if_zyd.c revision 1.42.2.1 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.42.2.1 2017/01/07 08:56:41 pgoyette Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.42.2.1 2017/01/07 08:56:41 pgoyette Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
148 ZYD_ZD1211B_DEV(USR, USR5423),
149 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
153 ZYD_ZD1211B_DEV(ZYXEL, M202),
154 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
155 };
156 #define zyd_lookup(v, p) \
157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163 extern struct cfdriver zyd_cd;
164
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166 zyd_attach, zyd_detach, zyd_activate);
167
168 Static void zyd_attachhook(device_t);
169 Static int zyd_complete_attach(struct zyd_softc *);
170 Static int zyd_open_pipes(struct zyd_softc *);
171 Static void zyd_close_pipes(struct zyd_softc *);
172 Static int zyd_alloc_tx_list(struct zyd_softc *);
173 Static void zyd_free_tx_list(struct zyd_softc *);
174 Static int zyd_alloc_rx_list(struct zyd_softc *);
175 Static void zyd_free_rx_list(struct zyd_softc *);
176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int zyd_media_change(struct ifnet *);
178 Static void zyd_next_scan(void *);
179 Static void zyd_task(void *);
180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 void *, int, u_int);
183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void zyd_lock_phy(struct zyd_softc *);
189 Static void zyd_unlock_phy(struct zyd_softc *);
190 Static int zyd_rfmd_init(struct zyd_rf *);
191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_al2230_init(struct zyd_rf *);
194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2230_init_b(struct zyd_rf *);
197 Static int zyd_al7230B_init(struct zyd_rf *);
198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_al2210_init(struct zyd_rf *);
201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_gct_init(struct zyd_rf *);
204 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_maxim_init(struct zyd_rf *);
207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int zyd_maxim2_init(struct zyd_rf *);
210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int zyd_hw_init(struct zyd_softc *);
215 Static int zyd_read_eeprom(struct zyd_softc *);
216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int zyd_switch_radio(struct zyd_softc *, int);
219 Static void zyd_set_led(struct zyd_softc *, int, int);
220 Static int zyd_set_rxfilter(struct zyd_softc *);
221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t zyd_plcp_signal(int);
224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 struct ieee80211_node *);
230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 struct ieee80211_node *);
232 Static void zyd_start(struct ifnet *);
233 Static void zyd_watchdog(struct ifnet *);
234 Static int zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int zyd_init(struct ifnet *);
236 Static void zyd_stop(struct ifnet *, int);
237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void zyd_iter_func(void *, struct ieee80211_node *);
239 Static void zyd_amrr_timeout(void *);
240 Static void zyd_newassoc(struct ieee80211_node *, int);
241
242 static const struct ieee80211_rateset zyd_rateset_11b =
243 { 4, { 2, 4, 11, 22 } };
244
245 static const struct ieee80211_rateset zyd_rateset_11g =
246 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
247
248 int
249 zyd_match(device_t parent, cfdata_t match, void *aux)
250 {
251 struct usb_attach_arg *uaa = aux;
252
253 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255 }
256
257 Static void
258 zyd_attachhook(device_t self)
259 {
260 struct zyd_softc *sc = device_private(self);
261 firmware_handle_t fwh;
262 const char *fwname;
263 u_char *fw;
264 size_t size;
265 int error;
266
267 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
268 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
269 aprint_error_dev(sc->sc_dev,
270 "failed to open firmware %s (error=%d)\n", fwname, error);
271 return;
272 }
273 size = firmware_get_size(fwh);
274 fw = firmware_malloc(size);
275 if (fw == NULL) {
276 aprint_error_dev(sc->sc_dev,
277 "failed to allocate firmware memory\n");
278 firmware_close(fwh);
279 return;
280 }
281 error = firmware_read(fwh, 0, fw, size);
282 firmware_close(fwh);
283 if (error != 0) {
284 aprint_error_dev(sc->sc_dev,
285 "failed to read firmware (error %d)\n", error);
286 firmware_free(fw, size);
287 return;
288 }
289
290 error = zyd_loadfirmware(sc, fw, size);
291 if (error != 0) {
292 aprint_error_dev(sc->sc_dev,
293 "could not load firmware (error=%d)\n", error);
294 firmware_free(fw, size);
295 return;
296 }
297
298 firmware_free(fw, size);
299 sc->sc_flags |= ZD1211_FWLOADED;
300
301 /* complete the attach process */
302 if ((error = zyd_complete_attach(sc)) == 0)
303 sc->attached = 1;
304 return;
305 }
306
307 void
308 zyd_attach(device_t parent, device_t self, void *aux)
309 {
310 struct zyd_softc *sc = device_private(self);
311 struct usb_attach_arg *uaa = aux;
312 char *devinfop;
313 usb_device_descriptor_t* ddesc;
314 struct ifnet *ifp = &sc->sc_if;
315
316 sc->sc_dev = self;
317 sc->sc_udev = uaa->uaa_device;
318 sc->sc_flags = 0;
319
320 aprint_naive("\n");
321 aprint_normal("\n");
322
323 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
324 aprint_normal_dev(self, "%s\n", devinfop);
325 usbd_devinfo_free(devinfop);
326
327 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
328
329 ddesc = usbd_get_device_descriptor(sc->sc_udev);
330 if (UGETW(ddesc->bcdDevice) < 0x4330) {
331 aprint_error_dev(self, "device version mismatch: 0x%x "
332 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
333 return;
334 }
335
336 ifp->if_softc = sc;
337 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 ifp->if_init = zyd_init;
339 ifp->if_ioctl = zyd_ioctl;
340 ifp->if_start = zyd_start;
341 ifp->if_watchdog = zyd_watchdog;
342 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
343 IFQ_SET_READY(&ifp->if_snd);
344 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
345
346 SIMPLEQ_INIT(&sc->sc_rqh);
347
348 /* defer configrations after file system is ready to load firmware */
349 config_mountroot(self, zyd_attachhook);
350 }
351
352 Static int
353 zyd_complete_attach(struct zyd_softc *sc)
354 {
355 struct ieee80211com *ic = &sc->sc_ic;
356 struct ifnet *ifp = &sc->sc_if;
357 usbd_status error;
358 int i;
359
360 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
361 callout_init(&(sc->sc_scan_ch), 0);
362
363 sc->amrr.amrr_min_success_threshold = 1;
364 sc->amrr.amrr_max_success_threshold = 10;
365 callout_init(&sc->sc_amrr_ch, 0);
366
367 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
368 if (error != 0) {
369 aprint_error_dev(sc->sc_dev, "failed to set configuration"
370 ", err=%s\n", usbd_errstr(error));
371 goto fail;
372 }
373
374 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
375 &sc->sc_iface);
376 if (error != 0) {
377 aprint_error_dev(sc->sc_dev,
378 "getting interface handle failed\n");
379 goto fail;
380 }
381
382 if ((error = zyd_open_pipes(sc)) != 0) {
383 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
384 goto fail;
385 }
386
387 if ((error = zyd_read_eeprom(sc)) != 0) {
388 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
389 goto fail;
390 }
391
392 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
393 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
394 goto fail;
395 }
396
397 if ((error = zyd_hw_init(sc)) != 0) {
398 aprint_error_dev(sc->sc_dev,
399 "hardware initialization failed\n");
