if_zyd.c revision 1.41 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.41 2016/06/10 13:27:15 ozaki-r Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.41 2016/06/10 13:27:15 ozaki-r Exp $");
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/proc.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/kmem.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <sys/bus.h>
41 #include <machine/endian.h>
42
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55
56 #include <net80211/ieee80211_netbsd.h>
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <dev/firmload.h>
62
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdi_util.h>
66 #include <dev/usb/usbdevs.h>
67
68 #include <dev/usb/if_zydreg.h>
69
70 #ifdef ZYD_DEBUG
71 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
72 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
73 int zyddebug = 0;
74 #else
75 #define DPRINTF(x)
76 #define DPRINTFN(n, x)
77 #endif
78
79 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
80 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
81
82 /* various supported device vendors/products */
83 #define ZYD_ZD1211_DEV(v, p) \
84 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
85 #define ZYD_ZD1211B_DEV(v, p) \
86 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
87 static const struct zyd_type {
88 struct usb_devno dev;
89 uint8_t rev;
90 #define ZYD_ZD1211 0
91 #define ZYD_ZD1211B 1
92 } zyd_devs[] = {
93 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
94 ZYD_ZD1211_DEV(ABOCOM, WL54),
95 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
96 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
97 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
98 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
99 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
100 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
101 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
102 ZYD_ZD1211_DEV(SAGEM, XG760A),
103 ZYD_ZD1211_DEV(SENAO, NUB8301),
104 ZYD_ZD1211_DEV(SITECOMEU, WL113),
105 ZYD_ZD1211_DEV(SWEEX, ZD1211),
106 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
107 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
108 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
109 ZYD_ZD1211_DEV(TWINMOS, G240),
110 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
111 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
112 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
113 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
114 ZYD_ZD1211_DEV(ZCOM, ZD1211),
115 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
116 ZYD_ZD1211_DEV(ZYXEL, AG225H),
117 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
118 ZYD_ZD1211_DEV(ZYXEL, G200V2),
119
120 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
121 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
122 ZYD_ZD1211B_DEV(ACCTON, WUS201),
123 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
124 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
125 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
126 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
127 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
128 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
129 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
134 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
135 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
136 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
137 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
138 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
139 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
140 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
141 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
142 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
143 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
144 ZYD_ZD1211B_DEV(USR, USR5423),
145 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
146 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
147 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
148 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
149 ZYD_ZD1211B_DEV(ZYXEL, M202),
150 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
151 };
152 #define zyd_lookup(v, p) \
153 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
154
155 int zyd_match(device_t, cfdata_t, void *);
156 void zyd_attach(device_t, device_t, void *);
157 int zyd_detach(device_t, int);
158 int zyd_activate(device_t, enum devact);
159 extern struct cfdriver zyd_cd;
160
161 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
162 zyd_attach, zyd_detach, zyd_activate);
163
164 Static void zyd_attachhook(device_t);
165 Static int zyd_complete_attach(struct zyd_softc *);
166 Static int zyd_open_pipes(struct zyd_softc *);
167 Static void zyd_close_pipes(struct zyd_softc *);
168 Static int zyd_alloc_tx_list(struct zyd_softc *);
169 Static void zyd_free_tx_list(struct zyd_softc *);
170 Static int zyd_alloc_rx_list(struct zyd_softc *);
171 Static void zyd_free_rx_list(struct zyd_softc *);
172 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
173 Static int zyd_media_change(struct ifnet *);
174 Static void zyd_next_scan(void *);
175 Static void zyd_task(void *);
176 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
177 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
178 void *, int, u_int);
179 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
180 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
181 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
182 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
183 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
184 Static void zyd_lock_phy(struct zyd_softc *);
185 Static void zyd_unlock_phy(struct zyd_softc *);
186 Static int zyd_rfmd_init(struct zyd_rf *);
187 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
188 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
189 Static int zyd_al2230_init(struct zyd_rf *);
190 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
191 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
192 Static int zyd_al2230_init_b(struct zyd_rf *);
193 Static int zyd_al7230B_init(struct zyd_rf *);
194 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2210_init(struct zyd_rf *);
197 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
198 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_gct_init(struct zyd_rf *);
200 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
201 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
202 Static int zyd_maxim_init(struct zyd_rf *);
203 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
204 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
205 Static int zyd_maxim2_init(struct zyd_rf *);
206 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
207 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
208 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
209 Static const char *zyd_rf_name(uint8_t);
210 Static int zyd_hw_init(struct zyd_softc *);
211 Static int zyd_read_eeprom(struct zyd_softc *);
212 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
213 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
214 Static int zyd_switch_radio(struct zyd_softc *, int);
215 Static void zyd_set_led(struct zyd_softc *, int, int);
216 Static int zyd_set_rxfilter(struct zyd_softc *);
217 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
218 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
219 Static uint8_t zyd_plcp_signal(int);
220 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
221 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
222 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
223 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
224 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
225 struct ieee80211_node *);
226 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
227 struct ieee80211_node *);
228 Static void zyd_start(struct ifnet *);
229 Static void zyd_watchdog(struct ifnet *);
230 Static int zyd_ioctl(struct ifnet *, u_long, void *);
231 Static int zyd_init(struct ifnet *);
232 Static void zyd_stop(struct ifnet *, int);
233 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
234 Static void zyd_iter_func(void *, struct ieee80211_node *);
235 Static void zyd_amrr_timeout(void *);
236 Static void zyd_newassoc(struct ieee80211_node *, int);
237
238 static const struct ieee80211_rateset zyd_rateset_11b =
239 { 4, { 2, 4, 11, 22 } };
240
241 static const struct ieee80211_rateset zyd_rateset_11g =
242 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
243
244 int
245 zyd_match(device_t parent, cfdata_t match, void *aux)
246 {
247 struct usb_attach_arg *uaa = aux;
248
249 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
250 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 }
252
253 Static void
254 zyd_attachhook(device_t self)
255 {
256 struct zyd_softc *sc = device_private(self);
257 firmware_handle_t fwh;
258 const char *fwname;
259 u_char *fw;
260 size_t size;
261 int error;
262
263 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
264 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
265 aprint_error_dev(sc->sc_dev,
266 "failed to open firmware %s (error=%d)\n", fwname, error);
267 return;
268 }
269 size = firmware_get_size(fwh);
270 fw = firmware_malloc(size);
271 if (fw == NULL) {
272 aprint_error_dev(sc->sc_dev,
273 "failed to allocate firmware memory\n");
274 firmware_close(fwh);
275 return;
276 }
277 error = firmware_read(fwh, 0, fw, size);
278 firmware_close(fwh);
279 if (error != 0) {
280 aprint_error_dev(sc->sc_dev,
281 "failed to read firmware (error %d)\n", error);
282 firmware_free(fw, size);
283 return;
284 }
285
286 error = zyd_loadfirmware(sc, fw, size);
287 if (error != 0) {
288 aprint_error_dev(sc->sc_dev,
289 "could not load firmware (error=%d)\n", error);
290 firmware_free(fw, size);
291 return;
292 }
293
294 firmware_free(fw, size);
295 sc->sc_flags |= ZD1211_FWLOADED;
296
297 /* complete the attach process */
298 if ((error = zyd_complete_attach(sc)) == 0)
299 sc->attached = 1;
300 return;
301 }
302
303 void
304 zyd_attach(device_t parent, device_t self, void *aux)
