if_zyd.c revision 1.29.6.1 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.29.6.1 2012/04/05 21:33:33 mrg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.29.6.1 2012/04/05 21:33:33 mrg Exp $");
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_zydreg.h>
68
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p) \
87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p) \
89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 struct usb_devno dev;
92 uint8_t rev;
93 #define ZYD_ZD1211 0
94 #define ZYD_ZD1211B 1
95 } zyd_devs[] = {
96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
97 ZYD_ZD1211_DEV(ABOCOM, WL54),
98 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
102 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
103 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
104 ZYD_ZD1211_DEV(SAGEM, XG760A),
105 ZYD_ZD1211_DEV(SENAO, NUB8301),
106 ZYD_ZD1211_DEV(SITECOMEU, WL113),
107 ZYD_ZD1211_DEV(SWEEX, ZD1211),
108 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
109 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
111 ZYD_ZD1211_DEV(TWINMOS, G240),
112 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
113 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
115 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
116 ZYD_ZD1211_DEV(ZCOM, ZD1211),
117 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
118 ZYD_ZD1211_DEV(ZYXEL, AG225H),
119 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
120
121 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
122 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
123 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
124 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
125 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
126 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
127 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
128 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
129 ZYD_ZD1211B_DEV(MELCO, KG54L),
130 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
131 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
132 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
133 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
134 #if 0 /* Shall we needs? */
135 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
136 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
137 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
138 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
139 #endif
140 ZYD_ZD1211B_DEV(USR, USR5423),
141 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
142 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
143 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
144 ZYD_ZD1211B_DEV(ZYXEL, M202),
145 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
146 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
147 };
148 #define zyd_lookup(v, p) \
149 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
150
151 int zyd_match(device_t, cfdata_t, void *);
152 void zyd_attach(device_t, device_t, void *);
153 int zyd_detach(device_t, int);
154 int zyd_activate(device_t, enum devact);
155 extern struct cfdriver zyd_cd;
156
157 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
158 zyd_attach, zyd_detach, zyd_activate);
159
160 Static void zyd_attachhook(device_t);
161 Static int zyd_complete_attach(struct zyd_softc *);
162 Static int zyd_open_pipes(struct zyd_softc *);
163 Static void zyd_close_pipes(struct zyd_softc *);
164 Static int zyd_alloc_tx_list(struct zyd_softc *);
165 Static void zyd_free_tx_list(struct zyd_softc *);
166 Static int zyd_alloc_rx_list(struct zyd_softc *);
167 Static void zyd_free_rx_list(struct zyd_softc *);
168 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
169 Static int zyd_media_change(struct ifnet *);
170 Static void zyd_next_scan(void *);
171 Static void zyd_task(void *);
172 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
173 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
174 void *, int, u_int);
175 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
176 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
177 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
178 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
179 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
180 Static void zyd_lock_phy(struct zyd_softc *);
181 Static void zyd_unlock_phy(struct zyd_softc *);
182 Static int zyd_rfmd_init(struct zyd_rf *);
183 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
184 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
185 Static int zyd_al2230_init(struct zyd_rf *);
186 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
187 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
188 Static int zyd_al2230_init_b(struct zyd_rf *);
189 Static int zyd_al7230B_init(struct zyd_rf *);
190 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
191 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
192 Static int zyd_al2210_init(struct zyd_rf *);
193 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
194 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
195 Static int zyd_gct_init(struct zyd_rf *);
196 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
197 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
198 Static int zyd_maxim_init(struct zyd_rf *);
199 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
200 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
201 Static int zyd_maxim2_init(struct zyd_rf *);
202 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
203 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
204 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
205 Static const char *zyd_rf_name(uint8_t);
206 Static int zyd_hw_init(struct zyd_softc *);
207 Static int zyd_read_eeprom(struct zyd_softc *);
208 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
209 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
210 Static int zyd_switch_radio(struct zyd_softc *, int);
211 Static void zyd_set_led(struct zyd_softc *, int, int);
212 Static int zyd_set_rxfilter(struct zyd_softc *);
213 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
214 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
215 Static uint8_t zyd_plcp_signal(int);
216 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
217 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
218 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
219 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
220 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
221 struct ieee80211_node *);
222 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
223 struct ieee80211_node *);
224 Static void zyd_start(struct ifnet *);
225 Static void zyd_watchdog(struct ifnet *);
226 Static int zyd_ioctl(struct ifnet *, u_long, void *);
227 Static int zyd_init(struct ifnet *);
228 Static void zyd_stop(struct ifnet *, int);
229 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
230 Static void zyd_iter_func(void *, struct ieee80211_node *);
231 Static void zyd_amrr_timeout(void *);
232 Static void zyd_newassoc(struct ieee80211_node *, int);
233
234 static const struct ieee80211_rateset zyd_rateset_11b =
235 { 4, { 2, 4, 11, 22 } };
236
237 static const struct ieee80211_rateset zyd_rateset_11g =
238 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
239
240 int
241 zyd_match(device_t parent, cfdata_t match, void *aux)
242 {
243 struct usb_attach_arg *uaa = aux;
244
245 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
246 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
247 }
248
249 Static void
250 zyd_attachhook(device_t self)
251 {
252 struct zyd_softc *sc = device_private(self);
253 firmware_handle_t fwh;
254 const char *fwname;
255 u_char *fw;
256 size_t size;
257 int error;
258
259 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
260 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
261 aprint_error_dev(sc->sc_dev,
262 "failed to open firmware %s (error=%d)\n", fwname, error);
263 return;
264 }
265 size = firmware_get_size(fwh);
266 fw = firmware_malloc(size);
267 if (fw == NULL) {
268 aprint_error_dev(sc->sc_dev,
269 "failed to allocate firmware memory\n");
270 firmware_close(fwh);
271 return;
272 }
273 error = firmware_read(fwh, 0, fw, size);
274 firmware_close(fwh);
275 if (error != 0) {
276 aprint_error_dev(sc->sc_dev,
277 "failed to read firmware (error %d)\n", error);
278 firmware_free(fw, 0);
279 return;
280 }
281
282 error = zyd_loadfirmware(sc, fw, size);
283 if (error != 0) {
284 aprint_error_dev(sc->sc_dev,
285 "could not load firmware (error=%d)\n", error);
286 firmware_free(fw, 0);
287 return;
288 }
289
290 firmware_free(fw, 0);
291 sc->sc_flags |= ZD1211_FWLOADED;
292
293 /* complete the attach process */
294 if ((error = zyd_complete_attach(sc)) == 0)
295 sc->attached = 1;
296 return;
297 }
298
299 void
300 zyd_attach(device_t parent, device_t self, void *aux)
301 {
302 struct zyd_softc *sc = device_private(self);
303 struct usb_attach_arg *uaa = aux;
304 char *devinfop;
305 usb_device_descriptor_t* ddesc;
306 struct ifnet *ifp = &sc->sc_if;
307
308 sc->sc_dev = self;
309 sc->sc_udev = uaa->device;
310 sc->sc_flags = 0;
311
312 aprint_naive("\n");
313 aprint_normal("\n");
314
