if_zyd.c revision 1.29.2.2 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.29.2.2 2012/10/30 17:22:06 yamt Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.29.2.2 2012/10/30 17:22:06 yamt Exp $");
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_zydreg.h>
68
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p) \
87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p) \
89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 struct usb_devno dev;
92 uint8_t rev;
93 #define ZYD_ZD1211 0
94 #define ZYD_ZD1211B 1
95 } zyd_devs[] = {
96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
97 ZYD_ZD1211_DEV(ABOCOM, WL54),
98 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
103 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
105 ZYD_ZD1211_DEV(SAGEM, XG760A),
106 ZYD_ZD1211_DEV(SENAO, NUB8301),
107 ZYD_ZD1211_DEV(SITECOMEU, WL113),
108 ZYD_ZD1211_DEV(SWEEX, ZD1211),
109 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
112 ZYD_ZD1211_DEV(TWINMOS, G240),
113 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
116 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
117 ZYD_ZD1211_DEV(ZCOM, ZD1211),
118 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
119 ZYD_ZD1211_DEV(ZYXEL, AG225H),
120 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
121 ZYD_ZD1211_DEV(ZYXEL, G200V2),
122
123 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
124 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
125 ZYD_ZD1211B_DEV(ACCTON, WUS201),
126 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
127 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
128 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
129 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
130 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
131 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
132 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
133 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
134 ZYD_ZD1211B_DEV(MELCO, KG54L),
135 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
137 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
138 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
139 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
140 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
141 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
142 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
143 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
145 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
146 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
147 ZYD_ZD1211B_DEV(USR, USR5423),
148 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
149 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
150 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
152 ZYD_ZD1211B_DEV(ZYXEL, M202),
153 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
154 };
155 #define zyd_lookup(v, p) \
156 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
157
158 int zyd_match(device_t, cfdata_t, void *);
159 void zyd_attach(device_t, device_t, void *);
160 int zyd_detach(device_t, int);
161 int zyd_activate(device_t, enum devact);
162 extern struct cfdriver zyd_cd;
163
164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
165 zyd_attach, zyd_detach, zyd_activate);
166
167 Static void zyd_attachhook(device_t);
168 Static int zyd_complete_attach(struct zyd_softc *);
169 Static int zyd_open_pipes(struct zyd_softc *);
170 Static void zyd_close_pipes(struct zyd_softc *);
171 Static int zyd_alloc_tx_list(struct zyd_softc *);
172 Static void zyd_free_tx_list(struct zyd_softc *);
173 Static int zyd_alloc_rx_list(struct zyd_softc *);
174 Static void zyd_free_rx_list(struct zyd_softc *);
175 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
176 Static int zyd_media_change(struct ifnet *);
177 Static void zyd_next_scan(void *);
178 Static void zyd_task(void *);
179 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
181 void *, int, u_int);
182 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
183 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
184 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
185 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
186 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
187 Static void zyd_lock_phy(struct zyd_softc *);
188 Static void zyd_unlock_phy(struct zyd_softc *);
189 Static int zyd_rfmd_init(struct zyd_rf *);
190 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
191 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
192 Static int zyd_al2230_init(struct zyd_rf *);
193 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
194 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
195 Static int zyd_al2230_init_b(struct zyd_rf *);
196 Static int zyd_al7230B_init(struct zyd_rf *);
197 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
198 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_al2210_init(struct zyd_rf *);
200 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
201 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
202 Static int zyd_gct_init(struct zyd_rf *);
203 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
204 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
205 Static int zyd_maxim_init(struct zyd_rf *);
206 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
207 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
208 Static int zyd_maxim2_init(struct zyd_rf *);
209 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
210 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
211 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
212 Static const char *zyd_rf_name(uint8_t);
213 Static int zyd_hw_init(struct zyd_softc *);
214 Static int zyd_read_eeprom(struct zyd_softc *);
215 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
216 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
217 Static int zyd_switch_radio(struct zyd_softc *, int);
218 Static void zyd_set_led(struct zyd_softc *, int, int);
219 Static int zyd_set_rxfilter(struct zyd_softc *);
220 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
221 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
222 Static uint8_t zyd_plcp_signal(int);
223 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
224 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
225 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
226 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
227 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
228 struct ieee80211_node *);
229 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
230 struct ieee80211_node *);
231 Static void zyd_start(struct ifnet *);
232 Static void zyd_watchdog(struct ifnet *);
233 Static int zyd_ioctl(struct ifnet *, u_long, void *);
234 Static int zyd_init(struct ifnet *);
235 Static void zyd_stop(struct ifnet *, int);
236 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
237 Static void zyd_iter_func(void *, struct ieee80211_node *);
238 Static void zyd_amrr_timeout(void *);
239 Static void zyd_newassoc(struct ieee80211_node *, int);
240
241 static const struct ieee80211_rateset zyd_rateset_11b =
242 { 4, { 2, 4, 11, 22 } };
243
244 static const struct ieee80211_rateset zyd_rateset_11g =
245 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
246
247 int
248 zyd_match(device_t parent, cfdata_t match, void *aux)
249 {
250 struct usb_attach_arg *uaa = aux;
251
252 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
253 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
254 }
255
256 Static void
257 zyd_attachhook(device_t self)
258 {
259 struct zyd_softc *sc = device_private(self);
260 firmware_handle_t fwh;
261 const char *fwname;
262 u_char *fw;
263 size_t size;
264 int error;
265
266 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
267 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
268 aprint_error_dev(sc->sc_dev,
269 "failed to open firmware %s (error=%d)\n", fwname, error);
270 return;
271 }
272 size = firmware_get_size(fwh);
273 fw = firmware_malloc(size);
274 if (fw == NULL) {
275 aprint_error_dev(sc->sc_dev,
276 "failed to allocate firmware memory\n");
277 firmware_close(fwh);
278 return;
279 }
280 error = firmware_read(fwh, 0, fw, size);
281 firmware_close(fwh);
282 if (error != 0) {
283 aprint_error_dev(sc->sc_dev,
284 "failed to read firmware (error %d)\n", error);
285 firmware_free(fw, 0);
286 return;
287 }
288
289 error = zyd_loadfirmware(sc, fw, size);
290 if (error != 0) {
291 aprint_error_dev(sc->sc_dev,
292 "could not load firmware (error=%d)\n", error);
293 firmware_free(fw, 0);
294 return;
295 }
296
297 firmware_free(fw, 0);
298 sc->sc_flags |= ZD1211_FWLOADED;
299
300 /* complete the attach process */
301 if ((error = zyd_complete_attach(sc)) == 0)
302 sc->attached = 1;
303 return;
304 }
305
306 void
307 zyd_attach(device_t parent, device_t self, void *aux)
308 {
309 struct zyd_softc *sc = device_private(self);
310 struct usb_attach_arg *uaa = aux;
311 char *devinfop;
312 usb_device_descriptor_t* ddesc;
313 struct ifnet *ifp = &sc->sc_if;
314
315 sc->sc_dev = self;
316 sc->sc_udev = uaa->device;
317 sc->sc_flags = 0;
318
319 aprint_naive("\n");
320 aprint_normal("\n");
321
322 devinfop = usbd_devinfo_alloc(uaa->device, 0);
323 aprint_normal_dev(self, "%s\n", devinfop);
324 usbd_devinfo_free(devinfop);
325
326 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
327
328 ddesc = usbd_get_device_descriptor(sc->sc_udev);
329 if (UGETW(ddesc->bcdDevice) < 0x4330) {
330 aprint_error_dev(self, "device version mismatch: 0x%x "
