void zyd_close_pipes(struct zyd_softc *);
163 Static int zyd_alloc_tx_list(struct zyd_softc *);
164 Static void zyd_free_tx_list(struct zyd_softc *);
165 Static int zyd_alloc_rx_list(struct zyd_softc *);
166 Static void zyd_free_rx_list(struct zyd_softc *);
167 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
168 Static int zyd_media_change(struct ifnet *);
169 Static void zyd_next_scan(void *);
170 Static void zyd_task(void *);
171 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
172 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
173 void *, int, u_int);
174 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
175 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
176 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
177 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
178 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
179 Static void zyd_lock_phy(struct zyd_softc *);
180 Static void zyd_unlock_phy(struct zyd_softc *);
181 Static int zyd_rfmd_init(struct zyd_rf *);
182 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
183 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
184 Static int zyd_al2230_init(struct zyd_rf *);
185 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
186 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2230_init_b(struct zyd_rf *);
188 Static int zyd_al7230B_init(struct zyd_rf *);
189 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
190 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
191 Static int zyd_al2210_init(struct zyd_rf *);
192 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
193 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
194 Static int zyd_gct_init(struct zyd_rf *);
195 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
196 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
197 Static int zyd_maxim_init(struct zyd_rf *);
198 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
199 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_maxim2_init(struct zyd_rf *);
201 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
202 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
204 Static const char *zyd_rf_name(uint8_t);
205 Static int zyd_hw_init(struct zyd_softc *);
206 Static int zyd_read_eeprom(struct zyd_softc *);
207 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
208 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
209 Static int zyd_switch_radio(struct zyd_softc *, int);
210 Static void zyd_set_led(struct zyd_softc *, int, int);
211 Static int zyd_set_rxfilter(struct zyd_softc *);
212 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
213 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
214 Static uint8_t zyd_plcp_signal(int);
215 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
216 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
217 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
218 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
219 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
220 struct ieee80211_node *);
221 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
222 struct ieee80211_node *);
223 Static void zyd_start(struct ifnet *);
224 Static void zyd_watchdog(struct ifnet *);
225 Static int zyd_ioctl(struct ifnet *, u_long, void *);
226 Static int zyd_init(struct ifnet *);
227 Static void zyd_stop(struct ifnet *, int);
228 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
229 Static void zyd_iter_func(void *, struct ieee80211_node *);
230 Static void zyd_amrr_timeout(void *);
231 Static void zyd_newassoc(struct ieee80211_node *, int);
232
233 static const struct ieee80211_rateset zyd_rateset_11b =
234 { 4, { 2, 4, 11, 22 } };
235
236 static const struct ieee80211_rateset zyd_rateset_11g =
237 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
238
239 int
240 zyd_match(device_t parent, cfdata_t match, void *aux)
241 {
242 struct usb_attach_arg *uaa = aux;
243
244 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
245 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
246 }
247
248 Static int
249 zyd_attachhook(void *xsc)
250 {
251 struct zyd_softc *sc = xsc;
252 firmware_handle_t fwh;
253 const char *fwname;
254 u_char *fw;
255 size_t size;
256 int error;
257
258 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
259 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
260 aprint_error_dev(sc->sc_dev,
261 "failed to open firmware %s (error=%d)\n", fwname, error);
262 return error;
263 }
264 size = firmware_get_size(fwh);
265 fw = firmware_malloc(size);
266 if (fw == NULL) {
267 aprint_error_dev(sc->sc_dev,
268 "failed to allocate firmware memory\n");
269 firmware_close(fwh);
270 return ENOMEM;
271 }
272 error = firmware_read(fwh, 0, fw, size);
273 firmware_close(fwh);
274 if (error != 0) {
275 aprint_error_dev(sc->sc_dev,
276 "failed to read firmware (error %d)\n", error);
277 firmware_free(fw, 0);
278 return error;
279 }
280
281 error = zyd_loadfirmware(sc, fw, size);
282 if (error != 0) {
283 aprint_error_dev(sc->sc_dev,
284 "could not load firmware (error=%d)\n", error);
285 firmware_free(fw, 0);
286 return ENXIO;
287 }
288
289 firmware_free(fw, 0);
290 sc->sc_flags |= ZD1211_FWLOADED;
291
292 /* complete the attach process */
293 if ((error = zyd_complete_attach(sc)) == 0)
294 sc->attached = 1;
295 return error;
296 }
297
298 void
299 zyd_attach(device_t parent, device_t self, void *aux)
300 {
301 struct zyd_softc *sc = device_private(self);
302 struct usb_attach_arg *uaa = aux;
303 char *devinfop;
304 usb_device_descriptor_t* ddesc;
305 struct ifnet *ifp = &sc->sc_if;
306
307 sc->sc_dev = self;
308 sc->sc_udev = uaa->device;
309 sc->sc_flags = 0;
310
311 aprint_naive("\n");
312 aprint_normal("\n");
313
314 devinfop = usbd_devinfo_alloc(uaa->device, 0);
315 aprint_normal_dev(self, "%s\n", devinfop);
316 usbd_devinfo_free(devinfop);
317
318 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
319
320 ddesc = usbd_get_device_descriptor(sc->sc_udev);
321 if (UGETW(ddesc->bcdDevice) < 0x4330) {
322 aprint_error_dev(self, "device version mismatch: 0x%x "
323 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
324 return;
325 }
326
327 ifp->if_softc = sc;
328 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 ifp->if_init = zyd_init;
330 ifp->if_ioctl = zyd_ioctl;
331 ifp->if_start = zyd_start;
332 ifp->if_watchdog = zyd_watchdog;
333 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
334 IFQ_SET_READY(&ifp->if_snd);
335 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
336
337 if_attach(ifp);
338 /* XXXX: alloc temporarily until the layer2 can be configured. */
339 if_alloc_sadl(ifp);
340
341 SIMPLEQ_INIT(&sc->sc_rqh);
342
343 return;
344 }
345
346 Static int
347 zyd_complete_attach(struct zyd_softc *sc)
348 {
349 struct ieee80211com *ic = &sc->sc_ic;
350 struct ifnet *ifp = &sc->sc_if;
351 usbd_status error;
352 int i;
353
354 usb_init_task(&sc->sc_task, zyd_task, sc);
355 callout_init(&(sc->sc_scan_ch), 0);
356
357 sc->amrr.amrr_min_success_threshold = 1;
358 sc->amrr.amrr_max_success_threshold = 10;
359 callout_init(&sc->sc_amrr_ch, 0);
360
361 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
362 if (error != 0) {
363 aprint_error_dev(sc->sc_dev, "setting config no failed\n");
364 goto fail;
365 }
366
367 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
368 &sc->sc_iface);
369 if (error != 0) {
370 aprint_error_dev(sc->sc_dev,
371 "getting interface handle failed\n");
372 goto fail;
373 }
374
375 if ((error = zyd_open_pipes(sc)) != 0) {
376 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
377 goto fail;
378 }
379
380 if ((error = zyd_read_eeprom(sc)) != 0) {
381 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
382 goto fail;
383 }
384
385 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
386 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
387 goto fail;
388 }
389
390 if ((error = zyd_hw_init(sc)) != 0) {