400 goto fail;
401 }
402
403 aprint_normal_dev(sc->sc_dev,
404 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
405 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
406 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
407 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
408
409 ic->ic_ifp = ifp;
410 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
411 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
412 ic->ic_state = IEEE80211_S_INIT;
413
414 /* set device capabilities */
415 ic->ic_caps =
416 IEEE80211_C_MONITOR | /* monitor mode supported */
417 IEEE80211_C_TXPMGT | /* tx power management */
418 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
419 IEEE80211_C_WEP; /* s/w WEP */
420
421 /* set supported .11b and .11g rates */
422 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
423 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
424
425 /* set supported .11b and .11g channels (1 through 14) */
426 for (i = 1; i <= 14; i++) {
427 ic->ic_channels[i].ic_freq =
428 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
429 ic->ic_channels[i].ic_flags =
430 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 }
433
434 if_attach(ifp);
435 ieee80211_ifattach(ic);
436 ic->ic_node_alloc = zyd_node_alloc;
437 ic->ic_newassoc = zyd_newassoc;
438
439 /* override state transition machine */
440 sc->sc_newstate = ic->ic_newstate;
441 ic->ic_newstate = zyd_newstate;
442 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
443
444 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
445 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
446 &sc->sc_drvbpf);
447
448 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
449 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
450 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
451
452 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
453 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
454 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
455
456 ieee80211_announce(ic);
457
458 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
459
460 fail: return error;
461 }
462
463 int
464 zyd_detach(device_t self, int flags)
465 {
466 struct zyd_softc *sc = device_private(self);
467 struct ieee80211com *ic = &sc->sc_ic;
468 struct ifnet *ifp = &sc->sc_if;
469 int s;
470
471 if (!sc->attached)
472 return 0;
473
474 s = splusb();
475
476 zyd_stop(ifp, 1);
477 usb_rem_task(sc->sc_udev, &sc->sc_task);
478 callout_stop(&sc->sc_scan_ch);
479 callout_stop(&sc->sc_amrr_ch);
480
481 /* Abort, etc. done by zyd_stop */
482 zyd_close_pipes(sc);
483
484 sc->attached = 0;
485
486 bpf_detach(ifp);
487 ieee80211_ifdetach(ic);
488 if_detach(ifp);
489
490 splx(s);
491
492 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
493
494 return 0;
495 }
496
497 Static int
498 zyd_open_pipes(struct zyd_softc *sc)
499 {
500 usb_endpoint_descriptor_t *edesc;
501 usbd_status error;
502
503 /* interrupt in */
504 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
505 if (edesc == NULL)
506 return EINVAL;
507
508 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
509 if (sc->ibuf_size == 0) /* should not happen */
510 return EINVAL;
511
512 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
513 if (sc->ibuf == NULL)
514 return ENOMEM;
515
516 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
517 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
518 USBD_DEFAULT_INTERVAL);
519 if (error != 0) {
520 printf("%s: open rx intr pipe failed: %s\n",
521 device_xname(sc->sc_dev), usbd_errstr(error));
522 goto fail;
523 }
524
525 /* interrupt out (not necessarily an interrupt pipe) */
526 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
527 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
528 if (error != 0) {
529 printf("%s: open tx intr pipe failed: %s\n",
530 device_xname(sc->sc_dev), usbd_errstr(error));
531 goto fail;
532 }
533
534 /* bulk in */
535 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
536 &sc->zyd_ep[ZYD_ENDPT_BIN]);
537 if (error != 0) {
538 printf("%s: open rx pipe failed: %s\n",
539 device_xname(sc->sc_dev), usbd_errstr(error));
540 goto fail;
541 }
542
543 /* bulk out */
544 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
545 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
546 if (error != 0) {
547 printf("%s: open tx pipe failed: %s\n",
548 device_xname(sc->sc_dev), usbd_errstr(error));
549 goto fail;
550 }
551
552 return 0;
553
554 fail: zyd_close_pipes(sc);
555 return error;
556 }
557
558 Static void
559 zyd_close_pipes(struct zyd_softc *sc)
560 {
561 int i;
562
563 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
564 if (sc->zyd_ep[i] != NULL) {
565 usbd_close_pipe(sc->zyd_ep[i]);
566 sc->zyd_ep[i] = NULL;
567 }
568 }
569 if (sc->ibuf != NULL) {
570 kmem_free(sc->ibuf, sc->ibuf_size);
571 sc->ibuf = NULL;
572 }
573 }
574
575 Static int
576 zyd_alloc_tx_list(struct zyd_softc *sc)
577 {
578 int i, error;
579
580 sc->tx_queued = 0;
581
582 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
583 struct zyd_tx_data *data = &sc->tx_data[i];
584
585 data->sc = sc; /* backpointer for callbacks */
586
587 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
588 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
589 if (error) {
590 printf("%s: could not allocate tx xfer\n",
591 device_xname(sc->sc_dev));
592 goto fail;
593 }
594 data->buf = usbd_get_buffer(data->xfer);
595
596 /* clear Tx descriptor */
597 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
598 }
599 return 0;
600
601 fail: zyd_free_tx_list(sc);
602 return error;
603 }
604
605 Static void
606 zyd_free_tx_list(struct zyd_softc *sc)
607 {
608 int i;
609
610 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
611 struct zyd_tx_data *data = &sc->tx_data[i];
612
613 if (data->xfer != NULL) {
614 usbd_destroy_xfer(data->xfer);
615 data->xfer = NULL;
616 }
617 if (data->ni != NULL) {
618 ieee80211_free_node(data->ni);
619 data->ni = NULL;
620 }
621 }
622 }
623
624 Static int
625 zyd_alloc_rx_list(struct zyd_softc *sc)
626 {
627 int i, error;
628
629 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
630 struct zyd_rx_data *data = &sc->rx_data[i];
631
632 data->sc = sc; /* backpointer for callbacks */
633
634 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
635 ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK, 0, &data->xfer);
636 if (error) {
637 printf("%s: could not allocate rx xfer\n",
638 device_xname(sc->sc_dev));
639 goto fail;
640 }
641 data->buf = usbd_get_buffer(data->xfer);
642 }
643 return 0;
644
645 fail: zyd_free_rx_list(sc);
646 return error;
647 }
648
649 Static void
650 zyd_free_rx_list(struct zyd_softc *sc)
651 {
652 int i;
653
654 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
655 struct zyd_rx_data *data = &sc->rx_data[i];
656
657 if (data->xfer != NULL) {
658 usbd_destroy_xfer(data->xfer);
659 data->xfer = NULL;
660 }
661 }
662 }
663
664 /* ARGUSED */
665 Static struct ieee80211_node *
666 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
667 {
668 struct zyd_node *zn;
669
670 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
671
672 return &zn->ni;
673 }
674
675 Static int
676 zyd_media_change(struct ifnet *ifp)
677 {
678 int error;
679
680 error = ieee80211_media_change(ifp);
681 if (error != ENETRESET)
682 return error;
683
684 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
685 zyd_init(ifp);
686
687 return 0;
688 }
689
690 /*
691 * This function is called periodically (every 200ms) during scanning to
692 * switch from one channel to another.