315 devinfop = usbd_devinfo_alloc(uaa->device, 0);
316 aprint_normal_dev(self, "%s\n", devinfop);
317 usbd_devinfo_free(devinfop);
318
319 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
320
321 ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 aprint_error_dev(self, "device version mismatch: 0x%x "
324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 return;
326 }
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = zyd_init;
331 ifp->if_ioctl = zyd_ioctl;
332 ifp->if_start = zyd_start;
333 ifp->if_watchdog = zyd_watchdog;
334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337
338 SIMPLEQ_INIT(&sc->sc_rqh);
339
340 /* defer configrations after file system is ready to load firmware */
341 config_mountroot(self, zyd_attachhook);
342 }
343
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 struct ieee80211com *ic = &sc->sc_ic;
348 struct ifnet *ifp = &sc->sc_if;
349 usbd_status error;
350 int i;
351
352 usb_init_task(&sc->sc_task, zyd_task, sc);
353 callout_init(&(sc->sc_scan_ch), 0);
354
355 sc->amrr.amrr_min_success_threshold = 1;
356 sc->amrr.amrr_max_success_threshold = 10;
357 callout_init(&sc->sc_amrr_ch, 0);
358
359 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 if (error != 0) {
361 aprint_error_dev(sc->sc_dev, "setting config no failed\n");
362 goto fail;
363 }
364
365 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
366 &sc->sc_iface);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev,
369 "getting interface handle failed\n");
370 goto fail;
371 }
372
373 if ((error = zyd_open_pipes(sc)) != 0) {
374 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
375 goto fail;
376 }
377
378 if ((error = zyd_read_eeprom(sc)) != 0) {
379 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
380 goto fail;
381 }
382
383 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
384 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
385 goto fail;
386 }
387
388 if ((error = zyd_hw_init(sc)) != 0) {
389 aprint_error_dev(sc->sc_dev,
390 "hardware initialization failed\n");
391 goto fail;
392 }
393
394 aprint_normal_dev(sc->sc_dev,
395 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
396 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
397 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
398 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
399
400 ic->ic_ifp = ifp;
401 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
402 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
403 ic->ic_state = IEEE80211_S_INIT;
404
405 /* set device capabilities */
406 ic->ic_caps =
407 IEEE80211_C_MONITOR | /* monitor mode supported */
408 IEEE80211_C_TXPMGT | /* tx power management */
409 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
410 IEEE80211_C_WEP; /* s/w WEP */
411
412 /* set supported .11b and .11g rates */
413 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
414 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
415
416 /* set supported .11b and .11g channels (1 through 14) */
417 for (i = 1; i <= 14; i++) {
418 ic->ic_channels[i].ic_freq =
419 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
420 ic->ic_channels[i].ic_flags =
421 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
422 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
423 }
424
425 if_attach(ifp);
426 ieee80211_ifattach(ic);
427 ic->ic_node_alloc = zyd_node_alloc;
428 ic->ic_newassoc = zyd_newassoc;
429
430 /* override state transition machine */
431 sc->sc_newstate = ic->ic_newstate;
432 ic->ic_newstate = zyd_newstate;
433 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
434
435 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
436 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
437 &sc->sc_drvbpf);
438
439 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
440 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
442
443 sc->sc_txtap_len = sizeof sc->sc_txtapu;
444 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
446
447 ieee80211_announce(ic);
448
449 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
450
451 fail: return error;
452 }
453
454 int
455 zyd_detach(device_t self, int flags)
456 {
457 struct zyd_softc *sc = device_private(self);
458 struct ieee80211com *ic = &sc->sc_ic;
459 struct ifnet *ifp = &sc->sc_if;
460 int s;
461
462 if (!sc->attached)
463 return 0;
464
465 s = splusb();
466
467 zyd_stop(ifp, 1);
468 usb_rem_task(sc->sc_udev, &sc->sc_task);
469 callout_stop(&sc->sc_scan_ch);
470 callout_stop(&sc->sc_amrr_ch);
471
472 zyd_close_pipes(sc);
473
474 sc->attached = 0;
475
476 bpf_detach(ifp);
477 ieee80211_ifdetach(ic);
478 if_detach(ifp);
479
480 splx(s);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 sc->sc_dev);
484
485 return 0;
486 }
487
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 usb_endpoint_descriptor_t *edesc;
492 int isize;
493 usbd_status error;
494
495 /* interrupt in */
496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 if (edesc == NULL)
498 return EINVAL;
499
500 isize = UGETW(edesc->wMaxPacketSize);
501 if (isize == 0) /* should not happen */
502 return EINVAL;
503
504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 if (sc->ibuf == NULL)
506 return ENOMEM;
507
508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 USBD_DEFAULT_INTERVAL);
511 if (error != 0) {
512 printf("%s: open rx intr pipe failed: %s\n",
513 device_xname(sc->sc_dev), usbd_errstr(error));
514 goto fail;
515 }
516
517 /* interrupt out (not necessarily an interrupt pipe) */
518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 if (error != 0) {
521 printf("%s: open tx intr pipe failed: %s\n",
522 device_xname(sc->sc_dev), usbd_errstr(error));
523 goto fail;
524 }
525
526 /* bulk in */
527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 if (error != 0) {
530 printf("%s: open rx pipe failed: %s\n",
531 device_xname(sc->sc_dev), usbd_errstr(error));
532 goto fail;
533 }
534
535 /* bulk out */
536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 if (error != 0) {
539 printf("%s: open tx pipe failed: %s\n",
540 device_xname(sc->sc_dev), usbd_errstr(error));
541 goto fail;
542 }
543
544 return 0;
545
546 fail: zyd_close_pipes(sc);
547 return error;
548 }
549
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 int i;
554
555 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 if (sc->zyd_ep[i] != NULL) {
557 usbd_abort_pipe(sc->zyd_ep[i]);
558 usbd_close_pipe(sc->zyd_ep[i]);
559 sc->zyd_ep[i] = NULL;
560 }
561 }
562 if (sc->ibuf != NULL) {
563 free(sc->ibuf, M_USBDEV);
564 sc->ibuf = NULL;
565 }
566 }
567
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 int i, error;
572
573 sc->tx_queued = 0;
574
575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 struct zyd_tx_data *data = &sc->tx_data[i];
577
578 data->sc = sc; /* backpointer for callbacks */
579
580 data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 if (data->xfer == NULL) {
582 printf("%s: could not allocate tx xfer\n",
583 device_xname(sc->sc_dev));
584 error = ENOMEM;
585 goto fail;
586 }
587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 if (data->buf == NULL) {
589 printf("%s: could not allocate tx buffer\n",
590 device_xname(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 /* clear Tx descriptor */
596 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
597 }
598 return 0;
599
600 fail: zyd_free_tx_list(sc);
601 return error;
602 }
603
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 int i;
608
609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 struct zyd_tx_data *data = &sc->tx_data[i];
611
612 if (data->xfer != NULL) {
613 usbd_free_xfer(data->xfer);
614 data->xfer = NULL;
615 }
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620 }
621 }
622
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 int i, error;
627
628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 struct zyd_rx_data *data = &sc->rx_data[i];
630
631 data->sc = sc; /* backpointer for callbacks */
632
633 data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 if (data->xfer == NULL) {
635 printf("%s: could not allocate rx xfer\n",
636 device_xname(sc->sc_dev));
637 error = ENOMEM;
638 goto fail;
639 }
640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 if (data->buf == NULL) {
642 printf("%s: could not allocate rx buffer\n",
643 device_xname(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647 }
648 return 0;
649
650 fail: zyd_free_rx_list(sc);
651 return error;
652 }
653
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 int i;
658
659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 struct zyd_rx_data *data = &sc->rx_data[i];
661
662 if (data->xfer != NULL) {
663 usbd_free_xfer(data->xfer);
664 data->xfer = NULL;
665 }
666 }
667 }
668
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 struct zyd_node *zn;
674
675 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
676
677 return &zn->ni;
678 }
679
680 Static int
681 zyd_media_change(struct ifnet *ifp)
682 {
683 int error;
684
685 error = ieee80211_media_change(ifp);
686 if (error != ENETRESET)
687 return error;
688
689 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
690 zyd_init(ifp);
691
692 return 0;
693 }
694
695 /*
696 * This function is called periodically (every 200ms) during scanning to
697 * switch from one channel to another.