305 {
306 struct zyd_softc *sc = device_private(self);
307 struct usb_attach_arg *uaa = aux;
308 char *devinfop;
309 usb_device_descriptor_t* ddesc;
310 struct ifnet *ifp = &sc->sc_if;
311
312 sc->sc_dev = self;
313 sc->sc_udev = uaa->uaa_device;
314 sc->sc_flags = 0;
315
316 aprint_naive("\n");
317 aprint_normal("\n");
318
319 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
320 aprint_normal_dev(self, "%s\n", devinfop);
321 usbd_devinfo_free(devinfop);
322
323 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
324
325 ddesc = usbd_get_device_descriptor(sc->sc_udev);
326 if (UGETW(ddesc->bcdDevice) < 0x4330) {
327 aprint_error_dev(self, "device version mismatch: 0x%x "
328 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
329 return;
330 }
331
332 ifp->if_softc = sc;
333 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 ifp->if_init = zyd_init;
335 ifp->if_ioctl = zyd_ioctl;
336 ifp->if_start = zyd_start;
337 ifp->if_watchdog = zyd_watchdog;
338 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
339 IFQ_SET_READY(&ifp->if_snd);
340 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
341
342 SIMPLEQ_INIT(&sc->sc_rqh);
343
344 /* defer configrations after file system is ready to load firmware */
345 config_mountroot(self, zyd_attachhook);
346 }
347
348 Static int
349 zyd_complete_attach(struct zyd_softc *sc)
350 {
351 struct ieee80211com *ic = &sc->sc_ic;
352 struct ifnet *ifp = &sc->sc_if;
353 usbd_status error;
354 int i;
355
356 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
357 callout_init(&(sc->sc_scan_ch), 0);
358
359 sc->amrr.amrr_min_success_threshold = 1;
360 sc->amrr.amrr_max_success_threshold = 10;
361 callout_init(&sc->sc_amrr_ch, 0);
362
363 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
364 if (error != 0) {
365 aprint_error_dev(sc->sc_dev, "failed to set configuration"
366 ", err=%s\n", usbd_errstr(error));
367 goto fail;
368 }
369
370 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
371 &sc->sc_iface);
372 if (error != 0) {
373 aprint_error_dev(sc->sc_dev,
374 "getting interface handle failed\n");
375 goto fail;
376 }
377
378 if ((error = zyd_open_pipes(sc)) != 0) {
379 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
380 goto fail;
381 }
382
383 if ((error = zyd_read_eeprom(sc)) != 0) {
384 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
385 goto fail;
386 }
387
388 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
389 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
390 goto fail;
391 }
392
393 if ((error = zyd_hw_init(sc)) != 0) {
394 aprint_error_dev(sc->sc_dev,
395 "hardware initialization failed\n");
396 goto fail;
397 }
398
399 aprint_normal_dev(sc->sc_dev,
400 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
401 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
402 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
403 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
404
405 ic->ic_ifp = ifp;
406 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
407 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
408 ic->ic_state = IEEE80211_S_INIT;
409
410 /* set device capabilities */
411 ic->ic_caps =
412 IEEE80211_C_MONITOR | /* monitor mode supported */
413 IEEE80211_C_TXPMGT | /* tx power management */
414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
415 IEEE80211_C_WEP; /* s/w WEP */
416
417 /* set supported .11b and .11g rates */
418 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
419 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
420
421 /* set supported .11b and .11g channels (1 through 14) */
422 for (i = 1; i <= 14; i++) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
425 ic->ic_channels[i].ic_flags =
426 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
427 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
428 }
429
430 if_attach(ifp);
431 ieee80211_ifattach(ic);
432 ic->ic_node_alloc = zyd_node_alloc;
433 ic->ic_newassoc = zyd_newassoc;
434
435 /* override state transition machine */
436 sc->sc_newstate = ic->ic_newstate;
437 ic->ic_newstate = zyd_newstate;
438 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
439
440 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
441 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
442 &sc->sc_drvbpf);
443
444 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
445 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
446 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
447
448 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
449 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
450 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
451
452 ieee80211_announce(ic);
453
454 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
455
456 fail: return error;
457 }
458
459 int
460 zyd_detach(device_t self, int flags)
461 {
462 struct zyd_softc *sc = device_private(self);
463 struct ieee80211com *ic = &sc->sc_ic;
464 struct ifnet *ifp = &sc->sc_if;
465 int s;
466
467 if (!sc->attached)
468 return 0;
469
470 s = splusb();
471
472 zyd_stop(ifp, 1);
473 usb_rem_task(sc->sc_udev, &sc->sc_task);
474 callout_stop(&sc->sc_scan_ch);
475 callout_stop(&sc->sc_amrr_ch);
476
477 /* Abort, etc. done by zyd_stop */
478 zyd_close_pipes(sc);
479
480 sc->attached = 0;
481
482 bpf_detach(ifp);
483 ieee80211_ifdetach(ic);
484 if_detach(ifp);
485
486 splx(s);
487
488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
489 sc->sc_dev);
490
491 return 0;
492 }
493
494 Static int
495 zyd_open_pipes(struct zyd_softc *sc)
496 {
497 usb_endpoint_descriptor_t *edesc;
498 usbd_status error;
499
500 /* interrupt in */
501 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
502 if (edesc == NULL)
503 return EINVAL;
504
505 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
506 if (sc->ibuf_size == 0) /* should not happen */
507 return EINVAL;
508
509 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
510 if (sc->ibuf == NULL)
511 return ENOMEM;
512
513 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
514 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
515 USBD_DEFAULT_INTERVAL);
516 if (error != 0) {
517 printf("%s: open rx intr pipe failed: %s\n",
518 device_xname(sc->sc_dev), usbd_errstr(error));
519 goto fail;
520 }
521
522 /* interrupt out (not necessarily an interrupt pipe) */
523 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
524 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
525 if (error != 0) {
526 printf("%s: open tx intr pipe failed: %s\n",
527 device_xname(sc->sc_dev), usbd_errstr(error));
528 goto fail;
529 }
530
531 /* bulk in */
532 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
533 &sc->zyd_ep[ZYD_ENDPT_BIN]);
534 if (error != 0) {
535 printf("%s: open rx pipe failed: %s\n",
536 device_xname(sc->sc_dev), usbd_errstr(error));
537 goto fail;
538 }
539
540 /* bulk out */
541 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
542 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
543 if (error != 0) {
544 printf("%s: open tx pipe failed: %s\n",
545 device_xname(sc->sc_dev), usbd_errstr(error));
546 goto fail;
547 }
548
549 return 0;
550
551 fail: zyd_close_pipes(sc);
552 return error;
553 }
554
555 Static void
556 zyd_close_pipes(struct zyd_softc *sc)
557 {
558 int i;
559
560 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
561 if (sc->zyd_ep[i] != NULL) {
562 usbd_close_pipe(sc->zyd_ep[i]);
563 sc->zyd_ep[i] = NULL;
564 }
565 }
566 if (sc->ibuf != NULL) {
567 kmem_free(sc->ibuf, sc->ibuf_size);
568 sc->ibuf = NULL;
569 }
570 }
571
572 Static int
573 zyd_alloc_tx_list(struct zyd_softc *sc)
574 {
575 int i, error;
576
577 sc->tx_queued = 0;
578
579 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
580 struct zyd_tx_data *data = &sc->tx_data[i];
581
582 data->sc = sc; /* backpointer for callbacks */
583
584 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
585 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
586 if (error) {
587 printf("%s: could not allocate tx xfer\n",
588 device_xname(sc->sc_dev));
589 goto fail;
590 }
591 data->buf = usbd_get_buffer(data->xfer);
592
593 /* clear Tx descriptor */
594 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
595 }
596 return 0;
597
598 fail: zyd_free_tx_list(sc);
599 return error;
600 }
601
602 Static void
603 zyd_free_tx_list(struct zyd_softc *sc)
604 {
605 int i;
606
607 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
608 struct zyd_tx_data *data = &sc->tx_data[i];
609
610 if (data->xfer != NULL) {
611 usbd_destroy_xfer(data->xfer);
612 data->xfer = NULL;
613 }
614 if (data->ni != NULL) {
615 ieee80211_free_node(data->ni);
616 data->ni = NULL;
617 }
618 }
619 }
620
621 Static int
622 zyd_alloc_rx_list(struct zyd_softc *sc)
623 {
624 int i, error;
625
626 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
627 struct zyd_rx_data *data = &sc->rx_data[i];
628
629 data->sc = sc; /* backpointer for callbacks */
630
631 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
632 ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
633 if (error) {
634 printf("%s: could not allocate rx xfer\n",
635 device_xname(sc->sc_dev));
636 goto fail;
637 }
638 data->buf = usbd_get_buffer(data->xfer);
639 }
640 return 0;
641
642 fail: zyd_free_rx_list(sc);
643 return error;
644 }
645
646 Static void
647 zyd_free_rx_list(struct zyd_softc *sc)
648 {
649 int i;
650
651 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
652 struct zyd_rx_data *data = &sc->rx_data[i];
653
654 if (data->xfer != NULL) {
655 usbd_destroy_xfer(data->xfer);
656 data->xfer = NULL;
657 }
658 }
659 }
660
661 /* ARGUSED */
662 Static struct ieee80211_node *
663 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
664 {
665 struct zyd_node *zn;
666
667 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
668
669 return &zn->ni;
670 }
671
672 Static int
673 zyd_media_change(struct ifnet *ifp)
674 {
675 int error;
676
677 error = ieee80211_media_change(ifp);
678 if (error != ENETRESET)
679 return error;
680
681 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
682 zyd_init(ifp);
683
684 return 0;
685 }
686
687 /*
688 * This function is called periodically (every 200ms) during scanning to
689 * switch from one channel to another.