693 */
694 Static void
695 zyd_next_scan(void *arg)
696 {
697 struct zyd_softc *sc = arg;
698 struct ieee80211com *ic = &sc->sc_ic;
699
700 if (ic->ic_state == IEEE80211_S_SCAN)
701 ieee80211_next_scan(ic);
702 }
703
704 Static void
705 zyd_task(void *arg)
706 {
707 struct zyd_softc *sc = arg;
708 struct ieee80211com *ic = &sc->sc_ic;
709 enum ieee80211_state ostate;
710
711 ostate = ic->ic_state;
712
713 switch (sc->sc_state) {
714 case IEEE80211_S_INIT:
715 if (ostate == IEEE80211_S_RUN) {
716 /* turn link LED off */
717 zyd_set_led(sc, ZYD_LED1, 0);
718
719 /* stop data LED from blinking */
720 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
721 }
722 break;
723
724 case IEEE80211_S_SCAN:
725 zyd_set_chan(sc, ic->ic_curchan);
726 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
727 break;
728
729 case IEEE80211_S_AUTH:
730 case IEEE80211_S_ASSOC:
731 zyd_set_chan(sc, ic->ic_curchan);
732 break;
733
734 case IEEE80211_S_RUN:
735 {
736 struct ieee80211_node *ni = ic->ic_bss;
737
738 zyd_set_chan(sc, ic->ic_curchan);
739
740 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
741 /* turn link LED on */
742 zyd_set_led(sc, ZYD_LED1, 1);
743
744 /* make data LED blink upon Tx */
745 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
746
747 zyd_set_bssid(sc, ni->ni_bssid);
748 }
749
750 if (ic->ic_opmode == IEEE80211_M_STA) {
751 /* fake a join to init the tx rate */
752 zyd_newassoc(ni, 1);
753 }
754
755 /* start automatic rate control timer */
756 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
757 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
758
759 break;
760 }
761 }
762
763 sc->sc_newstate(ic, sc->sc_state, -1);
764 }
765
766 Static int
767 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
768 {
769 struct zyd_softc *sc = ic->ic_ifp->if_softc;
770
771 if (!sc->attached)
772 return ENXIO;
773
774 usb_rem_task(sc->sc_udev, &sc->sc_task);
775 callout_stop(&sc->sc_scan_ch);
776 callout_stop(&sc->sc_amrr_ch);
777
778 /* do it in a process context */
779 sc->sc_state = nstate;
780 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
781
782 return 0;
783 }
784
785 Static int
786 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
787 void *odata, int olen, u_int flags)
788 {
789 struct usbd_xfer *xfer;
790 struct zyd_cmd cmd;
791 struct rq rq;
792 uint16_t xferflags;
793 int error;
794 usbd_status uerror;
795 int s = 0;
796
797 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
798 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
799 if (error)
800 return error;
801
802 cmd.code = htole16(code);
803 memcpy(cmd.data, idata, ilen);
804
805 xferflags = USBD_FORCE_SHORT_XFER;
806 if (!(flags & ZYD_CMD_FLAG_READ))
807 xferflags |= USBD_SYNCHRONOUS;
808 else {
809 s = splusb();
810 rq.idata = idata;
811 rq.odata = odata;
812 rq.len = olen / sizeof(struct zyd_pair);
813 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 }
815
816 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
817 ZYD_INTR_TIMEOUT, NULL);
818 uerror = usbd_transfer(xfer);
819 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
820 if (flags & ZYD_CMD_FLAG_READ)
821 splx(s);
822 printf("%s: could not send command (error=%s)\n",
823 device_xname(sc->sc_dev), usbd_errstr(uerror));
824 (void)usbd_destroy_xfer(xfer);
825 return EIO;
826 }
827 if (!(flags & ZYD_CMD_FLAG_READ)) {
828 (void)usbd_destroy_xfer(xfer);
829 return 0; /* write: don't wait for reply */
830 }
831 /* wait at most one second for command reply */
832 error = tsleep(odata, PCATCH, "zydcmd", hz);
833 if (error == EWOULDBLOCK)
834 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
835 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 splx(s);
837
838 (void)usbd_destroy_xfer(xfer);
839 return error;
840 }
841
842 Static int
843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 struct zyd_pair tmp;
846 int error;
847
848 reg = htole16(reg);
849 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
850 ZYD_CMD_FLAG_READ);
851 if (error == 0)
852 *val = le16toh(tmp.val);
853 else
854 *val = 0;
855 return error;
856 }
857
858 Static int
859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 struct zyd_pair tmp[2];
862 uint16_t regs[2];
863 int error;
864
865 regs[0] = htole16(ZYD_REG32_HI(reg));
866 regs[1] = htole16(ZYD_REG32_LO(reg));
867 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
868 ZYD_CMD_FLAG_READ);
869 if (error == 0)
870 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 else
872 *val = 0;
873 return error;
874 }
875
876 Static int
877 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
878 {
879 struct zyd_pair pair;
880
881 pair.reg = htole16(reg);
882 pair.val = htole16(val);
883
884 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
885 }
886
887 Static int
888 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
889 {
890 struct zyd_pair pair[2];
891
892 pair[0].reg = htole16(ZYD_REG32_HI(reg));
893 pair[0].val = htole16(val >> 16);
894 pair[1].reg = htole16(ZYD_REG32_LO(reg));
895 pair[1].val = htole16(val & 0xffff);
896
897 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
898 }
899
900 Static int
901 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
902 {
903 struct zyd_rf *rf = &sc->sc_rf;
904 struct zyd_rfwrite req;
905 uint16_t cr203;
906 int i;
907
908 (void)zyd_read16(sc, ZYD_CR203, &cr203);
909 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
910
911 req.code = htole16(2);
912 req.width = htole16(rf->width);
913 for (i = 0; i < rf->width; i++) {
914 req.bit[i] = htole16(cr203);
915 if (val & (1 << (rf->width - 1 - i)))
916 req.bit[i] |= htole16(ZYD_RF_DATA);
917 }
918 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
919 }
920
921 Static void
922 zyd_lock_phy(struct zyd_softc *sc)
923 {
924 uint32_t tmp;
925
926 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 tmp &= ~ZYD_UNLOCK_PHY_REGS;
928 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930
931 Static void
932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 uint32_t tmp;
935
936 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 tmp |= ZYD_UNLOCK_PHY_REGS;
938 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940
941 /*
942 * RFMD RF methods.
