if_zyd.c revision 1.33 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.33 2012/12/27 16:42:32 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.33 2012/12/27 16:42:32 skrll Exp $");
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38
39 #include <sys/bus.h>
40 #include <machine/endian.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/if_dl.h>
46 #include <net/if_ether.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip.h>
54
55 #include <net80211/ieee80211_netbsd.h>
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59
60 #include <dev/firmload.h>
61
62 #include <dev/usb/usb.h>
63 #include <dev/usb/usbdi.h>
64 #include <dev/usb/usbdi_util.h>
65 #include <dev/usb/usbdevs.h>
66
67 #include <dev/usb/if_zydreg.h>
68
69 #ifdef USB_DEBUG
70 #define ZYD_DEBUG
71 #endif
72
73 #ifdef ZYD_DEBUG
74 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
76 int zyddebug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
83 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
84
85 /* various supported device vendors/products */
86 #define ZYD_ZD1211_DEV(v, p) \
87 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
88 #define ZYD_ZD1211B_DEV(v, p) \
89 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
90 static const struct zyd_type {
91 struct usb_devno dev;
92 uint8_t rev;
93 #define ZYD_ZD1211 0
94 #define ZYD_ZD1211B 1
95 } zyd_devs[] = {
96 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
97 ZYD_ZD1211_DEV(ABOCOM, WL54),
98 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
99 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
100 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
101 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
103 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
105 ZYD_ZD1211_DEV(SAGEM, XG760A),
106 ZYD_ZD1211_DEV(SENAO, NUB8301),
107 ZYD_ZD1211_DEV(SITECOMEU, WL113),
108 ZYD_ZD1211_DEV(SWEEX, ZD1211),
109 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
110 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
112 ZYD_ZD1211_DEV(TWINMOS, G240),
113 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
114 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
116 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
117 ZYD_ZD1211_DEV(ZCOM, ZD1211),
118 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
119 ZYD_ZD1211_DEV(ZYXEL, AG225H),
120 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
121 ZYD_ZD1211_DEV(ZYXEL, G200V2),
122
123 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
124 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
125 ZYD_ZD1211B_DEV(ACCTON, WUS201),
126 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
127 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
128 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
129 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
130 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
131 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
132 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
133 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
134 ZYD_ZD1211B_DEV(MELCO, KG54L),
135 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
137 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
138 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
139 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
140 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
141 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
142 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
143 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
145 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
146 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
147 ZYD_ZD1211B_DEV(USR, USR5423),
148 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
149 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
150 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
152 ZYD_ZD1211B_DEV(ZYXEL, M202),
153 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
154 };
155 #define zyd_lookup(v, p) \
156 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
157
158 int zyd_match(device_t, cfdata_t, void *);
159 void zyd_attach(device_t, device_t, void *);
160 int zyd_detach(device_t, int);
161 int zyd_activate(device_t, enum devact);
162 extern struct cfdriver zyd_cd;
163
164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
165 zyd_attach, zyd_detach, zyd_activate);
166
167 Static void zyd_attachhook(device_t);
168 Static int zyd_complete_attach(struct zyd_softc *);
169 Static int zyd_open_pipes(struct zyd_softc *);
170 Static void zyd_close_pipes(struct zyd_softc *);
171 Static int zyd_alloc_tx_list(struct zyd_softc *);
172 Static void zyd_free_tx_list(struct zyd_softc *);
173 Static int zyd_alloc_rx_list(struct zyd_softc *);
174 Static void zyd_free_rx_list(struct zyd_softc *);
175 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
176 Static int zyd_media_change(struct ifnet *);
177 Static void zyd_next_scan(void *);
178 Static void zyd_task(void *);
179 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
181 void *, int, u_int);
182 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
183 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
184 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
185 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
186 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
187 Static void zyd_lock_phy(struct zyd_softc *);
188 Static void zyd_unlock_phy(struct zyd_softc *);
189 Static int zyd_rfmd_init(struct zyd_rf *);
190 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
191 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
192 Static int zyd_al2230_init(struct zyd_rf *);
193 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
194 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
195 Static int zyd_al2230_init_b(struct zyd_rf *);
196 Static int zyd_al7230B_init(struct zyd_rf *);
197 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
198 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_al2210_init(struct zyd_rf *);
200 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
201 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
202 Static int zyd_gct_init(struct zyd_rf *);
203 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
204 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
205 Static int zyd_maxim_init(struct zyd_rf *);
206 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
207 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
208 Static int zyd_maxim2_init(struct zyd_rf *);
209 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
210 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
211 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
212 Static const char *zyd_rf_name(uint8_t);
213 Static int zyd_hw_init(struct zyd_softc *);
214 Static int zyd_read_eeprom(struct zyd_softc *);
215 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
216 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
217 Static int zyd_switch_radio(struct zyd_softc *, int);
218 Static void zyd_set_led(struct zyd_softc *, int, int);
219 Static int zyd_set_rxfilter(struct zyd_softc *);
220 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
221 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
222 Static uint8_t zyd_plcp_signal(int);
223 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
224 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
225 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
226 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
227 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
228 struct ieee80211_node *);
229 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
230 struct ieee80211_node *);
231 Static void zyd_start(struct ifnet *);
232 Static void zyd_watchdog(struct ifnet *);
233 Static int zyd_ioctl(struct ifnet *, u_long, void *);
234 Static int zyd_init(struct ifnet *);
235 Static void zyd_stop(struct ifnet *, int);
236 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
237 Static void zyd_iter_func(void *, struct ieee80211_node *);
238 Static void zyd_amrr_timeout(void *);
239 Static void zyd_newassoc(struct ieee80211_node *, int);
240
241 static const struct ieee80211_rateset zyd_rateset_11b =
242 { 4, { 2, 4, 11, 22 } };
243
244 static const struct ieee80211_rateset zyd_rateset_11g =
245 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
246
247 int
248 zyd_match(device_t parent, cfdata_t match, void *aux)
249 {
250 struct usb_attach_arg *uaa = aux;
251
252 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
253 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
254 }
255
256 Static void
257 zyd_attachhook(device_t self)
258 {
259 struct zyd_softc *sc = device_private(self);
260 firmware_handle_t fwh;
261 const char *fwname;
262 u_char *fw;
263 size_t size;
264 int error;
265
266 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
267 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
268 aprint_error_dev(sc->sc_dev,
269 "failed to open firmware %s (error=%d)\n", fwname, error);
270 return;
271 }
272 size = firmware_get_size(fwh);
273 fw = firmware_malloc(size);
274 if (fw == NULL) {
275 aprint_error_dev(sc->sc_dev,
276 "failed to allocate firmware memory\n");
277 firmware_close(fwh);
278 return;
279 }
280 error = firmware_read(fwh, 0, fw, size);
281 firmware_close(fwh);
282 if (error != 0) {
283 aprint_error_dev(sc->sc_dev,
284 "failed to read firmware (error %d)\n", error);
285 firmware_free(fw, 0);
286 return;
287 }
288
289 error = zyd_loadfirmware(sc, fw, size);
290 if (error != 0) {
291 aprint_error_dev(sc->sc_dev,
292 "could not load firmware (error=%d)\n", error);
293 firmware_free(fw, 0);
294 return;
295 }
296
297 firmware_free(fw, 0);
298 sc->sc_flags |= ZD1211_FWLOADED;
299
300 /* complete the attach process */
301 if ((error = zyd_complete_attach(sc)) == 0)
302 sc->attached = 1;
303 return;
304 }
305
306 void
307 zyd_attach(device_t parent, device_t self, void *aux)
308 {
309 struct zyd_softc *sc = device_private(self);
310 struct usb_attach_arg *uaa = aux;
311 char *devinfop;
312 usb_device_descriptor_t* ddesc;
313 struct ifnet *ifp = &sc->sc_if;
314
315 sc->sc_dev = self;