690 */
691 Static void
692 zyd_next_scan(void *arg)
693 {
694 struct zyd_softc *sc = arg;
695 struct ieee80211com *ic = &sc->sc_ic;
696
697 if (ic->ic_state == IEEE80211_S_SCAN)
698 ieee80211_next_scan(ic);
699 }
700
701 Static void
702 zyd_task(void *arg)
703 {
704 struct zyd_softc *sc = arg;
705 struct ieee80211com *ic = &sc->sc_ic;
706 enum ieee80211_state ostate;
707
708 ostate = ic->ic_state;
709
710 switch (sc->sc_state) {
711 case IEEE80211_S_INIT:
712 if (ostate == IEEE80211_S_RUN) {
713 /* turn link LED off */
714 zyd_set_led(sc, ZYD_LED1, 0);
715
716 /* stop data LED from blinking */
717 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
718 }
719 break;
720
721 case IEEE80211_S_SCAN:
722 zyd_set_chan(sc, ic->ic_curchan);
723 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
724 break;
725
726 case IEEE80211_S_AUTH:
727 case IEEE80211_S_ASSOC:
728 zyd_set_chan(sc, ic->ic_curchan);
729 break;
730
731 case IEEE80211_S_RUN:
732 {
733 struct ieee80211_node *ni = ic->ic_bss;
734
735 zyd_set_chan(sc, ic->ic_curchan);
736
737 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
738 /* turn link LED on */
739 zyd_set_led(sc, ZYD_LED1, 1);
740
741 /* make data LED blink upon Tx */
742 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
743
744 zyd_set_bssid(sc, ni->ni_bssid);
745 }
746
747 if (ic->ic_opmode == IEEE80211_M_STA) {
748 /* fake a join to init the tx rate */
749 zyd_newassoc(ni, 1);
750 }
751
752 /* start automatic rate control timer */
753 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
754 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
755
756 break;
757 }
758 }
759
760 sc->sc_newstate(ic, sc->sc_state, -1);
761 }
762
763 Static int
764 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
765 {
766 struct zyd_softc *sc = ic->ic_ifp->if_softc;
767
768 if (!sc->attached)
769 return ENXIO;
770
771 usb_rem_task(sc->sc_udev, &sc->sc_task);
772 callout_stop(&sc->sc_scan_ch);
773 callout_stop(&sc->sc_amrr_ch);
774
775 /* do it in a process context */
776 sc->sc_state = nstate;
777 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
778
779 return 0;
780 }
781
782 Static int
783 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
784 void *odata, int olen, u_int flags)
785 {
786 struct usbd_xfer *xfer;
787 struct zyd_cmd cmd;
788 struct rq rq;
789 uint16_t xferflags;
790 int error;
791 usbd_status uerror;
792 int s = 0;
793
794 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
795 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
796 if (error)
797 return error;
798
799 cmd.code = htole16(code);
800 memcpy(cmd.data, idata, ilen);
801
802 xferflags = USBD_FORCE_SHORT_XFER;
803 if (!(flags & ZYD_CMD_FLAG_READ))
804 xferflags |= USBD_SYNCHRONOUS;
805 else {
806 s = splusb();
807 rq.idata = idata;
808 rq.odata = odata;
809 rq.len = olen / sizeof(struct zyd_pair);
810 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
811 }
812
813 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
814 ZYD_INTR_TIMEOUT, NULL);
815 uerror = usbd_transfer(xfer);
816 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
817 if (flags & ZYD_CMD_FLAG_READ)
818 splx(s);
819 printf("%s: could not send command (error=%s)\n",
820 device_xname(sc->sc_dev), usbd_errstr(uerror));
821 (void)usbd_destroy_xfer(xfer);
822 return EIO;
823 }
824 if (!(flags & ZYD_CMD_FLAG_READ)) {
825 (void)usbd_destroy_xfer(xfer);
826 return 0; /* write: don't wait for reply */
827 }
828 /* wait at most one second for command reply */
829 error = tsleep(odata, PCATCH, "zydcmd", hz);
830 if (error == EWOULDBLOCK)
831 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
832 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
833 splx(s);
834
835 (void)usbd_destroy_xfer(xfer);
836 return error;
837 }
838
839 Static int
840 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
841 {
842 struct zyd_pair tmp;
843 int error;
844
845 reg = htole16(reg);
846 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
847 ZYD_CMD_FLAG_READ);
848 if (error == 0)
849 *val = le16toh(tmp.val);
850 else
851 *val = 0;
852 return error;
853 }
854
855 Static int
856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
857 {
858 struct zyd_pair tmp[2];
859 uint16_t regs[2];
860 int error;
861
862 regs[0] = htole16(ZYD_REG32_HI(reg));
863 regs[1] = htole16(ZYD_REG32_LO(reg));
864 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
865 ZYD_CMD_FLAG_READ);
866 if (error == 0)
867 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
868 else
869 *val = 0;
870 return error;
871 }
872
873 Static int
874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
875 {
876 struct zyd_pair pair;
877
878 pair.reg = htole16(reg);
879 pair.val = htole16(val);
880
881 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
882 }
883
884 Static int
885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
886 {
887 struct zyd_pair pair[2];
888
889 pair[0].reg = htole16(ZYD_REG32_HI(reg));
890 pair[0].val = htole16(val >> 16);
891 pair[1].reg = htole16(ZYD_REG32_LO(reg));
892 pair[1].val = htole16(val & 0xffff);
893
894 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
895 }
896
897 Static int
898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
899 {
900 struct zyd_rf *rf = &sc->sc_rf;
901 struct zyd_rfwrite req;
902 uint16_t cr203;
903 int i;
904
905 (void)zyd_read16(sc, ZYD_CR203, &cr203);
906 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
907
908 req.code = htole16(2);
909 req.width = htole16(rf->width);
910 for (i = 0; i < rf->width; i++) {
911 req.bit[i] = htole16(cr203);
912 if (val & (1 << (rf->width - 1 - i)))
913 req.bit[i] |= htole16(ZYD_RF_DATA);
914 }
915 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
916 }
917
918 Static void
919 zyd_lock_phy(struct zyd_softc *sc)
920 {
921 uint32_t tmp;
922
923 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
924 tmp &= ~ZYD_UNLOCK_PHY_REGS;
925 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
926 }
927
928 Static void
929 zyd_unlock_phy(struct zyd_softc *sc)
930 {
931 uint32_t tmp;
932
933 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
934 tmp |= ZYD_UNLOCK_PHY_REGS;
935 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
936 }
937
938 /*
939 * RFMD RF methods.
940 */
941 Static int
942 zyd_rfmd_init(struct zyd_rf *rf)
943 {
944 struct zyd_softc *sc = rf->rf_sc;
945 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
946 static const uint32_t rfini[] = ZYD_RFMD_RF;
947 int error;
948 size_t i;
949
950 /* init RF-dependent PHY registers */
951 for (i = 0; i < __arraycount(phyini); i++) {
952 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
953 if (error != 0)
954 return error;
955 }
956
957 /* init RFMD radio */
958 for (i = 0; i < __arraycount(rfini); i++) {
959 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
960 return error;
961 }
962 return 0;
963 }
964
965 Static int
966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
967 {
968 struct zyd_softc *sc = rf->rf_sc;
969
970 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
971 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
972
973 return 0;
974 }
975
976 Static int
977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
978 {
979 struct zyd_softc *sc = rf->rf_sc;
980 static const struct {
981 uint32_t r1, r2;
982 } rfprog[] = ZYD_RFMD_CHANTABLE;
983
984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
986
987 return 0;
988 }
989
990 /*
991 * AL2230 RF methods.