331 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
332 return;
333 }
334
335 ifp->if_softc = sc;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 ifp->if_init = zyd_init;
338 ifp->if_ioctl = zyd_ioctl;
339 ifp->if_start = zyd_start;
340 ifp->if_watchdog = zyd_watchdog;
341 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
342 IFQ_SET_READY(&ifp->if_snd);
343 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
344
345 SIMPLEQ_INIT(&sc->sc_rqh);
346
347 /* defer configrations after file system is ready to load firmware */
348 config_mountroot(self, zyd_attachhook);
349 }
350
351 Static int
352 zyd_complete_attach(struct zyd_softc *sc)
353 {
354 struct ieee80211com *ic = &sc->sc_ic;
355 struct ifnet *ifp = &sc->sc_if;
356 usbd_status error;
357 int i;
358
359 usb_init_task(&sc->sc_task, zyd_task, sc);
360 callout_init(&(sc->sc_scan_ch), 0);
361
362 sc->amrr.amrr_min_success_threshold = 1;
363 sc->amrr.amrr_max_success_threshold = 10;
364 callout_init(&sc->sc_amrr_ch, 0);
365
366 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "setting config no failed\n");
369 goto fail;
370 }
371
372 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
373 &sc->sc_iface);
374 if (error != 0) {
375 aprint_error_dev(sc->sc_dev,
376 "getting interface handle failed\n");
377 goto fail;
378 }
379
380 if ((error = zyd_open_pipes(sc)) != 0) {
381 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
382 goto fail;
383 }
384
385 if ((error = zyd_read_eeprom(sc)) != 0) {
386 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
387 goto fail;
388 }
389
390 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
391 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
392 goto fail;
393 }
394
395 if ((error = zyd_hw_init(sc)) != 0) {
396 aprint_error_dev(sc->sc_dev,
397 "hardware initialization failed\n");
398 goto fail;
399 }
400
401 aprint_normal_dev(sc->sc_dev,
402 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
403 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
404 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
405 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
406
407 ic->ic_ifp = ifp;
408 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
409 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
410 ic->ic_state = IEEE80211_S_INIT;
411
412 /* set device capabilities */
413 ic->ic_caps =
414 IEEE80211_C_MONITOR | /* monitor mode supported */
415 IEEE80211_C_TXPMGT | /* tx power management */
416 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
417 IEEE80211_C_WEP; /* s/w WEP */
418
419 /* set supported .11b and .11g rates */
420 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
421 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
422
423 /* set supported .11b and .11g channels (1 through 14) */
424 for (i = 1; i <= 14; i++) {
425 ic->ic_channels[i].ic_freq =
426 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
427 ic->ic_channels[i].ic_flags =
428 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
429 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
430 }
431
432 if_attach(ifp);
433 ieee80211_ifattach(ic);
434 ic->ic_node_alloc = zyd_node_alloc;
435 ic->ic_newassoc = zyd_newassoc;
436
437 /* override state transition machine */
438 sc->sc_newstate = ic->ic_newstate;
439 ic->ic_newstate = zyd_newstate;
440 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
441
442 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
443 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
444 &sc->sc_drvbpf);
445
446 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
447 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
448 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
449
450 sc->sc_txtap_len = sizeof sc->sc_txtapu;
451 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
452 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
453
454 ieee80211_announce(ic);
455
456 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
457
458 fail: return error;
459 }
460
461 int
462 zyd_detach(device_t self, int flags)
463 {
464 struct zyd_softc *sc = device_private(self);
465 struct ieee80211com *ic = &sc->sc_ic;
466 struct ifnet *ifp = &sc->sc_if;
467 int s;
468
469 if (!sc->attached)
470 return 0;
471
472 s = splusb();
473
474 zyd_stop(ifp, 1);
475 usb_rem_task(sc->sc_udev, &sc->sc_task);
476 callout_stop(&sc->sc_scan_ch);
477 callout_stop(&sc->sc_amrr_ch);
478
479 zyd_close_pipes(sc);
480
481 sc->attached = 0;
482
483 bpf_detach(ifp);
484 ieee80211_ifdetach(ic);
485 if_detach(ifp);
486
487 splx(s);
488
489 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
490 sc->sc_dev);
491
492 return 0;
493 }
494
495 Static int
496 zyd_open_pipes(struct zyd_softc *sc)
497 {
498 usb_endpoint_descriptor_t *edesc;
499 int isize;
500 usbd_status error;
501
502 /* interrupt in */
503 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
504 if (edesc == NULL)
505 return EINVAL;
506
507 isize = UGETW(edesc->wMaxPacketSize);
508 if (isize == 0) /* should not happen */
509 return EINVAL;
510
511 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
512 if (sc->ibuf == NULL)
513 return ENOMEM;
514
515 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
516 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
517 USBD_DEFAULT_INTERVAL);
518 if (error != 0) {
519 printf("%s: open rx intr pipe failed: %s\n",
520 device_xname(sc->sc_dev), usbd_errstr(error));
521 goto fail;
522 }
523
524 /* interrupt out (not necessarily an interrupt pipe) */
525 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
526 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
527 if (error != 0) {
528 printf("%s: open tx intr pipe failed: %s\n",
529 device_xname(sc->sc_dev), usbd_errstr(error));
530 goto fail;
531 }
532
533 /* bulk in */
534 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
535 &sc->zyd_ep[ZYD_ENDPT_BIN]);
536 if (error != 0) {
537 printf("%s: open rx pipe failed: %s\n",
538 device_xname(sc->sc_dev), usbd_errstr(error));
539 goto fail;
540 }
541
542 /* bulk out */
543 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
544 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
545 if (error != 0) {
546 printf("%s: open tx pipe failed: %s\n",
547 device_xname(sc->sc_dev), usbd_errstr(error));
548 goto fail;
549 }
550
551 return 0;
552
553 fail: zyd_close_pipes(sc);
554 return error;
555 }
556
557 Static void
558 zyd_close_pipes(struct zyd_softc *sc)
559 {
560 int i;
561
562 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
563 if (sc->zyd_ep[i] != NULL) {
564 usbd_abort_pipe(sc->zyd_ep[i]);
565 usbd_close_pipe(sc->zyd_ep[i]);
566 sc->zyd_ep[i] = NULL;
567 }
568 }
569 if (sc->ibuf != NULL) {
570 free(sc->ibuf, M_USBDEV);
571 sc->ibuf = NULL;
572 }
573 }
574
575 Static int
576 zyd_alloc_tx_list(struct zyd_softc *sc)
577 {
578 int i, error;
579
580 sc->tx_queued = 0;
581
582 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
583 struct zyd_tx_data *data = &sc->tx_data[i];
584
585 data->sc = sc; /* backpointer for callbacks */
586
587 data->xfer = usbd_alloc_xfer(sc->sc_udev);
588 if (data->xfer == NULL) {
589 printf("%s: could not allocate tx xfer\n",
590 device_xname(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
595 if (data->buf == NULL) {
596 printf("%s: could not allocate tx buffer\n",
597 device_xname(sc->sc_dev));
598 error = ENOMEM;
599 goto fail;
600 }
601
602 /* clear Tx descriptor */
603 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
604 }
605 return 0;
606
607 fail: zyd_free_tx_list(sc);
608 return error;
609 }
610
611 Static void
612 zyd_free_tx_list(struct zyd_softc *sc)
613 {
614 int i;
615
616 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
617 struct zyd_tx_data *data = &sc->tx_data[i];
618
619 if (data->xfer != NULL) {
620 usbd_free_xfer(data->xfer);
621 data->xfer = NULL;
622 }
623 if (data->ni != NULL) {
624 ieee80211_free_node(data->ni);
625 data->ni = NULL;
626 }
627 }
628 }
629
630 Static int
631 zyd_alloc_rx_list(struct zyd_softc *sc)
632 {
633 int i, error;
634
635 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
636 struct zyd_rx_data *data = &sc->rx_data[i];
637
638 data->sc = sc; /* backpointer for callbacks */
639
640 data->xfer = usbd_alloc_xfer(sc->sc_udev);
641 if (data->xfer == NULL) {
642 printf("%s: could not allocate rx xfer\n",
643 device_xname(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
648 if (data->buf == NULL) {
649 printf("%s: could not allocate rx buffer\n",
650 device_xname(sc->sc_dev));
651 error = ENOMEM;
652 goto fail;
653 }
654 }
655 return 0;
656
657 fail: zyd_free_rx_list(sc);
658 return error;
659 }
660
661 Static void
662 zyd_free_rx_list(struct zyd_softc *sc)
663 {
664 int i;
665
666 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
667 struct zyd_rx_data *data = &sc->rx_data[i];
668
669 if (data->xfer != NULL) {
670 usbd_free_xfer(data->xfer);
671 data->xfer = NULL;
672 }
673 }
674 }
675
676 /* ARGUSED */
677 Static struct ieee80211_node *
678 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
679 {
680 struct zyd_node *zn;
681
682 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
683
684 return &zn->ni;
685 }
686
687 Static int
688 zyd_media_change(struct ifnet *ifp)
689 {
690 int error;
691
692 error = ieee80211_media_change(ifp);
693 if (error != ENETRESET)
694 return error;
695
696 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
697 zyd_init(ifp);
698
699 return 0;
700 }
701
702 /*
703 * This function is called periodically (every 200ms) during scanning to
704 * switch from one channel to another.