698 */
699 Static void
700 zyd_next_scan(void *arg)
701 {
702 struct zyd_softc *sc = arg;
703 struct ieee80211com *ic = &sc->sc_ic;
704
705 if (ic->ic_state == IEEE80211_S_SCAN)
706 ieee80211_next_scan(ic);
707 }
708
709 Static void
710 zyd_task(void *arg)
711 {
712 struct zyd_softc *sc = arg;
713 struct ieee80211com *ic = &sc->sc_ic;
714 enum ieee80211_state ostate;
715
716 ostate = ic->ic_state;
717
718 switch (sc->sc_state) {
719 case IEEE80211_S_INIT:
720 if (ostate == IEEE80211_S_RUN) {
721 /* turn link LED off */
722 zyd_set_led(sc, ZYD_LED1, 0);
723
724 /* stop data LED from blinking */
725 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
726 }
727 break;
728
729 case IEEE80211_S_SCAN:
730 zyd_set_chan(sc, ic->ic_curchan);
731 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
732 break;
733
734 case IEEE80211_S_AUTH:
735 case IEEE80211_S_ASSOC:
736 zyd_set_chan(sc, ic->ic_curchan);
737 break;
738
739 case IEEE80211_S_RUN:
740 {
741 struct ieee80211_node *ni = ic->ic_bss;
742
743 zyd_set_chan(sc, ic->ic_curchan);
744
745 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
746 /* turn link LED on */
747 zyd_set_led(sc, ZYD_LED1, 1);
748
749 /* make data LED blink upon Tx */
750 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
751
752 zyd_set_bssid(sc, ni->ni_bssid);
753 }
754
755 if (ic->ic_opmode == IEEE80211_M_STA) {
756 /* fake a join to init the tx rate */
757 zyd_newassoc(ni, 1);
758 }
759
760 /* start automatic rate control timer */
761 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
762 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
763
764 break;
765 }
766 }
767
768 sc->sc_newstate(ic, sc->sc_state, -1);
769 }
770
771 Static int
772 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
773 {
774 struct zyd_softc *sc = ic->ic_ifp->if_softc;
775
776 if (!sc->attached)
777 return ENXIO;
778
779 usb_rem_task(sc->sc_udev, &sc->sc_task);
780 callout_stop(&sc->sc_scan_ch);
781 callout_stop(&sc->sc_amrr_ch);
782
783 /* do it in a process context */
784 sc->sc_state = nstate;
785 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
786
787 return 0;
788 }
789
790 Static int
791 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
792 void *odata, int olen, u_int flags)
793 {
794 usbd_xfer_handle xfer;
795 struct zyd_cmd cmd;
796 struct rq rq;
797 uint16_t xferflags;
798 usbd_status error;
799 int s = 0;
800
801 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
802 return ENOMEM;
803
804 cmd.code = htole16(code);
805 bcopy(idata, cmd.data, ilen);
806
807 xferflags = USBD_FORCE_SHORT_XFER;
808 if (!(flags & ZYD_CMD_FLAG_READ))
809 xferflags |= USBD_SYNCHRONOUS;
810 else {
811 s = splusb();
812 rq.idata = idata;
813 rq.odata = odata;
814 rq.len = olen / sizeof (struct zyd_pair);
815 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
816 }
817
818 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
819 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
820 error = usbd_transfer(xfer);
821 if (error != USBD_IN_PROGRESS && error != 0) {
822 if (flags & ZYD_CMD_FLAG_READ)
823 splx(s);
824 printf("%s: could not send command (error=%s)\n",
825 device_xname(sc->sc_dev), usbd_errstr(error));
826 (void)usbd_free_xfer(xfer);
827 return EIO;
828 }
829 if (!(flags & ZYD_CMD_FLAG_READ)) {
830 (void)usbd_free_xfer(xfer);
831 return 0; /* write: don't wait for reply */
832 }
833 /* wait at most one second for command reply */
834 error = tsleep(odata, PCATCH, "zydcmd", hz);
835 if (error == EWOULDBLOCK)
836 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
837 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
838 splx(s);
839
840 (void)usbd_free_xfer(xfer);
841 return error;
842 }
843
844 Static int
845 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
846 {
847 struct zyd_pair tmp;
848 int error;
849
850 reg = htole16(reg);
851 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
852 ZYD_CMD_FLAG_READ);
853 if (error == 0)
854 *val = le16toh(tmp.val);
855 else
856 *val = 0;
857 return error;
858 }
859
860 Static int
861 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
862 {
863 struct zyd_pair tmp[2];
864 uint16_t regs[2];
865 int error;
866
867 regs[0] = htole16(ZYD_REG32_HI(reg));
868 regs[1] = htole16(ZYD_REG32_LO(reg));
869 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
870 ZYD_CMD_FLAG_READ);
871 if (error == 0)
872 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
873 else
874 *val = 0;
875 return error;
876 }
877
878 Static int
879 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
880 {
881 struct zyd_pair pair;
882
883 pair.reg = htole16(reg);
884 pair.val = htole16(val);
885
886 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
887 }
888
889 Static int
890 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
891 {
892 struct zyd_pair pair[2];
893
894 pair[0].reg = htole16(ZYD_REG32_HI(reg));
895 pair[0].val = htole16(val >> 16);
896 pair[1].reg = htole16(ZYD_REG32_LO(reg));
897 pair[1].val = htole16(val & 0xffff);
898
899 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
900 }
901
902 Static int
903 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
904 {
905 struct zyd_rf *rf = &sc->sc_rf;
906 struct zyd_rfwrite req;
907 uint16_t cr203;
908 int i;
909
910 (void)zyd_read16(sc, ZYD_CR203, &cr203);
911 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
912
913 req.code = htole16(2);
914 req.width = htole16(rf->width);
915 for (i = 0; i < rf->width; i++) {
916 req.bit[i] = htole16(cr203);
917 if (val & (1 << (rf->width - 1 - i)))
918 req.bit[i] |= htole16(ZYD_RF_DATA);
919 }
920 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
921 }
922
923 Static void
924 zyd_lock_phy(struct zyd_softc *sc)
925 {
926 uint32_t tmp;
927
928 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
929 tmp &= ~ZYD_UNLOCK_PHY_REGS;
930 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
931 }
932
933 Static void
934 zyd_unlock_phy(struct zyd_softc *sc)
935 {
936 uint32_t tmp;
937
938 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
939 tmp |= ZYD_UNLOCK_PHY_REGS;
940 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
941 }
942
943 /*
944 * RFMD RF methods.
945 */
946 Static int
947 zyd_rfmd_init(struct zyd_rf *rf)
948 {
949 struct zyd_softc *sc = rf->rf_sc;
950 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
951 static const uint32_t rfini[] = ZYD_RFMD_RF;
952 int error;
953 size_t i;
954
955 /* init RF-dependent PHY registers */
956 for (i = 0; i < __arraycount(phyini); i++) {
957 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
958 if (error != 0)
959 return error;
960 }
961
962 /* init RFMD radio */
963 for (i = 0; i < __arraycount(rfini); i++) {
964 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
965 return error;
966 }
967 return 0;
968 }
969
970 Static int
971 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
972 {
973 struct zyd_softc *sc = rf->rf_sc;
974
975 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
976 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
977
978 return 0;
979 }
980
981 Static int
982 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
983 {
984 struct zyd_softc *sc = rf->rf_sc;
985 static const struct {
986 uint32_t r1, r2;
987 } rfprog[] = ZYD_RFMD_CHANTABLE;
988
989 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
990 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
991
992 return 0;
993 }
994
995 /*
996 * AL2230 RF methods.
997 */
998 Static int
999 zyd_al2230_init(struct zyd_rf *rf)
1000 {
1001 struct zyd_softc *sc = rf->rf_sc;
1002 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1003 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1004 static const uint32_t rfini[] = ZYD_AL2230_RF;
1005 int error;
1006 size_t i;
1007
1008 /* init RF-dependent PHY registers */
1009 for (i = 0; i < __arraycount(phyini); i++) {
1010 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1011 if (error != 0)
1012 return error;
1013 }
1014
1015 if (sc->rf_rev == ZYD_RF_AL2230S) {
1016 for (i = 0; i < __arraycount(phy2230s); i++) {
1017 error = zyd_write16(sc, phy2230s[i].reg,
1018 phy2230s[i].val);
1019 if (error != 0)
1020 return error;
1021 }
1022 }
1023
1024 /* init AL2230 radio */
1025 for (i = 0; i < __arraycount(rfini); i++) {
1026 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1027 return error;
1028 }
1029 return 0;
1030 }
1031
1032 Static int
1033 zyd_al2230_init_b(struct zyd_rf *rf)
1034 {
1035 struct zyd_softc *sc = rf->rf_sc;
1036 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1037 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1038 int error;
1039 size_t i;
1040
1041 /* init RF-dependent PHY registers */
1042 for (i = 0; i < __arraycount(phyini); i++) {
1043 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1044 if (error != 0)
1045 return error;
1046 }
1047
1048 /* init AL2230 radio */
1049 for (i = 0; i < __arraycount(rfini); i++) {
1050 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1051 return error;
1052 }
1053 return 0;
1054 }
1055
1056 Static int
1057 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1058 {
1059 struct zyd_softc *sc = rf->rf_sc;
1060 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1061
1062 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1063 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1064
1065 return 0;
1066 }
1067
1068 Static int
1069 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1070 {
1071 struct zyd_softc *sc = rf->rf_sc;
1072 static const struct {
1073 uint32_t r1, r2, r3;
1074 } rfprog[] = ZYD_AL2230_CHANTABLE;
1075
1076 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1077 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1078 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1079
1080 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1081 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1082
1083 return 0;
1084 }
1085
1086 /*
1087 * AL7230B RF methods.