992 */
993 Static int
994 zyd_al2230_init(struct zyd_rf *rf)
995 {
996 struct zyd_softc *sc = rf->rf_sc;
997 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
999 static const uint32_t rfini[] = ZYD_AL2230_RF;
1000 int error;
1001 size_t i;
1002
1003 /* init RF-dependent PHY registers */
1004 for (i = 0; i < __arraycount(phyini); i++) {
1005 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1006 if (error != 0)
1007 return error;
1008 }
1009
1010 if (sc->rf_rev == ZYD_RF_AL2230S) {
1011 for (i = 0; i < __arraycount(phy2230s); i++) {
1012 error = zyd_write16(sc, phy2230s[i].reg,
1013 phy2230s[i].val);
1014 if (error != 0)
1015 return error;
1016 }
1017 }
1018
1019 /* init AL2230 radio */
1020 for (i = 0; i < __arraycount(rfini); i++) {
1021 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1022 return error;
1023 }
1024 return 0;
1025 }
1026
1027 Static int
1028 zyd_al2230_init_b(struct zyd_rf *rf)
1029 {
1030 struct zyd_softc *sc = rf->rf_sc;
1031 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1032 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1033 int error;
1034 size_t i;
1035
1036 /* init RF-dependent PHY registers */
1037 for (i = 0; i < __arraycount(phyini); i++) {
1038 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1039 if (error != 0)
1040 return error;
1041 }
1042
1043 /* init AL2230 radio */
1044 for (i = 0; i < __arraycount(rfini); i++) {
1045 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1046 return error;
1047 }
1048 return 0;
1049 }
1050
1051 Static int
1052 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1053 {
1054 struct zyd_softc *sc = rf->rf_sc;
1055 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1056
1057 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1058 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1059
1060 return 0;
1061 }
1062
1063 Static int
1064 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1065 {
1066 struct zyd_softc *sc = rf->rf_sc;
1067 static const struct {
1068 uint32_t r1, r2, r3;
1069 } rfprog[] = ZYD_AL2230_CHANTABLE;
1070
1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1073 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1074
1075 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1076 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * AL7230B RF methods.
1083 */
1084 Static int
1085 zyd_al7230B_init(struct zyd_rf *rf)
1086 {
1087 struct zyd_softc *sc = rf->rf_sc;
1088 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1089 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1090 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1091 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1092 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1093 int error;
1094 size_t i;
1095
1096 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1097
1098 /* init RF-dependent PHY registers, part one */
1099 for (i = 0; i < __arraycount(phyini_1); i++) {
1100 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1101 if (error != 0)
1102 return error;
1103 }
1104 /* init AL7230B radio, part one */
1105 for (i = 0; i < __arraycount(rfini_1); i++) {
1106 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1107 return error;
1108 }
1109 /* init RF-dependent PHY registers, part two */
1110 for (i = 0; i < __arraycount(phyini_2); i++) {
1111 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1112 if (error != 0)
1113 return error;
1114 }
1115 /* init AL7230B radio, part two */
1116 for (i = 0; i < __arraycount(rfini_2); i++) {
1117 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1118 return error;
1119 }
1120 /* init RF-dependent PHY registers, part three */
1121 for (i = 0; i < __arraycount(phyini_3); i++) {
1122 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1123 if (error != 0)
1124 return error;
1125 }
1126
1127 return 0;
1128 }
1129
1130 Static int
1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1132 {
1133 struct zyd_softc *sc = rf->rf_sc;
1134
1135 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1136 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1137
1138 return 0;
1139 }
1140
1141 Static int
1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1143 {
1144 struct zyd_softc *sc = rf->rf_sc;
1145 static const struct {
1146 uint32_t r1, r2;
1147 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1148 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1149 int error;
1150 size_t i;
1151
1152 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1153 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1154
1155 for (i = 0; i < __arraycount(rfsc); i++) {
1156 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1157 return error;
1158 }
1159
1160 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1161 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1162 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1163 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1164 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1165
1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1168 (void)zyd_rfwrite(sc, 0x3c9000);
1169
1170 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1171 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1172 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * AL2210 RF methods.
1179 */
1180 Static int
1181 zyd_al2210_init(struct zyd_rf *rf)
1182 {
1183 struct zyd_softc *sc = rf->rf_sc;
1184 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1185 static const uint32_t rfini[] = ZYD_AL2210_RF;
1186 uint32_t tmp;
1187 int error;
1188 size_t i;
1189
1190 (void)zyd_write32(sc, ZYD_CR18, 2);
1191
1192 /* init RF-dependent PHY registers */
1193 for (i = 0; i < __arraycount(phyini); i++) {
1194 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1195 if (error != 0)
1196 return error;
1197 }
1198 /* init AL2210 radio */
1199 for (i = 0; i < __arraycount(rfini); i++) {
1200 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1201 return error;
1202 }
1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1209 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1210 (void)zyd_write32(sc, ZYD_CR18, 3);
1211
1212 return 0;
1213 }
1214
1215 Static int
1216 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1217 {
1218 /* vendor driver does nothing for this RF chip */
1219
1220 return 0;
1221 }
1222
1223 Static int
1224 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1225 {
1226 struct zyd_softc *sc = rf->rf_sc;
1227 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1228 uint32_t tmp;
1229
1230 (void)zyd_write32(sc, ZYD_CR18, 2);
1231 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1232 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1233 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1234 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1235 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1236
1237 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1238 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1239
1240 /* actually set the channel */
1241 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1242
1243 (void)zyd_write32(sc, ZYD_CR18, 3);
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * GCT RF methods.
1250 */
1251 Static int
1252 zyd_gct_init(struct zyd_rf *rf)
1253 {
1254 struct zyd_softc *sc = rf->rf_sc;
1255 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1256 static const uint32_t rfini[] = ZYD_GCT_RF;
1257 int error;
1258 size_t i;
1259
1260 /* init RF-dependent PHY registers */
1261 for (i = 0; i < __arraycount(phyini); i++) {
1262 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1263 if (error != 0)
1264 return error;
1265 }
1266 /* init cgt radio */
1267 for (i = 0; i < __arraycount(rfini); i++) {
1268 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1269 return error;
1270 }
1271 return 0;
1272 }
1273
1274 Static int
1275 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1276 {
1277 /* vendor driver does nothing for this RF chip */
1278
1279 return 0;
1280 }
1281
1282 Static int
1283 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1284 {
1285 struct zyd_softc *sc = rf->rf_sc;
1286 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1287
1288 (void)zyd_rfwrite(sc, 0x1c0000);
1289 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1290 (void)zyd_rfwrite(sc, 0x1c0008);
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Maxim RF methods.
1297 */
1298 Static int
1299 zyd_maxim_init(struct zyd_rf *rf)
1300 {
1301 struct zyd_softc *sc = rf->rf_sc;
1302 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1303 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1304 uint16_t tmp;
1305 int error;
1306 size_t i;
1307
1308 /* init RF-dependent PHY registers */
1309 for (i = 0; i < __arraycount(phyini); i++) {
1310 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1311 if (error != 0)
1312 return error;
1313 }
1314 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1315 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1316
1317 /* init maxim radio */
1318 for (i = 0; i < __arraycount(rfini); i++) {
1319 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1320 return error;
1321 }
1322 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1323 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1324
1325 return 0;
1326 }
1327
1328 Static int
1329 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1330 {
1331 /* vendor driver does nothing for this RF chip */
1332
1333 return 0;
1334 }
1335
1336 Static int
1337 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1338 {
1339 struct zyd_softc *sc = rf->rf_sc;
1340 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1341 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1342 static const struct {
1343 uint32_t r1, r2;
1344 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1345 uint16_t tmp;
1346 int error;
1347 size_t i;
1348
1349 /*
1350 * Do the same as we do when initializing it, except for the channel
1351 * values coming from the two channel tables.
1352 */
1353
1354 /* init RF-dependent PHY registers */
1355 for (i = 0; i < __arraycount(phyini); i++) {
1356 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1357 if (error != 0)
1358 return error;
1359 }
1360 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1361 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1362
1363 /* first two values taken from the chantables */
1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1366
1367 /* init maxim radio - skipping the two first values */
1368 for (i = 2; i < __arraycount(rfini); i++) {
1369 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1370 return error;
1371 }
1372 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1373 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1374
1375 return 0;
1376 }
1377
1378 /*
1379 * Maxim2 RF methods.
1380 */
1381 Static int
1382 zyd_maxim2_init(struct zyd_rf *rf)
1383 {
1384 struct zyd_softc *sc = rf->rf_sc;
1385 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1386 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1387 uint16_t tmp;
1388 int error;
1389 size_t i;
1390
1391 /* init RF-dependent PHY registers */
1392 for (i = 0; i < __arraycount(phyini); i++) {
1393 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1394 if (error != 0)
1395 return error;
1396 }
1397 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1398 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1399
1400 /* init maxim2 radio */
1401 for (i = 0; i < __arraycount(rfini); i++) {
1402 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1403 return error;
1404 }
1405 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1406 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1407
1408 return 0;
1409 }
1410
1411 Static int
1412 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1413 {
1414 /* vendor driver does nothing for this RF chip */
1415
1416 return 0;
1417 }
1418
1419 Static int
1420 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1421 {
1422 struct zyd_softc *sc = rf->rf_sc;
1423 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1424 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1425 static const struct {
1426 uint32_t r1, r2;
1427 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1428 uint16_t tmp;
1429 int error;
1430 size_t i;
1431
1432 /*
1433 * Do the same as we do when initializing it, except for the channel
1434 * values coming from the two channel tables.