705 */
706 Static void
707 zyd_next_scan(void *arg)
708 {
709 struct zyd_softc *sc = arg;
710 struct ieee80211com *ic = &sc->sc_ic;
711
712 if (ic->ic_state == IEEE80211_S_SCAN)
713 ieee80211_next_scan(ic);
714 }
715
716 Static void
717 zyd_task(void *arg)
718 {
719 struct zyd_softc *sc = arg;
720 struct ieee80211com *ic = &sc->sc_ic;
721 enum ieee80211_state ostate;
722
723 ostate = ic->ic_state;
724
725 switch (sc->sc_state) {
726 case IEEE80211_S_INIT:
727 if (ostate == IEEE80211_S_RUN) {
728 /* turn link LED off */
729 zyd_set_led(sc, ZYD_LED1, 0);
730
731 /* stop data LED from blinking */
732 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
733 }
734 break;
735
736 case IEEE80211_S_SCAN:
737 zyd_set_chan(sc, ic->ic_curchan);
738 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
739 break;
740
741 case IEEE80211_S_AUTH:
742 case IEEE80211_S_ASSOC:
743 zyd_set_chan(sc, ic->ic_curchan);
744 break;
745
746 case IEEE80211_S_RUN:
747 {
748 struct ieee80211_node *ni = ic->ic_bss;
749
750 zyd_set_chan(sc, ic->ic_curchan);
751
752 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
753 /* turn link LED on */
754 zyd_set_led(sc, ZYD_LED1, 1);
755
756 /* make data LED blink upon Tx */
757 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
758
759 zyd_set_bssid(sc, ni->ni_bssid);
760 }
761
762 if (ic->ic_opmode == IEEE80211_M_STA) {
763 /* fake a join to init the tx rate */
764 zyd_newassoc(ni, 1);
765 }
766
767 /* start automatic rate control timer */
768 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
769 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
770
771 break;
772 }
773 }
774
775 sc->sc_newstate(ic, sc->sc_state, -1);
776 }
777
778 Static int
779 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
780 {
781 struct zyd_softc *sc = ic->ic_ifp->if_softc;
782
783 if (!sc->attached)
784 return ENXIO;
785
786 usb_rem_task(sc->sc_udev, &sc->sc_task);
787 callout_stop(&sc->sc_scan_ch);
788 callout_stop(&sc->sc_amrr_ch);
789
790 /* do it in a process context */
791 sc->sc_state = nstate;
792 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
793
794 return 0;
795 }
796
797 Static int
798 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
799 void *odata, int olen, u_int flags)
800 {
801 usbd_xfer_handle xfer;
802 struct zyd_cmd cmd;
803 struct rq rq;
804 uint16_t xferflags;
805 int error;
806 usbd_status uerror;
807 int s = 0;
808
809 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
810 return ENOMEM;
811
812 cmd.code = htole16(code);
813 bcopy(idata, cmd.data, ilen);
814
815 xferflags = USBD_FORCE_SHORT_XFER;
816 if (!(flags & ZYD_CMD_FLAG_READ))
817 xferflags |= USBD_SYNCHRONOUS;
818 else {
819 s = splusb();
820 rq.idata = idata;
821 rq.odata = odata;
822 rq.len = olen / sizeof (struct zyd_pair);
823 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
824 }
825
826 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
827 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
828 uerror = usbd_transfer(xfer);
829 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
830 if (flags & ZYD_CMD_FLAG_READ)
831 splx(s);
832 printf("%s: could not send command (error=%s)\n",
833 device_xname(sc->sc_dev), usbd_errstr(uerror));
834 (void)usbd_free_xfer(xfer);
835 return EIO;
836 }
837 if (!(flags & ZYD_CMD_FLAG_READ)) {
838 (void)usbd_free_xfer(xfer);
839 return 0; /* write: don't wait for reply */
840 }
841 /* wait at most one second for command reply */
842 error = tsleep(odata, PCATCH, "zydcmd", hz);
843 if (error == EWOULDBLOCK)
844 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
845 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
846 splx(s);
847
848 (void)usbd_free_xfer(xfer);
849 return error;
850 }
851
852 Static int
853 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
854 {
855 struct zyd_pair tmp;
856 int error;
857
858 reg = htole16(reg);
859 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
860 ZYD_CMD_FLAG_READ);
861 if (error == 0)
862 *val = le16toh(tmp.val);
863 else
864 *val = 0;
865 return error;
866 }
867
868 Static int
869 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
870 {
871 struct zyd_pair tmp[2];
872 uint16_t regs[2];
873 int error;
874
875 regs[0] = htole16(ZYD_REG32_HI(reg));
876 regs[1] = htole16(ZYD_REG32_LO(reg));
877 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
878 ZYD_CMD_FLAG_READ);
879 if (error == 0)
880 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
881 else
882 *val = 0;
883 return error;
884 }
885
886 Static int
887 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
888 {
889 struct zyd_pair pair;
890
891 pair.reg = htole16(reg);
892 pair.val = htole16(val);
893
894 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
895 }
896
897 Static int
898 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
899 {
900 struct zyd_pair pair[2];
901
902 pair[0].reg = htole16(ZYD_REG32_HI(reg));
903 pair[0].val = htole16(val >> 16);
904 pair[1].reg = htole16(ZYD_REG32_LO(reg));
905 pair[1].val = htole16(val & 0xffff);
906
907 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
908 }
909
910 Static int
911 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
912 {
913 struct zyd_rf *rf = &sc->sc_rf;
914 struct zyd_rfwrite req;
915 uint16_t cr203;
916 int i;
917
918 (void)zyd_read16(sc, ZYD_CR203, &cr203);
919 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
920
921 req.code = htole16(2);
922 req.width = htole16(rf->width);
923 for (i = 0; i < rf->width; i++) {
924 req.bit[i] = htole16(cr203);
925 if (val & (1 << (rf->width - 1 - i)))
926 req.bit[i] |= htole16(ZYD_RF_DATA);
927 }
928 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
929 }
930
931 Static void
932 zyd_lock_phy(struct zyd_softc *sc)
933 {
934 uint32_t tmp;
935
936 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 tmp &= ~ZYD_UNLOCK_PHY_REGS;
938 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940
941 Static void
942 zyd_unlock_phy(struct zyd_softc *sc)
943 {
944 uint32_t tmp;
945
946 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
947 tmp |= ZYD_UNLOCK_PHY_REGS;
948 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
949 }
950
951 /*
952 * RFMD RF methods.
953 */
954 Static int
955 zyd_rfmd_init(struct zyd_rf *rf)
956 {
957 struct zyd_softc *sc = rf->rf_sc;
958 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
959 static const uint32_t rfini[] = ZYD_RFMD_RF;
960 int error;
961 size_t i;
962
963 /* init RF-dependent PHY registers */
964 for (i = 0; i < __arraycount(phyini); i++) {
965 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
966 if (error != 0)
967 return error;
968 }
969
970 /* init RFMD radio */
971 for (i = 0; i < __arraycount(rfini); i++) {
972 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
973 return error;
974 }
975 return 0;
976 }
977
978 Static int
979 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
980 {
981 struct zyd_softc *sc = rf->rf_sc;
982
983 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
984 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
985
986 return 0;
987 }
988
989 Static int
990 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
991 {
992 struct zyd_softc *sc = rf->rf_sc;
993 static const struct {
994 uint32_t r1, r2;
995 } rfprog[] = ZYD_RFMD_CHANTABLE;
996
997 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
998 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
999
1000 return 0;
1001 }
1002
1003 /*
1004 * AL2230 RF methods.
1005 */
1006 Static int
1007 zyd_al2230_init(struct zyd_rf *rf)
1008 {
1009 struct zyd_softc *sc = rf->rf_sc;
1010 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1011 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1012 static const uint32_t rfini[] = ZYD_AL2230_RF;
1013 int error;
1014 size_t i;
1015
1016 /* init RF-dependent PHY registers */
1017 for (i = 0; i < __arraycount(phyini); i++) {
1018 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1019 if (error != 0)
1020 return error;
1021 }
1022
1023 if (sc->rf_rev == ZYD_RF_AL2230S) {
1024 for (i = 0; i < __arraycount(phy2230s); i++) {
1025 error = zyd_write16(sc, phy2230s[i].reg,
1026 phy2230s[i].val);
1027 if (error != 0)
1028 return error;
1029 }
1030 }
1031
1032 /* init AL2230 radio */
1033 for (i = 0; i < __arraycount(rfini); i++) {
1034 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1035 return error;
1036 }
1037 return 0;
1038 }
1039
1040 Static int
1041 zyd_al2230_init_b(struct zyd_rf *rf)
1042 {
1043 struct zyd_softc *sc = rf->rf_sc;
1044 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1045 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1046 int error;
1047 size_t i;
1048
1049 /* init RF-dependent PHY registers */
1050 for (i = 0; i < __arraycount(phyini); i++) {
1051 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1052 if (error != 0)
1053 return error;
1054 }
1055
1056 /* init AL2230 radio */
1057 for (i = 0; i < __arraycount(rfini); i++) {
1058 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1059 return error;
1060 }
1061 return 0;
1062 }
1063
1064 Static int
1065 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1066 {
1067 struct zyd_softc *sc = rf->rf_sc;
1068 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1069
1070 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1071 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1072
1073 return 0;
1074 }
1075
1076 Static int
1077 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1078 {
1079 struct zyd_softc *sc = rf->rf_sc;
1080 static const struct {
1081 uint32_t r1, r2, r3;
1082 } rfprog[] = ZYD_AL2230_CHANTABLE;
1083
1084 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1085 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1086 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1087
1088 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1089 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * AL7230B RF methods.