316 sc->sc_udev = uaa->device;
317 sc->sc_flags = 0;
318
319 aprint_naive("\n");
320 aprint_normal("\n");
321
322 devinfop = usbd_devinfo_alloc(uaa->device, 0);
323 aprint_normal_dev(self, "%s\n", devinfop);
324 usbd_devinfo_free(devinfop);
325
326 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
327
328 ddesc = usbd_get_device_descriptor(sc->sc_udev);
329 if (UGETW(ddesc->bcdDevice) < 0x4330) {
330 aprint_error_dev(self, "device version mismatch: 0x%x "
331 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
332 return;
333 }
334
335 ifp->if_softc = sc;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 ifp->if_init = zyd_init;
338 ifp->if_ioctl = zyd_ioctl;
339 ifp->if_start = zyd_start;
340 ifp->if_watchdog = zyd_watchdog;
341 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
342 IFQ_SET_READY(&ifp->if_snd);
343 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
344
345 SIMPLEQ_INIT(&sc->sc_rqh);
346
347 /* defer configrations after file system is ready to load firmware */
348 config_mountroot(self, zyd_attachhook);
349 }
350
351 Static int
352 zyd_complete_attach(struct zyd_softc *sc)
353 {
354 struct ieee80211com *ic = &sc->sc_ic;
355 struct ifnet *ifp = &sc->sc_if;
356 usbd_status error;
357 int i;
358
359 usb_init_task(&sc->sc_task, zyd_task, sc);
360 callout_init(&(sc->sc_scan_ch), 0);
361
362 sc->amrr.amrr_min_success_threshold = 1;
363 sc->amrr.amrr_max_success_threshold = 10;
364 callout_init(&sc->sc_amrr_ch, 0);
365
366 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
367 if (error != 0) {
368 aprint_error_dev(sc->sc_dev, "failed to set configuration"
369 ", err=%s\n", usbd_errstr(error));
370 goto fail;
371 }
372
373 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
374 &sc->sc_iface);
375 if (error != 0) {
376 aprint_error_dev(sc->sc_dev,
377 "getting interface handle failed\n");
378 goto fail;
379 }
380
381 if ((error = zyd_open_pipes(sc)) != 0) {
382 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
383 goto fail;
384 }
385
386 if ((error = zyd_read_eeprom(sc)) != 0) {
387 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
388 goto fail;
389 }
390
391 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
392 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
393 goto fail;
394 }
395
396 if ((error = zyd_hw_init(sc)) != 0) {
397 aprint_error_dev(sc->sc_dev,
398 "hardware initialization failed\n");
399 goto fail;
400 }
401
402 aprint_normal_dev(sc->sc_dev,
403 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
404 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
405 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
406 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
407
408 ic->ic_ifp = ifp;
409 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
410 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
411 ic->ic_state = IEEE80211_S_INIT;
412
413 /* set device capabilities */
414 ic->ic_caps =
415 IEEE80211_C_MONITOR | /* monitor mode supported */
416 IEEE80211_C_TXPMGT | /* tx power management */
417 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
418 IEEE80211_C_WEP; /* s/w WEP */
419
420 /* set supported .11b and .11g rates */
421 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
422 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
423
424 /* set supported .11b and .11g channels (1 through 14) */
425 for (i = 1; i <= 14; i++) {
426 ic->ic_channels[i].ic_freq =
427 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
428 ic->ic_channels[i].ic_flags =
429 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
430 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
431 }
432
433 if_attach(ifp);
434 ieee80211_ifattach(ic);
435 ic->ic_node_alloc = zyd_node_alloc;
436 ic->ic_newassoc = zyd_newassoc;
437
438 /* override state transition machine */
439 sc->sc_newstate = ic->ic_newstate;
440 ic->ic_newstate = zyd_newstate;
441 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
442
443 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
444 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
445 &sc->sc_drvbpf);
446
447 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
448 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
449 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
450
451 sc->sc_txtap_len = sizeof sc->sc_txtapu;
452 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
453 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
454
455 ieee80211_announce(ic);
456
457 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
458
459 fail: return error;
460 }
461
462 int
463 zyd_detach(device_t self, int flags)
464 {
465 struct zyd_softc *sc = device_private(self);
466 struct ieee80211com *ic = &sc->sc_ic;
467 struct ifnet *ifp = &sc->sc_if;
468 int s;
469
470 if (!sc->attached)
471 return 0;
472
473 s = splusb();
474
475 zyd_stop(ifp, 1);
476 usb_rem_task(sc->sc_udev, &sc->sc_task);
477 callout_stop(&sc->sc_scan_ch);
478 callout_stop(&sc->sc_amrr_ch);
479
480 zyd_close_pipes(sc);
481
482 sc->attached = 0;
483
484 bpf_detach(ifp);
485 ieee80211_ifdetach(ic);
486 if_detach(ifp);
487
488 splx(s);
489
490 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
491 sc->sc_dev);
492
493 return 0;
494 }
495
496 Static int
497 zyd_open_pipes(struct zyd_softc *sc)
498 {
499 usb_endpoint_descriptor_t *edesc;
500 int isize;
501 usbd_status error;
502
503 /* interrupt in */
504 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
505 if (edesc == NULL)
506 return EINVAL;
507
508 isize = UGETW(edesc->wMaxPacketSize);
509 if (isize == 0) /* should not happen */
510 return EINVAL;
511
512 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
513 if (sc->ibuf == NULL)
514 return ENOMEM;
515
516 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
517 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
518 USBD_DEFAULT_INTERVAL);
519 if (error != 0) {
520 printf("%s: open rx intr pipe failed: %s\n",
521 device_xname(sc->sc_dev), usbd_errstr(error));
522 goto fail;
523 }
524
525 /* interrupt out (not necessarily an interrupt pipe) */
526 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
527 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
528 if (error != 0) {
529 printf("%s: open tx intr pipe failed: %s\n",
530 device_xname(sc->sc_dev), usbd_errstr(error));
531 goto fail;
532 }
533
534 /* bulk in */
535 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
536 &sc->zyd_ep[ZYD_ENDPT_BIN]);
537 if (error != 0) {
538 printf("%s: open rx pipe failed: %s\n",
539 device_xname(sc->sc_dev), usbd_errstr(error));
540 goto fail;
541 }
542
543 /* bulk out */
544 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
545 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
546 if (error != 0) {
547 printf("%s: open tx pipe failed: %s\n",
548 device_xname(sc->sc_dev), usbd_errstr(error));
549 goto fail;
550 }
551
552 return 0;
553
554 fail: zyd_close_pipes(sc);
555 return error;
556 }
557
558 Static void
559 zyd_close_pipes(struct zyd_softc *sc)
560 {
561 int i;
562
563 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
564 if (sc->zyd_ep[i] != NULL) {
565 usbd_abort_pipe(sc->zyd_ep[i]);
566 usbd_close_pipe(sc->zyd_ep[i]);
567 sc->zyd_ep[i] = NULL;
568 }
569 }
570 if (sc->ibuf != NULL) {
571 free(sc->ibuf, M_USBDEV);
572 sc->ibuf = NULL;
573 }
574 }
575
576 Static int
577 zyd_alloc_tx_list(struct zyd_softc *sc)
578 {
579 int i, error;
580
581 sc->tx_queued = 0;
582
583 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
584 struct zyd_tx_data *data = &sc->tx_data[i];
585
586 data->sc = sc; /* backpointer for callbacks */
587
588 data->xfer = usbd_alloc_xfer(sc->sc_udev);
589 if (data->xfer == NULL) {
590 printf("%s: could not allocate tx xfer\n",
591 device_xname(sc->sc_dev));
592 error = ENOMEM;
593 goto fail;
594 }
595 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
596 if (data->buf == NULL) {
597 printf("%s: could not allocate tx buffer\n",
598 device_xname(sc->sc_dev));
599 error = ENOMEM;
600 goto fail;
601 }
602
603 /* clear Tx descriptor */
604 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
605 }
606 return 0;
607
608 fail: zyd_free_tx_list(sc);
609 return error;
610 }
611
612 Static void
613 zyd_free_tx_list(struct zyd_softc *sc)
614 {
615 int i;
616
617 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
618 struct zyd_tx_data *data = &sc->tx_data[i];
619
620 if (data->xfer != NULL) {
621 usbd_free_xfer(data->xfer);
622 data->xfer = NULL;
623 }
624 if (data->ni != NULL) {
625 ieee80211_free_node(data->ni);
626 data->ni = NULL;
627 }
628 }
629 }
630
631 Static int
632 zyd_alloc_rx_list(struct zyd_softc *sc)
633 {
634 int i, error;
635
636 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
637 struct zyd_rx_data *data = &sc->rx_data[i];
638
639 data->sc = sc; /* backpointer for callbacks */
640
641 data->xfer = usbd_alloc_xfer(sc->sc_udev);
642 if (data->xfer == NULL) {
643 printf("%s: could not allocate rx xfer\n",
644 device_xname(sc->sc_dev));
645 error = ENOMEM;
646 goto fail;
647 }
648 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
649 if (data->buf == NULL) {
650 printf("%s: could not allocate rx buffer\n",
651 device_xname(sc->sc_dev));
652 error = ENOMEM;
653 goto fail;
654 }
655 }
656 return 0;
657
658 fail: zyd_free_rx_list(sc);
659 return error;
660 }
661
662 Static void
663 zyd_free_rx_list(struct zyd_softc *sc)
664 {
665 int i;
666
667 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
668 struct zyd_rx_data *data = &sc->rx_data[i];
669
670 if (data->xfer != NULL) {
671 usbd_free_xfer(data->xfer);
672 data->xfer = NULL;
673 }
674 }
675 }
676
677 /* ARGUSED */
678 Static struct ieee80211_node *
679 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
680 {
681 struct zyd_node *zn;
682
683 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
684
685 return &zn->ni;
686 }
687
688 Static int
689 zyd_media_change(struct ifnet *ifp)
690 {
691 int error;
692
693 error = ieee80211_media_change(ifp);
694 if (error != ENETRESET)
695 return error;
696
697 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
698 zyd_init(ifp);
699
700 return 0;
701 }
702
703 /*
704 * This function is called periodically (every 200ms) during scanning to
705 * switch from one channel to another.