1435 */
1436
1437 /* init RF-dependent PHY registers */
1438 for (i = 0; i < __arraycount(phyini); i++) {
1439 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1440 if (error != 0)
1441 return error;
1442 }
1443 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1444 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1445
1446 /* first two values taken from the chantables */
1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1448 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1449
1450 /* init maxim2 radio - skipping the two first values */
1451 for (i = 2; i < __arraycount(rfini); i++) {
1452 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1453 return error;
1454 }
1455 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1456 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1457
1458 return 0;
1459 }
1460
1461 Static int
1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1463 {
1464 struct zyd_rf *rf = &sc->sc_rf;
1465
1466 rf->rf_sc = sc;
1467
1468 switch (type) {
1469 case ZYD_RF_RFMD:
1470 rf->init = zyd_rfmd_init;
1471 rf->switch_radio = zyd_rfmd_switch_radio;
1472 rf->set_channel = zyd_rfmd_set_channel;
1473 rf->width = 24; /* 24-bit RF values */
1474 break;
1475 case ZYD_RF_AL2230:
1476 case ZYD_RF_AL2230S:
1477 if (sc->mac_rev == ZYD_ZD1211B)
1478 rf->init = zyd_al2230_init_b;
1479 else
1480 rf->init = zyd_al2230_init;
1481 rf->switch_radio = zyd_al2230_switch_radio;
1482 rf->set_channel = zyd_al2230_set_channel;
1483 rf->width = 24; /* 24-bit RF values */
1484 break;
1485 case ZYD_RF_AL7230B:
1486 rf->init = zyd_al7230B_init;
1487 rf->switch_radio = zyd_al7230B_switch_radio;
1488 rf->set_channel = zyd_al7230B_set_channel;
1489 rf->width = 24; /* 24-bit RF values */
1490 break;
1491 case ZYD_RF_AL2210:
1492 rf->init = zyd_al2210_init;
1493 rf->switch_radio = zyd_al2210_switch_radio;
1494 rf->set_channel = zyd_al2210_set_channel;
1495 rf->width = 24; /* 24-bit RF values */
1496 break;
1497 case ZYD_RF_GCT:
1498 rf->init = zyd_gct_init;
1499 rf->switch_radio = zyd_gct_switch_radio;
1500 rf->set_channel = zyd_gct_set_channel;
1501 rf->width = 21; /* 21-bit RF values */
1502 break;
1503 case ZYD_RF_MAXIM_NEW:
1504 rf->init = zyd_maxim_init;
1505 rf->switch_radio = zyd_maxim_switch_radio;
1506 rf->set_channel = zyd_maxim_set_channel;
1507 rf->width = 18; /* 18-bit RF values */
1508 break;
1509 case ZYD_RF_MAXIM_NEW2:
1510 rf->init = zyd_maxim2_init;
1511 rf->switch_radio = zyd_maxim2_switch_radio;
1512 rf->set_channel = zyd_maxim2_set_channel;
1513 rf->width = 18; /* 18-bit RF values */
1514 break;
1515 default:
1516 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1517 device_xname(sc->sc_dev), zyd_rf_name(type));
1518 return EINVAL;
1519 }
1520 return 0;
1521 }
1522
1523 Static const char *
1524 zyd_rf_name(uint8_t type)
1525 {
1526 static const char * const zyd_rfs[] = {
1527 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1528 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1529 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1530 "PHILIPS"
1531 };
1532
1533 return zyd_rfs[(type > 15) ? 0 : type];
1534 }
1535
1536 Static int
1537 zyd_hw_init(struct zyd_softc *sc)
1538 {
1539 struct zyd_rf *rf = &sc->sc_rf;
1540 const struct zyd_phy_pair *phyp;
1541 int error;
1542
1543 /* specify that the plug and play is finished */
1544 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1545
1546 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1547 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1548
1549 /* retrieve firmware revision number */
1550 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1551
1552 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1553 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1554
1555 /* disable interrupts */
1556 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1557
1558 /* PHY init */
1559 zyd_lock_phy(sc);
1560 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1561 for (; phyp->reg != 0; phyp++) {
1562 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1563 goto fail;
1564 }
1565 zyd_unlock_phy(sc);
1566
1567 /* HMAC init */
1568 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1569 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1570
1571 if (sc->mac_rev == ZYD_ZD1211) {
1572 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1573 } else {
1574 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1580 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1581 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1582 }
1583
1584 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1587 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1588 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1589 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1590 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1591 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1593 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1594 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1595 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1596 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1597 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1598 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1599 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1600 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1601
1602 /* RF chip init */
1603 zyd_lock_phy(sc);
1604 error = (*rf->init)(rf);
1605 zyd_unlock_phy(sc);
1606 if (error != 0) {
1607 printf("%s: radio initialization failed\n",
1608 device_xname(sc->sc_dev));
1609 goto fail;
1610 }
1611
1612 /* init beacon interval to 100ms */
1613 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1614 goto fail;
1615
1616 fail: return error;
1617 }
1618
1619 Static int
1620 zyd_read_eeprom(struct zyd_softc *sc)
1621 {
1622 struct ieee80211com *ic = &sc->sc_ic;
1623 uint32_t tmp;
1624 uint16_t val;
1625 int i;
1626
1627 /* read MAC address */
1628 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1629 ic->ic_myaddr[0] = tmp & 0xff;
1630 ic->ic_myaddr[1] = tmp >> 8;
1631 ic->ic_myaddr[2] = tmp >> 16;
1632 ic->ic_myaddr[3] = tmp >> 24;
1633 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1634 ic->ic_myaddr[4] = tmp & 0xff;
1635 ic->ic_myaddr[5] = tmp >> 8;
1636
1637 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1638 sc->rf_rev = tmp & 0x0f;
1639 sc->pa_rev = (tmp >> 16) & 0x0f;
1640
1641 /* read regulatory domain (currently unused) */
1642 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1643 sc->regdomain = tmp >> 16;
1644 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1645
1646 /* read Tx power calibration tables */
1647 for (i = 0; i < 7; i++) {
1648 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1649 sc->pwr_cal[i * 2] = val >> 8;
1650 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1651
1652 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1653 sc->pwr_int[i * 2] = val >> 8;
1654 sc->pwr_int[i * 2 + 1] = val & 0xff;
1655
1656 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1657 sc->ofdm36_cal[i * 2] = val >> 8;
1658 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1659
1660 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1661 sc->ofdm48_cal[i * 2] = val >> 8;
1662 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1663
1664 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1665 sc->ofdm54_cal[i * 2] = val >> 8;
1666 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1667 }
1668 return 0;
1669 }
1670
1671 Static int
1672 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1673 {
1674 uint32_t tmp;
1675
1676 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1677 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1678
1679 tmp = addr[5] << 8 | addr[4];
1680 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1681
1682 return 0;
1683 }
1684
1685 Static int
1686 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1687 {
1688 uint32_t tmp;
1689
1690 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1691 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1692
1693 tmp = addr[5] << 8 | addr[4];
1694 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1695
1696 return 0;
1697 }
1698
1699 Static int
1700 zyd_switch_radio(struct zyd_softc *sc, int on)
1701 {
1702 struct zyd_rf *rf = &sc->sc_rf;
1703 int error;
1704
1705 zyd_lock_phy(sc);
1706 error = (*rf->switch_radio)(rf, on);
1707 zyd_unlock_phy(sc);
1708
1709 return error;
1710 }
1711
1712 Static void
1713 zyd_set_led(struct zyd_softc *sc, int which, int on)
1714 {
1715 uint32_t tmp;
1716
1717 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1718 tmp &= ~which;
1719 if (on)
1720 tmp |= which;
1721 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1722 }
1723
1724 Static int
1725 zyd_set_rxfilter(struct zyd_softc *sc)
1726 {
1727 uint32_t rxfilter;
1728
1729 switch (sc->sc_ic.ic_opmode) {
1730 case IEEE80211_M_STA:
1731 rxfilter = ZYD_FILTER_BSS;
1732 break;
1733 case IEEE80211_M_IBSS:
1734 case IEEE80211_M_HOSTAP:
1735 rxfilter = ZYD_FILTER_HOSTAP;
1736 break;
1737 case IEEE80211_M_MONITOR:
1738 rxfilter = ZYD_FILTER_MONITOR;
1739 break;
1740 default:
1741 /* should not get there */
1742 return EINVAL;
1743 }
1744 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1745 }
1746
1747 Static void
1748 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1749 {
1750 struct ieee80211com *ic = &sc->sc_ic;
1751 struct zyd_rf *rf = &sc->sc_rf;
1752 u_int chan;
1753
1754 chan = ieee80211_chan2ieee(ic, c);
1755 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1756 return;
1757
1758 zyd_lock_phy(sc);
1759
1760 (*rf->set_channel)(rf, chan);
1761
1762 /* update Tx power */
1763 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1764 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1765
1766 if (sc->mac_rev == ZYD_ZD1211B) {
1767 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1768 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1769 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1770
1771 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1772 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1773 }
1774
1775 zyd_unlock_phy(sc);
1776 }
1777
1778 Static int
1779 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1780 {
1781 /* XXX this is probably broken.. */
1782 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1783 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1784 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1785
1786 return 0;
1787 }
1788
1789 Static uint8_t
1790 zyd_plcp_signal(int rate)
1791 {
1792 switch (rate) {
1793 /* CCK rates (returned values are device-dependent) */
1794 case 2: return 0x0;
1795 case 4: return 0x1;
1796 case 11: return 0x2;
1797 case 22: return 0x3;
1798
1799 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1800 case 12: return 0xb;
1801 case 18: return 0xf;
1802 case 24: return 0xa;
1803 case 36: return 0xe;
1804 case 48: return 0x9;
1805 case 72: return 0xd;
1806 case 96: return 0x8;
1807 case 108: return 0xc;
1808
1809 /* unsupported rates (should not get there) */
1810 default: return 0xff;
1811 }
1812 }
1813
1814 Static void
1815 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1816 {
1817 struct zyd_softc *sc = (struct zyd_softc *)priv;
1818 struct zyd_cmd *cmd;
1819 uint32_t datalen;
1820
1821 if (status != USBD_NORMAL_COMPLETION) {
1822 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1823 return;
1824
1825 if (status == USBD_STALLED) {
1826 usbd_clear_endpoint_stall_async(
1827 sc->zyd_ep[ZYD_ENDPT_IIN]);
1828 }
1829 return;
1830 }
1831
1832 cmd = (struct zyd_cmd *)sc->ibuf;
1833
1834 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1835 struct zyd_notif_retry *retry =
1836 (struct zyd_notif_retry *)cmd->data;
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 struct ifnet *ifp = &sc->sc_if;
1839 struct ieee80211_node *ni;
1840
1841 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1842 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1843 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1844
1845 /*
1846 * Find the node to which the packet was sent and update its
1847 * retry statistics. In BSS mode, this node is the AP we're
1848 * associated to so no lookup is actually needed.