1096 */
1097 Static int
1098 zyd_al7230B_init(struct zyd_rf *rf)
1099 {
1100 struct zyd_softc *sc = rf->rf_sc;
1101 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1102 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1103 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1104 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1105 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1106 int error;
1107 size_t i;
1108
1109 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1110
1111 /* init RF-dependent PHY registers, part one */
1112 for (i = 0; i < __arraycount(phyini_1); i++) {
1113 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1114 if (error != 0)
1115 return error;
1116 }
1117 /* init AL7230B radio, part one */
1118 for (i = 0; i < __arraycount(rfini_1); i++) {
1119 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1120 return error;
1121 }
1122 /* init RF-dependent PHY registers, part two */
1123 for (i = 0; i < __arraycount(phyini_2); i++) {
1124 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1125 if (error != 0)
1126 return error;
1127 }
1128 /* init AL7230B radio, part two */
1129 for (i = 0; i < __arraycount(rfini_2); i++) {
1130 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1131 return error;
1132 }
1133 /* init RF-dependent PHY registers, part three */
1134 for (i = 0; i < __arraycount(phyini_3); i++) {
1135 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1136 if (error != 0)
1137 return error;
1138 }
1139
1140 return 0;
1141 }
1142
1143 Static int
1144 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1145 {
1146 struct zyd_softc *sc = rf->rf_sc;
1147
1148 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1149 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1150
1151 return 0;
1152 }
1153
1154 Static int
1155 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1156 {
1157 struct zyd_softc *sc = rf->rf_sc;
1158 static const struct {
1159 uint32_t r1, r2;
1160 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1161 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1162 int error;
1163 size_t i;
1164
1165 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1166 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1167
1168 for (i = 0; i < __arraycount(rfsc); i++) {
1169 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1170 return error;
1171 }
1172
1173 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1174 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1175 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1176 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1177 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1178
1179 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1180 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1181 (void)zyd_rfwrite(sc, 0x3c9000);
1182
1183 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1184 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1185 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1186
1187 return 0;
1188 }
1189
1190 /*
1191 * AL2210 RF methods.
1192 */
1193 Static int
1194 zyd_al2210_init(struct zyd_rf *rf)
1195 {
1196 struct zyd_softc *sc = rf->rf_sc;
1197 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1198 static const uint32_t rfini[] = ZYD_AL2210_RF;
1199 uint32_t tmp;
1200 int error;
1201 size_t i;
1202
1203 (void)zyd_write32(sc, ZYD_CR18, 2);
1204
1205 /* init RF-dependent PHY registers */
1206 for (i = 0; i < __arraycount(phyini); i++) {
1207 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1208 if (error != 0)
1209 return error;
1210 }
1211 /* init AL2210 radio */
1212 for (i = 0; i < __arraycount(rfini); i++) {
1213 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1214 return error;
1215 }
1216 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1217 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1218 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1219 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1220 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1221 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1222 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1223 (void)zyd_write32(sc, ZYD_CR18, 3);
1224
1225 return 0;
1226 }
1227
1228 Static int
1229 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1230 {
1231 /* vendor driver does nothing for this RF chip */
1232
1233 return 0;
1234 }
1235
1236 Static int
1237 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1238 {
1239 struct zyd_softc *sc = rf->rf_sc;
1240 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1241 uint32_t tmp;
1242
1243 (void)zyd_write32(sc, ZYD_CR18, 2);
1244 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1245 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1246 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1247 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1248 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1249
1250 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1251 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1252
1253 /* actually set the channel */
1254 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1255
1256 (void)zyd_write32(sc, ZYD_CR18, 3);
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * GCT RF methods.
1263 */
1264 Static int
1265 zyd_gct_init(struct zyd_rf *rf)
1266 {
1267 struct zyd_softc *sc = rf->rf_sc;
1268 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1269 static const uint32_t rfini[] = ZYD_GCT_RF;
1270 int error;
1271 size_t i;
1272
1273 /* init RF-dependent PHY registers */
1274 for (i = 0; i < __arraycount(phyini); i++) {
1275 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1276 if (error != 0)
1277 return error;
1278 }
1279 /* init cgt radio */
1280 for (i = 0; i < __arraycount(rfini); i++) {
1281 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1282 return error;
1283 }
1284 return 0;
1285 }
1286
1287 Static int
1288 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1289 {
1290 /* vendor driver does nothing for this RF chip */
1291
1292 return 0;
1293 }
1294
1295 Static int
1296 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1297 {
1298 struct zyd_softc *sc = rf->rf_sc;
1299 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1300
1301 (void)zyd_rfwrite(sc, 0x1c0000);
1302 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1303 (void)zyd_rfwrite(sc, 0x1c0008);
1304
1305 return 0;
1306 }
1307
1308 /*
1309 * Maxim RF methods.
1310 */
1311 Static int
1312 zyd_maxim_init(struct zyd_rf *rf)
1313 {
1314 struct zyd_softc *sc = rf->rf_sc;
1315 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1316 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1317 uint16_t tmp;
1318 int error;
1319 size_t i;
1320
1321 /* init RF-dependent PHY registers */
1322 for (i = 0; i < __arraycount(phyini); i++) {
1323 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1324 if (error != 0)
1325 return error;
1326 }
1327 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1328 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1329
1330 /* init maxim radio */
1331 for (i = 0; i < __arraycount(rfini); i++) {
1332 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1333 return error;
1334 }
1335 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1336 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1337
1338 return 0;
1339 }
1340
1341 Static int
1342 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1343 {
1344 /* vendor driver does nothing for this RF chip */
1345
1346 return 0;
1347 }
1348
1349 Static int
1350 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1351 {
1352 struct zyd_softc *sc = rf->rf_sc;
1353 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1354 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1355 static const struct {
1356 uint32_t r1, r2;
1357 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1358 uint16_t tmp;
1359 int error;
1360 size_t i;
1361
1362 /*
1363 * Do the same as we do when initializing it, except for the channel
1364 * values coming from the two channel tables.
1365 */
1366
1367 /* init RF-dependent PHY registers */
1368 for (i = 0; i < __arraycount(phyini); i++) {
1369 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1370 if (error != 0)
1371 return error;
1372 }
1373 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1374 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1375
1376 /* first two values taken from the chantables */
1377 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1378 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1379
1380 /* init maxim radio - skipping the two first values */
1381 for (i = 2; i < __arraycount(rfini); i++) {
1382 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1383 return error;
1384 }
1385 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1386 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1387
1388 return 0;
1389 }
1390
1391 /*
1392 * Maxim2 RF methods.
1393 */
1394 Static int
1395 zyd_maxim2_init(struct zyd_rf *rf)
1396 {
1397 struct zyd_softc *sc = rf->rf_sc;
1398 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1399 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1400 uint16_t tmp;
1401 int error;
1402 size_t i;
1403
1404 /* init RF-dependent PHY registers */
1405 for (i = 0; i < __arraycount(phyini); i++) {
1406 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1407 if (error != 0)
1408 return error;
1409 }
1410 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1411 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1412
1413 /* init maxim2 radio */
1414 for (i = 0; i < __arraycount(rfini); i++) {
1415 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1416 return error;
1417 }
1418 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1419 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1420
1421 return 0;
1422 }
1423
1424 Static int
1425 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1426 {
1427 /* vendor driver does nothing for this RF chip */
1428
1429 return 0;
1430 }
1431
1432 Static int
1433 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1434 {
1435 struct zyd_softc *sc = rf->rf_sc;
1436 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1437 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1438 static const struct {
1439 uint32_t r1, r2;
1440 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1441 uint16_t tmp;
1442 int error;
1443 size_t i;
1444
1445 /*
1446 * Do the same as we do when initializing it, except for the channel
1447 * values coming from the two channel tables.