391 aprint_error_dev(sc->sc_dev,
392 "hardware initialization failed\n");
393 goto fail;
394 }
395
396 aprint_normal_dev(sc->sc_dev,
397 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
398 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
399 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
400 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
401
402 ic->ic_ifp = ifp;
403 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
404 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
405 ic->ic_state = IEEE80211_S_INIT;
406
407 /* set device capabilities */
408 ic->ic_caps =
409 IEEE80211_C_MONITOR | /* monitor mode supported */
410 IEEE80211_C_TXPMGT | /* tx power management */
411 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
412 IEEE80211_C_WEP; /* s/w WEP */
413
414 /* set supported .11b and .11g rates */
415 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
416 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
417
418 /* set supported .11b and .11g channels (1 through 14) */
419 for (i = 1; i <= 14; i++) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
422 ic->ic_channels[i].ic_flags =
423 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
424 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
425 }
426
427 if_free_sadl(ifp);
428 ieee80211_ifattach(ic);
429 ic->ic_node_alloc = zyd_node_alloc;
430 ic->ic_newassoc = zyd_newassoc;
431
432 /* override state transition machine */
433 sc->sc_newstate = ic->ic_newstate;
434 ic->ic_newstate = zyd_newstate;
435 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
436
437 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
438 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
439 &sc->sc_drvbpf);
440
441 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
442 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
443 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
444
445 sc->sc_txtap_len = sizeof sc->sc_txtapu;
446 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
447 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
448
449 ieee80211_announce(ic);
450
451 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
452
453 fail: return error;
454 }
455
456 int
457 zyd_detach(device_t self, int flags)
458 {
459 struct zyd_softc *sc = device_private(self);
460 struct ieee80211com *ic = &sc->sc_ic;
461 struct ifnet *ifp = &sc->sc_if;
462 int s;
463
464 if (!sc->attached) {
465 if_free_sadl(ifp);
466 if_detach(ifp);
467 return 0;
468 }
469
470 s = splusb();
471
472 zyd_stop(ifp, 1);
473 usb_rem_task(sc->sc_udev, &sc->sc_task);
474 callout_stop(&sc->sc_scan_ch);
475 callout_stop(&sc->sc_amrr_ch);
476
477 zyd_close_pipes(sc);
478
479 sc->attached = 0;
480
481 bpf_ops->bpf_detach(ifp);
482 ieee80211_ifdetach(ic);
483 if_detach(ifp);
484
485 splx(s);
486
487 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
488 USBDEV(sc->sc_dev));
489
490 return 0;
491 }
492
493 Static int
494 zyd_open_pipes(struct zyd_softc *sc)
495 {
496 usb_endpoint_descriptor_t *edesc;
497 int isize;
498 usbd_status error;
499
500 /* interrupt in */
501 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
502 if (edesc == NULL)
503 return EINVAL;
504
505 isize = UGETW(edesc->wMaxPacketSize);
506 if (isize == 0) /* should not happen */
507 return EINVAL;
508
509 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
510 if (sc->ibuf == NULL)
511 return ENOMEM;
512
513 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
514 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
515 USBD_DEFAULT_INTERVAL);
516 if (error != 0) {
517 printf("%s: open rx intr pipe failed: %s\n",
518 device_xname(sc->sc_dev), usbd_errstr(error));
519 goto fail;
520 }
521
522 /* interrupt out (not necessarily an interrupt pipe) */
523 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
524 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
525 if (error != 0) {
526 printf("%s: open tx intr pipe failed: %s\n",
527 device_xname(sc->sc_dev), usbd_errstr(error));
528 goto fail;
529 }
530
531 /* bulk in */
532 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
533 &sc->zyd_ep[ZYD_ENDPT_BIN]);
534 if (error != 0) {
535 printf("%s: open rx pipe failed: %s\n",
536 device_xname(sc->sc_dev), usbd_errstr(error));
537 goto fail;
538 }
539
540 /* bulk out */
541 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
542 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
543 if (error != 0) {
544 printf("%s: open tx pipe failed: %s\n",
545 device_xname(sc->sc_dev), usbd_errstr(error));
546 goto fail;
547 }
548
549 return 0;
550
551 fail: zyd_close_pipes(sc);
552 return error;
553 }
554
555 Static void
556 zyd_close_pipes(struct zyd_softc *sc)
557 {
558 int i;
559
560 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
561 if (sc->zyd_ep[i] != NULL) {
562 usbd_abort_pipe(sc->zyd_ep[i]);
563 usbd_close_pipe(sc->zyd_ep[i]);
564 sc->zyd_ep[i] = NULL;
565 }
566 }
567 if (sc->ibuf != NULL) {
568 free(sc->ibuf, M_USBDEV);
569 sc->ibuf = NULL;
570 }
571 }
572
573 Static int
574 zyd_alloc_tx_list(struct zyd_softc *sc)
575 {
576 int i, error;
577
578 sc->tx_queued = 0;
579
580 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
581 struct zyd_tx_data *data = &sc->tx_data[i];
582
583 data->sc = sc; /* backpointer for callbacks */
584
585 data->xfer = usbd_alloc_xfer(sc->sc_udev);
586 if (data->xfer == NULL) {
587 printf("%s: could not allocate tx xfer\n",
588 device_xname(sc->sc_dev));
589 error = ENOMEM;
590 goto fail;
591 }
592 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
593 if (data->buf == NULL) {
594 printf("%s: could not allocate tx buffer\n",
595 device_xname(sc->sc_dev));
596 error = ENOMEM;
597 goto fail;
598 }
599
600 /* clear Tx descriptor */
601 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
602 }
603 return 0;
604
605 fail: zyd_free_tx_list(sc);
606 return error;
607 }
608
609 Static void
610 zyd_free_tx_list(struct zyd_softc *sc)
611 {
612 int i;
613
614 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
615 struct zyd_tx_data *data = &sc->tx_data[i];
616
617 if (data->xfer != NULL) {
618 usbd_free_xfer(data->xfer);
619 data->xfer = NULL;
620 }
621 if (data->ni != NULL) {
622 ieee80211_free_node(data->ni);
623 data->ni = NULL;
624 }
625 }
626 }
627
628 Static int
629 zyd_alloc_rx_list(struct zyd_softc *sc)
630 {
631 int i, error;
632
633 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
634 struct zyd_rx_data *data = &sc->rx_data[i];
635
636 data->sc = sc; /* backpointer for callbacks */
637
638 data->xfer = usbd_alloc_xfer(sc->sc_udev);
639 if (data->xfer == NULL) {
640 printf("%s: could not allocate rx xfer\n",
641 device_xname(sc->sc_dev));
642 error = ENOMEM;
643 goto fail;
644 }
645 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
646 if (data->buf == NULL) {
647 printf("%s: could not allocate rx buffer\n",
648 device_xname(sc->sc_dev));
649 error = ENOMEM;
650 goto fail;
651 }
652 }
653 return 0;
654
655 fail: zyd_free_rx_list(sc);
656 return error;
657 }
658
659 Static void
660 zyd_free_rx_list(struct zyd_softc *sc)
661 {
662 int i;
663
664 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
665 struct zyd_rx_data *data = &sc->rx_data[i];
666
667 if (data->xfer != NULL) {
668 usbd_free_xfer(data->xfer);
669 data->xfer = NULL;
670 }
671 }
672 }
673
674 /* ARGUSED */
675 Static struct ieee80211_node *
676 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
677 {
678 struct zyd_node *zn;
679
680 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
681
682 return &zn->ni;
683 }
684
685 Static int
686 zyd_media_change(struct ifnet *ifp)
687 {
688 int error;
689
690 error = ieee80211_media_change(ifp);
691 if (error != ENETRESET)
692 return error;
693
694 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
695 zyd_init(ifp);
696
697 return 0;
698 }
699
700 /*
701 * This function is called periodically (every 200ms) during scanning to
702 * switch from one channel to another.