1849 */
1850 if (ic->ic_opmode != IEEE80211_M_STA) {
1851 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1852 if (ni == NULL)
1853 return; /* just ignore */
1854 } else
1855 ni = ic->ic_bss;
1856
1857 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1858
1859 if (le16toh(retry->count) & 0x100)
1860 ifp->if_oerrors++; /* too many retries */
1861
1862 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1863 struct rq *rqp;
1864
1865 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1866 return; /* HMAC interrupt */
1867
1868 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1869 datalen -= sizeof(cmd->code);
1870 datalen -= 2; /* XXX: padding? */
1871
1872 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1873 int i;
1874
1875 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1876 continue;
1877 for (i = 0; i < rqp->len; i++) {
1878 if (*(((const uint16_t *)rqp->idata) + i) !=
1879 (((struct zyd_pair *)cmd->data) + i)->reg)
1880 break;
1881 }
1882 if (i != rqp->len)
1883 continue;
1884
1885 /* copy answer into caller-supplied buffer */
1886 memcpy(rqp->odata, cmd->data,
1887 sizeof(struct zyd_pair) * rqp->len);
1888 wakeup(rqp->odata); /* wakeup caller */
1889
1890 return;
1891 }
1892 return; /* unexpected IORD notification */
1893 } else {
1894 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1895 le16toh(cmd->code));
1896 }
1897 }
1898
1899 Static void
1900 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1901 {
1902 struct ieee80211com *ic = &sc->sc_ic;
1903 struct ifnet *ifp = &sc->sc_if;
1904 struct ieee80211_node *ni;
1905 struct ieee80211_frame *wh;
1906 const struct zyd_plcphdr *plcp;
1907 const struct zyd_rx_stat *stat;
1908 struct mbuf *m;
1909 int rlen, s;
1910
1911 if (len < ZYD_MIN_FRAGSZ) {
1912 printf("%s: frame too short (length=%d)\n",
1913 device_xname(sc->sc_dev), len);
1914 ifp->if_ierrors++;
1915 return;
1916 }
1917
1918 plcp = (const struct zyd_plcphdr *)buf;
1919 stat = (const struct zyd_rx_stat *)
1920 (buf + len - sizeof(struct zyd_rx_stat));
1921
1922 if (stat->flags & ZYD_RX_ERROR) {
1923 DPRINTF(("%s: RX status indicated error (%x)\n",
1924 device_xname(sc->sc_dev), stat->flags));
1925 ifp->if_ierrors++;
1926 return;
1927 }
1928
1929 /* compute actual frame length */
1930 rlen = len - sizeof(struct zyd_plcphdr) -
1931 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1932
1933 /* allocate a mbuf to store the frame */
1934 MGETHDR(m, M_DONTWAIT, MT_DATA);
1935 if (m == NULL) {
1936 printf("%s: could not allocate rx mbuf\n",
1937 device_xname(sc->sc_dev));
1938 ifp->if_ierrors++;
1939 return;
1940 }
1941 if (rlen > MHLEN) {
1942 MCLGET(m, M_DONTWAIT);
1943 if (!(m->m_flags & M_EXT)) {
1944 printf("%s: could not allocate rx mbuf cluster\n",
1945 device_xname(sc->sc_dev));
1946 m_freem(m);
1947 ifp->if_ierrors++;
1948 return;
1949 }
1950 }
1951 m_set_rcvif(m, ifp);
1952 m->m_pkthdr.len = m->m_len = rlen;
1953 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1954
1955 s = splnet();
1956
1957 if (sc->sc_drvbpf != NULL) {
1958 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1959 static const uint8_t rates[] = {
1960 /* reverse function of zyd_plcp_signal() */
1961 2, 4, 11, 22, 0, 0, 0, 0,
1962 96, 48, 24, 12, 108, 72, 36, 18
1963 };
1964
1965 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1966 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1967 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1968 tap->wr_rssi = stat->rssi;
1969 tap->wr_rate = rates[plcp->signal & 0xf];
1970
1971 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1972 }
1973
1974 wh = mtod(m, struct ieee80211_frame *);
1975 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1976 ieee80211_input(ic, m, ni, stat->rssi, 0);
1977
1978 /* node is no longer needed */
1979 ieee80211_free_node(ni);
1980
1981 splx(s);
1982 }
1983
1984 Static void
1985 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1986 {
1987 struct zyd_rx_data *data = priv;
1988 struct zyd_softc *sc = data->sc;
1989 struct ifnet *ifp = &sc->sc_if;
1990 const struct zyd_rx_desc *desc;
1991 int len;
1992
1993 if (status != USBD_NORMAL_COMPLETION) {
1994 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1995 return;
1996
1997 if (status == USBD_STALLED)
1998 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1999
2000 goto skip;
2001 }
2002 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2003
2004 if (len < ZYD_MIN_RXBUFSZ) {
2005 printf("%s: xfer too short (length=%d)\n",
2006 device_xname(sc->sc_dev), len);
2007 ifp->if_ierrors++;
2008 goto skip;
2009 }
2010
2011 desc = (const struct zyd_rx_desc *)
2012 (data->buf + len - sizeof(struct zyd_rx_desc));
2013
2014 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2015 const uint8_t *p = data->buf, *end = p + len;
2016 int i;
2017
2018 DPRINTFN(3, ("received multi-frame transfer\n"));
2019
2020 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2021 const uint16_t len16 = UGETW(desc->len[i]);
2022
2023 if (len16 == 0 || p + len16 > end)
2024 break;
2025
2026 zyd_rx_data(sc, p, len16);
2027 /* next frame is aligned on a 32-bit boundary */
2028 p += (len16 + 3) & ~3;
2029 }
2030 } else {
2031 DPRINTFN(3, ("received single-frame transfer\n"));
2032
2033 zyd_rx_data(sc, data->buf, len);
2034 }
2035
2036 skip: /* setup a new transfer */
2037
2038 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2039 USBD_NO_TIMEOUT, zyd_rxeof);
2040 (void)usbd_transfer(xfer);
2041 }
2042
2043 Static int
2044 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2045 {
2046 struct ieee80211com *ic = &sc->sc_ic;
2047 struct ifnet *ifp = &sc->sc_if;
2048 struct zyd_tx_desc *desc;
2049 struct zyd_tx_data *data;
2050 struct ieee80211_frame *wh;
2051 struct ieee80211_key *k;
2052 int xferlen, totlen, rate;
2053 uint16_t pktlen;
2054 usbd_status error;
2055
2056 data = &sc->tx_data[0];
2057 desc = (struct zyd_tx_desc *)data->buf;
2058
2059 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2060
2061 wh = mtod(m0, struct ieee80211_frame *);
2062
2063 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2064 k = ieee80211_crypto_encap(ic, ni, m0);
2065 if (k == NULL) {
2066 m_freem(m0);
2067 return ENOBUFS;
2068 }
2069 }
2070
2071 data->ni = ni;
2072
2073 wh = mtod(m0, struct ieee80211_frame *);
2074
2075 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2076 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2077
2078 /* fill Tx descriptor */
2079 desc->len = htole16(totlen);
2080
2081 desc->flags = ZYD_TX_FLAG_BACKOFF;
2082 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2083 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2084 if (totlen > ic->ic_rtsthreshold) {
2085 desc->flags |= ZYD_TX_FLAG_RTS;
2086 } else if (ZYD_RATE_IS_OFDM(rate) &&
2087 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2088 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2089 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2090 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2091 desc->flags |= ZYD_TX_FLAG_RTS;
2092 }
2093 } else
2094 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2095
2096 if ((wh->i_fc[0] &
2097 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2098 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2099 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2100
2101 desc->phy = zyd_plcp_signal(rate);
2102 if (ZYD_RATE_IS_OFDM(rate)) {
2103 desc->phy |= ZYD_TX_PHY_OFDM;
2104 if (ic->ic_curmode == IEEE80211_MODE_11A)
2105 desc->phy |= ZYD_TX_PHY_5GHZ;
2106 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2107 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2108
2109 /* actual transmit length (XXX why +10?) */
2110 pktlen = sizeof(struct zyd_tx_desc) + 10;