706 */
707 Static void
708 zyd_next_scan(void *arg)
709 {
710 struct zyd_softc *sc = arg;
711 struct ieee80211com *ic = &sc->sc_ic;
712
713 if (ic->ic_state == IEEE80211_S_SCAN)
714 ieee80211_next_scan(ic);
715 }
716
717 Static void
718 zyd_task(void *arg)
719 {
720 struct zyd_softc *sc = arg;
721 struct ieee80211com *ic = &sc->sc_ic;
722 enum ieee80211_state ostate;
723
724 ostate = ic->ic_state;
725
726 switch (sc->sc_state) {
727 case IEEE80211_S_INIT:
728 if (ostate == IEEE80211_S_RUN) {
729 /* turn link LED off */
730 zyd_set_led(sc, ZYD_LED1, 0);
731
732 /* stop data LED from blinking */
733 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
734 }
735 break;
736
737 case IEEE80211_S_SCAN:
738 zyd_set_chan(sc, ic->ic_curchan);
739 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
740 break;
741
742 case IEEE80211_S_AUTH:
743 case IEEE80211_S_ASSOC:
744 zyd_set_chan(sc, ic->ic_curchan);
745 break;
746
747 case IEEE80211_S_RUN:
748 {
749 struct ieee80211_node *ni = ic->ic_bss;
750
751 zyd_set_chan(sc, ic->ic_curchan);
752
753 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
754 /* turn link LED on */
755 zyd_set_led(sc, ZYD_LED1, 1);
756
757 /* make data LED blink upon Tx */
758 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
759
760 zyd_set_bssid(sc, ni->ni_bssid);
761 }
762
763 if (ic->ic_opmode == IEEE80211_M_STA) {
764 /* fake a join to init the tx rate */
765 zyd_newassoc(ni, 1);
766 }
767
768 /* start automatic rate control timer */
769 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
770 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
771
772 break;
773 }
774 }
775
776 sc->sc_newstate(ic, sc->sc_state, -1);
777 }
778
779 Static int
780 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
781 {
782 struct zyd_softc *sc = ic->ic_ifp->if_softc;
783
784 if (!sc->attached)
785 return ENXIO;
786
787 usb_rem_task(sc->sc_udev, &sc->sc_task);
788 callout_stop(&sc->sc_scan_ch);
789 callout_stop(&sc->sc_amrr_ch);
790
791 /* do it in a process context */
792 sc->sc_state = nstate;
793 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
794
795 return 0;
796 }
797
798 Static int
799 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
800 void *odata, int olen, u_int flags)
801 {
802 usbd_xfer_handle xfer;
803 struct zyd_cmd cmd;
804 struct rq rq;
805 uint16_t xferflags;
806 int error;
807 usbd_status uerror;
808 int s = 0;
809
810 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
811 return ENOMEM;
812
813 cmd.code = htole16(code);
814 bcopy(idata, cmd.data, ilen);
815
816 xferflags = USBD_FORCE_SHORT_XFER;
817 if (!(flags & ZYD_CMD_FLAG_READ))
818 xferflags |= USBD_SYNCHRONOUS;
819 else {
820 s = splusb();
821 rq.idata = idata;
822 rq.odata = odata;
823 rq.len = olen / sizeof (struct zyd_pair);
824 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
825 }
826
827 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
828 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
829 uerror = usbd_transfer(xfer);
830 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
831 if (flags & ZYD_CMD_FLAG_READ)
832 splx(s);
833 printf("%s: could not send command (error=%s)\n",
834 device_xname(sc->sc_dev), usbd_errstr(uerror));
835 (void)usbd_free_xfer(xfer);
836 return EIO;
837 }
838 if (!(flags & ZYD_CMD_FLAG_READ)) {
839 (void)usbd_free_xfer(xfer);
840 return 0; /* write: don't wait for reply */
841 }
842 /* wait at most one second for command reply */
843 error = tsleep(odata, PCATCH, "zydcmd", hz);
844 if (error == EWOULDBLOCK)
845 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
846 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
847 splx(s);
848
849 (void)usbd_free_xfer(xfer);
850 return error;
851 }
852
853 Static int
854 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
855 {
856 struct zyd_pair tmp;
857 int error;
858
859 reg = htole16(reg);
860 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
861 ZYD_CMD_FLAG_READ);
862 if (error == 0)
863 *val = le16toh(tmp.val);
864 else
865 *val = 0;
866 return error;
867 }
868
869 Static int
870 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
871 {
872 struct zyd_pair tmp[2];
873 uint16_t regs[2];
874 int error;
875
876 regs[0] = htole16(ZYD_REG32_HI(reg));
877 regs[1] = htole16(ZYD_REG32_LO(reg));
878 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
879 ZYD_CMD_FLAG_READ);
880 if (error == 0)
881 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
882 else
883 *val = 0;
884 return error;
885 }
886
887 Static int
888 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
889 {
890 struct zyd_pair pair;
891
892 pair.reg = htole16(reg);
893 pair.val = htole16(val);
894
895 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
896 }
897
898 Static int
899 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
900 {
901 struct zyd_pair pair[2];
902
903 pair[0].reg = htole16(ZYD_REG32_HI(reg));
904 pair[0].val = htole16(val >> 16);
905 pair[1].reg = htole16(ZYD_REG32_LO(reg));
906 pair[1].val = htole16(val & 0xffff);
907
908 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
909 }
910
911 Static int
912 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
913 {
914 struct zyd_rf *rf = &sc->sc_rf;
915 struct zyd_rfwrite req;
916 uint16_t cr203;
917 int i;
918
919 (void)zyd_read16(sc, ZYD_CR203, &cr203);
920 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
921
922 req.code = htole16(2);
923 req.width = htole16(rf->width);
924 for (i = 0; i < rf->width; i++) {
925 req.bit[i] = htole16(cr203);
926 if (val & (1 << (rf->width - 1 - i)))
927 req.bit[i] |= htole16(ZYD_RF_DATA);
928 }
929 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
930 }
931
932 Static void
933 zyd_lock_phy(struct zyd_softc *sc)
934 {
935 uint32_t tmp;
936
937 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
938 tmp &= ~ZYD_UNLOCK_PHY_REGS;
939 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
940 }
941
942 Static void
943 zyd_unlock_phy(struct zyd_softc *sc)
944 {
945 uint32_t tmp;
946
947 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
948 tmp |= ZYD_UNLOCK_PHY_REGS;
949 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
950 }
951
952 /*
953 * RFMD RF methods.
954 */
955 Static int
956 zyd_rfmd_init(struct zyd_rf *rf)
957 {
958 struct zyd_softc *sc = rf->rf_sc;
959 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
960 static const uint32_t rfini[] = ZYD_RFMD_RF;
961 int error;
962 size_t i;
963
964 /* init RF-dependent PHY registers */
965 for (i = 0; i < __arraycount(phyini); i++) {
966 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
967 if (error != 0)
968 return error;
969 }
970
971 /* init RFMD radio */
972 for (i = 0; i < __arraycount(rfini); i++) {
973 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
974 return error;
975 }
976 return 0;
977 }
978
979 Static int
980 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
981 {
982 struct zyd_softc *sc = rf->rf_sc;
983
984 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
985 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
986
987 return 0;
988 }
989
990 Static int
991 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
992 {
993 struct zyd_softc *sc = rf->rf_sc;
994 static const struct {
995 uint32_t r1, r2;
996 } rfprog[] = ZYD_RFMD_CHANTABLE;
997
998 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
999 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * AL2230 RF methods.