703 */
704 Static void
705 zyd_next_scan(void *arg)
706 {
707 struct zyd_softc *sc = arg;
708 struct ieee80211com *ic = &sc->sc_ic;
709
710 if (ic->ic_state == IEEE80211_S_SCAN)
711 ieee80211_next_scan(ic);
712 }
713
714 Static void
715 zyd_task(void *arg)
716 {
717 struct zyd_softc *sc = arg;
718 struct ieee80211com *ic = &sc->sc_ic;
719 enum ieee80211_state ostate;
720
721 ostate = ic->ic_state;
722
723 switch (sc->sc_state) {
724 case IEEE80211_S_INIT:
725 if (ostate == IEEE80211_S_RUN) {
726 /* turn link LED off */
727 zyd_set_led(sc, ZYD_LED1, 0);
728
729 /* stop data LED from blinking */
730 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
731 }
732 break;
733
734 case IEEE80211_S_SCAN:
735 zyd_set_chan(sc, ic->ic_curchan);
736 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
737 break;
738
739 case IEEE80211_S_AUTH:
740 case IEEE80211_S_ASSOC:
741 zyd_set_chan(sc, ic->ic_curchan);
742 break;
743
744 case IEEE80211_S_RUN:
745 {
746 struct ieee80211_node *ni = ic->ic_bss;
747
748 zyd_set_chan(sc, ic->ic_curchan);
749
750 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
751 /* turn link LED on */
752 zyd_set_led(sc, ZYD_LED1, 1);
753
754 /* make data LED blink upon Tx */
755 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
756
757 zyd_set_bssid(sc, ni->ni_bssid);
758 }
759
760 if (ic->ic_opmode == IEEE80211_M_STA) {
761 /* fake a join to init the tx rate */
762 zyd_newassoc(ni, 1);
763 }
764
765 /* start automatic rate control timer */
766 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
767 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
768
769 break;
770 }
771 }
772
773 sc->sc_newstate(ic, sc->sc_state, -1);
774 }
775
776 Static int
777 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
778 {
779 struct zyd_softc *sc = ic->ic_ifp->if_softc;
780
781 if (!sc->attached)
782 return ENXIO;
783
784 usb_rem_task(sc->sc_udev, &sc->sc_task);
785 callout_stop(&sc->sc_scan_ch);
786 callout_stop(&sc->sc_amrr_ch);
787
788 /* do it in a process context */
789 sc->sc_state = nstate;
790 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
791
792 return 0;
793 }
794
795 Static int
796 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
797 void *odata, int olen, u_int flags)
798 {
799 usbd_xfer_handle xfer;
800 struct zyd_cmd cmd;
801 struct rq rq;
802 uint16_t xferflags;
803 usbd_status error;
804 int s = 0;
805
806 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
807 return ENOMEM;
808
809 cmd.code = htole16(code);
810 bcopy(idata, cmd.data, ilen);
811
812 xferflags = USBD_FORCE_SHORT_XFER;
813 if (!(flags & ZYD_CMD_FLAG_READ))
814 xferflags |= USBD_SYNCHRONOUS;
815 else {
816 s = splusb();
817 rq.idata = idata;
818 rq.odata = odata;
819 rq.len = olen / sizeof (struct zyd_pair);
820 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
821 }
822
823 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
824 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
825 error = usbd_transfer(xfer);
826 if (error != USBD_IN_PROGRESS && error != 0) {
827 if (flags & ZYD_CMD_FLAG_READ)
828 splx(s);
829 printf("%s: could not send command (error=%s)\n",
830 device_xname(sc->sc_dev), usbd_errstr(error));
831 (void)usbd_free_xfer(xfer);
832 return EIO;
833 }
834 if (!(flags & ZYD_CMD_FLAG_READ)) {
835 (void)usbd_free_xfer(xfer);
836 return 0; /* write: don't wait for reply */
837 }
838 /* wait at most one second for command reply */
839 error = tsleep(odata, PCATCH, "zydcmd", hz);
840 if (error == EWOULDBLOCK)
841 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
842 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
843 splx(s);
844
845 (void)usbd_free_xfer(xfer);
846 return error;
847 }
848
849 Static int
850 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
851 {
852 struct zyd_pair tmp;
853 int error;
854
855 reg = htole16(reg);
856 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
857 ZYD_CMD_FLAG_READ);
858 if (error == 0)
859 *val = le16toh(tmp.val);
860 return error;
861 }
862
863 Static int
864 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
865 {
866 struct zyd_pair tmp[2];
867 uint16_t regs[2];
868 int error;
869
870 regs[0] = htole16(ZYD_REG32_HI(reg));
871 regs[1] = htole16(ZYD_REG32_LO(reg));
872 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
873 ZYD_CMD_FLAG_READ);
874 if (error == 0)
875 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
876 return error;
877 }
878
879 Static int
880 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
881 {
882 struct zyd_pair pair;
883
884 pair.reg = htole16(reg);
885 pair.val = htole16(val);
886
887 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
888 }
889
890 Static int
891 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
892 {
893 struct zyd_pair pair[2];
894
895 pair[0].reg = htole16(ZYD_REG32_HI(reg));
896 pair[0].val = htole16(val >> 16);
897 pair[1].reg = htole16(ZYD_REG32_LO(reg));
898 pair[1].val = htole16(val & 0xffff);
899
900 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
901 }
902
903 Static int
904 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
905 {
906 struct zyd_rf *rf = &sc->sc_rf;
907 struct zyd_rfwrite req;
908 uint16_t cr203;
909 int i;
910
911 (void)zyd_read16(sc, ZYD_CR203, &cr203);
912 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
913
914 req.code = htole16(2);
915 req.width = htole16(rf->width);
916 for (i = 0; i < rf->width; i++) {
917 req.bit[i] = htole16(cr203);
918 if (val & (1 << (rf->width - 1 - i)))
919 req.bit[i] |= htole16(ZYD_RF_DATA);
920 }
921 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
922 }
923
924 Static void
925 zyd_lock_phy(struct zyd_softc *sc)
926 {
927 uint32_t tmp;
928
929 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
930 tmp &= ~ZYD_UNLOCK_PHY_REGS;
931 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
932 }
933
934 Static void
935 zyd_unlock_phy(struct zyd_softc *sc)
936 {
937 uint32_t tmp;
938
939 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
940 tmp |= ZYD_UNLOCK_PHY_REGS;
941 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
942 }
943
944 /*
945 * RFMD RF methods.
946 */
947 Static int
948 zyd_rfmd_init(struct zyd_rf *rf)
949 {
950 #define N(a) (sizeof (a) / sizeof ((a)[0]))
951 struct zyd_softc *sc = rf->rf_sc;
952 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
953 static const uint32_t rfini[] = ZYD_RFMD_RF;
954 int i, error;
955
956 /* init RF-dependent PHY registers */
957 for (i = 0; i < N(phyini); i++) {
958 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
959 if (error != 0)
960 return error;
961 }
962
963 /* init RFMD radio */
964 for (i = 0; i < N(rfini); i++) {
965 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
966 return error;
967 }
968 return 0;
969 #undef N
970 }
971
972 Static int
973 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
974 {
975 struct zyd_softc *sc = rf->rf_sc;
976
977 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
978 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
979
980 return 0;
981 }
982
983 Static int
984 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
985 {
986 struct zyd_softc *sc = rf->rf_sc;
987 static const struct {
988 uint32_t r1, r2;
989 } rfprog[] = ZYD_RFMD_CHANTABLE;
990
991 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
992 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
993
994 return 0;
995 }
996
997 /*
998 * AL2230 RF methods.
999 */
1000 Static int
1001 zyd_al2230_init(struct zyd_rf *rf)
1002 {
1003 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1004 struct zyd_softc *sc = rf->rf_sc;
1005 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1006 static const uint32_t rfini[] = ZYD_AL2230_RF;
1007 int i, error;
1008
1009 /* init RF-dependent PHY registers */
1010 for (i = 0; i < N(phyini); i++) {
1011 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1012 if (error != 0)
1013 return error;
1014 }
1015
1016 /* init AL2230 radio */
1017 for (i = 0; i < N(rfini); i++) {
1018 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1019 return error;
1020 }
1021 return 0;
1022 #undef N
1023 }
1024
1025 Static int
1026 zyd_al2230_init_b(struct zyd_rf *rf)
1027 {
1028 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1029 struct zyd_softc *sc = rf->rf_sc;
1030 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1031 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1032 int i, error;
1033
1034 /* init RF-dependent PHY registers */
1035 for (i = 0; i < N(phyini); i++) {
1036 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1037 if (error != 0)
1038 return error;
1039 }
1040
1041 /* init AL2230 radio */
1042 for (i = 0; i < N(rfini); i++) {
1043 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1044 return error;
1045 }
1046 return 0;
1047 #undef N
1048 }
1049
1050 Static int
1051 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1052 {
1053 struct zyd_softc *sc = rf->rf_sc;
1054 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1055
1056 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1057 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1058
1059 return 0;
1060 }
1061
1062 Static int
1063 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1064 {
1065 struct zyd_softc *sc = rf->rf_sc;
1066 static const struct {
1067 uint32_t r1, r2, r3;
1068 } rfprog[] = ZYD_AL2230_CHANTABLE;
1069
1070 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1073
1074 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1075 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1076
1077 return 0;
1078 }
1079
1080 /*
1081 * AL7230B RF methods.