1448 */
1449
1450 /* init RF-dependent PHY registers */
1451 for (i = 0; i < __arraycount(phyini); i++) {
1452 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1453 if (error != 0)
1454 return error;
1455 }
1456 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1457 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1458
1459 /* first two values taken from the chantables */
1460 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1461 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1462
1463 /* init maxim2 radio - skipping the two first values */
1464 for (i = 2; i < __arraycount(rfini); i++) {
1465 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1466 return error;
1467 }
1468 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1469 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1470
1471 return 0;
1472 }
1473
1474 Static int
1475 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1476 {
1477 struct zyd_rf *rf = &sc->sc_rf;
1478
1479 rf->rf_sc = sc;
1480
1481 switch (type) {
1482 case ZYD_RF_RFMD:
1483 rf->init = zyd_rfmd_init;
1484 rf->switch_radio = zyd_rfmd_switch_radio;
1485 rf->set_channel = zyd_rfmd_set_channel;
1486 rf->width = 24; /* 24-bit RF values */
1487 break;
1488 case ZYD_RF_AL2230:
1489 case ZYD_RF_AL2230S:
1490 if (sc->mac_rev == ZYD_ZD1211B)
1491 rf->init = zyd_al2230_init_b;
1492 else
1493 rf->init = zyd_al2230_init;
1494 rf->switch_radio = zyd_al2230_switch_radio;
1495 rf->set_channel = zyd_al2230_set_channel;
1496 rf->width = 24; /* 24-bit RF values */
1497 break;
1498 case ZYD_RF_AL7230B:
1499 rf->init = zyd_al7230B_init;
1500 rf->switch_radio = zyd_al7230B_switch_radio;
1501 rf->set_channel = zyd_al7230B_set_channel;
1502 rf->width = 24; /* 24-bit RF values */
1503 break;
1504 case ZYD_RF_AL2210:
1505 rf->init = zyd_al2210_init;
1506 rf->switch_radio = zyd_al2210_switch_radio;
1507 rf->set_channel = zyd_al2210_set_channel;
1508 rf->width = 24; /* 24-bit RF values */
1509 break;
1510 case ZYD_RF_GCT:
1511 rf->init = zyd_gct_init;
1512 rf->switch_radio = zyd_gct_switch_radio;
1513 rf->set_channel = zyd_gct_set_channel;
1514 rf->width = 21; /* 21-bit RF values */
1515 break;
1516 case ZYD_RF_MAXIM_NEW:
1517 rf->init = zyd_maxim_init;
1518 rf->switch_radio = zyd_maxim_switch_radio;
1519 rf->set_channel = zyd_maxim_set_channel;
1520 rf->width = 18; /* 18-bit RF values */
1521 break;
1522 case ZYD_RF_MAXIM_NEW2:
1523 rf->init = zyd_maxim2_init;
1524 rf->switch_radio = zyd_maxim2_switch_radio;
1525 rf->set_channel = zyd_maxim2_set_channel;
1526 rf->width = 18; /* 18-bit RF values */
1527 break;
1528 default:
1529 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1530 device_xname(sc->sc_dev), zyd_rf_name(type));
1531 return EINVAL;
1532 }
1533 return 0;
1534 }
1535
1536 Static const char *
1537 zyd_rf_name(uint8_t type)
1538 {
1539 static const char * const zyd_rfs[] = {
1540 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1541 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1542 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1543 "PHILIPS"
1544 };
1545
1546 return zyd_rfs[(type > 15) ? 0 : type];
1547 }
1548
1549 Static int
1550 zyd_hw_init(struct zyd_softc *sc)
1551 {
1552 struct zyd_rf *rf = &sc->sc_rf;
1553 const struct zyd_phy_pair *phyp;
1554 int error;
1555
1556 /* specify that the plug and play is finished */
1557 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1558
1559 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1560 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1561
1562 /* retrieve firmware revision number */
1563 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1564
1565 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1566 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1567
1568 /* disable interrupts */
1569 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1570
1571 /* PHY init */
1572 zyd_lock_phy(sc);
1573 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1574 for (; phyp->reg != 0; phyp++) {
1575 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1576 goto fail;
1577 }
1578 zyd_unlock_phy(sc);
1579
1580 /* HMAC init */
1581 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1582 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1583
1584 if (sc->mac_rev == ZYD_ZD1211) {
1585 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1586 } else {
1587 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1588 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1589 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1590 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1591 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1592 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1593 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1594 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1595 }
1596
1597 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1598 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1599 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1600 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1601 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1602 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1603 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1604 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1605 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1606 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1607 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1608 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1609 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1610 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1611 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1612 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1613 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1614
1615 /* RF chip init */
1616 zyd_lock_phy(sc);
1617 error = (*rf->init)(rf);
1618 zyd_unlock_phy(sc);
1619 if (error != 0) {
1620 printf("%s: radio initialization failed\n",
1621 device_xname(sc->sc_dev));
1622 goto fail;
1623 }
1624
1625 /* init beacon interval to 100ms */
1626 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1627 goto fail;
1628
1629 fail: return error;
1630 }
1631
1632 Static int
1633 zyd_read_eeprom(struct zyd_softc *sc)
1634 {
1635 struct ieee80211com *ic = &sc->sc_ic;
1636 uint32_t tmp;
1637 uint16_t val;
1638 int i;
1639
1640 /* read MAC address */
1641 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1642 ic->ic_myaddr[0] = tmp & 0xff;
1643 ic->ic_myaddr[1] = tmp >> 8;
1644 ic->ic_myaddr[2] = tmp >> 16;
1645 ic->ic_myaddr[3] = tmp >> 24;
1646 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1647 ic->ic_myaddr[4] = tmp & 0xff;
1648 ic->ic_myaddr[5] = tmp >> 8;
1649
1650 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1651 sc->rf_rev = tmp & 0x0f;
1652 sc->pa_rev = (tmp >> 16) & 0x0f;
1653
1654 /* read regulatory domain (currently unused) */
1655 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1656 sc->regdomain = tmp >> 16;
1657 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1658
1659 /* read Tx power calibration tables */
1660 for (i = 0; i < 7; i++) {
1661 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1662 sc->pwr_cal[i * 2] = val >> 8;
1663 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1664
1665 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1666 sc->pwr_int[i * 2] = val >> 8;
1667 sc->pwr_int[i * 2 + 1] = val & 0xff;
1668
1669 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1670 sc->ofdm36_cal[i * 2] = val >> 8;
1671 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1672
1673 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1674 sc->ofdm48_cal[i * 2] = val >> 8;
1675 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1676
1677 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1678 sc->ofdm54_cal[i * 2] = val >> 8;
1679 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1680 }
1681 return 0;
1682 }
1683
1684 Static int
1685 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1686 {
1687 uint32_t tmp;
1688
1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1691
1692 tmp = addr[5] << 8 | addr[4];
1693 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1694
1695 return 0;
1696 }
1697
1698 Static int
1699 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1700 {
1701 uint32_t tmp;
1702
1703 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1704 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1705
1706 tmp = addr[5] << 8 | addr[4];
1707 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1708
1709 return 0;
1710 }
1711
1712 Static int
1713 zyd_switch_radio(struct zyd_softc *sc, int on)
1714 {
1715 struct zyd_rf *rf = &sc->sc_rf;
1716 int error;
1717
1718 zyd_lock_phy(sc);
1719 error = (*rf->switch_radio)(rf, on);
1720 zyd_unlock_phy(sc);
1721
1722 return error;
1723 }
1724
1725 Static void
1726 zyd_set_led(struct zyd_softc *sc, int which, int on)
1727 {
1728 uint32_t tmp;
1729
1730 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1731 tmp &= ~which;
1732 if (on)
1733 tmp |= which;
1734 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1735 }
1736
1737 Static int
1738 zyd_set_rxfilter(struct zyd_softc *sc)
1739 {
1740 uint32_t rxfilter;
1741
1742 switch (sc->sc_ic.ic_opmode) {
1743 case IEEE80211_M_STA:
1744 rxfilter = ZYD_FILTER_BSS;
1745 break;
1746 case IEEE80211_M_IBSS:
1747 case IEEE80211_M_HOSTAP:
1748 rxfilter = ZYD_FILTER_HOSTAP;
1749 break;
1750 case IEEE80211_M_MONITOR:
1751 rxfilter = ZYD_FILTER_MONITOR;
1752 break;
1753 default:
1754 /* should not get there */
1755 return EINVAL;
1756 }
1757 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1758 }
1759
1760 Static void
1761 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1762 {
1763 struct ieee80211com *ic = &sc->sc_ic;
1764 struct zyd_rf *rf = &sc->sc_rf;
1765 u_int chan;
1766
1767 chan = ieee80211_chan2ieee(ic, c);
1768 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1769 return;
1770
1771 zyd_lock_phy(sc);
1772
1773 (*rf->set_channel)(rf, chan);
1774
1775 /* update Tx power */
1776 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1777 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1778
1779 if (sc->mac_rev == ZYD_ZD1211B) {
1780 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1781 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1782 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1783
1784 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1785 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1786 }
1787
1788 zyd_unlock_phy(sc);
1789 }
1790
1791 Static int
1792 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1793 {
1794 /* XXX this is probably broken.. */
1795 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1796 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1797 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1798
1799 return 0;
1800 }
1801
1802 Static uint8_t
1803 zyd_plcp_signal(int rate)
1804 {
1805 switch (rate) {
1806 /* CCK rates (returned values are device-dependent) */
1807 case 2: return 0x0;
1808 case 4: return 0x1;
1809 case 11: return 0x2;
1810 case 22: return 0x3;
1811
1812 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1813 case 12: return 0xb;
1814 case 18: return 0xf;
1815 case 24: return 0xa;
1816 case 36: return 0xe;
1817 case 48: return 0x9;
1818 case 72: return 0xd;
1819 case 96: return 0x8;
1820 case 108: return 0xc;
1821
1822 /* unsupported rates (should not get there) */
1823 default: return 0xff;
1824 }
1825 }
1826
1827 Static void
1828 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1829 {
1830 struct zyd_softc *sc = (struct zyd_softc *)priv;
1831 struct zyd_cmd *cmd;
1832 uint32_t datalen;
1833
1834 if (status != USBD_NORMAL_COMPLETION) {
1835 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1836 return;
1837
1838 if (status == USBD_STALLED) {
1839 usbd_clear_endpoint_stall_async(
1840 sc->zyd_ep[ZYD_ENDPT_IIN]);
1841 }
1842 return;
1843 }
1844
1845 cmd = (struct zyd_cmd *)sc->ibuf;
1846
1847 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1848 struct zyd_notif_retry *retry =
1849 (struct zyd_notif_retry *)cmd->data;
1850 struct ieee80211com *ic = &sc->sc_ic;
1851 struct ifnet *ifp = &sc->sc_if;
1852 struct ieee80211_node *ni;
1853
1854 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1855 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1856 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1857
1858 /*
1859 * Find the node to which the packet was sent and update its
1860 * retry statistics. In BSS mode, this node is the AP we're
1861 * associated to so no lookup is actually needed.