1088 */
1089 Static int
1090 zyd_al7230B_init(struct zyd_rf *rf)
1091 {
1092 struct zyd_softc *sc = rf->rf_sc;
1093 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1094 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1095 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1096 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1097 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1098 int error;
1099 size_t i;
1100
1101 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1102
1103 /* init RF-dependent PHY registers, part one */
1104 for (i = 0; i < __arraycount(phyini_1); i++) {
1105 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1106 if (error != 0)
1107 return error;
1108 }
1109 /* init AL7230B radio, part one */
1110 for (i = 0; i < __arraycount(rfini_1); i++) {
1111 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1112 return error;
1113 }
1114 /* init RF-dependent PHY registers, part two */
1115 for (i = 0; i < __arraycount(phyini_2); i++) {
1116 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1117 if (error != 0)
1118 return error;
1119 }
1120 /* init AL7230B radio, part two */
1121 for (i = 0; i < __arraycount(rfini_2); i++) {
1122 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1123 return error;
1124 }
1125 /* init RF-dependent PHY registers, part three */
1126 for (i = 0; i < __arraycount(phyini_3); i++) {
1127 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1128 if (error != 0)
1129 return error;
1130 }
1131
1132 return 0;
1133 }
1134
1135 Static int
1136 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1137 {
1138 struct zyd_softc *sc = rf->rf_sc;
1139
1140 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1141 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1142
1143 return 0;
1144 }
1145
1146 Static int
1147 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1148 {
1149 struct zyd_softc *sc = rf->rf_sc;
1150 static const struct {
1151 uint32_t r1, r2;
1152 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1153 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1154 int error;
1155 size_t i;
1156
1157 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1158 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1159
1160 for (i = 0; i < __arraycount(rfsc); i++) {
1161 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1162 return error;
1163 }
1164
1165 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1166 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1167 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1168 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1169 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1170
1171 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1172 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1173 (void)zyd_rfwrite(sc, 0x3c9000);
1174
1175 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1176 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1177 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * AL2210 RF methods.
1184 */
1185 Static int
1186 zyd_al2210_init(struct zyd_rf *rf)
1187 {
1188 struct zyd_softc *sc = rf->rf_sc;
1189 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1190 static const uint32_t rfini[] = ZYD_AL2210_RF;
1191 uint32_t tmp;
1192 int error;
1193 size_t i;
1194
1195 (void)zyd_write32(sc, ZYD_CR18, 2);
1196
1197 /* init RF-dependent PHY registers */
1198 for (i = 0; i < __arraycount(phyini); i++) {
1199 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1200 if (error != 0)
1201 return error;
1202 }
1203 /* init AL2210 radio */
1204 for (i = 0; i < __arraycount(rfini); i++) {
1205 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1206 return error;
1207 }
1208 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1209 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1210 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1211 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1212 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1213 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1214 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1215 (void)zyd_write32(sc, ZYD_CR18, 3);
1216
1217 return 0;
1218 }
1219
1220 Static int
1221 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1222 {
1223 /* vendor driver does nothing for this RF chip */
1224
1225 return 0;
1226 }
1227
1228 Static int
1229 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1230 {
1231 struct zyd_softc *sc = rf->rf_sc;
1232 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1233 uint32_t tmp;
1234
1235 (void)zyd_write32(sc, ZYD_CR18, 2);
1236 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1237 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1238 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1239 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1240 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1241
1242 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1243 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1244
1245 /* actually set the channel */
1246 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1247
1248 (void)zyd_write32(sc, ZYD_CR18, 3);
1249
1250 return 0;
1251 }
1252
1253 /*
1254 * GCT RF methods.
1255 */
1256 Static int
1257 zyd_gct_init(struct zyd_rf *rf)
1258 {
1259 struct zyd_softc *sc = rf->rf_sc;
1260 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1261 static const uint32_t rfini[] = ZYD_GCT_RF;
1262 int error;
1263 size_t i;
1264
1265 /* init RF-dependent PHY registers */
1266 for (i = 0; i < __arraycount(phyini); i++) {
1267 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1268 if (error != 0)
1269 return error;
1270 }
1271 /* init cgt radio */
1272 for (i = 0; i < __arraycount(rfini); i++) {
1273 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1274 return error;
1275 }
1276 return 0;
1277 }
1278
1279 Static int
1280 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1281 {
1282 /* vendor driver does nothing for this RF chip */
1283
1284 return 0;
1285 }
1286
1287 Static int
1288 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1289 {
1290 struct zyd_softc *sc = rf->rf_sc;
1291 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1292
1293 (void)zyd_rfwrite(sc, 0x1c0000);
1294 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1295 (void)zyd_rfwrite(sc, 0x1c0008);
1296
1297 return 0;
1298 }
1299
1300 /*
1301 * Maxim RF methods.
1302 */
1303 Static int
1304 zyd_maxim_init(struct zyd_rf *rf)
1305 {
1306 struct zyd_softc *sc = rf->rf_sc;
1307 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1308 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1309 uint16_t tmp;
1310 int error;
1311 size_t i;
1312
1313 /* init RF-dependent PHY registers */
1314 for (i = 0; i < __arraycount(phyini); i++) {
1315 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1316 if (error != 0)
1317 return error;
1318 }
1319 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1320 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1321
1322 /* init maxim radio */
1323 for (i = 0; i < __arraycount(rfini); i++) {
1324 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1325 return error;
1326 }
1327 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1328 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1329
1330 return 0;
1331 }
1332
1333 Static int
1334 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1335 {
1336 /* vendor driver does nothing for this RF chip */
1337
1338 return 0;
1339 }
1340
1341 Static int
1342 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1343 {
1344 struct zyd_softc *sc = rf->rf_sc;
1345 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1346 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1347 static const struct {
1348 uint32_t r1, r2;
1349 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1350 uint16_t tmp;
1351 int error;
1352 size_t i;
1353
1354 /*
1355 * Do the same as we do when initializing it, except for the channel
1356 * values coming from the two channel tables.
1357 */
1358
1359 /* init RF-dependent PHY registers */
1360 for (i = 0; i < __arraycount(phyini); i++) {
1361 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1362 if (error != 0)
1363 return error;
1364 }
1365 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1366 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1367
1368 /* first two values taken from the chantables */
1369 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1370 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1371
1372 /* init maxim radio - skipping the two first values */
1373 for (i = 2; i < __arraycount(rfini); i++) {
1374 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1375 return error;
1376 }
1377 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1378 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1379
1380 return 0;
1381 }
1382
1383 /*
1384 * Maxim2 RF methods.
1385 */
1386 Static int
1387 zyd_maxim2_init(struct zyd_rf *rf)
1388 {
1389 struct zyd_softc *sc = rf->rf_sc;
1390 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1391 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1392 uint16_t tmp;
1393 int error;
1394 size_t i;
1395
1396 /* init RF-dependent PHY registers */
1397 for (i = 0; i < __arraycount(phyini); i++) {
1398 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1399 if (error != 0)
1400 return error;
1401 }
1402 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1403 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1404
1405 /* init maxim2 radio */
1406 for (i = 0; i < __arraycount(rfini); i++) {
1407 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1408 return error;
1409 }
1410 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1411 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1412
1413 return 0;
1414 }
1415
1416 Static int
1417 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1418 {
1419 /* vendor driver does nothing for this RF chip */
1420
1421 return 0;
1422 }
1423
1424 Static int
1425 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1426 {
1427 struct zyd_softc *sc = rf->rf_sc;
1428 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1429 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1430 static const struct {
1431 uint32_t r1, r2;
1432 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1433 uint16_t tmp;
1434 int error;
1435 size_t i;
1436
1437 /*
1438 * Do the same as we do when initializing it, except for the channel
1439 * values coming from the two channel tables.