1082 */
1083 Static int
1084 zyd_al7230B_init(struct zyd_rf *rf)
1085 {
1086 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1087 struct zyd_softc *sc = rf->rf_sc;
1088 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1089 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1090 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1091 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1092 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1093 int i, error;
1094
1095 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1096
1097 /* init RF-dependent PHY registers, part one */
1098 for (i = 0; i < N(phyini_1); i++) {
1099 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1100 if (error != 0)
1101 return error;
1102 }
1103 /* init AL7230B radio, part one */
1104 for (i = 0; i < N(rfini_1); i++) {
1105 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1106 return error;
1107 }
1108 /* init RF-dependent PHY registers, part two */
1109 for (i = 0; i < N(phyini_2); i++) {
1110 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1111 if (error != 0)
1112 return error;
1113 }
1114 /* init AL7230B radio, part two */
1115 for (i = 0; i < N(rfini_2); i++) {
1116 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1117 return error;
1118 }
1119 /* init RF-dependent PHY registers, part three */
1120 for (i = 0; i < N(phyini_3); i++) {
1121 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1122 if (error != 0)
1123 return error;
1124 }
1125
1126 return 0;
1127 #undef N
1128 }
1129
1130 Static int
1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1132 {
1133 struct zyd_softc *sc = rf->rf_sc;
1134
1135 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1136 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1137
1138 return 0;
1139 }
1140
1141 Static int
1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1143 {
1144 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1145 struct zyd_softc *sc = rf->rf_sc;
1146 static const struct {
1147 uint32_t r1, r2;
1148 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1149 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1150 int i, error;
1151
1152 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1153 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1154
1155 for (i = 0; i < N(rfsc); i++) {
1156 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1157 return error;
1158 }
1159
1160 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1161 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1162 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1163 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1164 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1165
1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1168 (void)zyd_rfwrite(sc, 0x3c9000);
1169
1170 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1171 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1172 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1173
1174 return 0;
1175 #undef N
1176 }
1177
1178 /*
1179 * AL2210 RF methods.
1180 */
1181 Static int
1182 zyd_al2210_init(struct zyd_rf *rf)
1183 {
1184 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1185 struct zyd_softc *sc = rf->rf_sc;
1186 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1187 static const uint32_t rfini[] = ZYD_AL2210_RF;
1188 uint32_t tmp;
1189 int i, error;
1190
1191 (void)zyd_write32(sc, ZYD_CR18, 2);
1192
1193 /* init RF-dependent PHY registers */
1194 for (i = 0; i < N(phyini); i++) {
1195 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1196 if (error != 0)
1197 return error;
1198 }
1199 /* init AL2210 radio */
1200 for (i = 0; i < N(rfini); i++) {
1201 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1202 return error;
1203 }
1204 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1205 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1207 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1209 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1210 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1211 (void)zyd_write32(sc, ZYD_CR18, 3);
1212
1213 return 0;
1214 #undef N
1215 }
1216
1217 Static int
1218 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1219 {
1220 /* vendor driver does nothing for this RF chip */
1221
1222 return 0;
1223 }
1224
1225 Static int
1226 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1227 {
1228 struct zyd_softc *sc = rf->rf_sc;
1229 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1230 uint32_t tmp;
1231
1232 (void)zyd_write32(sc, ZYD_CR18, 2);
1233 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1234 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1235 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1236 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1237 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1238
1239 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1240 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1241
1242 /* actually set the channel */
1243 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1244
1245 (void)zyd_write32(sc, ZYD_CR18, 3);
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * GCT RF methods.
1252 */
1253 Static int
1254 zyd_gct_init(struct zyd_rf *rf)
1255 {
1256 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1257 struct zyd_softc *sc = rf->rf_sc;
1258 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1259 static const uint32_t rfini[] = ZYD_GCT_RF;
1260 int i, error;
1261
1262 /* init RF-dependent PHY registers */
1263 for (i = 0; i < N(phyini); i++) {
1264 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1265 if (error != 0)
1266 return error;
1267 }
1268 /* init cgt radio */
1269 for (i = 0; i < N(rfini); i++) {
1270 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1271 return error;
1272 }
1273 return 0;
1274 #undef N
1275 }
1276
1277 Static int
1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1279 {
1280 /* vendor driver does nothing for this RF chip */
1281
1282 return 0;
1283 }
1284
1285 Static int
1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1287 {
1288 struct zyd_softc *sc = rf->rf_sc;
1289 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1290
1291 (void)zyd_rfwrite(sc, 0x1c0000);
1292 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1293 (void)zyd_rfwrite(sc, 0x1c0008);
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Maxim RF methods.
1300 */
1301 Static int
1302 zyd_maxim_init(struct zyd_rf *rf)
1303 {
1304 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1305 struct zyd_softc *sc = rf->rf_sc;
1306 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1307 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1308 uint16_t tmp;
1309 int i, error;
1310
1311 /* init RF-dependent PHY registers */
1312 for (i = 0; i < N(phyini); i++) {
1313 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1314 if (error != 0)
1315 return error;
1316 }
1317 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1319
1320 /* init maxim radio */
1321 for (i = 0; i < N(rfini); i++) {
1322 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1323 return error;
1324 }
1325 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1326 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1327
1328 return 0;
1329 #undef N
1330 }
1331
1332 Static int
1333 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1334 {
1335 /* vendor driver does nothing for this RF chip */
1336
1337 return 0;
1338 }
1339
1340 Static int
1341 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1342 {
1343 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1344 struct zyd_softc *sc = rf->rf_sc;
1345 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1346 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1347 static const struct {
1348 uint32_t r1, r2;
1349 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1350 uint16_t tmp;
1351 int i, error;
1352
1353 /*
1354 * Do the same as we do when initializing it, except for the channel
1355 * values coming from the two channel tables.
1356 */
1357
1358 /* init RF-dependent PHY registers */
1359 for (i = 0; i < N(phyini); i++) {
1360 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1361 if (error != 0)
1362 return error;
1363 }
1364 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1365 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1366
1367 /* first two values taken from the chantables */
1368 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1369 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1370
1371 /* init maxim radio - skipping the two first values */
1372 for (i = 2; i < N(rfini); i++) {
1373 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1374 return error;
1375 }
1376 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1377 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1378
1379 return 0;
1380 #undef N
1381 }
1382
1383 /*
1384 * Maxim2 RF methods.
1385 */
1386 Static int
1387 zyd_maxim2_init(struct zyd_rf *rf)
1388 {
1389 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1390 struct zyd_softc *sc = rf->rf_sc;
1391 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1392 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1393 uint16_t tmp;
1394 int i, error;
1395
1396 /* init RF-dependent PHY registers */
1397 for (i = 0; i < N(phyini); i++) {
1398 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1399 if (error != 0)
1400 return error;
1401 }
1402 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1403 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1404
1405 /* init maxim2 radio */
1406 for (i = 0; i < N(rfini); i++) {
1407 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1408 return error;
1409 }
1410 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1411 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1412
1413 return 0;
1414 #undef N
1415 }
1416
1417 Static int
1418 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1419 {
1420 /* vendor driver does nothing for this RF chip */
1421
1422 return 0;
1423 }
1424
1425 Static int
1426 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1427 {
1428 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1429 struct zyd_softc *sc = rf->rf_sc;
1430 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1431 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1432 static const struct {
1433 uint32_t r1, r2;
1434 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1435 uint16_t tmp;
1436 int i, error;
1437
1438 /*
1439 * Do the same as we do when initializing it, except for the channel
1440 * values coming from the two channel tables.