2111 if (sc->mac_rev == ZYD_ZD1211)
2112 pktlen += totlen;
2113 desc->pktlen = htole16(pktlen);
2114
2115 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2116 desc->plcp_service = 0;
2117 if (rate == 22) {
2118 const int remainder = (16 * totlen) % 22;
2119 if (remainder != 0 && remainder < 7)
2120 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2121 }
2122
2123 if (sc->sc_drvbpf != NULL) {
2124 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2125
2126 tap->wt_flags = 0;
2127 tap->wt_rate = rate;
2128 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2129 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2130
2131 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2132 }
2133
2134 m_copydata(m0, 0, m0->m_pkthdr.len,
2135 data->buf + sizeof(struct zyd_tx_desc));
2136
2137 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2138 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2139
2140 m_freem(m0); /* mbuf no longer needed */
2141
2142 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2143 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2144 error = usbd_transfer(data->xfer);
2145 if (error != USBD_IN_PROGRESS && error != 0) {
2146 ifp->if_oerrors++;
2147 return EIO;
2148 }
2149 sc->tx_queued++;
2150
2151 return 0;
2152 }
2153
2154 Static void
2155 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2156 {
2157 struct zyd_tx_data *data = priv;
2158 struct zyd_softc *sc = data->sc;
2159 struct ifnet *ifp = &sc->sc_if;
2160 int s;
2161
2162 if (status != USBD_NORMAL_COMPLETION) {
2163 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2164 return;
2165
2166 printf("%s: could not transmit buffer: %s\n",
2167 device_xname(sc->sc_dev), usbd_errstr(status));
2168
2169 if (status == USBD_STALLED) {
2170 usbd_clear_endpoint_stall_async(
2171 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2172 }
2173 ifp->if_oerrors++;
2174 return;
2175 }
2176
2177 s = splnet();
2178
2179 /* update rate control statistics */
2180 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2181
2182 ieee80211_free_node(data->ni);
2183 data->ni = NULL;
2184
2185 sc->tx_queued--;
2186 ifp->if_opackets++;
2187
2188 sc->tx_timer = 0;
2189 ifp->if_flags &= ~IFF_OACTIVE;
2190 zyd_start(ifp);
2191
2192 splx(s);
2193 }
2194
2195 Static int
2196 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2197 {
2198 struct ieee80211com *ic = &sc->sc_ic;
2199 struct ifnet *ifp = &sc->sc_if;
2200 struct zyd_tx_desc *desc;
2201 struct zyd_tx_data *data;
2202 struct ieee80211_frame *wh;
2203 struct ieee80211_key *k;
2204 int xferlen, totlen, rate;
2205 uint16_t pktlen;
2206 usbd_status error;
2207
2208 wh = mtod(m0, struct ieee80211_frame *);
2209
2210 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2211 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2212 else
2213 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2214 rate &= IEEE80211_RATE_VAL;
2215
2216 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2217 k = ieee80211_crypto_encap(ic, ni, m0);
2218 if (k == NULL) {
2219 m_freem(m0);
2220 return ENOBUFS;
2221 }
2222
2223 /* packet header may have moved, reset our local pointer */
2224 wh = mtod(m0, struct ieee80211_frame *);
2225 }
2226
2227 data = &sc->tx_data[0];
2228 desc = (struct zyd_tx_desc *)data->buf;
2229
2230 data->ni = ni;
2231
2232 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2233 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2234
2235 /* fill Tx descriptor */
2236 desc->len = htole16(totlen);
2237
2238 desc->flags = ZYD_TX_FLAG_BACKOFF;
2239 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2240 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2241 if (totlen > ic->ic_rtsthreshold) {
2242 desc->flags |= ZYD_TX_FLAG_RTS;
2243 } else if (ZYD_RATE_IS_OFDM(rate) &&
2244 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2245 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2246 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2247 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2248 desc->flags |= ZYD_TX_FLAG_RTS;
2249 }
2250 } else
2251 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2252
2253 if ((wh->i_fc[0] &
2254 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2255 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2256 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2257
2258 desc->phy = zyd_plcp_signal(rate);
2259 if (ZYD_RATE_IS_OFDM(rate)) {
2260 desc->phy |= ZYD_TX_PHY_OFDM;
2261 if (ic->ic_curmode == IEEE80211_MODE_11A)
2262 desc->phy |= ZYD_TX_PHY_5GHZ;
2263 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2264 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2265
2266 /* actual transmit length (XXX why +10?) */
2267 pktlen = sizeof(struct zyd_tx_desc) + 10;
2268 if (sc->mac_rev == ZYD_ZD1211)
2269 pktlen += totlen;
2270 desc->pktlen = htole16(pktlen);
2271
2272 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2273 desc->plcp_service = 0;
2274 if (rate == 22) {
2275 const int remainder = (16 * totlen) % 22;
2276 if (remainder != 0 && remainder < 7)
2277 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2278 }
2279
2280 if (sc->sc_drvbpf != NULL) {
2281 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2282
2283 tap->wt_flags = 0;
2284 tap->wt_rate = rate;
2285 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2286 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2287
2288 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2289 }
2290
2291 m_copydata(m0, 0, m0->m_pkthdr.len,
2292 data->buf + sizeof(struct zyd_tx_desc));
2293
2294 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2295 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2296
2297 m_freem(m0); /* mbuf no longer needed */
2298
2299 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2300 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2301 error = usbd_transfer(data->xfer);
2302 if (error != USBD_IN_PROGRESS && error != 0) {
2303 ifp->if_oerrors++;
2304 return EIO;
2305 }
2306 sc->tx_queued++;
2307
2308 return 0;
2309 }
2310
2311 Static void
2312 zyd_start(struct ifnet *ifp)
2313 {
2314 struct zyd_softc *sc = ifp->if_softc;
2315 struct ieee80211com *ic = &sc->sc_ic;
2316 struct ether_header *eh;
2317 struct ieee80211_node *ni;
2318 struct mbuf *m0;
2319
2320 for (;;) {
2321 IF_POLL(&ic->ic_mgtq, m0);
2322 if (m0 != NULL) {
2323 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2324 ifp->if_flags |= IFF_OACTIVE;
2325 break;
2326 }
2327 IF_DEQUEUE(&ic->ic_mgtq, m0);
2328
2329 ni = M_GETCTX(m0, struct ieee80211_node *);
2330 M_CLEARCTX(m0);
2331 bpf_mtap3(ic->ic_rawbpf, m0);
2332 if (zyd_tx_mgt(sc, m0, ni) != 0)
2333 break;
2334 } else {
2335 if (ic->ic_state != IEEE80211_S_RUN)
2336 break;
2337 IFQ_POLL(&ifp->if_snd, m0);
2338 if (m0 == NULL)
2339 break;
2340 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2341 ifp->if_flags |= IFF_OACTIVE;
2342 break;
2343 }
2344 IFQ_DEQUEUE(&ifp->if_snd, m0);
2345
2346 if (m0->m_len < sizeof(struct ether_header) &&
2347 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2348 continue;
2349
2350 eh = mtod(m0, struct ether_header *);
2351 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2352 if (ni == NULL) {
2353 m_freem(m0);
2354 continue;
2355 }
2356 bpf_mtap(ifp, m0);
2357 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2358 ieee80211_free_node(ni);
2359 ifp->if_oerrors++;
2360 continue;
2361 }
2362 bpf_mtap3(ic->ic_rawbpf, m0);
2363 if (zyd_tx_data(sc, m0, ni) != 0) {
2364 ieee80211_free_node(ni);
2365 ifp->if_oerrors++;
2366 break;
2367 }
2368 }
2369
2370 sc->tx_timer = 5;
2371 ifp->if_timer = 1;
2372 }
2373 }
2374
2375 Static void
2376 zyd_watchdog(struct ifnet *ifp)
2377 {
2378 struct zyd_softc *sc = ifp->if_softc;