943 */
944 Static int
945 zyd_rfmd_init(struct zyd_rf *rf)
946 {
947 struct zyd_softc *sc = rf->rf_sc;
948 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
949 static const uint32_t rfini[] = ZYD_RFMD_RF;
950 int error;
951 size_t i;
952
953 /* init RF-dependent PHY registers */
954 for (i = 0; i < __arraycount(phyini); i++) {
955 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
956 if (error != 0)
957 return error;
958 }
959
960 /* init RFMD radio */
961 for (i = 0; i < __arraycount(rfini); i++) {
962 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
963 return error;
964 }
965 return 0;
966 }
967
968 Static int
969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
970 {
971 struct zyd_softc *sc = rf->rf_sc;
972
973 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
974 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
975
976 return 0;
977 }
978
979 Static int
980 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
981 {
982 struct zyd_softc *sc = rf->rf_sc;
983 static const struct {
984 uint32_t r1, r2;
985 } rfprog[] = ZYD_RFMD_CHANTABLE;
986
987 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
988 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
989
990 return 0;
991 }
992
993 /*
994 * AL2230 RF methods.
995 */
996 Static int
997 zyd_al2230_init(struct zyd_rf *rf)
998 {
999 struct zyd_softc *sc = rf->rf_sc;
1000 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1001 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1002 static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 int error;
1004 size_t i;
1005
1006 /* init RF-dependent PHY registers */
1007 for (i = 0; i < __arraycount(phyini); i++) {
1008 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1009 if (error != 0)
1010 return error;
1011 }
1012
1013 if (sc->rf_rev == ZYD_RF_AL2230S) {
1014 for (i = 0; i < __arraycount(phy2230s); i++) {
1015 error = zyd_write16(sc, phy2230s[i].reg,
1016 phy2230s[i].val);
1017 if (error != 0)
1018 return error;
1019 }
1020 }
1021
1022 /* init AL2230 radio */
1023 for (i = 0; i < __arraycount(rfini); i++) {
1024 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1025 return error;
1026 }
1027 return 0;
1028 }
1029
1030 Static int
1031 zyd_al2230_init_b(struct zyd_rf *rf)
1032 {
1033 struct zyd_softc *sc = rf->rf_sc;
1034 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1035 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1036 int error;
1037 size_t i;
1038
1039 /* init RF-dependent PHY registers */
1040 for (i = 0; i < __arraycount(phyini); i++) {
1041 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1042 if (error != 0)
1043 return error;
1044 }
1045
1046 /* init AL2230 radio */
1047 for (i = 0; i < __arraycount(rfini); i++) {
1048 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1049 return error;
1050 }
1051 return 0;
1052 }
1053
1054 Static int
1055 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1056 {
1057 struct zyd_softc *sc = rf->rf_sc;
1058 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1059
1060 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1061 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1062
1063 return 0;
1064 }
1065
1066 Static int
1067 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1068 {
1069 struct zyd_softc *sc = rf->rf_sc;
1070 static const struct {
1071 uint32_t r1, r2, r3;
1072 } rfprog[] = ZYD_AL2230_CHANTABLE;
1073
1074 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1075 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1076 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1077
1078 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1079 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * AL7230B RF methods.
1086 */
1087 Static int
1088 zyd_al7230B_init(struct zyd_rf *rf)
1089 {
1090 struct zyd_softc *sc = rf->rf_sc;
1091 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1092 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1093 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1094 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1095 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1096 int error;
1097 size_t i;
1098
1099 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1100
1101 /* init RF-dependent PHY registers, part one */
1102 for (i = 0; i < __arraycount(phyini_1); i++) {
1103 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1104 if (error != 0)
1105 return error;
1106 }
1107 /* init AL7230B radio, part one */
1108 for (i = 0; i < __arraycount(rfini_1); i++) {
1109 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1110 return error;
1111 }
1112 /* init RF-dependent PHY registers, part two */
1113 for (i = 0; i < __arraycount(phyini_2); i++) {
1114 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1115 if (error != 0)
1116 return error;
1117 }
1118 /* init AL7230B radio, part two */
1119 for (i = 0; i < __arraycount(rfini_2); i++) {
1120 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1121 return error;
1122 }
1123 /* init RF-dependent PHY registers, part three */
1124 for (i = 0; i < __arraycount(phyini_3); i++) {
1125 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1126 if (error != 0)
1127 return error;
1128 }
1129
1130 return 0;
1131 }
1132
1133 Static int
1134 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1135 {
1136 struct zyd_softc *sc = rf->rf_sc;
1137
1138 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1139 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1140
1141 return 0;
1142 }
1143
1144 Static int
1145 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1146 {
1147 struct zyd_softc *sc = rf->rf_sc;
1148 static const struct {
1149 uint32_t r1, r2;
1150 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1151 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1152 int error;
1153 size_t i;
1154
1155 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1156 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1157
1158 for (i = 0; i < __arraycount(rfsc); i++) {
1159 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1160 return error;
1161 }
1162
1163 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1164 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1165 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1166 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1167 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1168
1169 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1170 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1171 (void)zyd_rfwrite(sc, 0x3c9000);
1172
1173 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1174 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1175 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * AL2210 RF methods.
1182 */
1183 Static int
1184 zyd_al2210_init(struct zyd_rf *rf)
1185 {
1186 struct zyd_softc *sc = rf->rf_sc;
1187 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1188 static const uint32_t rfini[] = ZYD_AL2210_RF;
1189 uint32_t tmp;
1190 int error;
1191 size_t i;
1192
1193 (void)zyd_write32(sc, ZYD_CR18, 2);
1194
1195 /* init RF-dependent PHY registers */
1196 for (i = 0; i < __arraycount(phyini); i++) {
1197 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1198 if (error != 0)
1199 return error;
1200 }
1201 /* init AL2210 radio */
1202 for (i = 0; i < __arraycount(rfini); i++) {
1203 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1204 return error;
1205 }
1206 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1207 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1208 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1209 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1210 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1211 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1212 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1213 (void)zyd_write32(sc, ZYD_CR18, 3);
1214
1215 return 0;
1216 }
1217
1218 Static int
1219 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1220 {
1221 /* vendor driver does nothing for this RF chip */
1222
1223 return 0;
1224 }
1225
1226 Static int
1227 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1228 {
1229 struct zyd_softc *sc = rf->rf_sc;
1230 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1231 uint32_t tmp;
1232
1233 (void)zyd_write32(sc, ZYD_CR18, 2);
1234 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1235 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1236 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1237 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1238 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1239
1240 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1241 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1242
1243 /* actually set the channel */
1244 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1245
1246 (void)zyd_write32(sc, ZYD_CR18, 3);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * GCT RF methods.