1862 */
1863 if (ic->ic_opmode != IEEE80211_M_STA) {
1864 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1865 if (ni == NULL)
1866 return; /* just ignore */
1867 } else
1868 ni = ic->ic_bss;
1869
1870 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1871
1872 if (le16toh(retry->count) & 0x100)
1873 ifp->if_oerrors++; /* too many retries */
1874
1875 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1876 struct rq *rqp;
1877
1878 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1879 return; /* HMAC interrupt */
1880
1881 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1882 datalen -= sizeof(cmd->code);
1883 datalen -= 2; /* XXX: padding? */
1884
1885 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1886 int i;
1887
1888 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1889 continue;
1890 for (i = 0; i < rqp->len; i++) {
1891 if (*(((const uint16_t *)rqp->idata) + i) !=
1892 (((struct zyd_pair *)cmd->data) + i)->reg)
1893 break;
1894 }
1895 if (i != rqp->len)
1896 continue;
1897
1898 /* copy answer into caller-supplied buffer */
1899 bcopy(cmd->data, rqp->odata,
1900 sizeof(struct zyd_pair) * rqp->len);
1901 wakeup(rqp->odata); /* wakeup caller */
1902
1903 return;
1904 }
1905 return; /* unexpected IORD notification */
1906 } else {
1907 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1908 le16toh(cmd->code));
1909 }
1910 }
1911
1912 Static void
1913 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1914 {
1915 struct ieee80211com *ic = &sc->sc_ic;
1916 struct ifnet *ifp = &sc->sc_if;
1917 struct ieee80211_node *ni;
1918 struct ieee80211_frame *wh;
1919 const struct zyd_plcphdr *plcp;
1920 const struct zyd_rx_stat *stat;
1921 struct mbuf *m;
1922 int rlen, s;
1923
1924 if (len < ZYD_MIN_FRAGSZ) {
1925 printf("%s: frame too short (length=%d)\n",
1926 device_xname(sc->sc_dev), len);
1927 ifp->if_ierrors++;
1928 return;
1929 }
1930
1931 plcp = (const struct zyd_plcphdr *)buf;
1932 stat = (const struct zyd_rx_stat *)
1933 (buf + len - sizeof (struct zyd_rx_stat));
1934
1935 if (stat->flags & ZYD_RX_ERROR) {
1936 DPRINTF(("%s: RX status indicated error (%x)\n",
1937 device_xname(sc->sc_dev), stat->flags));
1938 ifp->if_ierrors++;
1939 return;
1940 }
1941
1942 /* compute actual frame length */
1943 rlen = len - sizeof (struct zyd_plcphdr) -
1944 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1945
1946 /* allocate a mbuf to store the frame */
1947 MGETHDR(m, M_DONTWAIT, MT_DATA);
1948 if (m == NULL) {
1949 printf("%s: could not allocate rx mbuf\n",
1950 device_xname(sc->sc_dev));
1951 ifp->if_ierrors++;
1952 return;
1953 }
1954 if (rlen > MHLEN) {
1955 MCLGET(m, M_DONTWAIT);
1956 if (!(m->m_flags & M_EXT)) {
1957 printf("%s: could not allocate rx mbuf cluster\n",
1958 device_xname(sc->sc_dev));
1959 m_freem(m);
1960 ifp->if_ierrors++;
1961 return;
1962 }
1963 }
1964 m->m_pkthdr.rcvif = ifp;
1965 m->m_pkthdr.len = m->m_len = rlen;
1966 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1967
1968 s = splnet();
1969
1970 if (sc->sc_drvbpf != NULL) {
1971 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1972 static const uint8_t rates[] = {
1973 /* reverse function of zyd_plcp_signal() */
1974 2, 4, 11, 22, 0, 0, 0, 0,
1975 96, 48, 24, 12, 108, 72, 36, 18
1976 };
1977
1978 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1979 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1980 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1981 tap->wr_rssi = stat->rssi;
1982 tap->wr_rate = rates[plcp->signal & 0xf];
1983
1984 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1985 }
1986
1987 wh = mtod(m, struct ieee80211_frame *);
1988 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1989 ieee80211_input(ic, m, ni, stat->rssi, 0);
1990
1991 /* node is no longer needed */
1992 ieee80211_free_node(ni);
1993
1994 splx(s);
1995 }
1996
1997 Static void
1998 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1999 {
2000 struct zyd_rx_data *data = priv;
2001 struct zyd_softc *sc = data->sc;
2002 struct ifnet *ifp = &sc->sc_if;
2003 const struct zyd_rx_desc *desc;
2004 int len;
2005
2006 if (status != USBD_NORMAL_COMPLETION) {
2007 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2008 return;
2009
2010 if (status == USBD_STALLED)
2011 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2012
2013 goto skip;
2014 }
2015 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2016
2017 if (len < ZYD_MIN_RXBUFSZ) {
2018 printf("%s: xfer too short (length=%d)\n",
2019 device_xname(sc->sc_dev), len);
2020 ifp->if_ierrors++;
2021 goto skip;
2022 }
2023
2024 desc = (const struct zyd_rx_desc *)
2025 (data->buf + len - sizeof (struct zyd_rx_desc));
2026
2027 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2028 const uint8_t *p = data->buf, *end = p + len;
2029 int i;
2030
2031 DPRINTFN(3, ("received multi-frame transfer\n"));
2032
2033 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2034 const uint16_t len16 = UGETW(desc->len[i]);
2035
2036 if (len16 == 0 || p + len16 > end)
2037 break;
2038
2039 zyd_rx_data(sc, p, len16);
2040 /* next frame is aligned on a 32-bit boundary */
2041 p += (len16 + 3) & ~3;
2042 }
2043 } else {
2044 DPRINTFN(3, ("received single-frame transfer\n"));
2045
2046 zyd_rx_data(sc, data->buf, len);
2047 }
2048
2049 skip: /* setup a new transfer */
2050 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2051 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2052 USBD_NO_TIMEOUT, zyd_rxeof);
2053 (void)usbd_transfer(xfer);
2054 }
2055
2056 Static int
2057 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2058 {
2059 struct ieee80211com *ic = &sc->sc_ic;
2060 struct ifnet *ifp = &sc->sc_if;
2061 struct zyd_tx_desc *desc;
2062 struct zyd_tx_data *data;
2063 struct ieee80211_frame *wh;
2064 struct ieee80211_key *k;
2065 int xferlen, totlen, rate;
2066 uint16_t pktlen;
2067 usbd_status error;
2068
2069 data = &sc->tx_data[0];
2070 desc = (struct zyd_tx_desc *)data->buf;
2071
2072 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2073
2074 wh = mtod(m0, struct ieee80211_frame *);
2075
2076 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2077 k = ieee80211_crypto_encap(ic, ni, m0);
2078 if (k == NULL) {
2079 m_freem(m0);
2080 return ENOBUFS;
2081 }
2082 }
2083
2084 data->ni = ni;
2085
2086 wh = mtod(m0, struct ieee80211_frame *);
2087
2088 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2089 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2090
2091 /* fill Tx descriptor */
2092 desc->len = htole16(totlen);
2093
2094 desc->flags = ZYD_TX_FLAG_BACKOFF;
2095 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2096 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2097 if (totlen > ic->ic_rtsthreshold) {
2098 desc->flags |= ZYD_TX_FLAG_RTS;
2099 } else if (ZYD_RATE_IS_OFDM(rate) &&
2100 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2101 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2102 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2103 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2104 desc->flags |= ZYD_TX_FLAG_RTS;
2105 }
2106 } else
2107 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2108
2109 if ((wh->i_fc[0] &
2110 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2111 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2112 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2113
2114 desc->phy = zyd_plcp_signal(rate);
2115 if (ZYD_RATE_IS_OFDM(rate)) {
2116 desc->phy |= ZYD_TX_PHY_OFDM;
2117 if (ic->ic_curmode == IEEE80211_MODE_11A)
2118 desc->phy |= ZYD_TX_PHY_5GHZ;
2119 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2120 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2121
2122 /* actual transmit length (XXX why +10?) */
2123 pktlen = sizeof (struct zyd_tx_desc) + 10;