2379 struct ieee80211com *ic = &sc->sc_ic;
2380
2381 ifp->if_timer = 0;
2382
2383 if (sc->tx_timer > 0) {
2384 if (--sc->tx_timer == 0) {
2385 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2386 /* zyd_init(ifp); XXX needs a process context ? */
2387 ifp->if_oerrors++;
2388 return;
2389 }
2390 ifp->if_timer = 1;
2391 }
2392
2393 ieee80211_watchdog(ic);
2394 }
2395
2396 Static int
2397 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2398 {
2399 struct zyd_softc *sc = ifp->if_softc;
2400 struct ieee80211com *ic = &sc->sc_ic;
2401 int s, error = 0;
2402
2403 s = splnet();
2404
2405 switch (cmd) {
2406 case SIOCSIFFLAGS:
2407 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2408 break;
2409 /* XXX re-use ether_ioctl() */
2410 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2411 case IFF_UP:
2412 zyd_init(ifp);
2413 break;
2414 case IFF_RUNNING:
2415 zyd_stop(ifp, 1);
2416 break;
2417 default:
2418 break;
2419 }
2420 break;
2421
2422 default:
2423 error = ieee80211_ioctl(ic, cmd, data);
2424 }
2425
2426 if (error == ENETRESET) {
2427 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2428 (IFF_RUNNING | IFF_UP))
2429 zyd_init(ifp);
2430 error = 0;
2431 }
2432
2433 splx(s);
2434
2435 return error;
2436 }
2437
2438 Static int
2439 zyd_init(struct ifnet *ifp)
2440 {
2441 struct zyd_softc *sc = ifp->if_softc;
2442 struct ieee80211com *ic = &sc->sc_ic;
2443 int i, error;
2444
2445 zyd_stop(ifp, 0);
2446
2447 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2448 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2449 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2450 if (error != 0)
2451 return error;
2452
2453 /* we'll do software WEP decryption for now */
2454 DPRINTF(("setting encryption type\n"));
2455 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2456 if (error != 0)
2457 return error;
2458
2459 /* promiscuous mode */
2460 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2461 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2462
2463 (void)zyd_set_rxfilter(sc);
2464
2465 /* switch radio transmitter ON */
2466 (void)zyd_switch_radio(sc, 1);
2467
2468 /* set basic rates */
2469 if (ic->ic_curmode == IEEE80211_MODE_11B)
2470 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2471 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2472 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2473 else /* assumes 802.11b/g */
2474 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2475
2476 /* set mandatory rates */
2477 if (ic->ic_curmode == IEEE80211_MODE_11B)
2478 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2479 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2480 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2481 else /* assumes 802.11b/g */
2482 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2483
2484 /* set default BSS channel */
2485 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2486 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2487
2488 /* enable interrupts */
2489 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2490
2491 /*
2492 * Allocate Tx and Rx xfer queues.
2493 */
2494 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2495 printf("%s: could not allocate Tx list\n",
2496 device_xname(sc->sc_dev));
2497 goto fail;
2498 }
2499 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2500 printf("%s: could not allocate Rx list\n",
2501 device_xname(sc->sc_dev));
2502 goto fail;
2503 }
2504
2505 /*
2506 * Start up the receive pipe.
2507 */
2508 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2509 struct zyd_rx_data *data = &sc->rx_data[i];
2510
2511 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2512 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2513 error = usbd_transfer(data->xfer);
2514 if (error != USBD_IN_PROGRESS && error != 0) {
2515 printf("%s: could not queue Rx transfer\n",
2516 device_xname(sc->sc_dev));
2517 goto fail;
2518 }
2519 }
2520
2521 ifp->if_flags &= ~IFF_OACTIVE;
2522 ifp->if_flags |= IFF_RUNNING;
2523
2524 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2525 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2526 else
2527 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2528
2529 return 0;
2530
2531 fail: zyd_stop(ifp, 1);
2532 return error;
2533 }
2534
2535 Static void
2536 zyd_stop(struct ifnet *ifp, int disable)
2537 {
2538 struct zyd_softc *sc = ifp->if_softc;
2539 struct ieee80211com *ic = &sc->sc_ic;
2540
2541 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2542
2543 sc->tx_timer = 0;
2544 ifp->if_timer = 0;
2545 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2546
2547 /* switch radio transmitter OFF */
2548 (void)zyd_switch_radio(sc, 0);
2549
2550 /* disable Rx */
2551 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2552
2553 /* disable interrupts */
2554 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2555
2556 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2557 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2558
2559 zyd_free_rx_list(sc);
2560 zyd_free_tx_list(sc);
2561 }
2562
2563 Static int
2564 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2565 {
2566 usb_device_request_t req;
2567 uint16_t addr;
2568 uint8_t stat;
2569
2570 DPRINTF(("firmware size=%zu\n", size));
2571
2572 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2573 req.bRequest = ZYD_DOWNLOADREQ;
2574 USETW(req.wIndex, 0);
2575
2576 addr = ZYD_FIRMWARE_START_ADDR;
2577 while (size > 0) {
2578 #if 0
2579 const int mlen = min(size, 4096);
2580 #else
2581 /*
2582 * XXXX: When the transfer size is 4096 bytes, it is not
2583 * likely to be able to transfer it.
2584 * The cause is port or machine or chip?
2585 */
2586 const int mlen = min(size, 64);
2587 #endif
2588
2589 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2590 addr));
2591
2592 USETW(req.wValue, addr);
2593 USETW(req.wLength, mlen);
2594 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2595 return EIO;
2596
2597 addr += mlen / 2;
2598 fw += mlen;
2599 size -= mlen;
2600 }
2601
2602 /* check whether the upload succeeded */
2603 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2604 req.bRequest = ZYD_DOWNLOADSTS;
2605 USETW(req.wValue, 0);
2606 USETW(req.wIndex, 0);
2607 USETW(req.wLength, sizeof(stat));
2608 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2609 return EIO;
2610
2611 return (stat & 0x80) ? EIO : 0;
2612 }
2613
2614 Static void
2615 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2616 {
2617 struct zyd_softc *sc = arg;
2618 struct zyd_node *zn = (struct zyd_node *)ni;
2619
2620 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2621 }
2622
2623 Static void
2624 zyd_amrr_timeout(void *arg)
2625 {
2626 struct zyd_softc *sc = arg;
2627 struct ieee80211com *ic = &sc->sc_ic;
2628 int s;
2629
2630 s = splnet();
2631 if (ic->ic_opmode == IEEE80211_M_STA)
2632 zyd_iter_func(sc, ic->ic_bss);
2633 else
2634 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2635 splx(s);
2636
2637 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2638 }
2639
2640 Static void
2641 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2642 {
2643 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2644 int i;
2645
2646 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2647
2648 /* set rate to some reasonable initial value */
2649 for (i = ni->ni_rates.rs_nrates - 1;
2650 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2651 i--);
2652 ni->ni_txrate = i;
2653 }
2654
2655 int
2656 zyd_activate(device_t self, enum devact act)
2657 {
2658 struct zyd_softc *sc = device_private(self);
2659
2660 switch (act) {
2661 case DVACT_DEACTIVATE:
2662 if_deactivate(&sc->sc_if);
2663 return 0;
2664 default:
2665 return EOPNOTSUPP;
2666 }
2667 }
2668