1006 */
1007 Static int
1008 zyd_al2230_init(struct zyd_rf *rf)
1009 {
1010 struct zyd_softc *sc = rf->rf_sc;
1011 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1012 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1013 static const uint32_t rfini[] = ZYD_AL2230_RF;
1014 int error;
1015 size_t i;
1016
1017 /* init RF-dependent PHY registers */
1018 for (i = 0; i < __arraycount(phyini); i++) {
1019 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1020 if (error != 0)
1021 return error;
1022 }
1023
1024 if (sc->rf_rev == ZYD_RF_AL2230S) {
1025 for (i = 0; i < __arraycount(phy2230s); i++) {
1026 error = zyd_write16(sc, phy2230s[i].reg,
1027 phy2230s[i].val);
1028 if (error != 0)
1029 return error;
1030 }
1031 }
1032
1033 /* init AL2230 radio */
1034 for (i = 0; i < __arraycount(rfini); i++) {
1035 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1036 return error;
1037 }
1038 return 0;
1039 }
1040
1041 Static int
1042 zyd_al2230_init_b(struct zyd_rf *rf)
1043 {
1044 struct zyd_softc *sc = rf->rf_sc;
1045 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1046 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1047 int error;
1048 size_t i;
1049
1050 /* init RF-dependent PHY registers */
1051 for (i = 0; i < __arraycount(phyini); i++) {
1052 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1053 if (error != 0)
1054 return error;
1055 }
1056
1057 /* init AL2230 radio */
1058 for (i = 0; i < __arraycount(rfini); i++) {
1059 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1060 return error;
1061 }
1062 return 0;
1063 }
1064
1065 Static int
1066 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1067 {
1068 struct zyd_softc *sc = rf->rf_sc;
1069 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1070
1071 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1072 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1073
1074 return 0;
1075 }
1076
1077 Static int
1078 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1079 {
1080 struct zyd_softc *sc = rf->rf_sc;
1081 static const struct {
1082 uint32_t r1, r2, r3;
1083 } rfprog[] = ZYD_AL2230_CHANTABLE;
1084
1085 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1086 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1087 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1088
1089 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1090 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * AL7230B RF methods.
1097 */
1098 Static int
1099 zyd_al7230B_init(struct zyd_rf *rf)
1100 {
1101 struct zyd_softc *sc = rf->rf_sc;
1102 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1103 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1104 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1105 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1106 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1107 int error;
1108 size_t i;
1109
1110 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1111
1112 /* init RF-dependent PHY registers, part one */
1113 for (i = 0; i < __arraycount(phyini_1); i++) {
1114 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1115 if (error != 0)
1116 return error;
1117 }
1118 /* init AL7230B radio, part one */
1119 for (i = 0; i < __arraycount(rfini_1); i++) {
1120 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1121 return error;
1122 }
1123 /* init RF-dependent PHY registers, part two */
1124 for (i = 0; i < __arraycount(phyini_2); i++) {
1125 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1126 if (error != 0)
1127 return error;
1128 }
1129 /* init AL7230B radio, part two */
1130 for (i = 0; i < __arraycount(rfini_2); i++) {
1131 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1132 return error;
1133 }
1134 /* init RF-dependent PHY registers, part three */
1135 for (i = 0; i < __arraycount(phyini_3); i++) {
1136 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1137 if (error != 0)
1138 return error;
1139 }
1140
1141 return 0;
1142 }
1143
1144 Static int
1145 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1146 {
1147 struct zyd_softc *sc = rf->rf_sc;
1148
1149 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1150 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1151
1152 return 0;
1153 }
1154
1155 Static int
1156 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1157 {
1158 struct zyd_softc *sc = rf->rf_sc;
1159 static const struct {
1160 uint32_t r1, r2;
1161 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1162 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1163 int error;
1164 size_t i;
1165
1166 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1167 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1168
1169 for (i = 0; i < __arraycount(rfsc); i++) {
1170 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1171 return error;
1172 }
1173
1174 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1175 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1176 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1177 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1178 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1179
1180 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1181 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1182 (void)zyd_rfwrite(sc, 0x3c9000);
1183
1184 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1185 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1186 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * AL2210 RF methods.
1193 */
1194 Static int
1195 zyd_al2210_init(struct zyd_rf *rf)
1196 {
1197 struct zyd_softc *sc = rf->rf_sc;
1198 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1199 static const uint32_t rfini[] = ZYD_AL2210_RF;
1200 uint32_t tmp;
1201 int error;
1202 size_t i;
1203
1204 (void)zyd_write32(sc, ZYD_CR18, 2);
1205
1206 /* init RF-dependent PHY registers */
1207 for (i = 0; i < __arraycount(phyini); i++) {
1208 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1209 if (error != 0)
1210 return error;
1211 }
1212 /* init AL2210 radio */
1213 for (i = 0; i < __arraycount(rfini); i++) {
1214 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1215 return error;
1216 }
1217 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1218 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1219 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1220 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1221 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1222 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1223 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1224 (void)zyd_write32(sc, ZYD_CR18, 3);
1225
1226 return 0;
1227 }
1228
1229 Static int
1230 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1231 {
1232 /* vendor driver does nothing for this RF chip */
1233
1234 return 0;
1235 }
1236
1237 Static int
1238 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1239 {
1240 struct zyd_softc *sc = rf->rf_sc;
1241 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1242 uint32_t tmp;
1243
1244 (void)zyd_write32(sc, ZYD_CR18, 2);
1245 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1246 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1247 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1248 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1249 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1250
1251 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1252 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1253
1254 /* actually set the channel */
1255 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1256
1257 (void)zyd_write32(sc, ZYD_CR18, 3);
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * GCT RF methods.
1264 */
1265 Static int
1266 zyd_gct_init(struct zyd_rf *rf)
1267 {
1268 struct zyd_softc *sc = rf->rf_sc;
1269 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1270 static const uint32_t rfini[] = ZYD_GCT_RF;
1271 int error;
1272 size_t i;
1273
1274 /* init RF-dependent PHY registers */
1275 for (i = 0; i < __arraycount(phyini); i++) {
1276 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1277 if (error != 0)
1278 return error;
1279 }
1280 /* init cgt radio */
1281 for (i = 0; i < __arraycount(rfini); i++) {
1282 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1283 return error;
1284 }
1285 return 0;
1286 }
1287
1288 Static int
1289 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1290 {
1291 /* vendor driver does nothing for this RF chip */
1292
1293 return 0;
1294 }
1295
1296 Static int
1297 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1298 {
1299 struct zyd_softc *sc = rf->rf_sc;
1300 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1301
1302 (void)zyd_rfwrite(sc, 0x1c0000);
1303 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1304 (void)zyd_rfwrite(sc, 0x1c0008);
1305
1306 return 0;
1307 }
1308
1309 /*
1310 * Maxim RF methods.
1311 */
1312 Static int
1313 zyd_maxim_init(struct zyd_rf *rf)
1314 {
1315 struct zyd_softc *sc = rf->rf_sc;
1316 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1317 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1318 uint16_t tmp;
1319 int error;
1320 size_t i;
1321
1322 /* init RF-dependent PHY registers */
1323 for (i = 0; i < __arraycount(phyini); i++) {
1324 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1325 if (error != 0)
1326 return error;
1327 }
1328 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1329 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1330
1331 /* init maxim radio */
1332 for (i = 0; i < __arraycount(rfini); i++) {
1333 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1334 return error;
1335 }
1336 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1337 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1338
1339 return 0;
1340 }
1341
1342 Static int
1343 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1344 {
1345 /* vendor driver does nothing for this RF chip */
1346
1347 return 0;
1348 }
1349
1350 Static int
1351 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1352 {
1353 struct zyd_softc *sc = rf->rf_sc;
1354 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1355 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1356 static const struct {
1357 uint32_t r1, r2;
1358 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1359 uint16_t tmp;
1360 int error;
1361 size_t i;
1362
1363 /*
1364 * Do the same as we do when initializing it, except for the channel
1365 * values coming from the two channel tables.
1366 */
1367
1368 /* init RF-dependent PHY registers */
1369 for (i = 0; i < __arraycount(phyini); i++) {
1370 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1371 if (error != 0)
1372 return error;
1373 }
1374 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1375 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1376
1377 /* first two values taken from the chantables */
1378 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1379 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1380
1381 /* init maxim radio - skipping the two first values */
1382 for (i = 2; i < __arraycount(rfini); i++) {
1383 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1384 return error;
1385 }
1386 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1387 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1388
1389 return 0;
1390 }
1391
1392 /*
1393 * Maxim2 RF methods.
1394 */
1395 Static int
1396 zyd_maxim2_init(struct zyd_rf *rf)
1397 {
1398 struct zyd_softc *sc = rf->rf_sc;
1399 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1400 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1401 uint16_t tmp;
1402 int error;
1403 size_t i;
1404
1405 /* init RF-dependent PHY registers */
1406 for (i = 0; i < __arraycount(phyini); i++) {
1407 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1408 if (error != 0)
1409 return error;
1410 }
1411 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1412 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1413
1414 /* init maxim2 radio */
1415 for (i = 0; i < __arraycount(rfini); i++) {
1416 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1417 return error;
1418 }
1419 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1420 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1421
1422 return 0;
1423 }
1424
1425 Static int
1426 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1427 {
1428 /* vendor driver does nothing for this RF chip */
1429
1430 return 0;
1431 }
1432
1433 Static int
1434 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1435 {
1436 struct zyd_softc *sc = rf->rf_sc;
1437 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1438 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1439 static const struct {
1440 uint32_t r1, r2;
1441 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1442 uint16_t tmp;
1443 int error;
1444 size_t i;
1445
1446 /*
1447 * Do the same as we do when initializing it, except for the channel
1448 * values coming from the two channel tables.