2124 if (sc->mac_rev == ZYD_ZD1211)
2125 pktlen += totlen;
2126 desc->pktlen = htole16(pktlen);
2127
2128 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2129 desc->plcp_service = 0;
2130 if (rate == 22) {
2131 const int remainder = (16 * totlen) % 22;
2132 if (remainder != 0 && remainder < 7)
2133 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2134 }
2135
2136 if (sc->sc_drvbpf != NULL) {
2137 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2138
2139 tap->wt_flags = 0;
2140 tap->wt_rate = rate;
2141 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2142 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2143
2144 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2145 }
2146
2147 m_copydata(m0, 0, m0->m_pkthdr.len,
2148 data->buf + sizeof (struct zyd_tx_desc));
2149
2150 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2151 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2152
2153 m_freem(m0); /* mbuf no longer needed */
2154
2155 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2156 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2157 ZYD_TX_TIMEOUT, zyd_txeof);
2158 error = usbd_transfer(data->xfer);
2159 if (error != USBD_IN_PROGRESS && error != 0) {
2160 ifp->if_oerrors++;
2161 return EIO;
2162 }
2163 sc->tx_queued++;
2164
2165 return 0;
2166 }
2167
2168 Static void
2169 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2170 {
2171 struct zyd_tx_data *data = priv;
2172 struct zyd_softc *sc = data->sc;
2173 struct ifnet *ifp = &sc->sc_if;
2174 int s;
2175
2176 if (status != USBD_NORMAL_COMPLETION) {
2177 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2178 return;
2179
2180 printf("%s: could not transmit buffer: %s\n",
2181 device_xname(sc->sc_dev), usbd_errstr(status));
2182
2183 if (status == USBD_STALLED) {
2184 usbd_clear_endpoint_stall_async(
2185 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2186 }
2187 ifp->if_oerrors++;
2188 return;
2189 }
2190
2191 s = splnet();
2192
2193 /* update rate control statistics */
2194 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2195
2196 ieee80211_free_node(data->ni);
2197 data->ni = NULL;
2198
2199 sc->tx_queued--;
2200 ifp->if_opackets++;
2201
2202 sc->tx_timer = 0;
2203 ifp->if_flags &= ~IFF_OACTIVE;
2204 zyd_start(ifp);
2205
2206 splx(s);
2207 }
2208
2209 Static int
2210 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2211 {
2212 struct ieee80211com *ic = &sc->sc_ic;
2213 struct ifnet *ifp = &sc->sc_if;
2214 struct zyd_tx_desc *desc;
2215 struct zyd_tx_data *data;
2216 struct ieee80211_frame *wh;
2217 struct ieee80211_key *k;
2218 int xferlen, totlen, rate;
2219 uint16_t pktlen;
2220 usbd_status error;
2221
2222 wh = mtod(m0, struct ieee80211_frame *);
2223
2224 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2225 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2226 else
2227 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2228 rate &= IEEE80211_RATE_VAL;
2229
2230 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2231 k = ieee80211_crypto_encap(ic, ni, m0);
2232 if (k == NULL) {
2233 m_freem(m0);
2234 return ENOBUFS;
2235 }
2236
2237 /* packet header may have moved, reset our local pointer */
2238 wh = mtod(m0, struct ieee80211_frame *);
2239 }
2240
2241 data = &sc->tx_data[0];
2242 desc = (struct zyd_tx_desc *)data->buf;
2243
2244 data->ni = ni;
2245
2246 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2247 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2248
2249 /* fill Tx descriptor */
2250 desc->len = htole16(totlen);
2251
2252 desc->flags = ZYD_TX_FLAG_BACKOFF;
2253 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2254 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2255 if (totlen > ic->ic_rtsthreshold) {
2256 desc->flags |= ZYD_TX_FLAG_RTS;
2257 } else if (ZYD_RATE_IS_OFDM(rate) &&
2258 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2259 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2260 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2261 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2262 desc->flags |= ZYD_TX_FLAG_RTS;
2263 }
2264 } else
2265 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2266
2267 if ((wh->i_fc[0] &
2268 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2269 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2270 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2271
2272 desc->phy = zyd_plcp_signal(rate);
2273 if (ZYD_RATE_IS_OFDM(rate)) {
2274 desc->phy |= ZYD_TX_PHY_OFDM;
2275 if (ic->ic_curmode == IEEE80211_MODE_11A)
2276 desc->phy |= ZYD_TX_PHY_5GHZ;
2277 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2278 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2279
2280 /* actual transmit length (XXX why +10?) */
2281 pktlen = sizeof (struct zyd_tx_desc) + 10;
2282 if (sc->mac_rev == ZYD_ZD1211)
2283 pktlen += totlen;
2284 desc->pktlen = htole16(pktlen);
2285
2286 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2287 desc->plcp_service = 0;
2288 if (rate == 22) {
2289 const int remainder = (16 * totlen) % 22;
2290 if (remainder != 0 && remainder < 7)
2291 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2292 }
2293
2294 if (sc->sc_drvbpf != NULL) {
2295 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2296
2297 tap->wt_flags = 0;
2298 tap->wt_rate = rate;
2299 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2300 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2301
2302 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2303 }
2304
2305 m_copydata(m0, 0, m0->m_pkthdr.len,
2306 data->buf + sizeof (struct zyd_tx_desc));
2307
2308 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2309 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2310
2311 m_freem(m0); /* mbuf no longer needed */
2312
2313 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2314 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2315 ZYD_TX_TIMEOUT, zyd_txeof);
2316 error = usbd_transfer(data->xfer);
2317 if (error != USBD_IN_PROGRESS && error != 0) {
2318 ifp->if_oerrors++;
2319 return EIO;
2320 }
2321 sc->tx_queued++;
2322
2323 return 0;
2324 }
2325
2326 Static void
2327 zyd_start(struct ifnet *ifp)
2328 {
2329 struct zyd_softc *sc = ifp->if_softc;
2330 struct ieee80211com *ic = &sc->sc_ic;
2331 struct ether_header *eh;
2332 struct ieee80211_node *ni;
2333 struct mbuf *m0;
2334
2335 for (;;) {
2336 IF_POLL(&ic->ic_mgtq, m0);
2337 if (m0 != NULL) {
2338 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2339 ifp->if_flags |= IFF_OACTIVE;
2340 break;
2341 }
2342 IF_DEQUEUE(&ic->ic_mgtq, m0);
2343
2344 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2345 m0->m_pkthdr.rcvif = NULL;
2346 bpf_mtap3(ic->ic_rawbpf, m0);
2347 if (zyd_tx_mgt(sc, m0, ni) != 0)
2348 break;
2349 } else {
2350 if (ic->ic_state != IEEE80211_S_RUN)
2351 break;
2352 IFQ_POLL(&ifp->if_snd, m0);
2353 if (m0 == NULL)
2354 break;
2355 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2356 ifp->if_flags |= IFF_OACTIVE;
2357 break;
2358 }
2359 IFQ_DEQUEUE(&ifp->if_snd, m0);
2360
2361 if (m0->m_len < sizeof(struct ether_header) &&
2362 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2363 continue;
2364
2365 eh = mtod(m0, struct ether_header *);
2366 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2367 if (ni == NULL) {
2368 m_freem(m0);
2369 continue;
2370 }
2371 bpf_mtap(ifp, m0);
2372 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2373 ieee80211_free_node(ni);
2374 ifp->if_oerrors++;
2375 continue;
2376 }
2377 bpf_mtap3(ic->ic_rawbpf, m0);
2378 if (zyd_tx_data(sc, m0, ni) != 0) {
2379 ieee80211_free_node(ni);
2380 ifp->if_oerrors++;
2381 break;
2382 }
2383 }
2384
2385 sc->tx_timer = 5;
2386 ifp->if_timer = 1;
2387 }
2388 }
2389
2390 Static void
2391 zyd_watchdog(struct ifnet *ifp)
2392 {
2393 struct zyd_softc *sc = ifp->if_softc;