1440 */
1441
1442 /* init RF-dependent PHY registers */
1443 for (i = 0; i < __arraycount(phyini); i++) {
1444 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1445 if (error != 0)
1446 return error;
1447 }
1448 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1449 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1450
1451 /* first two values taken from the chantables */
1452 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1453 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1454
1455 /* init maxim2 radio - skipping the two first values */
1456 for (i = 2; i < __arraycount(rfini); i++) {
1457 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1458 return error;
1459 }
1460 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1461 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1462
1463 return 0;
1464 }
1465
1466 Static int
1467 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1468 {
1469 struct zyd_rf *rf = &sc->sc_rf;
1470
1471 rf->rf_sc = sc;
1472
1473 switch (type) {
1474 case ZYD_RF_RFMD:
1475 rf->init = zyd_rfmd_init;
1476 rf->switch_radio = zyd_rfmd_switch_radio;
1477 rf->set_channel = zyd_rfmd_set_channel;
1478 rf->width = 24; /* 24-bit RF values */
1479 break;
1480 case ZYD_RF_AL2230:
1481 case ZYD_RF_AL2230S:
1482 if (sc->mac_rev == ZYD_ZD1211B)
1483 rf->init = zyd_al2230_init_b;
1484 else
1485 rf->init = zyd_al2230_init;
1486 rf->switch_radio = zyd_al2230_switch_radio;
1487 rf->set_channel = zyd_al2230_set_channel;
1488 rf->width = 24; /* 24-bit RF values */
1489 break;
1490 case ZYD_RF_AL7230B:
1491 rf->init = zyd_al7230B_init;
1492 rf->switch_radio = zyd_al7230B_switch_radio;
1493 rf->set_channel = zyd_al7230B_set_channel;
1494 rf->width = 24; /* 24-bit RF values */
1495 break;
1496 case ZYD_RF_AL2210:
1497 rf->init = zyd_al2210_init;
1498 rf->switch_radio = zyd_al2210_switch_radio;
1499 rf->set_channel = zyd_al2210_set_channel;
1500 rf->width = 24; /* 24-bit RF values */
1501 break;
1502 case ZYD_RF_GCT:
1503 rf->init = zyd_gct_init;
1504 rf->switch_radio = zyd_gct_switch_radio;
1505 rf->set_channel = zyd_gct_set_channel;
1506 rf->width = 21; /* 21-bit RF values */
1507 break;
1508 case ZYD_RF_MAXIM_NEW:
1509 rf->init = zyd_maxim_init;
1510 rf->switch_radio = zyd_maxim_switch_radio;
1511 rf->set_channel = zyd_maxim_set_channel;
1512 rf->width = 18; /* 18-bit RF values */
1513 break;
1514 case ZYD_RF_MAXIM_NEW2:
1515 rf->init = zyd_maxim2_init;
1516 rf->switch_radio = zyd_maxim2_switch_radio;
1517 rf->set_channel = zyd_maxim2_set_channel;
1518 rf->width = 18; /* 18-bit RF values */
1519 break;
1520 default:
1521 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1522 device_xname(sc->sc_dev), zyd_rf_name(type));
1523 return EINVAL;
1524 }
1525 return 0;
1526 }
1527
1528 Static const char *
1529 zyd_rf_name(uint8_t type)
1530 {
1531 static const char * const zyd_rfs[] = {
1532 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1533 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1534 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1535 "PHILIPS"
1536 };
1537
1538 return zyd_rfs[(type > 15) ? 0 : type];
1539 }
1540
1541 Static int
1542 zyd_hw_init(struct zyd_softc *sc)
1543 {
1544 struct zyd_rf *rf = &sc->sc_rf;
1545 const struct zyd_phy_pair *phyp;
1546 int error;
1547
1548 /* specify that the plug and play is finished */
1549 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1550
1551 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1552 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1553
1554 /* retrieve firmware revision number */
1555 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1556
1557 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1558 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1559
1560 /* disable interrupts */
1561 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1562
1563 /* PHY init */
1564 zyd_lock_phy(sc);
1565 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1566 for (; phyp->reg != 0; phyp++) {
1567 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1568 goto fail;
1569 }
1570 zyd_unlock_phy(sc);
1571
1572 /* HMAC init */
1573 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1574 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1575
1576 if (sc->mac_rev == ZYD_ZD1211) {
1577 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1578 } else {
1579 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1580 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1582 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1583 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1584 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1585 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1586 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1587 }
1588
1589 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1590 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1591 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1593 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1594 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1595 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1596 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1597 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1598 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1599 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1600 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1601 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1602 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1603 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1604 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1605 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1606
1607 /* RF chip init */
1608 zyd_lock_phy(sc);
1609 error = (*rf->init)(rf);
1610 zyd_unlock_phy(sc);
1611 if (error != 0) {
1612 printf("%s: radio initialization failed\n",
1613 device_xname(sc->sc_dev));
1614 goto fail;
1615 }
1616
1617 /* init beacon interval to 100ms */
1618 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1619 goto fail;
1620
1621 fail: return error;
1622 }
1623
1624 Static int
1625 zyd_read_eeprom(struct zyd_softc *sc)
1626 {
1627 struct ieee80211com *ic = &sc->sc_ic;
1628 uint32_t tmp;
1629 uint16_t val;
1630 int i;
1631
1632 /* read MAC address */
1633 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1634 ic->ic_myaddr[0] = tmp & 0xff;
1635 ic->ic_myaddr[1] = tmp >> 8;
1636 ic->ic_myaddr[2] = tmp >> 16;
1637 ic->ic_myaddr[3] = tmp >> 24;
1638 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1639 ic->ic_myaddr[4] = tmp & 0xff;
1640 ic->ic_myaddr[5] = tmp >> 8;
1641
1642 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1643 sc->rf_rev = tmp & 0x0f;
1644 sc->pa_rev = (tmp >> 16) & 0x0f;
1645
1646 /* read regulatory domain (currently unused) */
1647 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1648 sc->regdomain = tmp >> 16;
1649 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1650
1651 /* read Tx power calibration tables */
1652 for (i = 0; i < 7; i++) {
1653 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1654 sc->pwr_cal[i * 2] = val >> 8;
1655 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1656
1657 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1658 sc->pwr_int[i * 2] = val >> 8;
1659 sc->pwr_int[i * 2 + 1] = val & 0xff;
1660
1661 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1662 sc->ofdm36_cal[i * 2] = val >> 8;
1663 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1664
1665 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1666 sc->ofdm48_cal[i * 2] = val >> 8;
1667 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1668
1669 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1670 sc->ofdm54_cal[i * 2] = val >> 8;
1671 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1672 }
1673 return 0;
1674 }
1675
1676 Static int
1677 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1678 {
1679 uint32_t tmp;
1680
1681 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1682 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1683
1684 tmp = addr[5] << 8 | addr[4];
1685 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1686
1687 return 0;
1688 }
1689
1690 Static int
1691 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1692 {
1693 uint32_t tmp;
1694
1695 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1696 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1697
1698 tmp = addr[5] << 8 | addr[4];
1699 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1700
1701 return 0;
1702 }
1703
1704 Static int
1705 zyd_switch_radio(struct zyd_softc *sc, int on)
1706 {
1707 struct zyd_rf *rf = &sc->sc_rf;
1708 int error;
1709
1710 zyd_lock_phy(sc);
1711 error = (*rf->switch_radio)(rf, on);
1712 zyd_unlock_phy(sc);
1713
1714 return error;
1715 }
1716
1717 Static void
1718 zyd_set_led(struct zyd_softc *sc, int which, int on)
1719 {
1720 uint32_t tmp;
1721
1722 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1723 tmp &= ~which;
1724 if (on)
1725 tmp |= which;
1726 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1727 }
1728
1729 Static int
1730 zyd_set_rxfilter(struct zyd_softc *sc)
1731 {
1732 uint32_t rxfilter;
1733
1734 switch (sc->sc_ic.ic_opmode) {
1735 case IEEE80211_M_STA:
1736 rxfilter = ZYD_FILTER_BSS;
1737 break;
1738 case IEEE80211_M_IBSS:
1739 case IEEE80211_M_HOSTAP:
1740 rxfilter = ZYD_FILTER_HOSTAP;
1741 break;
1742 case IEEE80211_M_MONITOR:
1743 rxfilter = ZYD_FILTER_MONITOR;
1744 break;
1745 default:
1746 /* should not get there */
1747 return EINVAL;
1748 }
1749 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1750 }
1751
1752 Static void
1753 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1754 {
1755 struct ieee80211com *ic = &sc->sc_ic;
1756 struct zyd_rf *rf = &sc->sc_rf;
1757 u_int chan;
1758
1759 chan = ieee80211_chan2ieee(ic, c);
1760 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1761 return;
1762
1763 zyd_lock_phy(sc);
1764
1765 (*rf->set_channel)(rf, chan);
1766
1767 /* update Tx power */
1768 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1769 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1770
1771 if (sc->mac_rev == ZYD_ZD1211B) {
1772 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1773 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1774 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1775
1776 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1777 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1778 }
1779
1780 zyd_unlock_phy(sc);
1781 }
1782
1783 Static int
1784 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1785 {
1786 /* XXX this is probably broken.. */
1787 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1788 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1789 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1790
1791 return 0;
1792 }
1793
1794 Static uint8_t
1795 zyd_plcp_signal(int rate)
1796 {
1797 switch (rate) {
1798 /* CCK rates (returned values are device-dependent) */
1799 case 2: return 0x0;
1800 case 4: return 0x1;
1801 case 11: return 0x2;
1802 case 22: return 0x3;
1803
1804 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1805 case 12: return 0xb;
1806 case 18: return 0xf;
1807 case 24: return 0xa;
1808 case 36: return 0xe;
1809 case 48: return 0x9;
1810 case 72: return 0xd;
1811 case 96: return 0x8;
1812 case 108: return 0xc;
1813
1814 /* unsupported rates (should not get there) */
1815 default: return 0xff;
1816 }
1817 }
1818
1819 Static void
1820 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1821 {
1822 struct zyd_softc *sc = (struct zyd_softc *)priv;
1823 struct zyd_cmd *cmd;
1824 uint32_t datalen;
1825
1826 if (status != USBD_NORMAL_COMPLETION) {
1827 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1828 return;
1829
1830 if (status == USBD_STALLED) {
1831 usbd_clear_endpoint_stall_async(
1832 sc->zyd_ep[ZYD_ENDPT_IIN]);
1833 }
1834 return;
1835 }
1836
1837 cmd = (struct zyd_cmd *)sc->ibuf;
1838
1839 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1840 struct zyd_notif_retry *retry =
1841 (struct zyd_notif_retry *)cmd->data;
1842 struct ieee80211com *ic = &sc->sc_ic;
1843 struct ifnet *ifp = &sc->sc_if;
1844 struct ieee80211_node *ni;
1845
1846 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1847 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1848 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1849
1850 /*
1851 * Find the node to which the packet was sent and update its
1852 * retry statistics. In BSS mode, this node is the AP we're
1853 * associated to so no lookup is actually needed.