1441 */
1442
1443 /* init RF-dependent PHY registers */
1444 for (i = 0; i < N(phyini); i++) {
1445 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1446 if (error != 0)
1447 return error;
1448 }
1449 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1450 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1451
1452 /* first two values taken from the chantables */
1453 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1454 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1455
1456 /* init maxim2 radio - skipping the two first values */
1457 for (i = 2; i < N(rfini); i++) {
1458 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1459 return error;
1460 }
1461 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1462 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1463
1464 return 0;
1465 #undef N
1466 }
1467
1468 Static int
1469 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1470 {
1471 struct zyd_rf *rf = &sc->sc_rf;
1472
1473 rf->rf_sc = sc;
1474
1475 switch (type) {
1476 case ZYD_RF_RFMD:
1477 rf->init = zyd_rfmd_init;
1478 rf->switch_radio = zyd_rfmd_switch_radio;
1479 rf->set_channel = zyd_rfmd_set_channel;
1480 rf->width = 24; /* 24-bit RF values */
1481 break;
1482 case ZYD_RF_AL2230:
1483 if (sc->mac_rev == ZYD_ZD1211B)
1484 rf->init = zyd_al2230_init_b;
1485 else
1486 rf->init = zyd_al2230_init;
1487 rf->switch_radio = zyd_al2230_switch_radio;
1488 rf->set_channel = zyd_al2230_set_channel;
1489 rf->width = 24; /* 24-bit RF values */
1490 break;
1491 case ZYD_RF_AL7230B:
1492 rf->init = zyd_al7230B_init;
1493 rf->switch_radio = zyd_al7230B_switch_radio;
1494 rf->set_channel = zyd_al7230B_set_channel;
1495 rf->width = 24; /* 24-bit RF values */
1496 break;
1497 case ZYD_RF_AL2210:
1498 rf->init = zyd_al2210_init;
1499 rf->switch_radio = zyd_al2210_switch_radio;
1500 rf->set_channel = zyd_al2210_set_channel;
1501 rf->width = 24; /* 24-bit RF values */
1502 break;
1503 case ZYD_RF_GCT:
1504 rf->init = zyd_gct_init;
1505 rf->switch_radio = zyd_gct_switch_radio;
1506 rf->set_channel = zyd_gct_set_channel;
1507 rf->width = 21; /* 21-bit RF values */
1508 break;
1509 case ZYD_RF_MAXIM_NEW:
1510 rf->init = zyd_maxim_init;
1511 rf->switch_radio = zyd_maxim_switch_radio;
1512 rf->set_channel = zyd_maxim_set_channel;
1513 rf->width = 18; /* 18-bit RF values */
1514 break;
1515 case ZYD_RF_MAXIM_NEW2:
1516 rf->init = zyd_maxim2_init;
1517 rf->switch_radio = zyd_maxim2_switch_radio;
1518 rf->set_channel = zyd_maxim2_set_channel;
1519 rf->width = 18; /* 18-bit RF values */
1520 break;
1521 default:
1522 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1523 device_xname(sc->sc_dev), zyd_rf_name(type));
1524 return EINVAL;
1525 }
1526 return 0;
1527 }
1528
1529 Static const char *
1530 zyd_rf_name(uint8_t type)
1531 {
1532 static const char * const zyd_rfs[] = {
1533 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1534 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1535 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1536 "PHILIPS"
1537 };
1538
1539 return zyd_rfs[(type > 15) ? 0 : type];
1540 }
1541
1542 Static int
1543 zyd_hw_init(struct zyd_softc *sc)
1544 {
1545 struct zyd_rf *rf = &sc->sc_rf;
1546 const struct zyd_phy_pair *phyp;
1547 int error;
1548
1549 /* specify that the plug and play is finished */
1550 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1551
1552 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1553 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1554
1555 /* retrieve firmware revision number */
1556 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1557
1558 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1559 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1560
1561 /* disable interrupts */
1562 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1563
1564 /* PHY init */
1565 zyd_lock_phy(sc);
1566 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1567 for (; phyp->reg != 0; phyp++) {
1568 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1569 goto fail;
1570 }
1571 zyd_unlock_phy(sc);
1572
1573 /* HMAC init */
1574 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1575 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1576
1577 if (sc->mac_rev == ZYD_ZD1211) {
1578 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1579 } else {
1580 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1582 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1583 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1584 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1585 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1586 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1587 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1588 }
1589
1590 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1591 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1593 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1594 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1595 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1596 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1597 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1598 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1599 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1600 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1601 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1602 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1603 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1604 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1605 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1606 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1607
1608 /* RF chip init */
1609 zyd_lock_phy(sc);
1610 error = (*rf->init)(rf);
1611 zyd_unlock_phy(sc);
1612 if (error != 0) {
1613 printf("%s: radio initialization failed\n",
1614 device_xname(sc->sc_dev));
1615 goto fail;
1616 }
1617
1618 /* init beacon interval to 100ms */
1619 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1620 goto fail;
1621
1622 fail: return error;
1623 }
1624
1625 Static int
1626 zyd_read_eeprom(struct zyd_softc *sc)
1627 {
1628 struct ieee80211com *ic = &sc->sc_ic;
1629 uint32_t tmp;
1630 uint16_t val;
1631 int i;
1632
1633 /* read MAC address */
1634 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1635 ic->ic_myaddr[0] = tmp & 0xff;
1636 ic->ic_myaddr[1] = tmp >> 8;
1637 ic->ic_myaddr[2] = tmp >> 16;
1638 ic->ic_myaddr[3] = tmp >> 24;
1639 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1640 ic->ic_myaddr[4] = tmp & 0xff;
1641 ic->ic_myaddr[5] = tmp >> 8;
1642
1643 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1644 sc->rf_rev = tmp & 0x0f;
1645 sc->pa_rev = (tmp >> 16) & 0x0f;
1646
1647 /* read regulatory domain (currently unused) */
1648 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1649 sc->regdomain = tmp >> 16;
1650 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1651
1652 /* read Tx power calibration tables */
1653 for (i = 0; i < 7; i++) {
1654 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1655 sc->pwr_cal[i * 2] = val >> 8;
1656 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1657
1658 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1659 sc->pwr_int[i * 2] = val >> 8;
1660 sc->pwr_int[i * 2 + 1] = val & 0xff;
1661
1662 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1663 sc->ofdm36_cal[i * 2] = val >> 8;
1664 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1665
1666 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1667 sc->ofdm48_cal[i * 2] = val >> 8;
1668 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1669
1670 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1671 sc->ofdm54_cal[i * 2] = val >> 8;
1672 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1673 }
1674 return 0;
1675 }
1676
1677 Static int
1678 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1679 {
1680 uint32_t tmp;
1681
1682 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1683 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1684
1685 tmp = addr[5] << 8 | addr[4];
1686 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1687
1688 return 0;
1689 }
1690
1691 Static int
1692 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1693 {
1694 uint32_t tmp;
1695
1696 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1697 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1698
1699 tmp = addr[5] << 8 | addr[4];
1700 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1701
1702 return 0;
1703 }
1704
1705 Static int
1706 zyd_switch_radio(struct zyd_softc *sc, int on)
1707 {
1708 struct zyd_rf *rf = &sc->sc_rf;
1709 int error;
1710
1711 zyd_lock_phy(sc);
1712 error = (*rf->switch_radio)(rf, on);
1713 zyd_unlock_phy(sc);
1714
1715 return error;
1716 }
1717
1718 Static void
1719 zyd_set_led(struct zyd_softc *sc, int which, int on)
1720 {
1721 uint32_t tmp;
1722
1723 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1724 tmp &= ~which;
1725 if (on)
1726 tmp |= which;
1727 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1728 }
1729
1730 Static int
1731 zyd_set_rxfilter(struct zyd_softc *sc)
1732 {
1733 uint32_t rxfilter;
1734
1735 switch (sc->sc_ic.ic_opmode) {
1736 case IEEE80211_M_STA:
1737 rxfilter = ZYD_FILTER_BSS;
1738 break;
1739 case IEEE80211_M_IBSS:
1740 case IEEE80211_M_HOSTAP:
1741 rxfilter = ZYD_FILTER_HOSTAP;
1742 break;
1743 case IEEE80211_M_MONITOR:
1744 rxfilter = ZYD_FILTER_MONITOR;
1745 break;
1746 default:
1747 /* should not get there */
1748 return EINVAL;
1749 }
1750 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1751 }
1752
1753 Static void
1754 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1755 {
1756 struct ieee80211com *ic = &sc->sc_ic;
1757 struct zyd_rf *rf = &sc->sc_rf;
1758 u_int chan;
1759
1760 chan = ieee80211_chan2ieee(ic, c);
1761 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1762 return;
1763
1764 zyd_lock_phy(sc);
1765
1766 (*rf->set_channel)(rf, chan);
1767
1768 /* update Tx power */
1769 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1770 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1771
1772 if (sc->mac_rev == ZYD_ZD1211B) {
1773 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1774 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1775 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1776
1777 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1778 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1779 }
1780
1781 zyd_unlock_phy(sc);
1782 }
1783
1784 Static int
1785 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1786 {
1787 /* XXX this is probably broken.. */
1788 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1789 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1790 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1791
1792 return 0;
1793 }
1794
1795 Static uint8_t
1796 zyd_plcp_signal(int rate)
1797 {
1798 switch (rate) {
1799 /* CCK rates (returned values are device-dependent) */
1800 case 2: return 0x0;
1801 case 4: return 0x1;
1802 case 11: return 0x2;
1803 case 22: return 0x3;
1804
1805 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1806 case 12: return 0xb;
1807 case 18: return 0xf;
1808 case 24: return 0xa;
1809 case 36: return 0xe;
1810 case 48: return 0x9;
1811 case 72: return 0xd;
1812 case 96: return 0x8;
1813 case 108: return 0xc;
1814
1815 /* unsupported rates (should not get there) */
1816 default: return 0xff;
1817 }
1818 }
1819
1820 Static void
1821 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1822 {
1823 struct zyd_softc *sc = (struct zyd_softc *)priv;
1824 struct zyd_cmd *cmd;
1825 uint32_t datalen;
1826
1827 if (status != USBD_NORMAL_COMPLETION) {
1828 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1829 return;
1830
1831 if (status == USBD_STALLED) {
1832 usbd_clear_endpoint_stall_async(
1833 sc->zyd_ep[ZYD_ENDPT_IIN]);
1834 }
1835 return;
1836 }
1837
1838 cmd = (struct zyd_cmd *)sc->ibuf;
1839
1840 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1841 struct zyd_notif_retry *retry =
1842 (struct zyd_notif_retry *)cmd->data;
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 struct ifnet *ifp = &sc->sc_if;
1845 struct ieee80211_node *ni;
1846
1847 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1848 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1849 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1850
1851 /*
1852 * Find the node to which the packet was sent and update its
1853 * retry statistics. In BSS mode, this node is the AP we're
1854 * associated to so no lookup is actually needed.