1253 */
1254 Static int
1255 zyd_gct_init(struct zyd_rf *rf)
1256 {
1257 struct zyd_softc *sc = rf->rf_sc;
1258 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1259 static const uint32_t rfini[] = ZYD_GCT_RF;
1260 int error;
1261 size_t i;
1262
1263 /* init RF-dependent PHY registers */
1264 for (i = 0; i < __arraycount(phyini); i++) {
1265 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1266 if (error != 0)
1267 return error;
1268 }
1269 /* init cgt radio */
1270 for (i = 0; i < __arraycount(rfini); i++) {
1271 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1272 return error;
1273 }
1274 return 0;
1275 }
1276
1277 Static int
1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1279 {
1280 /* vendor driver does nothing for this RF chip */
1281
1282 return 0;
1283 }
1284
1285 Static int
1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1287 {
1288 struct zyd_softc *sc = rf->rf_sc;
1289 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1290
1291 (void)zyd_rfwrite(sc, 0x1c0000);
1292 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1293 (void)zyd_rfwrite(sc, 0x1c0008);
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Maxim RF methods.
1300 */
1301 Static int
1302 zyd_maxim_init(struct zyd_rf *rf)
1303 {
1304 struct zyd_softc *sc = rf->rf_sc;
1305 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1306 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1307 uint16_t tmp;
1308 int error;
1309 size_t i;
1310
1311 /* init RF-dependent PHY registers */
1312 for (i = 0; i < __arraycount(phyini); i++) {
1313 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1314 if (error != 0)
1315 return error;
1316 }
1317 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1319
1320 /* init maxim radio */
1321 for (i = 0; i < __arraycount(rfini); i++) {
1322 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1323 return error;
1324 }
1325 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1326 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1327
1328 return 0;
1329 }
1330
1331 Static int
1332 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1333 {
1334 /* vendor driver does nothing for this RF chip */
1335
1336 return 0;
1337 }
1338
1339 Static int
1340 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1341 {
1342 struct zyd_softc *sc = rf->rf_sc;
1343 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1344 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1345 static const struct {
1346 uint32_t r1, r2;
1347 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1348 uint16_t tmp;
1349 int error;
1350 size_t i;
1351
1352 /*
1353 * Do the same as we do when initializing it, except for the channel
1354 * values coming from the two channel tables.
1355 */
1356
1357 /* init RF-dependent PHY registers */
1358 for (i = 0; i < __arraycount(phyini); i++) {
1359 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1360 if (error != 0)
1361 return error;
1362 }
1363 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1364 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1365
1366 /* first two values taken from the chantables */
1367 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1368 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1369
1370 /* init maxim radio - skipping the two first values */
1371 for (i = 2; i < __arraycount(rfini); i++) {
1372 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1373 return error;
1374 }
1375 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1376 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1377
1378 return 0;
1379 }
1380
1381 /*
1382 * Maxim2 RF methods.
1383 */
1384 Static int
1385 zyd_maxim2_init(struct zyd_rf *rf)
1386 {
1387 struct zyd_softc *sc = rf->rf_sc;
1388 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1389 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1390 uint16_t tmp;
1391 int error;
1392 size_t i;
1393
1394 /* init RF-dependent PHY registers */
1395 for (i = 0; i < __arraycount(phyini); i++) {
1396 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1397 if (error != 0)
1398 return error;
1399 }
1400 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1401 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1402
1403 /* init maxim2 radio */
1404 for (i = 0; i < __arraycount(rfini); i++) {
1405 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1406 return error;
1407 }
1408 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1409 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1410
1411 return 0;
1412 }
1413
1414 Static int
1415 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1416 {
1417 /* vendor driver does nothing for this RF chip */
1418
1419 return 0;
1420 }
1421
1422 Static int
1423 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1424 {
1425 struct zyd_softc *sc = rf->rf_sc;
1426 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1427 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1428 static const struct {
1429 uint32_t r1, r2;
1430 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1431 uint16_t tmp;
1432 int error;
1433 size_t i;
1434
1435 /*
1436 * Do the same as we do when initializing it, except for the channel
1437 * values coming from the two channel tables.
1438 */
1439
1440 /* init RF-dependent PHY registers */
1441 for (i = 0; i < __arraycount(phyini); i++) {
1442 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1443 if (error != 0)
1444 return error;
1445 }
1446 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1447 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1448
1449 /* first two values taken from the chantables */
1450 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1451 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1452
1453 /* init maxim2 radio - skipping the two first values */
1454 for (i = 2; i < __arraycount(rfini); i++) {
1455 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1456 return error;
1457 }
1458 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1459 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1460
1461 return 0;
1462 }
1463
1464 Static int
1465 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1466 {
1467 struct zyd_rf *rf = &sc->sc_rf;
1468
1469 rf->rf_sc = sc;
1470
1471 switch (type) {
1472 case ZYD_RF_RFMD:
1473 rf->init = zyd_rfmd_init;
1474 rf->switch_radio = zyd_rfmd_switch_radio;
1475 rf->set_channel = zyd_rfmd_set_channel;
1476 rf->width = 24; /* 24-bit RF values */
1477 break;
1478 case ZYD_RF_AL2230:
1479 case ZYD_RF_AL2230S:
1480 if (sc->mac_rev == ZYD_ZD1211B)
1481 rf->init = zyd_al2230_init_b;
1482 else
1483 rf->init = zyd_al2230_init;
1484 rf->switch_radio = zyd_al2230_switch_radio;
1485 rf->set_channel = zyd_al2230_set_channel;
1486 rf->width = 24; /* 24-bit RF values */
1487 break;
1488 case ZYD_RF_AL7230B:
1489 rf->init = zyd_al7230B_init;
1490 rf->switch_radio = zyd_al7230B_switch_radio;
1491 rf->set_channel = zyd_al7230B_set_channel;
1492 rf->width = 24; /* 24-bit RF values */
1493 break;
1494 case ZYD_RF_AL2210:
1495 rf->init = zyd_al2210_init;
1496 rf->switch_radio = zyd_al2210_switch_radio;
1497 rf->set_channel = zyd_al2210_set_channel;
1498 rf->width = 24; /* 24-bit RF values */