2394 struct ieee80211com *ic = &sc->sc_ic;
2395
2396 ifp->if_timer = 0;
2397
2398 if (sc->tx_timer > 0) {
2399 if (--sc->tx_timer == 0) {
2400 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2401 /* zyd_init(ifp); XXX needs a process context ? */
2402 ifp->if_oerrors++;
2403 return;
2404 }
2405 ifp->if_timer = 1;
2406 }
2407
2408 ieee80211_watchdog(ic);
2409 }
2410
2411 Static int
2412 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2413 {
2414 struct zyd_softc *sc = ifp->if_softc;
2415 struct ieee80211com *ic = &sc->sc_ic;
2416 int s, error = 0;
2417
2418 s = splnet();
2419
2420 switch (cmd) {
2421 case SIOCSIFFLAGS:
2422 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2423 break;
2424 /* XXX re-use ether_ioctl() */
2425 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2426 case IFF_UP:
2427 zyd_init(ifp);
2428 break;
2429 case IFF_RUNNING:
2430 zyd_stop(ifp, 1);
2431 break;
2432 default:
2433 break;
2434 }
2435 break;
2436
2437 default:
2438 error = ieee80211_ioctl(ic, cmd, data);
2439 }
2440
2441 if (error == ENETRESET) {
2442 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2443 (IFF_RUNNING | IFF_UP))
2444 zyd_init(ifp);
2445 error = 0;
2446 }
2447
2448 splx(s);
2449
2450 return error;
2451 }
2452
2453 Static int
2454 zyd_init(struct ifnet *ifp)
2455 {
2456 struct zyd_softc *sc = ifp->if_softc;
2457 struct ieee80211com *ic = &sc->sc_ic;
2458 int i, error;
2459
2460 zyd_stop(ifp, 0);
2461
2462 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2463 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2464 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2465 if (error != 0)
2466 return error;
2467
2468 /* we'll do software WEP decryption for now */
2469 DPRINTF(("setting encryption type\n"));
2470 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2471 if (error != 0)
2472 return error;
2473
2474 /* promiscuous mode */
2475 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2476 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2477
2478 (void)zyd_set_rxfilter(sc);
2479
2480 /* switch radio transmitter ON */
2481 (void)zyd_switch_radio(sc, 1);
2482
2483 /* set basic rates */
2484 if (ic->ic_curmode == IEEE80211_MODE_11B)
2485 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2486 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2487 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2488 else /* assumes 802.11b/g */
2489 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2490
2491 /* set mandatory rates */
2492 if (ic->ic_curmode == IEEE80211_MODE_11B)
2493 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2494 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2495 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2496 else /* assumes 802.11b/g */
2497 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2498
2499 /* set default BSS channel */
2500 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2501 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2502
2503 /* enable interrupts */
2504 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2505
2506 /*
2507 * Allocate Tx and Rx xfer queues.
2508 */
2509 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2510 printf("%s: could not allocate Tx list\n",
2511 device_xname(sc->sc_dev));
2512 goto fail;
2513 }
2514 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2515 printf("%s: could not allocate Rx list\n",
2516 device_xname(sc->sc_dev));
2517 goto fail;
2518 }
2519
2520 /*
2521 * Start up the receive pipe.
2522 */
2523 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2524 struct zyd_rx_data *data = &sc->rx_data[i];
2525
2526 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2527 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2528 USBD_NO_TIMEOUT, zyd_rxeof);
2529 error = usbd_transfer(data->xfer);
2530 if (error != USBD_IN_PROGRESS && error != 0) {
2531 printf("%s: could not queue Rx transfer\n",
2532 device_xname(sc->sc_dev));
2533 goto fail;
2534 }
2535 }
2536
2537 ifp->if_flags &= ~IFF_OACTIVE;
2538 ifp->if_flags |= IFF_RUNNING;
2539
2540 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2541 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2542 else
2543 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2544
2545 return 0;
2546
2547 fail: zyd_stop(ifp, 1);
2548 return error;
2549 }
2550
2551 Static void
2552 zyd_stop(struct ifnet *ifp, int disable)
2553 {
2554 struct zyd_softc *sc = ifp->if_softc;
2555 struct ieee80211com *ic = &sc->sc_ic;
2556
2557 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2558
2559 sc->tx_timer = 0;
2560 ifp->if_timer = 0;
2561 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2562
2563 /* switch radio transmitter OFF */
2564 (void)zyd_switch_radio(sc, 0);
2565
2566 /* disable Rx */
2567 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2568
2569 /* disable interrupts */
2570 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2571
2572 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2573 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2574
2575 zyd_free_rx_list(sc);
2576 zyd_free_tx_list(sc);
2577 }
2578
2579 Static int
2580 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2581 {
2582 usb_device_request_t req;
2583 uint16_t addr;
2584 uint8_t stat;
2585
2586 DPRINTF(("firmware size=%zu\n", size));
2587
2588 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2589 req.bRequest = ZYD_DOWNLOADREQ;
2590 USETW(req.wIndex, 0);
2591
2592 addr = ZYD_FIRMWARE_START_ADDR;
2593 while (size > 0) {
2594 #if 0
2595 const int mlen = min(size, 4096);
2596 #else
2597 /*
2598 * XXXX: When the transfer size is 4096 bytes, it is not
2599 * likely to be able to transfer it.
2600 * The cause is port or machine or chip?
2601 */
2602 const int mlen = min(size, 64);
2603 #endif
2604
2605 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2606 addr));
2607
2608 USETW(req.wValue, addr);
2609 USETW(req.wLength, mlen);
2610 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2611 return EIO;
2612
2613 addr += mlen / 2;
2614 fw += mlen;
2615 size -= mlen;
2616 }
2617
2618 /* check whether the upload succeeded */
2619 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2620 req.bRequest = ZYD_DOWNLOADSTS;
2621 USETW(req.wValue, 0);
2622 USETW(req.wIndex, 0);
2623 USETW(req.wLength, sizeof stat);
2624 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2625 return EIO;
2626
2627 return (stat & 0x80) ? EIO : 0;
2628 }
2629
2630 Static void
2631 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2632 {
2633 struct zyd_softc *sc = arg;
2634 struct zyd_node *zn = (struct zyd_node *)ni;
2635
2636 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2637 }
2638
2639 Static void
2640 zyd_amrr_timeout(void *arg)
2641 {
2642 struct zyd_softc *sc = arg;
2643 struct ieee80211com *ic = &sc->sc_ic;
2644 int s;
2645
2646 s = splnet();
2647 if (ic->ic_opmode == IEEE80211_M_STA)
2648 zyd_iter_func(sc, ic->ic_bss);
2649 else
2650 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2651 splx(s);
2652
2653 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2654 }
2655
2656 Static void
2657 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2658 {
2659 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2660 int i;
2661
2662 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2663
2664 /* set rate to some reasonable initial value */
2665 for (i = ni->ni_rates.rs_nrates - 1;
2666 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2667 i--);
2668 ni->ni_txrate = i;
2669 }
2670
2671 int
2672 zyd_activate(device_t self, enum devact act)
2673 {
2674 struct zyd_softc *sc = device_private(self);
2675
2676 switch (act) {
2677 case DVACT_DEACTIVATE:
2678 if_deactivate(&sc->sc_if);
2679 return 0;
2680 default:
2681 return EOPNOTSUPP;
2682 }
2683 }
2684