1855 */
1856 if (ic->ic_opmode != IEEE80211_M_STA) {
1857 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1858 if (ni == NULL)
1859 return; /* just ignore */
1860 } else
1861 ni = ic->ic_bss;
1862
1863 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1864
1865 if (le16toh(retry->count) & 0x100)
1866 ifp->if_oerrors++; /* too many retries */
1867
1868 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1869 struct rq *rqp;
1870
1871 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1872 return; /* HMAC interrupt */
1873
1874 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1875 datalen -= sizeof(cmd->code);
1876 datalen -= 2; /* XXX: padding? */
1877
1878 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1879 int i;
1880
1881 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1882 continue;
1883 for (i = 0; i < rqp->len; i++) {
1884 if (*(((const uint16_t *)rqp->idata) + i) !=
1885 (((struct zyd_pair *)cmd->data) + i)->reg)
1886 break;
1887 }
1888 if (i != rqp->len)
1889 continue;
1890
1891 /* copy answer into caller-supplied buffer */
1892 bcopy(cmd->data, rqp->odata,
1893 sizeof(struct zyd_pair) * rqp->len);
1894 wakeup(rqp->odata); /* wakeup caller */
1895
1896 return;
1897 }
1898 return; /* unexpected IORD notification */
1899 } else {
1900 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1901 le16toh(cmd->code));
1902 }
1903 }
1904
1905 Static void
1906 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1907 {
1908 struct ieee80211com *ic = &sc->sc_ic;
1909 struct ifnet *ifp = &sc->sc_if;
1910 struct ieee80211_node *ni;
1911 struct ieee80211_frame *wh;
1912 const struct zyd_plcphdr *plcp;
1913 const struct zyd_rx_stat *stat;
1914 struct mbuf *m;
1915 int rlen, s;
1916
1917 if (len < ZYD_MIN_FRAGSZ) {
1918 printf("%s: frame too short (length=%d)\n",
1919 device_xname(sc->sc_dev), len);
1920 ifp->if_ierrors++;
1921 return;
1922 }
1923
1924 plcp = (const struct zyd_plcphdr *)buf;
1925 stat = (const struct zyd_rx_stat *)
1926 (buf + len - sizeof (struct zyd_rx_stat));
1927
1928 if (stat->flags & ZYD_RX_ERROR) {
1929 DPRINTF(("%s: RX status indicated error (%x)\n",
1930 device_xname(sc->sc_dev), stat->flags));
1931 ifp->if_ierrors++;
1932 return;
1933 }
1934
1935 /* compute actual frame length */
1936 rlen = len - sizeof (struct zyd_plcphdr) -
1937 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1938
1939 /* allocate a mbuf to store the frame */
1940 MGETHDR(m, M_DONTWAIT, MT_DATA);
1941 if (m == NULL) {
1942 printf("%s: could not allocate rx mbuf\n",
1943 device_xname(sc->sc_dev));
1944 ifp->if_ierrors++;
1945 return;
1946 }
1947 if (rlen > MHLEN) {
1948 MCLGET(m, M_DONTWAIT);
1949 if (!(m->m_flags & M_EXT)) {
1950 printf("%s: could not allocate rx mbuf cluster\n",
1951 device_xname(sc->sc_dev));
1952 m_freem(m);
1953 ifp->if_ierrors++;
1954 return;
1955 }
1956 }
1957 m->m_pkthdr.rcvif = ifp;
1958 m->m_pkthdr.len = m->m_len = rlen;
1959 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1960
1961 s = splnet();
1962
1963 if (sc->sc_drvbpf != NULL) {
1964 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1965 static const uint8_t rates[] = {
1966 /* reverse function of zyd_plcp_signal() */
1967 2, 4, 11, 22, 0, 0, 0, 0,
1968 96, 48, 24, 12, 108, 72, 36, 18
1969 };
1970
1971 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1972 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1973 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1974 tap->wr_rssi = stat->rssi;
1975 tap->wr_rate = rates[plcp->signal & 0xf];
1976
1977 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1978 }
1979
1980 wh = mtod(m, struct ieee80211_frame *);
1981 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1982 ieee80211_input(ic, m, ni, stat->rssi, 0);
1983
1984 /* node is no longer needed */
1985 ieee80211_free_node(ni);
1986
1987 splx(s);
1988 }
1989
1990 Static void
1991 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1992 {
1993 struct zyd_rx_data *data = priv;
1994 struct zyd_softc *sc = data->sc;
1995 struct ifnet *ifp = &sc->sc_if;
1996 const struct zyd_rx_desc *desc;
1997 int len;
1998
1999 if (status != USBD_NORMAL_COMPLETION) {
2000 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2001 return;
2002
2003 if (status == USBD_STALLED)
2004 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2005
2006 goto skip;
2007 }
2008 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2009
2010 if (len < ZYD_MIN_RXBUFSZ) {
2011 printf("%s: xfer too short (length=%d)\n",
2012 device_xname(sc->sc_dev), len);
2013 ifp->if_ierrors++;
2014 goto skip;
2015 }
2016
2017 desc = (const struct zyd_rx_desc *)
2018 (data->buf + len - sizeof (struct zyd_rx_desc));
2019
2020 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2021 const uint8_t *p = data->buf, *end = p + len;
2022 int i;
2023
2024 DPRINTFN(3, ("received multi-frame transfer\n"));
2025
2026 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2027 const uint16_t len16 = UGETW(desc->len[i]);
2028
2029 if (len16 == 0 || p + len16 > end)
2030 break;
2031
2032 zyd_rx_data(sc, p, len16);
2033 /* next frame is aligned on a 32-bit boundary */
2034 p += (len16 + 3) & ~3;
2035 }
2036 } else {
2037 DPRINTFN(3, ("received single-frame transfer\n"));
2038
2039 zyd_rx_data(sc, data->buf, len);
2040 }
2041
2042 skip: /* setup a new transfer */
2043 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2044 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2045 USBD_NO_TIMEOUT, zyd_rxeof);
2046 (void)usbd_transfer(xfer);
2047 }
2048
2049 Static int
2050 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2051 {
2052 struct ieee80211com *ic = &sc->sc_ic;
2053 struct ifnet *ifp = &sc->sc_if;
2054 struct zyd_tx_desc *desc;
2055 struct zyd_tx_data *data;
2056 struct ieee80211_frame *wh;
2057 struct ieee80211_key *k;
2058 int xferlen, totlen, rate;
2059 uint16_t pktlen;
2060 usbd_status error;
2061
2062 data = &sc->tx_data[0];
2063 desc = (struct zyd_tx_desc *)data->buf;
2064
2065 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2066
2067 wh = mtod(m0, struct ieee80211_frame *);
2068
2069 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2070 k = ieee80211_crypto_encap(ic, ni, m0);
2071 if (k == NULL) {
2072 m_freem(m0);
2073 return ENOBUFS;
2074 }
2075 }
2076
2077 data->ni = ni;
2078
2079 wh = mtod(m0, struct ieee80211_frame *);
2080
2081 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2082 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2083
2084 /* fill Tx descriptor */
2085 desc->len = htole16(totlen);
2086
2087 desc->flags = ZYD_TX_FLAG_BACKOFF;
2088 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2089 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2090 if (totlen > ic->ic_rtsthreshold) {
2091 desc->flags |= ZYD_TX_FLAG_RTS;
2092 } else if (ZYD_RATE_IS_OFDM(rate) &&
2093 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2094 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2095 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2096 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2097 desc->flags |= ZYD_TX_FLAG_RTS;
2098 }
2099 } else
2100 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2101
2102 if ((wh->i_fc[0] &
2103 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2104 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2105 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2106
2107 desc->phy = zyd_plcp_signal(rate);
2108 if (ZYD_RATE_IS_OFDM(rate)) {
2109 desc->phy |= ZYD_TX_PHY_OFDM;
2110 if (ic->ic_curmode == IEEE80211_MODE_11A)
2111 desc->phy |= ZYD_TX_PHY_5GHZ;
2112 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2113 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2114
2115 /* actual transmit length (XXX why +10?) */
2116 pktlen = sizeof (struct zyd_tx_desc) + 10;
2117 if (sc->mac_rev == ZYD_ZD1211)
2118 pktlen += totlen;
2119 desc->pktlen = htole16(pktlen);
2120