1499 break;
1500 case ZYD_RF_GCT:
1501 rf->init = zyd_gct_init;
1502 rf->switch_radio = zyd_gct_switch_radio;
1503 rf->set_channel = zyd_gct_set_channel;
1504 rf->width = 21; /* 21-bit RF values */
1505 break;
1506 case ZYD_RF_MAXIM_NEW:
1507 rf->init = zyd_maxim_init;
1508 rf->switch_radio = zyd_maxim_switch_radio;
1509 rf->set_channel = zyd_maxim_set_channel;
1510 rf->width = 18; /* 18-bit RF values */
1511 break;
1512 case ZYD_RF_MAXIM_NEW2:
1513 rf->init = zyd_maxim2_init;
1514 rf->switch_radio = zyd_maxim2_switch_radio;
1515 rf->set_channel = zyd_maxim2_set_channel;
1516 rf->width = 18; /* 18-bit RF values */
1517 break;
1518 default:
1519 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1520 device_xname(sc->sc_dev), zyd_rf_name(type));
1521 return EINVAL;
1522 }
1523 return 0;
1524 }
1525
1526 Static const char *
1527 zyd_rf_name(uint8_t type)
1528 {
1529 static const char * const zyd_rfs[] = {
1530 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1531 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1532 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1533 "PHILIPS"
1534 };
1535
1536 return zyd_rfs[(type > 15) ? 0 : type];
1537 }
1538
1539 Static int
1540 zyd_hw_init(struct zyd_softc *sc)
1541 {
1542 struct zyd_rf *rf = &sc->sc_rf;
1543 const struct zyd_phy_pair *phyp;
1544 int error;
1545
1546 /* specify that the plug and play is finished */
1547 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1548
1549 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1550 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1551
1552 /* retrieve firmware revision number */
1553 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1554
1555 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1556 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1557
1558 /* disable interrupts */
1559 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1560
1561 /* PHY init */
1562 zyd_lock_phy(sc);
1563 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1564 for (; phyp->reg != 0; phyp++) {
1565 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1566 goto fail;
1567 }
1568 zyd_unlock_phy(sc);
1569
1570 /* HMAC init */
1571 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1572 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1573
1574 if (sc->mac_rev == ZYD_ZD1211) {
1575 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1576 } else {
1577 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1580 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1582 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1583 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1584 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1585 }
1586
1587 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1588 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1589 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1590 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1591 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1593 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1594 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1595 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1596 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1597 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1598 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1599 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1600 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1601 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1602 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1603 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1604
1605 /* RF chip init */
1606 zyd_lock_phy(sc);
1607 error = (*rf->init)(rf);
1608 zyd_unlock_phy(sc);
1609 if (error != 0) {
1610 printf("%s: radio initialization failed\n",
1611 device_xname(sc->sc_dev));
1612 goto fail;
1613 }
1614
1615 /* init beacon interval to 100ms */
1616 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1617 goto fail;
1618
1619 fail: return error;
1620 }
1621
1622 Static int
1623 zyd_read_eeprom(struct zyd_softc *sc)
1624 {
1625 struct ieee80211com *ic = &sc->sc_ic;
1626 uint32_t tmp;
1627 uint16_t val;
1628 int i;
1629
1630 /* read MAC address */
1631 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1632 ic->ic_myaddr[0] = tmp & 0xff;
1633 ic->ic_myaddr[1] = tmp >> 8;
1634 ic->ic_myaddr[2] = tmp >> 16;
1635 ic->ic_myaddr[3] = tmp >> 24;
1636 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1637 ic->ic_myaddr[4] = tmp & 0xff;
1638 ic->ic_myaddr[5] = tmp >> 8;
1639
1640 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1641 sc->rf_rev = tmp & 0x0f;
1642 sc->pa_rev = (tmp >> 16) & 0x0f;
1643
1644 /* read regulatory domain (currently unused) */
1645 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1646 sc->regdomain = tmp >> 16;
1647 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1648
1649 /* read Tx power calibration tables */
1650 for (i = 0; i < 7; i++) {
1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1652 sc->pwr_cal[i * 2] = val >> 8;
1653 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1654
1655 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1656 sc->pwr_int[i * 2] = val >> 8;
1657 sc->pwr_int[i * 2 + 1] = val & 0xff;
1658
1659 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1660 sc->ofdm36_cal[i * 2] = val >> 8;
1661 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1662
1663 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1664 sc->ofdm48_cal[i * 2] = val >> 8;
1665 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1666
1667 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1668 sc->ofdm54_cal[i * 2] = val >> 8;
1669 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1670 }
1671 return 0;
1672 }
1673
1674 Static int
1675 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1676 {
1677 uint32_t tmp;
1678
1679 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1680 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1681
1682 tmp = addr[5] << 8 | addr[4];
1683 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1684
1685 return 0;
1686 }
1687
1688 Static int
1689 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1690 {
1691 uint32_t tmp;
1692
1693 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1694 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1695
1696 tmp = addr[5] << 8 | addr[4];
1697 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1698
1699 return 0;
1700 }
1701
1702 Static int
1703 zyd_switch_radio(struct zyd_softc *sc, int on)
1704 {
1705 struct zyd_rf *rf = &sc->sc_rf;
1706 int error;
1707
1708 zyd_lock_phy(sc);
1709 error = (*rf->switch_radio)(rf, on);
1710 zyd_unlock_phy(sc);
1711
1712 return error;
1713 }
1714
1715 Static void
1716 zyd_set_led(struct zyd_softc *sc, int which, int on)
1717 {
1718 uint32_t tmp;
1719
1720 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1721 tmp &= ~which;
1722 if (on)
1723 tmp |= which;
1724 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1725 }
1726
1727 Static int
1728 zyd_set_rxfilter(struct zyd_softc *sc)
1729 {
1730 uint32_t rxfilter;
1731
1732 switch (sc->sc_ic.ic_opmode) {