1449 */
1450
1451 /* init RF-dependent PHY registers */
1452 for (i = 0; i < __arraycount(phyini); i++) {
1453 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1454 if (error != 0)
1455 return error;
1456 }
1457 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1458 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1459
1460 /* first two values taken from the chantables */
1461 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1462 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1463
1464 /* init maxim2 radio - skipping the two first values */
1465 for (i = 2; i < __arraycount(rfini); i++) {
1466 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1467 return error;
1468 }
1469 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1470 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1471
1472 return 0;
1473 }
1474
1475 Static int
1476 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1477 {
1478 struct zyd_rf *rf = &sc->sc_rf;
1479
1480 rf->rf_sc = sc;
1481
1482 switch (type) {
1483 case ZYD_RF_RFMD:
1484 rf->init = zyd_rfmd_init;
1485 rf->switch_radio = zyd_rfmd_switch_radio;
1486 rf->set_channel = zyd_rfmd_set_channel;
1487 rf->width = 24; /* 24-bit RF values */
1488 break;
1489 case ZYD_RF_AL2230:
1490 case ZYD_RF_AL2230S:
1491 if (sc->mac_rev == ZYD_ZD1211B)
1492 rf->init = zyd_al2230_init_b;
1493 else
1494 rf->init = zyd_al2230_init;
1495 rf->switch_radio = zyd_al2230_switch_radio;
1496 rf->set_channel = zyd_al2230_set_channel;
1497 rf->width = 24; /* 24-bit RF values */
1498 break;
1499 case ZYD_RF_AL7230B:
1500 rf->init = zyd_al7230B_init;
1501 rf->switch_radio = zyd_al7230B_switch_radio;
1502 rf->set_channel = zyd_al7230B_set_channel;
1503 rf->width = 24; /* 24-bit RF values */
1504 break;
1505 case ZYD_RF_AL2210:
1506 rf->init = zyd_al2210_init;
1507 rf->switch_radio = zyd_al2210_switch_radio;
1508 rf->set_channel = zyd_al2210_set_channel;
1509 rf->width = 24; /* 24-bit RF values */
1510 break;
1511 case ZYD_RF_GCT:
1512 rf->init = zyd_gct_init;
1513 rf->switch_radio = zyd_gct_switch_radio;
1514 rf->set_channel = zyd_gct_set_channel;
1515 rf->width = 21; /* 21-bit RF values */
1516 break;
1517 case ZYD_RF_MAXIM_NEW:
1518 rf->init = zyd_maxim_init;
1519 rf->switch_radio = zyd_maxim_switch_radio;
1520 rf->set_channel = zyd_maxim_set_channel;
1521 rf->width = 18; /* 18-bit RF values */
1522 break;
1523 case ZYD_RF_MAXIM_NEW2:
1524 rf->init = zyd_maxim2_init;
1525 rf->switch_radio = zyd_maxim2_switch_radio;
1526 rf->set_channel = zyd_maxim2_set_channel;
1527 rf->width = 18; /* 18-bit RF values */
1528 break;
1529 default:
1530 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1531 device_xname(sc->sc_dev), zyd_rf_name(type));
1532 return EINVAL;
1533 }
1534 return 0;
1535 }
1536
1537 Static const char *
1538 zyd_rf_name(uint8_t type)
1539 {
1540 static const char * const zyd_rfs[] = {
1541 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1542 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1543 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1544 "PHILIPS"
1545 };
1546
1547 return zyd_rfs[(type > 15) ? 0 : type];
1548 }
1549
1550 Static int
1551 zyd_hw_init(struct zyd_softc *sc)
1552 {
1553 struct zyd_rf *rf = &sc->sc_rf;
1554 const struct zyd_phy_pair *phyp;
1555 int error;
1556
1557 /* specify that the plug and play is finished */
1558 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1559
1560 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1561 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1562
1563 /* retrieve firmware revision number */
1564 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1565
1566 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1567 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1568
1569 /* disable interrupts */
1570 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1571
1572 /* PHY init */
1573 zyd_lock_phy(sc);
1574 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1575 for (; phyp->reg != 0; phyp++) {
1576 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1577 goto fail;
1578 }
1579 zyd_unlock_phy(sc);
1580
1581 /* HMAC init */
1582 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1583 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1584
1585 if (sc->mac_rev == ZYD_ZD1211) {
1586 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1587 } else {
1588 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1589 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1590 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1591 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1592 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1593 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1594 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1595 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1596 }
1597
1598 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1599 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1600 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1601 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1602 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1603 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1604 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1605 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1606 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1607 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1608 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1609 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1610 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1611 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1612 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1613 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1614 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1615
1616 /* RF chip init */
1617 zyd_lock_phy(sc);
1618 error = (*rf->init)(rf);
1619 zyd_unlock_phy(sc);
1620 if (error != 0) {
1621 printf("%s: radio initialization failed\n",
1622 device_xname(sc->sc_dev));
1623 goto fail;
1624 }
1625
1626 /* init beacon interval to 100ms */
1627 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1628 goto fail;
1629
1630 fail: return error;
1631 }
1632
1633 Static int
1634 zyd_read_eeprom(struct zyd_softc *sc)
1635 {
1636 struct ieee80211com *ic = &sc->sc_ic;
1637 uint32_t tmp;
1638 uint16_t val;
1639 int i;
1640
1641 /* read MAC address */
1642 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1643 ic->ic_myaddr[0] = tmp & 0xff;
1644 ic->ic_myaddr[1] = tmp >> 8;
1645 ic->ic_myaddr[2] = tmp >> 16;
1646 ic->ic_myaddr[3] = tmp >> 24;
1647 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1648 ic->ic_myaddr[4] = tmp & 0xff;
1649 ic->ic_myaddr[5] = tmp >> 8;
1650
1651 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1652 sc->rf_rev = tmp & 0x0f;
1653 sc->pa_rev = (tmp >> 16) & 0x0f;
1654
1655 /* read regulatory domain (currently unused) */
1656 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1657 sc->regdomain = tmp >> 16;
1658 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1659
1660 /* read Tx power calibration tables */
1661 for (i = 0; i < 7; i++) {
1662 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1663 sc->pwr_cal[i * 2] = val >> 8;
1664 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1665
1666 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1667 sc->pwr_int[i * 2] = val >> 8;
1668 sc->pwr_int[i * 2 + 1] = val & 0xff;
1669
1670 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1671 sc->ofdm36_cal[i * 2] = val >> 8;
1672 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1673
1674 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1675 sc->ofdm48_cal[i * 2] = val >> 8;
1676 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1677
1678 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1679 sc->ofdm54_cal[i * 2] = val >> 8;
1680 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1681 }
1682 return 0;
1683 }
1684
1685 Static int
1686 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1687 {
1688 uint32_t tmp;
1689
1690 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1691 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1692
1693 tmp = addr[5] << 8 | addr[4];
1694 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1695
1696 return 0;
1697 }
1698
1699 Static int
1700 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1701 {
1702 uint32_t tmp;
1703
1704 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1705 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1706
1707 tmp = addr[5] << 8 | addr[4];
1708 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1709
1710 return 0;
1711 }
1712
1713 Static int
1714 zyd_switch_radio(struct zyd_softc *sc, int on)
1715 {
1716 struct zyd_rf *rf = &sc->sc_rf;
1717 int error;
1718
1719 zyd_lock_phy(sc);
1720 error = (*rf->switch_radio)(rf, on);
1721 zyd_unlock_phy(sc);
1722
1723 return error;
1724 }
1725
1726 Static void
1727 zyd_set_led(struct zyd_softc *sc, int which, int on)
1728 {