2121 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2122 desc->plcp_service = 0;
2123 if (rate == 22) {
2124 const int remainder = (16 * totlen) % 22;
2125 if (remainder != 0 && remainder < 7)
2126 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2127 }
2128
2129 if (sc->sc_drvbpf != NULL) {
2130 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2131
2132 tap->wt_flags = 0;
2133 tap->wt_rate = rate;
2134 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2135 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2136
2137 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2138 }
2139
2140 m_copydata(m0, 0, m0->m_pkthdr.len,
2141 data->buf + sizeof (struct zyd_tx_desc));
2142
2143 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2144 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2145
2146 m_freem(m0); /* mbuf no longer needed */
2147
2148 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2149 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2150 ZYD_TX_TIMEOUT, zyd_txeof);
2151 error = usbd_transfer(data->xfer);
2152 if (error != USBD_IN_PROGRESS && error != 0) {
2153 ifp->if_oerrors++;
2154 return EIO;
2155 }
2156 sc->tx_queued++;
2157
2158 return 0;
2159 }
2160
2161 Static void
2162 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2163 {
2164 struct zyd_tx_data *data = priv;
2165 struct zyd_softc *sc = data->sc;
2166 struct ifnet *ifp = &sc->sc_if;
2167 int s;
2168
2169 if (status != USBD_NORMAL_COMPLETION) {
2170 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2171 return;
2172
2173 printf("%s: could not transmit buffer: %s\n",
2174 device_xname(sc->sc_dev), usbd_errstr(status));
2175
2176 if (status == USBD_STALLED) {
2177 usbd_clear_endpoint_stall_async(
2178 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2179 }
2180 ifp->if_oerrors++;
2181 return;
2182 }
2183
2184 s = splnet();
2185
2186 /* update rate control statistics */
2187 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2188
2189 ieee80211_free_node(data->ni);
2190 data->ni = NULL;
2191
2192 sc->tx_queued--;
2193 ifp->if_opackets++;
2194
2195 sc->tx_timer = 0;
2196 ifp->if_flags &= ~IFF_OACTIVE;
2197 zyd_start(ifp);
2198
2199 splx(s);
2200 }
2201
2202 Static int
2203 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2204 {
2205 struct ieee80211com *ic = &sc->sc_ic;
2206 struct ifnet *ifp = &sc->sc_if;
2207 struct zyd_tx_desc *desc;
2208 struct zyd_tx_data *data;
2209 struct ieee80211_frame *wh;
2210 struct ieee80211_key *k;
2211 int xferlen, totlen, rate;
2212 uint16_t pktlen;
2213 usbd_status error;
2214
2215 wh = mtod(m0, struct ieee80211_frame *);
2216
2217 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2218 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2219 else
2220 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2221 rate &= IEEE80211_RATE_VAL;
2222
2223 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2224 k = ieee80211_crypto_encap(ic, ni, m0);
2225 if (k == NULL) {
2226 m_freem(m0);
2227 return ENOBUFS;
2228 }
2229
2230 /* packet header may have moved, reset our local pointer */
2231 wh = mtod(m0, struct ieee80211_frame *);
2232 }
2233
2234 data = &sc->tx_data[0];
2235 desc = (struct zyd_tx_desc *)data->buf;
2236
2237 data->ni = ni;
2238
2239 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2240 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2241
2242 /* fill Tx descriptor */
2243 desc->len = htole16(totlen);
2244
2245 desc->flags = ZYD_TX_FLAG_BACKOFF;
2246 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2247 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2248 if (totlen > ic->ic_rtsthreshold) {
2249 desc->flags |= ZYD_TX_FLAG_RTS;
2250 } else if (ZYD_RATE_IS_OFDM(rate) &&
2251 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2252 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2253 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2254 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2255 desc->flags |= ZYD_TX_FLAG_RTS;
2256 }
2257 } else
2258 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2259
2260 if ((wh->i_fc[0] &
2261 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2262 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2263 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2264
2265 desc->phy = zyd_plcp_signal(rate);
2266 if (ZYD_RATE_IS_OFDM(rate)) {
2267 desc->phy |= ZYD_TX_PHY_OFDM;
2268 if (ic->ic_curmode == IEEE80211_MODE_11A)
2269 desc->phy |= ZYD_TX_PHY_5GHZ;
2270 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2271 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2272
2273 /* actual transmit length (XXX why +10?) */
2274 pktlen = sizeof (struct zyd_tx_desc) + 10;
2275 if (sc->mac_rev == ZYD_ZD1211)
2276 pktlen += totlen;
2277 desc->pktlen = htole16(pktlen);
2278
2279 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2280 desc->plcp_service = 0;
2281 if (rate == 22) {
2282 const int remainder = (16 * totlen) % 22;
2283 if (remainder != 0 && remainder < 7)
2284 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2285 }
2286
2287 if (sc->sc_drvbpf != NULL) {
2288 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2289
2290 tap->wt_flags = 0;
2291 tap->wt_rate = rate;
2292 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2293 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2294
2295 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2296 }
2297
2298 m_copydata(m0, 0, m0->m_pkthdr.len,
2299 data->buf + sizeof (struct zyd_tx_desc));
2300
2301 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2302 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2303
2304 m_freem(m0); /* mbuf no longer needed */
2305
2306 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2307 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2308 ZYD_TX_TIMEOUT, zyd_txeof);
2309 error = usbd_transfer(data->xfer);
2310 if (error != USBD_IN_PROGRESS && error != 0) {
2311 ifp->if_oerrors++;
2312 return EIO;
2313 }
2314 sc->tx_queued++;
2315
2316 return 0;
2317 }
2318
2319 Static void
2320 zyd_start(struct ifnet *ifp)
2321 {
2322 struct zyd_softc *sc = ifp->if_softc;
2323 struct ieee80211com *ic = &sc->sc_ic;
2324 struct ether_header *eh;
2325 struct ieee80211_node *ni;
2326 struct mbuf *m0;
2327
2328 for (;;) {
2329 IF_POLL(&ic->ic_mgtq, m0);
2330 if (m0 != NULL) {
2331 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2332 ifp->if_flags |= IFF_OACTIVE;
2333 break;
2334 }
2335 IF_DEQUEUE(&ic->ic_mgtq, m0);
2336
2337 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2338 m0->m_pkthdr.rcvif = NULL;
2339 if (ic->ic_rawbpf != NULL)
2340 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
2341 if (zyd_tx_mgt(sc, m0, ni) != 0)
2342 break;
2343 } else {
2344 if (ic->ic_state != IEEE80211_S_RUN)
2345 break;
2346 IFQ_POLL(&ifp->if_snd, m0);
2347 if (m0 == NULL)
2348 break;
2349 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2350 ifp->if_flags |= IFF_OACTIVE;
2351 break;
2352 }
2353 IFQ_DEQUEUE(&ifp->if_snd, m0);
2354
2355 if (m0->m_len < sizeof(struct ether_header) &&
2356 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2357 continue;
2358
2359 eh = mtod(m0, struct ether_header *);
2360 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2361 if (ni == NULL) {
2362 m_freem(m0);
2363 continue;
2364 }
2365 if (ifp->if_bpf != NULL)
2366 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
2367 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2368 ieee80211_free_node(ni);
2369 ifp->if_oerrors++;
2370 continue;
2371 }
2372 if (ic->ic_rawbpf != NULL)
2373 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
2374 if (zyd_tx_data(sc, m0, ni) != 0) {
2375 ieee80211_free_node(ni);
2376 ifp->if_oerrors++;
2377 break;
2378 }
2379 }
2380
2381 sc->tx_timer = 5;
2382 ifp->if_timer = 1;
2383 }
2384 }
2385
2386 Static void
2387 zyd_watchdog(struct ifnet *ifp)
2388 {
2389 struct zyd_softc *sc = ifp->if_softc;