1733 case IEEE80211_M_STA:
1734 rxfilter = ZYD_FILTER_BSS;
1735 break;
1736 case IEEE80211_M_IBSS:
1737 case IEEE80211_M_HOSTAP:
1738 rxfilter = ZYD_FILTER_HOSTAP;
1739 break;
1740 case IEEE80211_M_MONITOR:
1741 rxfilter = ZYD_FILTER_MONITOR;
1742 break;
1743 default:
1744 /* should not get there */
1745 return EINVAL;
1746 }
1747 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1748 }
1749
1750 Static void
1751 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1752 {
1753 struct ieee80211com *ic = &sc->sc_ic;
1754 struct zyd_rf *rf = &sc->sc_rf;
1755 u_int chan;
1756
1757 chan = ieee80211_chan2ieee(ic, c);
1758 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1759 return;
1760
1761 zyd_lock_phy(sc);
1762
1763 (*rf->set_channel)(rf, chan);
1764
1765 /* update Tx power */
1766 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1768
1769 if (sc->mac_rev == ZYD_ZD1211B) {
1770 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1771 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1772 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1773
1774 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1775 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1776 }
1777
1778 zyd_unlock_phy(sc);
1779 }
1780
1781 Static int
1782 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1783 {
1784 /* XXX this is probably broken.. */
1785 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1786 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1787 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1788
1789 return 0;
1790 }
1791
1792 Static uint8_t
1793 zyd_plcp_signal(int rate)
1794 {
1795 switch (rate) {
1796 /* CCK rates (returned values are device-dependent) */
1797 case 2: return 0x0;
1798 case 4: return 0x1;
1799 case 11: return 0x2;
1800 case 22: return 0x3;
1801
1802 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1803 case 12: return 0xb;
1804 case 18: return 0xf;
1805 case 24: return 0xa;
1806 case 36: return 0xe;
1807 case 48: return 0x9;
1808 case 72: return 0xd;
1809 case 96: return 0x8;
1810 case 108: return 0xc;
1811
1812 /* unsupported rates (should not get there) */
1813 default: return 0xff;
1814 }
1815 }
1816
1817 Static void
1818 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1819 {
1820 struct zyd_softc *sc = (struct zyd_softc *)priv;
1821 struct zyd_cmd *cmd;
1822 uint32_t datalen;
1823
1824 if (status != USBD_NORMAL_COMPLETION) {
1825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1826 return;
1827
1828 if (status == USBD_STALLED) {
1829 usbd_clear_endpoint_stall_async(
1830 sc->zyd_ep[ZYD_ENDPT_IIN]);
1831 }
1832 return;
1833 }
1834
1835 cmd = (struct zyd_cmd *)sc->ibuf;
1836
1837 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1838 struct zyd_notif_retry *retry =
1839 (struct zyd_notif_retry *)cmd->data;
1840 struct ieee80211com *ic = &sc->sc_ic;
1841 struct ifnet *ifp = &sc->sc_if;
1842 struct ieee80211_node *ni;
1843
1844 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1845 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1846 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1847
1848 /*
1849 * Find the node to which the packet was sent and update its
1850 * retry statistics. In BSS mode, this node is the AP we're
1851 * associated to so no lookup is actually needed.
1852 */
1853 if (ic->ic_opmode != IEEE80211_M_STA) {
1854 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1855 if (ni == NULL)
1856 return; /* just ignore */
1857 } else
1858 ni = ic->ic_bss;
1859
1860 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1861
1862 if (le16toh(retry->count) & 0x100)
1863 ifp->if_oerrors++; /* too many retries */
1864
1865 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1866 struct rq *rqp;
1867
1868 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1869 return; /* HMAC interrupt */
1870
1871 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1872 datalen -= sizeof(cmd->code);
1873 datalen -= 2; /* XXX: padding? */
1874
1875 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1876 int i;
1877
1878 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1879 continue;
1880 for (i = 0; i < rqp->len; i++) {
1881 if (*(((const uint16_t *)rqp->idata) + i) !=
1882 (((struct zyd_pair *)cmd->data) + i)->reg)
1883 break;
1884 }
1885 if (i != rqp->len)
1886 continue;
1887
1888 /* copy answer into caller-supplied buffer */
1889 memcpy(rqp->odata, cmd->data,
1890 sizeof(struct zyd_pair) * rqp->len);
1891 wakeup(rqp->odata); /* wakeup caller */
1892
1893 return;
1894 }
1895 return; /* unexpected IORD notification */
1896 } else {
1897 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1898 le16toh(cmd->code));
1899 }
1900 }
1901
1902 Static void
1903 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1904 {
1905 struct ieee80211com *ic = &sc->sc_ic;
1906 struct ifnet *ifp = &sc->sc_if;
1907 struct ieee80211_node *ni;
1908 struct ieee80211_frame *wh;
1909 const struct zyd_plcphdr *plcp;
1910 const struct zyd_rx_stat *stat;
1911 struct mbuf *m;
1912 int rlen, s;
1913
1914 if (len < ZYD_MIN_FRAGSZ) {
1915 printf("%s: frame too short (length=%d)\n",
1916 device_xname(sc->sc_dev), len);
1917 ifp->if_ierrors++;
1918 return;
1919 }
1920
1921 plcp = (const struct zyd_plcphdr *)buf;
1922 stat = (const struct zyd_rx_stat *)
1923 (buf + len - sizeof(struct zyd_rx_stat));
1924
1925 if (stat->flags & ZYD_RX_ERROR) {
1926 DPRINTF(("%s: RX status indicated error (%x)\n",
1927 device_xname(sc->sc_dev), stat->flags));
1928 ifp->if_ierrors++;
1929 return;
1930 }
1931
1932 /* compute actual frame length */
1933 rlen = len - sizeof(struct zyd_plcphdr) -
1934 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1935
1936 /* allocate a mbuf to store the frame */
1937 MGETHDR(m, M_DONTWAIT, MT_DATA);
1938 if (m == NULL) {
1939 printf("%s: could not allocate rx mbuf\n",
1940 device_xname(sc->sc_dev));
1941 ifp->if_ierrors++;
1942 return;
1943 }
1944 if (rlen > MHLEN) {
1945 MCLGET(m, M_DONTWAIT);
1946 if (!(m->m_flags & M_EXT)) {
1947 printf("%s: could not allocate rx mbuf cluster\n",
1948 device_xname(sc->sc_dev));
1949 m_freem(m);
1950 ifp->if_ierrors++;
1951 return;
1952 }
1953 }
1954 m_set_rcvif(m, ifp);
1955 m->m_pkthdr.len = m->m_len = rlen;
1956 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1957
1958 s = splnet();
1959
1960 if (sc->sc_drvbpf != NULL) {
1961 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1962 static const uint8_t rates[] = {
1963 /* reverse function of zyd_plcp_signal() */
1964 2, 4, 11, 22, 0, 0, 0, 0,
1965 96, 48, 24, 12, 108, 72, 36, 18
1966 };
1967
1968 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1969 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1970 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1971 tap->wr_rssi = stat->rssi;
1972 tap->wr_rate = rates[plcp->signal & 0xf];
1973
1974 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1975 }
1976
1977 wh = mtod(m, struct ieee80211_frame *);
1978 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1979 ieee80211_input(ic, m, ni, stat->rssi, 0);
1980
1981 /* node is no longer needed */
1982 ieee80211_free_node(ni);
1983
1984 splx(s);
1985 }
1986