1729 uint32_t tmp;
1730
1731 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1732 tmp &= ~which;
1733 if (on)
1734 tmp |= which;
1735 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1736 }
1737
1738 Static int
1739 zyd_set_rxfilter(struct zyd_softc *sc)
1740 {
1741 uint32_t rxfilter;
1742
1743 switch (sc->sc_ic.ic_opmode) {
1744 case IEEE80211_M_STA:
1745 rxfilter = ZYD_FILTER_BSS;
1746 break;
1747 case IEEE80211_M_IBSS:
1748 case IEEE80211_M_HOSTAP:
1749 rxfilter = ZYD_FILTER_HOSTAP;
1750 break;
1751 case IEEE80211_M_MONITOR:
1752 rxfilter = ZYD_FILTER_MONITOR;
1753 break;
1754 default:
1755 /* should not get there */
1756 return EINVAL;
1757 }
1758 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1759 }
1760
1761 Static void
1762 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1763 {
1764 struct ieee80211com *ic = &sc->sc_ic;
1765 struct zyd_rf *rf = &sc->sc_rf;
1766 u_int chan;
1767
1768 chan = ieee80211_chan2ieee(ic, c);
1769 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1770 return;
1771
1772 zyd_lock_phy(sc);
1773
1774 (*rf->set_channel)(rf, chan);
1775
1776 /* update Tx power */
1777 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1778 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1779
1780 if (sc->mac_rev == ZYD_ZD1211B) {
1781 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1782 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1783 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1784
1785 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1786 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1787 }
1788
1789 zyd_unlock_phy(sc);
1790 }
1791
1792 Static int
1793 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1794 {
1795 /* XXX this is probably broken.. */
1796 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1797 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1798 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1799
1800 return 0;
1801 }
1802
1803 Static uint8_t
1804 zyd_plcp_signal(int rate)
1805 {
1806 switch (rate) {
1807 /* CCK rates (returned values are device-dependent) */
1808 case 2: return 0x0;
1809 case 4: return 0x1;
1810 case 11: return 0x2;
1811 case 22: return 0x3;
1812
1813 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1814 case 12: return 0xb;
1815 case 18: return 0xf;
1816 case 24: return 0xa;
1817 case 36: return 0xe;
1818 case 48: return 0x9;
1819 case 72: return 0xd;
1820 case 96: return 0x8;
1821 case 108: return 0xc;
1822
1823 /* unsupported rates (should not get there) */
1824 default: return 0xff;
1825 }
1826 }
1827
1828 Static void
1829 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1830 {
1831 struct zyd_softc *sc = (struct zyd_softc *)priv;
1832 struct zyd_cmd *cmd;
1833 uint32_t datalen;
1834
1835 if (status != USBD_NORMAL_COMPLETION) {
1836 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1837 return;
1838
1839 if (status == USBD_STALLED) {
1840 usbd_clear_endpoint_stall_async(
1841 sc->zyd_ep[ZYD_ENDPT_IIN]);
1842 }
1843 return;
1844 }
1845
1846 cmd = (struct zyd_cmd *)sc->ibuf;
1847
1848 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1849 struct zyd_notif_retry *retry =
1850 (struct zyd_notif_retry *)cmd->data;
1851 struct ieee80211com *ic = &sc->sc_ic;
1852 struct ifnet *ifp = &sc->sc_if;
1853 struct ieee80211_node *ni;
1854
1855 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1856 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1857 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1858
1859 /*
1860 * Find the node to which the packet was sent and update its
1861 * retry statistics. In BSS mode, this node is the AP we're
1862 * associated to so no lookup is actually needed.
1863 */
1864 if (ic->ic_opmode != IEEE80211_M_STA) {
1865 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1866 if (ni == NULL)
1867 return; /* just ignore */
1868 } else
1869 ni = ic->ic_bss;
1870
1871 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1872
1873 if (le16toh(retry->count) & 0x100)
1874 ifp->if_oerrors++; /* too many retries */
1875
1876 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1877 struct rq *rqp;
1878
1879 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1880 return; /* HMAC interrupt */
1881
1882 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1883 datalen -= sizeof(cmd->code);
1884 datalen -= 2; /* XXX: padding? */
1885
1886 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1887 int i;
1888
1889 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1890 continue;
1891 for (i = 0; i < rqp->len; i++) {
1892 if (*(((const uint16_t *)rqp->idata) + i) !=
1893 (((struct zyd_pair *)cmd->data) + i)->reg)
1894 break;
1895 }
1896 if (i != rqp->len)
1897 continue;
1898
1899 /* copy answer into caller-supplied buffer */
1900 bcopy(cmd->data, rqp->odata,
1901 sizeof(struct zyd_pair) * rqp->len);
1902 wakeup(rqp->odata); /* wakeup caller */
1903
1904 return;
1905 }
1906 return; /* unexpected IORD notification */
1907 } else {
1908 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1909 le16toh(cmd->code));
1910 }
1911 }
1912
1913 Static void
1914 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1915 {
1916 struct ieee80211com *ic = &sc->sc_ic;
1917 struct ifnet *ifp = &sc->sc_if;
1918 struct ieee80211_node *ni;
1919 struct ieee80211_frame *wh;
1920 const struct zyd_plcphdr *plcp;
1921 const struct zyd_rx_stat *stat;
1922 struct mbuf *m;
1923 int rlen, s;
1924
1925 if (len < ZYD_MIN_FRAGSZ) {
1926 printf("%s: frame too short (length=%d)\n",
1927 device_xname(sc->sc_dev), len);
1928 ifp->if_ierrors++;
1929 return;
1930 }
1931
1932 plcp = (const struct zyd_plcphdr *)buf;
1933 stat = (const struct zyd_rx_stat *)
1934 (buf + len - sizeof (struct zyd_rx_stat));
1935
1936 if (stat->flags & ZYD_RX_ERROR) {
1937 DPRINTF(("%s: RX status indicated error (%x)\n",
1938 device_xname(sc->sc_dev), stat->flags));
1939 ifp->if_ierrors++;
1940 return;
1941 }
1942
1943 /* compute actual frame length */
1944 rlen = len - sizeof (struct zyd_plcphdr) -
1945 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1946
1947 /* allocate a mbuf to store the frame */
1948 MGETHDR(m, M_DONTWAIT, MT_DATA);
1949 if (m == NULL) {
1950 printf("%s: could not allocate rx mbuf\n",
1951 device_xname(sc->sc_dev));
1952 ifp->if_ierrors++;
1953 return;
1954 }
1955 if (rlen > MHLEN) {
1956 MCLGET(m, M_DONTWAIT);
1957 if (!(m->m_flags & M_EXT)) {
1958 printf("%s: could not allocate rx mbuf cluster\n",
1959 device_xname(sc->sc_dev));
1960 m_freem(m);
1961 ifp->if_ierrors++;
1962 return;
1963 }
1964 }
1965 m->m_pkthdr.rcvif = ifp;
1966 m->m_pkthdr.len = m->m_len = rlen;
1967 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1968
1969 s = splnet();
1970
1971 if (sc->sc_drvbpf != NULL) {
1972 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1973 static const uint8_t rates[] = {
1974 /* reverse function of zyd_plcp_signal() */
1975 2, 4, 11, 22, 0, 0, 0, 0,
1976 96, 48, 24, 12, 108, 72, 36, 18
1977 };
1978
1979 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1980 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1981 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1982 tap->wr_rssi = stat->rssi;
1983 tap->wr_rate = rates[plcp->signal & 0xf];
1984
1985 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1986 }
1987
1988 wh = mtod(m, struct ieee80211_frame *);
1989 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1990 ieee80211_input(ic, m, ni, stat->rssi, 0);
1991
1992 /* node is no longer needed */
1993 ieee80211_free_node(ni);
1994
1995 splx(s);
1996 }
1997
1998 Static void
1999 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2000 {
2001 struct zyd_rx_data *data = priv;
2002 struct zyd_softc *sc = data->sc;
2003 struct ifnet *ifp = &sc->sc_if;
2004 const struct zyd_rx_desc *desc;
2005 int len;
2006
2007 if (status != USBD_NORMAL_COMPLETION) {
2008 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2009 return;
2010
2011 if (status == USBD_STALLED)
2012 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2013
2014 goto skip;
2015 }
2016 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2017
2018 if (len < ZYD_MIN_RXBUFSZ) {
2019 printf("%s: xfer too short (length=%d)\n",
2020 device_xname(sc->sc_dev), len);
2021 ifp->if_ierrors++;
2022 goto skip;
2023 }
2024
2025 desc = (const struct zyd_rx_desc *)
2026 (data->buf + len - sizeof (struct zyd_rx_desc));
2027
2028 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2029 const uint8_t *p = data->buf, *end = p + len;
2030 int i;
2031
2032 DPRINTFN(3, ("received multi-frame transfer\n"));
2033
2034 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2035 const uint16_t len16 = UGETW(desc->len[i]);
2036
2037 if (len16 == 0 || p + len16 > end)
2038 break;
2039
2040 zyd_rx_data(sc, p, len16);
2041 /* next frame is aligned on a 32-bit boundary */
2042 p += (len16 + 3) & ~3;
2043 }
2044 } else {
2045 DPRINTFN(3, ("received single-frame transfer\n"));
2046
2047 zyd_rx_data(sc, data->buf, len);
2048 }
2049
2050 skip: /* setup a new transfer */