2390 struct ieee80211com *ic = &sc->sc_ic;
2391
2392 ifp->if_timer = 0;
2393
2394 if (sc->tx_timer > 0) {
2395 if (--sc->tx_timer == 0) {
2396 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2397 /* zyd_init(ifp); XXX needs a process context ? */
2398 ifp->if_oerrors++;
2399 return;
2400 }
2401 ifp->if_timer = 1;
2402 }
2403
2404 ieee80211_watchdog(ic);
2405 }
2406
2407 Static int
2408 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2409 {
2410 struct zyd_softc *sc = ifp->if_softc;
2411 struct ieee80211com *ic = &sc->sc_ic;
2412 int s, error = 0;
2413
2414 s = splnet();
2415
2416 switch (cmd) {
2417 case SIOCSIFFLAGS:
2418 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2419 break;
2420 /* XXX re-use ether_ioctl() */
2421 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2422 case IFF_UP:
2423 zyd_init(ifp);
2424 break;
2425 case IFF_RUNNING:
2426 zyd_stop(ifp, 1);
2427 break;
2428 default:
2429 break;
2430 }
2431 break;
2432
2433 default:
2434 error = ieee80211_ioctl(ic, cmd, data);
2435 }
2436
2437 if (error == ENETRESET) {
2438 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2439 (IFF_RUNNING | IFF_UP))
2440 zyd_init(ifp);
2441 error = 0;
2442 }
2443
2444 splx(s);
2445
2446 return error;
2447 }
2448
2449 Static int
2450 zyd_init(struct ifnet *ifp)
2451 {
2452 struct zyd_softc *sc = ifp->if_softc;
2453 struct ieee80211com *ic = &sc->sc_ic;
2454 int i, error;
2455
2456 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2457 if ((error = zyd_attachhook(sc)) != 0)
2458 return error;
2459
2460 zyd_stop(ifp, 0);
2461
2462 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2463 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2464 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2465 if (error != 0)
2466 return error;
2467
2468 /* we'll do software WEP decryption for now */
2469 DPRINTF(("setting encryption type\n"));
2470 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2471 if (error != 0)
2472 return error;
2473
2474 /* promiscuous mode */
2475 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2476 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2477
2478 (void)zyd_set_rxfilter(sc);
2479
2480 /* switch radio transmitter ON */
2481 (void)zyd_switch_radio(sc, 1);
2482
2483 /* set basic rates */
2484 if (ic->ic_curmode == IEEE80211_MODE_11B)
2485 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2486 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2487 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2488 else /* assumes 802.11b/g */
2489 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2490
2491 /* set mandatory rates */
2492 if (ic->ic_curmode == IEEE80211_MODE_11B)
2493 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2494 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2495 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2496 else /* assumes 802.11b/g */
2497 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2498
2499 /* set default BSS channel */
2500 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2501 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2502
2503 /* enable interrupts */
2504 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2505
2506 /*
2507 * Allocate Tx and Rx xfer queues.
2508 */
2509 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2510 printf("%s: could not allocate Tx list\n",
2511 device_xname(sc->sc_dev));
2512 goto fail;
2513 }
2514 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2515 printf("%s: could not allocate Rx list\n",
2516 device_xname(sc->sc_dev));
2517 goto fail;
2518 }
2519
2520 /*
2521 * Start up the receive pipe.
2522 */
2523 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2524 struct zyd_rx_data *data = &sc->rx_data[i];
2525
2526 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2527 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2528 USBD_NO_TIMEOUT, zyd_rxeof);
2529 error = usbd_transfer(data->xfer);
2530 if (error != USBD_IN_PROGRESS && error != 0) {
2531 printf("%s: could not queue Rx transfer\n",
2532 device_xname(sc->sc_dev));
2533 goto fail;
2534 }
2535 }
2536
2537 ifp->if_flags &= ~IFF_OACTIVE;
2538 ifp->if_flags |= IFF_RUNNING;
2539
2540 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2541 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2542 else
2543 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2544
2545 return 0;
2546
2547 fail: zyd_stop(ifp, 1);
2548 return error;
2549 }
2550
2551 Static void
2552 zyd_stop(struct ifnet *ifp, int disable)
2553 {
2554 struct zyd_softc *sc = ifp->if_softc;
2555 struct ieee80211com *ic = &sc->sc_ic;
2556
2557 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2558
2559 sc->tx_timer = 0;
2560 ifp->if_timer = 0;
2561 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2562
2563 /* switch radio transmitter OFF */
2564 (void)zyd_switch_radio(sc, 0);
2565
2566 /* disable Rx */
2567 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2568
2569 /* disable interrupts */
2570 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2571
2572 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2573 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2574
2575 zyd_free_rx_list(sc);
2576 zyd_free_tx_list(sc);
2577 }
2578
2579 Static int
2580 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2581 {
2582 usb_device_request_t req;
2583 uint16_t addr;
2584 uint8_t stat;
2585
2586 DPRINTF(("firmware size=%zu\n", size));
2587
2588 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2589 req.bRequest = ZYD_DOWNLOADREQ;
2590 USETW(req.wIndex, 0);
2591
2592 addr = ZYD_FIRMWARE_START_ADDR;
2593 while (size > 0) {
2594 #if 0
2595 const int mlen = min(size, 4096);
2596 #else
2597 /*
2598 * XXXX: When the transfer size is 4096 bytes, it is not
2599 * likely to be able to transfer it.
2600 * The cause is port or machine or chip?
2601 */
2602 const int mlen = min(size, 64);
2603 #endif
2604
2605 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2606 addr));
2607
2608 USETW(req.wValue, addr);
2609 USETW(req.wLength, mlen);
2610 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2611 return EIO;
2612
2613 addr += mlen / 2;
2614 fw += mlen;
2615 size -= mlen;
2616 }
2617
2618 /* check whether the upload succeeded */
2619 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2620 req.bRequest = ZYD_DOWNLOADSTS;
2621 USETW(req.wValue, 0);
2622 USETW(req.wIndex, 0);
2623 USETW(req.wLength, sizeof stat);
2624 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2625 return EIO;
2626
2627 return (stat & 0x80) ? EIO : 0;
2628 }
2629
2630 Static void
2631 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2632 {
2633 struct zyd_softc *sc = arg;
2634 struct zyd_node *zn = (struct zyd_node *)ni;
2635
2636 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2637 }
2638
2639 Static void
2640 zyd_amrr_timeout(void *arg)
2641 {
2642 struct zyd_softc *sc = arg;
2643 struct ieee80211com *ic = &sc->sc_ic;
2644 int s;
2645
2646 s = splnet();
2647 if (ic->ic_opmode == IEEE80211_M_STA)
2648 zyd_iter_func(sc, ic->ic_bss);
2649 else
2650 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2651 splx(s);
2652
2653 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2654 }
2655
2656 Static void
2657 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2658 {
2659 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2660 int i;
2661
2662 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2663
2664 /* set rate to some reasonable initial value */
2665 for (i = ni->ni_rates.rs_nrates - 1;
2666 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2667 i--);
2668 ni->ni_txrate = i;
2669 }
2670
2671 int
2672 zyd_activate(device_ptr_t self, enum devact act)
2673 {
2674 struct zyd_softc *sc = device_private(self);
2675
2676 switch (act) {
2677 case DVACT_DEACTIVATE:
2678 if_deactivate(&sc->sc_if);
2679 return 0;
2680 default:
2681 return EOPNOTSUPP;
2682 }
2683 }
2684