1854 */
1855 if (ic->ic_opmode != IEEE80211_M_STA) {
1856 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1857 if (ni == NULL)
1858 return; /* just ignore */
1859 } else
1860 ni = ic->ic_bss;
1861
1862 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1863
1864 if (le16toh(retry->count) & 0x100)
1865 ifp->if_oerrors++; /* too many retries */
1866
1867 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1868 struct rq *rqp;
1869
1870 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1871 return; /* HMAC interrupt */
1872
1873 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1874 datalen -= sizeof(cmd->code);
1875 datalen -= 2; /* XXX: padding? */
1876
1877 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1878 int i;
1879
1880 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1881 continue;
1882 for (i = 0; i < rqp->len; i++) {
1883 if (*(((const uint16_t *)rqp->idata) + i) !=
1884 (((struct zyd_pair *)cmd->data) + i)->reg)
1885 break;
1886 }
1887 if (i != rqp->len)
1888 continue;
1889
1890 /* copy answer into caller-supplied buffer */
1891 bcopy(cmd->data, rqp->odata,
1892 sizeof(struct zyd_pair) * rqp->len);
1893 wakeup(rqp->odata); /* wakeup caller */
1894
1895 return;
1896 }
1897 return; /* unexpected IORD notification */
1898 } else {
1899 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1900 le16toh(cmd->code));
1901 }
1902 }
1903
1904 Static void
1905 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1906 {
1907 struct ieee80211com *ic = &sc->sc_ic;
1908 struct ifnet *ifp = &sc->sc_if;
1909 struct ieee80211_node *ni;
1910 struct ieee80211_frame *wh;
1911 const struct zyd_plcphdr *plcp;
1912 const struct zyd_rx_stat *stat;
1913 struct mbuf *m;
1914 int rlen, s;
1915
1916 if (len < ZYD_MIN_FRAGSZ) {
1917 printf("%s: frame too short (length=%d)\n",
1918 device_xname(sc->sc_dev), len);
1919 ifp->if_ierrors++;
1920 return;
1921 }
1922
1923 plcp = (const struct zyd_plcphdr *)buf;
1924 stat = (const struct zyd_rx_stat *)
1925 (buf + len - sizeof (struct zyd_rx_stat));
1926
1927 if (stat->flags & ZYD_RX_ERROR) {
1928 DPRINTF(("%s: RX status indicated error (%x)\n",
1929 device_xname(sc->sc_dev), stat->flags));
1930 ifp->if_ierrors++;
1931 return;
1932 }
1933
1934 /* compute actual frame length */
1935 rlen = len - sizeof (struct zyd_plcphdr) -
1936 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1937
1938 /* allocate a mbuf to store the frame */
1939 MGETHDR(m, M_DONTWAIT, MT_DATA);
1940 if (m == NULL) {
1941 printf("%s: could not allocate rx mbuf\n",
1942 device_xname(sc->sc_dev));
1943 ifp->if_ierrors++;
1944 return;
1945 }
1946 if (rlen > MHLEN) {
1947 MCLGET(m, M_DONTWAIT);
1948 if (!(m->m_flags & M_EXT)) {
1949 printf("%s: could not allocate rx mbuf cluster\n",
1950 device_xname(sc->sc_dev));
1951 m_freem(m);
1952 ifp->if_ierrors++;
1953 return;
1954 }
1955 }
1956 m->m_pkthdr.rcvif = ifp;
1957 m->m_pkthdr.len = m->m_len = rlen;
1958 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1959
1960 s = splnet();
1961
1962 if (sc->sc_drvbpf != NULL) {
1963 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1964 static const uint8_t rates[] = {
1965 /* reverse function of zyd_plcp_signal() */
1966 2, 4, 11, 22, 0, 0, 0, 0,
1967 96, 48, 24, 12, 108, 72, 36, 18
1968 };
1969
1970 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1971 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1972 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1973 tap->wr_rssi = stat->rssi;
1974 tap->wr_rate = rates[plcp->signal & 0xf];
1975
1976 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1977 }
1978
1979 wh = mtod(m, struct ieee80211_frame *);
1980 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1981 ieee80211_input(ic, m, ni, stat->rssi, 0);
1982
1983 /* node is no longer needed */
1984 ieee80211_free_node(ni);
1985
1986 splx(s);
1987 }
1988
1989 Static void
1990 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1991 {
1992 struct zyd_rx_data *data = priv;
1993 struct zyd_softc *sc = data->sc;
1994 struct ifnet *ifp = &sc->sc_if;
1995 const struct zyd_rx_desc *desc;
1996 int len;
1997
1998 if (status != USBD_NORMAL_COMPLETION) {
1999 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2000 return;
2001
2002 if (status == USBD_STALLED)
2003 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2004
2005 goto skip;
2006 }
2007 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2008
2009 if (len < ZYD_MIN_RXBUFSZ) {
2010 printf("%s: xfer too short (length=%d)\n",
2011 device_xname(sc->sc_dev), len);
2012 ifp->if_ierrors++;
2013 goto skip;
2014 }
2015
2016 desc = (const struct zyd_rx_desc *)
2017 (data->buf + len - sizeof (struct zyd_rx_desc));
2018
2019 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2020 const uint8_t *p = data->buf, *end = p + len;
2021 int i;
2022
2023 DPRINTFN(3, ("received multi-frame transfer\n"));
2024
2025 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2026 const uint16_t len16 = UGETW(desc->len[i]);
2027
2028 if (len16 == 0 || p + len16 > end)
2029 break;
2030
2031 zyd_rx_data(sc, p, len16);
2032 /* next frame is aligned on a 32-bit boundary */
2033 p += (len16 + 3) & ~3;
2034 }
2035 } else {
2036 DPRINTFN(3, ("received single-frame transfer\n"));
2037
2038 zyd_rx_data(sc, data->buf, len);
2039 }
2040
2041 skip: /* setup a new transfer */
2042 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2043 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2044 USBD_NO_TIMEOUT, zyd_rxeof);
2045 (void)usbd_transfer(xfer);
2046 }
2047
2048 Static int
2049 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 struct ifnet *ifp = &sc->sc_if;
2053 struct zyd_tx_desc *desc;
2054 struct zyd_tx_data *data;
2055 struct ieee80211_frame *wh;
2056 struct ieee80211_key *k;
2057 int xferlen, totlen, rate;
2058 uint16_t pktlen;
2059 usbd_status error;
2060
2061 data = &sc->tx_data[0];
2062 desc = (struct zyd_tx_desc *)data->buf;
2063
2064 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2065
2066 wh = mtod(m0, struct ieee80211_frame *);
2067
2068 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2069 k = ieee80211_crypto_encap(ic, ni, m0);
2070 if (k == NULL) {
2071 m_freem(m0);
2072 return ENOBUFS;
2073 }
2074 }
2075
2076 data->ni = ni;
2077
2078 wh = mtod(m0, struct ieee80211_frame *);
2079
2080 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2081 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2082
2083 /* fill Tx descriptor */
2084 desc->len = htole16(totlen);
2085
2086 desc->flags = ZYD_TX_FLAG_BACKOFF;
2087 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2088 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2089 if (totlen > ic->ic_rtsthreshold) {
2090 desc->flags |= ZYD_TX_FLAG_RTS;
2091 } else if (ZYD_RATE_IS_OFDM(rate) &&
2092 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2093 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2094 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2095 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2096 desc->flags |= ZYD_TX_FLAG_RTS;
2097 }
2098 } else
2099 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2100
2101 if ((wh->i_fc[0] &
2102 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2103 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2104 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2105
2106 desc->phy = zyd_plcp_signal(rate);
2107 if (ZYD_RATE_IS_OFDM(rate)) {
2108 desc->phy |= ZYD_TX_PHY_OFDM;
2109 if (ic->ic_curmode == IEEE80211_MODE_11A)
2110 desc->phy |= ZYD_TX_PHY_5GHZ;
2111 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2112 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2113
2114 /* actual transmit length (XXX why +10?) */
2115 pktlen = sizeof (struct zyd_tx_desc) + 10;
2116 if (sc->mac_rev == ZYD_ZD1211)
2117 pktlen += totlen;