2051 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2052 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2053 USBD_NO_TIMEOUT, zyd_rxeof);
2054 (void)usbd_transfer(xfer);
2055 }
2056
2057 Static int
2058 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2059 {
2060 struct ieee80211com *ic = &sc->sc_ic;
2061 struct ifnet *ifp = &sc->sc_if;
2062 struct zyd_tx_desc *desc;
2063 struct zyd_tx_data *data;
2064 struct ieee80211_frame *wh;
2065 struct ieee80211_key *k;
2066 int xferlen, totlen, rate;
2067 uint16_t pktlen;
2068 usbd_status error;
2069
2070 data = &sc->tx_data[0];
2071 desc = (struct zyd_tx_desc *)data->buf;
2072
2073 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2074
2075 wh = mtod(m0, struct ieee80211_frame *);
2076
2077 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2078 k = ieee80211_crypto_encap(ic, ni, m0);
2079 if (k == NULL) {
2080 m_freem(m0);
2081 return ENOBUFS;
2082 }
2083 }
2084
2085 data->ni = ni;
2086
2087 wh = mtod(m0, struct ieee80211_frame *);
2088
2089 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2090 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2091
2092 /* fill Tx descriptor */
2093 desc->len = htole16(totlen);
2094
2095 desc->flags = ZYD_TX_FLAG_BACKOFF;
2096 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2097 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2098 if (totlen > ic->ic_rtsthreshold) {
2099 desc->flags |= ZYD_TX_FLAG_RTS;
2100 } else if (ZYD_RATE_IS_OFDM(rate) &&
2101 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2102 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2103 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2104 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2105 desc->flags |= ZYD_TX_FLAG_RTS;
2106 }
2107 } else
2108 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2109
2110 if ((wh->i_fc[0] &
2111 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2112 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2113 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2114
2115 desc->phy = zyd_plcp_signal(rate);
2116 if (ZYD_RATE_IS_OFDM(rate)) {
2117 desc->phy |= ZYD_TX_PHY_OFDM;
2118 if (ic->ic_curmode == IEEE80211_MODE_11A)
2119 desc->phy |= ZYD_TX_PHY_5GHZ;
2120 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2121 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2122
2123 /* actual transmit length (XXX why +10?) */
2124 pktlen = sizeof (struct zyd_tx_desc) + 10;
2125 if (sc->mac_rev == ZYD_ZD1211)
2126 pktlen += totlen;
2127 desc->pktlen = htole16(pktlen);
2128
2129 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2130 desc->plcp_service = 0;
2131 if (rate == 22) {
2132 const int remainder = (16 * totlen) % 22;
2133 if (remainder != 0 && remainder < 7)
2134 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2135 }
2136
2137 if (sc->sc_drvbpf != NULL) {
2138 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2139
2140 tap->wt_flags = 0;
2141 tap->wt_rate = rate;
2142 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2143 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2144
2145 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2146 }
2147
2148 m_copydata(m0, 0, m0->m_pkthdr.len,
2149 data->buf + sizeof (struct zyd_tx_desc));
2150
2151 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2152 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2153
2154 m_freem(m0); /* mbuf no longer needed */
2155
2156 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2157 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2158 ZYD_TX_TIMEOUT, zyd_txeof);
2159 error = usbd_transfer(data->xfer);
2160 if (error != USBD_IN_PROGRESS && error != 0) {
2161 ifp->if_oerrors++;
2162 return EIO;
2163 }
2164 sc->tx_queued++;
2165
2166 return 0;
2167 }
2168
2169 Static void
2170 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2171 {
2172 struct zyd_tx_data *data = priv;
2173 struct zyd_softc *sc = data->sc;
2174 struct ifnet *ifp = &sc->sc_if;
2175 int s;
2176
2177 if (status != USBD_NORMAL_COMPLETION) {
2178 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2179 return;
2180
2181 printf("%s: could not transmit buffer: %s\n",
2182 device_xname(sc->sc_dev), usbd_errstr(status));
2183
2184 if (status == USBD_STALLED) {
2185 usbd_clear_endpoint_stall_async(
2186 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2187 }
2188 ifp->if_oerrors++;
2189 return;
2190 }
2191
2192 s = splnet();
2193
2194 /* update rate control statistics */
2195 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2196
2197 ieee80211_free_node(data->ni);
2198 data->ni = NULL;
2199
2200 sc->tx_queued--;
2201 ifp->if_opackets++;
2202
2203 sc->tx_timer = 0;
2204 ifp->if_flags &= ~IFF_OACTIVE;
2205 zyd_start(ifp);
2206
2207 splx(s);
2208 }
2209
2210 Static int
2211 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2212 {
2213 struct ieee80211com *ic = &sc->sc_ic;
2214 struct ifnet *ifp = &sc->sc_if;
2215 struct zyd_tx_desc *desc;
2216 struct zyd_tx_data *data;
2217 struct ieee80211_frame *wh;
2218 struct ieee80211_key *k;
2219 int xferlen, totlen, rate;
2220 uint16_t pktlen;
2221 usbd_status error;
2222
2223 wh = mtod(m0, struct ieee80211_frame *);
2224
2225 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2226 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2227 else
2228 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2229 rate &= IEEE80211_RATE_VAL;
2230
2231 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2232 k = ieee80211_crypto_encap(ic, ni, m0);
2233 if (k == NULL) {
2234 m_freem(m0);
2235 return ENOBUFS;
2236 }
2237
2238 /* packet header may have moved, reset our local pointer */
2239 wh = mtod(m0, struct ieee80211_frame *);
2240 }
2241
2242 data = &sc->tx_data[0];
2243 desc = (struct zyd_tx_desc *)data->buf;
2244
2245 data->ni = ni;
2246
2247 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2248 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2249
2250 /* fill Tx descriptor */
2251 desc->len = htole16(totlen);
2252
2253 desc->flags = ZYD_TX_FLAG_BACKOFF;
2254 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2255 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2256 if (totlen > ic->ic_rtsthreshold) {
2257 desc->flags |= ZYD_TX_FLAG_RTS;
2258 } else if (ZYD_RATE_IS_OFDM(rate) &&
2259 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2260 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2261 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2262 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2263 desc->flags |= ZYD_TX_FLAG_RTS;
2264 }
2265 } else
2266 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2267
2268 if ((wh->i_fc[0] &
2269 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2270 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2271 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2272
2273 desc->phy = zyd_plcp_signal(rate);
2274 if (ZYD_RATE_IS_OFDM(rate)) {
2275 desc->phy |= ZYD_TX_PHY_OFDM;
2276 if (ic->ic_curmode == IEEE80211_MODE_11A)
2277 desc->phy |= ZYD_TX_PHY_5GHZ;
2278 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2279 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2280
2281 /* actual transmit length (XXX why +10?) */
2282 pktlen = sizeof (struct zyd_tx_desc) + 10;
2283 if (sc->mac_rev == ZYD_ZD1211)
2284 pktlen += totlen;
2285 desc->pktlen = htole16(pktlen);
2286
2287 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2288 desc->plcp_service = 0;
2289 if (rate == 22) {
2290 const int remainder = (16 * totlen) % 22;
2291 if (remainder != 0 && remainder < 7)
2292 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2293 }
2294
2295 if (sc->sc_drvbpf != NULL) {
2296 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2297
2298 tap->wt_flags = 0;
2299 tap->wt_rate = rate;
2300 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2301 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2302
2303 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2304 }
2305
2306 m_copydata(m0, 0, m0->m_pkthdr.len,
2307 data->buf + sizeof (struct zyd_tx_desc));
2308
2309 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2310 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2311
2312 m_freem(m0); /* mbuf no longer needed */
2313
2314 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2315 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2316 ZYD_TX_TIMEOUT, zyd_txeof);
2317 error = usbd_transfer(data->xfer);
2318 if (error != USBD_IN_PROGRESS && error != 0) {
2319 ifp->if_oerrors++;
2320 return EIO;
2321 }
2322 sc->tx_queued++;
2323
2324 return 0;
2325 }
2326
2327 Static void
2328 zyd_start(struct ifnet *ifp)
2329 {
2330 struct zyd_softc *sc = ifp->if_softc;
2331 struct ieee80211com *ic = &sc->sc_ic;
2332 struct ether_header *eh;
2333 struct ieee80211_node *ni;
2334 struct mbuf *m0;
2335
2336 for (;;) {
2337 IF_POLL(&ic->ic_mgtq, m0);
2338 if (m0 != NULL) {
2339 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2340 ifp->if_flags |= IFF_OACTIVE;
2341 break;
2342 }
2343 IF_DEQUEUE(&ic->ic_mgtq, m0);
2344
2345 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2346 m0->m_pkthdr.rcvif = NULL;
2347 bpf_mtap3(ic->ic_rawbpf, m0);
2348 if (zyd_tx_mgt(sc, m0, ni) != 0)
2349 break;
2350 } else {
2351 if (ic->ic_state != IEEE80211_S_RUN)
2352 break;
2353 IFQ_POLL(&ifp->if_snd, m0);
2354 if (m0 == NULL)
2355 break;
2356 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2357 ifp->if_flags |= IFF_OACTIVE;
2358 break;
2359 }
2360 IFQ_DEQUEUE(&ifp->if_snd, m0);
2361
2362 if (m0->m_len < sizeof(struct ether_header) &&
2363 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2364 continue;
2365
2366 eh = mtod(m0, struct ether_header *);
2367 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2368 if (ni == NULL) {
2369 m_freem(m0);
2370 continue;
2371 }
2372 bpf_mtap(ifp, m0);
2373 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2374 ieee80211_free_node(ni);
2375 ifp->if_oerrors++;
2376 continue;
2377 }
2378 bpf_mtap3(ic->ic_rawbpf, m0);
2379 if (zyd_tx_data(sc, m0, ni) != 0) {
2380 ieee80211_free_node(ni);
2381 ifp->if_oerrors++;
2382 break;
2383 }
2384 }
2385
2386 sc->tx_timer = 5;
2387 ifp->if_timer = 1;
2388 }
2389 }
2390
2391 Static void
2392 zyd_watchdog(struct ifnet *ifp)
2393 {
2394 struct zyd_softc *sc = ifp->if_softc;
2395 struct ieee80211com *ic = &sc->sc_ic;
2396
2397 ifp->if_timer = 0;
2398
2399 if (sc->tx_timer > 0) {
2400 if (--sc->tx_timer == 0) {
2401 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2402 /* zyd_init(ifp); XXX needs a process context ? */
2403 ifp->if_oerrors++;
2404 return;
2405 }
2406 ifp->if_timer = 1;
2407 }
2408
2409 ieee80211_watchdog(ic);
2410 }
2411
2412 Static int
2413 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2414 {
2415 struct zyd_softc *sc = ifp->if_softc;
2416 struct ieee80211com *ic = &sc->sc_ic;
2417 int s, error = 0;
2418
2419 s = splnet();
2420
2421 switch (cmd) {
2422 case SIOCSIFFLAGS:
2423 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2424 break;
2425 /* XXX re-use ether_ioctl() */
2426 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2427 case IFF_UP:
2428 zyd_init(ifp);
2429 break;
2430 case IFF_RUNNING:
2431 zyd_stop(ifp, 1);
2432 break;
2433 default:
2434 break;
2435 }
2436 break;
2437
2438 default:
2439 error = ieee80211_ioctl(ic, cmd, data);
2440 }
2441
2442 if (error == ENETRESET) {
2443 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2444 (IFF_RUNNING | IFF_UP))
2445 zyd_init(ifp);
2446 error = 0;
2447 }
2448
2449 splx(s);
2450
2451 return error;
2452 }
2453
2454 Static int
2455 zyd_init(struct ifnet *ifp)
2456 {
2457 struct zyd_softc *sc = ifp->if_softc;
2458 struct ieee80211com *ic = &sc->sc_ic;
2459 int i, error;
2460
2461 zyd_stop(ifp, 0);
2462
2463 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2464 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2465 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2466 if (error != 0)
2467 return error;
2468
2469 /* we'll do software WEP decryption for now */
2470 DPRINTF(("setting encryption type\n"));
2471 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2472 if (error != 0)
2473 return error;
2474
2475 /* promiscuous mode */
2476 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2477 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2478
2479 (void)zyd_set_rxfilter(sc);
2480
2481 /* switch radio transmitter ON */
2482 (void)zyd_switch_radio(sc, 1);
2483
2484 /* set basic rates */
2485 if (ic->ic_curmode == IEEE80211_MODE_11B)
2486 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2487 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2488 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2489 else /* assumes 802.11b/g */
2490 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2491
2492 /* set mandatory rates */
2493 if (ic->ic_curmode == IEEE80211_MODE_11B)
2494 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2495 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2496 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2497 else /* assumes 802.11b/g */
2498 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2499
2500 /* set default BSS channel */
2501 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2502 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2503
2504 /* enable interrupts */
2505 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2506
2507 /*
2508 * Allocate Tx and Rx xfer queues.
2509 */
2510 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2511 printf("%s: could not allocate Tx list\n",
2512 device_xname(sc->sc_dev));
2513 goto fail;
2514 }
2515 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2516 printf("%s: could not allocate Rx list\n",
2517 device_xname(sc->sc_dev));
2518 goto fail;
2519 }
2520
2521 /*
2522 * Start up the receive pipe.
2523 */
2524 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2525 struct zyd_rx_data *data = &sc->rx_data[i];
2526
2527 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2528 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2529 USBD_NO_TIMEOUT, zyd_rxeof);
2530 error = usbd_transfer(data->xfer);
2531 if (error != USBD_IN_PROGRESS && error != 0) {
2532 printf("%s: could not queue Rx transfer\n",
2533 device_xname(sc->sc_dev));
2534 goto fail;
2535 }
2536 }
2537
2538 ifp->if_flags &= ~IFF_OACTIVE;
2539 ifp->if_flags |= IFF_RUNNING;
2540
2541 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2542 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2543 else
2544 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2545
2546 return 0;
2547
2548 fail: zyd_stop(ifp, 1);
2549 return error;
2550 }
2551
2552 Static void
2553 zyd_stop(struct ifnet *ifp, int disable)
2554 {
2555 struct zyd_softc *sc = ifp->if_softc;
2556 struct ieee80211com *ic = &sc->sc_ic;
2557
2558 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2559
2560 sc->tx_timer = 0;
2561 ifp->if_timer = 0;
2562 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2563
2564 /* switch radio transmitter OFF */
2565 (void)zyd_switch_radio(sc, 0);
2566
2567 /* disable Rx */
2568 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2569
2570 /* disable interrupts */
2571 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2572
2573 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2574 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2575
2576 zyd_free_rx_list(sc);
2577 zyd_free_tx_list(sc);
2578 }
2579
2580 Static int
2581 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2582 {
2583 usb_device_request_t req;
2584 uint16_t addr;
2585 uint8_t stat;
2586
2587 DPRINTF(("firmware size=%zu\n", size));
2588
2589 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2590 req.bRequest = ZYD_DOWNLOADREQ;
2591 USETW(req.wIndex, 0);
2592
2593 addr = ZYD_FIRMWARE_START_ADDR;
2594 while (size > 0) {
2595 #if 0
2596 const int mlen = min(size, 4096);
2597 #else
2598 /*
2599 * XXXX: When the transfer size is 4096 bytes, it is not
2600 * likely to be able to transfer it.
2601 * The cause is port or machine or chip?
2602 */
2603 const int mlen = min(size, 64);
2604 #endif
2605
2606 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2607 addr));
2608
2609 USETW(req.wValue, addr);
2610 USETW(req.wLength, mlen);
2611 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2612 return EIO;
2613
2614 addr += mlen / 2;
2615 fw += mlen;
2616 size -= mlen;
2617 }
2618
2619 /* check whether the upload succeeded */
2620 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2621 req.bRequest = ZYD_DOWNLOADSTS;
2622 USETW(req.wValue, 0);
2623 USETW(req.wIndex, 0);
2624 USETW(req.wLength, sizeof stat);
2625 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2626 return EIO;
2627
2628 return (stat & 0x80) ? EIO : 0;
2629 }
2630
2631 Static void
2632 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2633 {
2634 struct zyd_softc *sc = arg;
2635 struct zyd_node *zn = (struct zyd_node *)ni;
2636
2637 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2638 }
2639
2640 Static void
2641 zyd_amrr_timeout(void *arg)
2642 {
2643 struct zyd_softc *sc = arg;
2644 struct ieee80211com *ic = &sc->sc_ic;
2645 int s;
2646
2647 s = splnet();
2648 if (ic->ic_opmode == IEEE80211_M_STA)
2649 zyd_iter_func(sc, ic->ic_bss);
2650 else
2651 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2652 splx(s);
2653
2654 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2655 }
2656
2657 Static void
2658 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2659 {
2660 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2661 int i;
2662
2663 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2664
2665 /* set rate to some reasonable initial value */
2666 for (i = ni->ni_rates.rs_nrates - 1;
2667 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2668 i--);
2669 ni->ni_txrate = i;
2670 }
2671
2672 int
2673 zyd_activate(device_t self, enum devact act)
2674 {
2675 struct zyd_softc *sc = device_private(self);
2676
2677 switch (act) {
2678 case DVACT_DEACTIVATE:
2679 if_deactivate(&sc->sc_if);
2680 return 0;
2681 default:
2682 return EOPNOTSUPP;
2683 }
2684 }
2685