2118 desc->pktlen = htole16(pktlen);
2119
2120 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2121 desc->plcp_service = 0;
2122 if (rate == 22) {
2123 const int remainder = (16 * totlen) % 22;
2124 if (remainder != 0 && remainder < 7)
2125 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2126 }
2127
2128 if (sc->sc_drvbpf != NULL) {
2129 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2130
2131 tap->wt_flags = 0;
2132 tap->wt_rate = rate;
2133 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2134 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2135
2136 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2137 }
2138
2139 m_copydata(m0, 0, m0->m_pkthdr.len,
2140 data->buf + sizeof (struct zyd_tx_desc));
2141
2142 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2143 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2144
2145 m_freem(m0); /* mbuf no longer needed */
2146
2147 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2148 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2149 ZYD_TX_TIMEOUT, zyd_txeof);
2150 error = usbd_transfer(data->xfer);
2151 if (error != USBD_IN_PROGRESS && error != 0) {
2152 ifp->if_oerrors++;
2153 return EIO;
2154 }
2155 sc->tx_queued++;
2156
2157 return 0;
2158 }
2159
2160 Static void
2161 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2162 {
2163 struct zyd_tx_data *data = priv;
2164 struct zyd_softc *sc = data->sc;
2165 struct ifnet *ifp = &sc->sc_if;
2166 int s;
2167
2168 if (status != USBD_NORMAL_COMPLETION) {
2169 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2170 return;
2171
2172 printf("%s: could not transmit buffer: %s\n",
2173 device_xname(sc->sc_dev), usbd_errstr(status));
2174
2175 if (status == USBD_STALLED) {
2176 usbd_clear_endpoint_stall_async(
2177 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2178 }
2179 ifp->if_oerrors++;
2180 return;
2181 }
2182
2183 s = splnet();
2184
2185 /* update rate control statistics */
2186 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2187
2188 ieee80211_free_node(data->ni);
2189 data->ni = NULL;
2190
2191 sc->tx_queued--;
2192 ifp->if_opackets++;
2193
2194 sc->tx_timer = 0;
2195 ifp->if_flags &= ~IFF_OACTIVE;
2196 zyd_start(ifp);
2197
2198 splx(s);
2199 }
2200
2201 Static int
2202 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2203 {
2204 struct ieee80211com *ic = &sc->sc_ic;
2205 struct ifnet *ifp = &sc->sc_if;
2206 struct zyd_tx_desc *desc;
2207 struct zyd_tx_data *data;
2208 struct ieee80211_frame *wh;
2209 struct ieee80211_key *k;
2210 int xferlen, totlen, rate;
2211 uint16_t pktlen;
2212 usbd_status error;
2213
2214 wh = mtod(m0, struct ieee80211_frame *);
2215
2216 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2217 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2218 else
2219 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2220 rate &= IEEE80211_RATE_VAL;
2221
2222 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2223 k = ieee80211_crypto_encap(ic, ni, m0);
2224 if (k == NULL) {
2225 m_freem(m0);
2226 return ENOBUFS;
2227 }
2228
2229 /* packet header may have moved, reset our local pointer */
2230 wh = mtod(m0, struct ieee80211_frame *);
2231 }
2232
2233 data = &sc->tx_data[0];
2234 desc = (struct zyd_tx_desc *)data->buf;
2235
2236 data->ni = ni;
2237
2238 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2239 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2240
2241 /* fill Tx descriptor */
2242 desc->len = htole16(totlen);
2243
2244 desc->flags = ZYD_TX_FLAG_BACKOFF;
2245 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2246 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2247 if (totlen > ic->ic_rtsthreshold) {
2248 desc->flags |= ZYD_TX_FLAG_RTS;
2249 } else if (ZYD_RATE_IS_OFDM(rate) &&
2250 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2251 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2252 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2253 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2254 desc->flags |= ZYD_TX_FLAG_RTS;
2255 }
2256 } else
2257 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2258
2259 if ((wh->i_fc[0] &
2260 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2261 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2262 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2263
2264 desc->phy = zyd_plcp_signal(rate);
2265 if (ZYD_RATE_IS_OFDM(rate)) {
2266 desc->phy |= ZYD_TX_PHY_OFDM;
2267 if (ic->ic_curmode == IEEE80211_MODE_11A)
2268 desc->phy |= ZYD_TX_PHY_5GHZ;
2269 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2270 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2271
2272 /* actual transmit length (XXX why +10?) */
2273 pktlen = sizeof (struct zyd_tx_desc) + 10;
2274 if (sc->mac_rev == ZYD_ZD1211)
2275 pktlen += totlen;
2276 desc->pktlen = htole16(pktlen);
2277
2278 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2279 desc->plcp_service = 0;
2280 if (rate == 22) {
2281 const int remainder = (16 * totlen) % 22;
2282 if (remainder != 0 && remainder < 7)
2283 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2284 }
2285
2286 if (sc->sc_drvbpf != NULL) {
2287 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2288
2289 tap->wt_flags = 0;
2290 tap->wt_rate = rate;
2291 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2292 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2293
2294 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2295 }
2296
2297 m_copydata(m0, 0, m0->m_pkthdr.len,
2298 data->buf + sizeof (struct zyd_tx_desc));
2299
2300 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2301 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2302
2303 m_freem(m0); /* mbuf no longer needed */
2304
2305 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2306 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2307 ZYD_TX_TIMEOUT, zyd_txeof);
2308 error = usbd_transfer(data->xfer);
2309 if (error != USBD_IN_PROGRESS && error != 0) {
2310 ifp->if_oerrors++;
2311 return EIO;
2312 }
2313 sc->tx_queued++;
2314
2315 return 0;
2316 }
2317
2318 Static void
2319 zyd_start(struct ifnet *ifp)
2320 {
2321 struct zyd_softc *sc = ifp->if_softc;
2322 struct ieee80211com *ic = &sc->sc_ic;
2323 struct ether_header *eh;
2324 struct ieee80211_node *ni;
2325 struct mbuf *m0;
2326
2327 for (;;) {
2328 IF_POLL(&ic->ic_mgtq, m0);
2329 if (m0 != NULL) {
2330 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2331 ifp->if_flags |= IFF_OACTIVE;
2332 break;
2333 }
2334 IF_DEQUEUE(&ic->ic_mgtq, m0);
2335
2336 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2337 m0->m_pkthdr.rcvif = NULL;
2338 bpf_mtap3(ic->ic_rawbpf, m0);
2339 if (zyd_tx_mgt(sc, m0, ni) != 0)
2340 break;
2341 } else {
2342 if (ic->ic_state != IEEE80211_S_RUN)
2343 break;
2344 IFQ_POLL(&ifp->if_snd, m0);
2345 if (m0 == NULL)
2346 break;
2347 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2348 ifp->if_flags |= IFF_OACTIVE;
2349 break;
2350 }
2351 IFQ_DEQUEUE(&ifp->if_snd, m0);
2352
2353 if (m0->m_len < sizeof(struct ether_header) &&
2354 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2355 continue;
2356
2357 eh = mtod(m0, struct ether_header *);
2358 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2359 if (ni == NULL) {
2360 m_freem(m0);
2361 continue;
2362 }
2363 bpf_mtap(ifp, m0);
2364 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2365 ieee80211_free_node(ni);
2366 ifp->if_oerrors++;
2367 continue;
2368 }
2369 bpf_mtap3(ic->ic_rawbpf, m0);
2370 if (zyd_tx_data(sc, m0, ni) != 0) {
2371 ieee80211_free_node(ni);
2372 ifp->if_oerrors++;
2373 break;
2374 }
2375 }
2376
2377 sc->tx_timer = 5;
2378 ifp->if_timer = 1;
2379 }
2380 }
2381
2382 Static void
2383 zyd_watchdog(struct ifnet *ifp)
2384 {
2385 struct zyd_softc *sc = ifp->if_softc;
2386 struct ieee80211com *ic = &sc->sc_ic;
2387
2388 ifp->if_timer = 0;
2389
2390 if (sc->tx_timer > 0) {
2391 if (--sc->tx_timer == 0) {
2392 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2393 /* zyd_init(ifp); XXX needs a process context ? */
2394 ifp->if_oerrors++;
2395 return;
2396 }
2397 ifp->if_timer = 1;
2398 }
2399
2400 ieee80211_watchdog(ic);
2401 }
2402
2403 Static int
2404 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2405 {
2406 struct zyd_softc *sc = ifp->if_softc;
2407 struct ieee80211com *ic = &sc->sc_ic;
2408 int s, error = 0;
2409
2410 s = splnet();
2411
2412 switch (cmd) {
2413 case SIOCSIFFLAGS:
2414 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2415 break;
2416 /* XXX re-use ether_ioctl() */
2417 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2418 case IFF_UP:
2419 zyd_init(ifp);
2420 break;
2421 case IFF_RUNNING:
2422 zyd_stop(ifp, 1);
2423 break;
2424 default:
2425 break;
2426 }
2427 break;
2428
2429 default:
2430 error = ieee80211_ioctl(ic, cmd, data);
2431 }
2432
2433 if (error == ENETRESET) {
2434 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2435 (IFF_RUNNING | IFF_UP))
2436 zyd_init(ifp);
2437 error = 0;
2438 }
2439
2440 splx(s);
2441
2442 return error;
2443 }
2444
2445 Static int
2446 zyd_init(struct ifnet *ifp)
2447 {
2448 struct zyd_softc *sc = ifp->if_softc;
2449 struct ieee80211com *ic = &sc->sc_ic;
2450 int i, error;
2451
2452 zyd_stop(ifp, 0);
2453
2454 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2455 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2456 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2457 if (error != 0)
2458 return error;
2459
2460 /* we'll do software WEP decryption for now */
2461 DPRINTF(("setting encryption type\n"));
2462 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2463 if (error != 0)
2464 return error;
2465
2466 /* promiscuous mode */
2467 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2468 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2469
2470 (void)zyd_set_rxfilter(sc);
2471
2472 /* switch radio transmitter ON */
2473 (void)zyd_switch_radio(sc, 1);
2474
2475 /* set basic rates */
2476 if (ic->ic_curmode == IEEE80211_MODE_11B)
2477 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2478 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2479 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2480 else /* assumes 802.11b/g */
2481 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2482
2483 /* set mandatory rates */
2484 if (ic->ic_curmode == IEEE80211_MODE_11B)
2485 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2486 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2487 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2488 else /* assumes 802.11b/g */
2489 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2490
2491 /* set default BSS channel */
2492 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2493 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2494
2495 /* enable interrupts */
2496 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2497
2498 /*
2499 * Allocate Tx and Rx xfer queues.
2500 */
2501 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2502 printf("%s: could not allocate Tx list\n",
2503 device_xname(sc->sc_dev));
2504 goto fail;
2505 }
2506 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2507 printf("%s: could not allocate Rx list\n",
2508 device_xname(sc->sc_dev));
2509 goto fail;
2510 }
2511
2512 /*
2513 * Start up the receive pipe.
2514 */
2515 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2516 struct zyd_rx_data *data = &sc->rx_data[i];
2517
2518 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2519 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2520 USBD_NO_TIMEOUT, zyd_rxeof);
2521 error = usbd_transfer(data->xfer);
2522 if (error != USBD_IN_PROGRESS && error != 0) {
2523 printf("%s: could not queue Rx transfer\n",
2524 device_xname(sc->sc_dev));
2525 goto fail;
2526 }
2527 }
2528
2529 ifp->if_flags &= ~IFF_OACTIVE;
2530 ifp->if_flags |= IFF_RUNNING;
2531
2532 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2533 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2534 else
2535 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2536
2537 return 0;
2538
2539 fail: zyd_stop(ifp, 1);
2540 return error;
2541 }
2542
2543 Static void
2544 zyd_stop(struct ifnet *ifp, int disable)
2545 {
2546 struct zyd_softc *sc = ifp->if_softc;
2547 struct ieee80211com *ic = &sc->sc_ic;
2548
2549 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2550
2551 sc->tx_timer = 0;
2552 ifp->if_timer = 0;
2553 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2554
2555 /* switch radio transmitter OFF */
2556 (void)zyd_switch_radio(sc, 0);
2557
2558 /* disable Rx */
2559 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2560
2561 /* disable interrupts */
2562 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2563
2564 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2565 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2566
2567 zyd_free_rx_list(sc);
2568 zyd_free_tx_list(sc);
2569 }
2570
2571 Static int
2572 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2573 {
2574 usb_device_request_t req;
2575 uint16_t addr;
2576 uint8_t stat;
2577
2578 DPRINTF(("firmware size=%zu\n", size));
2579
2580 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2581 req.bRequest = ZYD_DOWNLOADREQ;
2582 USETW(req.wIndex, 0);
2583
2584 addr = ZYD_FIRMWARE_START_ADDR;
2585 while (size > 0) {
2586 #if 0
2587 const int mlen = min(size, 4096);
2588 #else
2589 /*
2590 * XXXX: When the transfer size is 4096 bytes, it is not
2591 * likely to be able to transfer it.
2592 * The cause is port or machine or chip?
2593 */
2594 const int mlen = min(size, 64);
2595 #endif
2596
2597 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2598 addr));
2599
2600 USETW(req.wValue, addr);
2601 USETW(req.wLength, mlen);
2602 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2603 return EIO;
2604
2605 addr += mlen / 2;
2606 fw += mlen;
2607 size -= mlen;
2608 }
2609
2610 /* check whether the upload succeeded */
2611 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2612 req.bRequest = ZYD_DOWNLOADSTS;
2613 USETW(req.wValue, 0);
2614 USETW(req.wIndex, 0);
2615 USETW(req.wLength, sizeof stat);
2616 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2617 return EIO;
2618
2619 return (stat & 0x80) ? EIO : 0;
2620 }
2621
2622 Static void
2623 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2624 {
2625 struct zyd_softc *sc = arg;
2626 struct zyd_node *zn = (struct zyd_node *)ni;
2627
2628 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2629 }
2630
2631 Static void
2632 zyd_amrr_timeout(void *arg)
2633 {
2634 struct zyd_softc *sc = arg;
2635 struct ieee80211com *ic = &sc->sc_ic;
2636 int s;
2637
2638 s = splnet();
2639 if (ic->ic_opmode == IEEE80211_M_STA)
2640 zyd_iter_func(sc, ic->ic_bss);
2641 else
2642 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2643 splx(s);
2644
2645 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2646 }
2647
2648 Static void
2649 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2650 {
2651 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2652 int i;
2653
2654 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2655
2656 /* set rate to some reasonable initial value */
2657 for (i = ni->ni_rates.rs_nrates - 1;
2658 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2659 i--);
2660 ni->ni_txrate = i;
2661 }
2662
2663 int
2664 zyd_activate(device_t self, enum devact act)
2665 {
2666 struct zyd_softc *sc = device_private(self);
2667
2668 switch (act) {
2669 case DVACT_DEACTIVATE:
2670 if_deactivate(&sc->sc_if);
2671 return 0;
2672 default:
2673 return EOPNOTSUPP;
2674 }
2675 }
2676