1987 Static void
1988 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1989 {
1990 struct zyd_rx_data *data = priv;
1991 struct zyd_softc *sc = data->sc;
1992 struct ifnet *ifp = &sc->sc_if;
1993 const struct zyd_rx_desc *desc;
1994 int len;
1995
1996 if (status != USBD_NORMAL_COMPLETION) {
1997 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1998 return;
1999
2000 if (status == USBD_STALLED)
2001 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2002
2003 goto skip;
2004 }
2005 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2006
2007 if (len < ZYD_MIN_RXBUFSZ) {
2008 printf("%s: xfer too short (length=%d)\n",
2009 device_xname(sc->sc_dev), len);
2010 ifp->if_ierrors++;
2011 goto skip;
2012 }
2013
2014 desc = (const struct zyd_rx_desc *)
2015 (data->buf + len - sizeof(struct zyd_rx_desc));
2016
2017 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2018 const uint8_t *p = data->buf, *end = p + len;
2019 int i;
2020
2021 DPRINTFN(3, ("received multi-frame transfer\n"));
2022
2023 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2024 const uint16_t len16 = UGETW(desc->len[i]);
2025
2026 if (len16 == 0 || p + len16 > end)
2027 break;
2028
2029 zyd_rx_data(sc, p, len16);
2030 /* next frame is aligned on a 32-bit boundary */
2031 p += (len16 + 3) & ~3;
2032 }
2033 } else {
2034 DPRINTFN(3, ("received single-frame transfer\n"));
2035
2036 zyd_rx_data(sc, data->buf, len);
2037 }
2038
2039 skip: /* setup a new transfer */
2040
2041 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2042 USBD_NO_TIMEOUT, zyd_rxeof);
2043 (void)usbd_transfer(xfer);
2044 }
2045
2046 Static int
2047 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2048 {
2049 struct ieee80211com *ic = &sc->sc_ic;
2050 struct ifnet *ifp = &sc->sc_if;
2051 struct zyd_tx_desc *desc;
2052 struct zyd_tx_data *data;
2053 struct ieee80211_frame *wh;
2054 struct ieee80211_key *k;
2055 int xferlen, totlen, rate;
2056 uint16_t pktlen;
2057 usbd_status error;
2058
2059 data = &sc->tx_data[0];
2060 desc = (struct zyd_tx_desc *)data->buf;
2061
2062 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2063
2064 wh = mtod(m0, struct ieee80211_frame *);
2065
2066 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2067 k = ieee80211_crypto_encap(ic, ni, m0);
2068 if (k == NULL) {
2069 m_freem(m0);
2070 return ENOBUFS;
2071 }
2072 }
2073
2074 data->ni = ni;
2075
2076 wh = mtod(m0, struct ieee80211_frame *);
2077
2078 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2079 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2080
2081 /* fill Tx descriptor */
2082 desc->len = htole16(totlen);
2083
2084 desc->flags = ZYD_TX_FLAG_BACKOFF;
2085 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2086 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2087 if (totlen > ic->ic_rtsthreshold) {
2088 desc->flags |= ZYD_TX_FLAG_RTS;
2089 } else if (ZYD_RATE_IS_OFDM(rate) &&
2090 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2091 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2092 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2093 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2094 desc->flags |= ZYD_TX_FLAG_RTS;
2095 }
2096 } else
2097 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2098
2099 if ((wh->i_fc[0] &
2100 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2101 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2102 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2103
2104 desc->phy = zyd_plcp_signal(rate);
2105 if (ZYD_RATE_IS_OFDM(rate)) {
2106 desc->phy |= ZYD_TX_PHY_OFDM;
2107 if (ic->ic_curmode == IEEE80211_MODE_11A)
2108 desc->phy |= ZYD_TX_PHY_5GHZ;
2109 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2110 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2111
2112 /* actual transmit length (XXX why +10?) */
2113 pktlen = sizeof(struct zyd_tx_desc) + 10;
2114 if (sc->mac_rev == ZYD_ZD1211)
2115 pktlen += totlen;
2116 desc->pktlen = htole16(pktlen);
2117
2118 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2119 desc->plcp_service = 0;
2120 if (rate == 22) {
2121 const int remainder = (16 * totlen) % 22;
2122 if (remainder != 0 && remainder < 7)
2123 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2124 }
2125
2126 if (sc->sc_drvbpf != NULL) {
2127 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2128
2129 tap->wt_flags = 0;
2130 tap->wt_rate = rate;
2131 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2132 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2133
2134 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2135 }
2136
2137 m_copydata(m0, 0, m0->m_pkthdr.len,
2138 data->buf + sizeof(struct zyd_tx_desc));
2139
2140 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2141 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2142
2143 m_freem(m0); /* mbuf no longer needed */
2144
2145 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2146 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2147 error = usbd_transfer(data->xfer);
2148 if (error != USBD_IN_PROGRESS && error != 0) {
2149 ifp->if_oerrors++;
2150 return EIO;
2151 }
2152 sc->tx_queued++;
2153
2154 return 0;
2155 }
2156
2157 Static void
2158 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2159 {
2160 struct zyd_tx_data *data = priv;
2161 struct zyd_softc *sc = data->sc;
2162 struct ifnet *ifp = &sc->sc_if;
2163 int s;
2164
2165 if (status != USBD_NORMAL_COMPLETION) {
2166 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2167 return;
2168
2169 printf("%s: could not transmit buffer: %s\n",
2170 device_xname(sc->sc_dev), usbd_errstr(status));
2171
2172 if (status == USBD_STALLED) {
2173 usbd_clear_endpoint_stall_async(
2174 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2175 }
2176 ifp->if_oerrors++;
2177 return;
2178 }
2179
2180 s = splnet();
2181
2182 /* update rate control statistics */
2183 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2184
2185 ieee80211_free_node(data->ni);
2186 data->ni = NULL;
2187
2188 sc->tx_queued--;
2189 ifp->if_opackets++;
2190
2191 sc->tx_timer = 0;
2192 ifp->if_flags &= ~IFF_OACTIVE;
2193 zyd_start(ifp);
2194
2195 splx(s);
2196 }
2197
2198 Static int
2199 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2200 {
2201 struct ieee80211com *ic = &sc->sc_ic;
2202 struct ifnet *ifp = &sc->sc_if;
2203 struct zyd_tx_desc *desc;
2204 struct zyd_tx_data *data;
2205 struct ieee80211_frame *wh;
2206 struct ieee80211_key *k;
2207 int xferlen, totlen, rate;
2208 uint16_t pktlen;
2209 usbd_status error;
2210
2211 wh = mtod(m0, struct ieee80211_frame *);
2212
2213 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2214 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2215 else
2216 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2217 rate &= IEEE80211_RATE_VAL;
2218
2219 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2220 k = ieee80211_crypto_encap(ic, ni, m0);
2221 if (k == NULL) {
2222 m_freem(m0);
2223 return ENOBUFS;
2224 }
2225
2226 /* packet header may have moved, reset our local pointer */
2227 wh = mtod(m0, struct ieee80211_frame *);
2228 }
2229
2230 data = &sc->tx_data[0];
2231 desc = (struct zyd_tx_desc *)data->buf;
2232
2233 data->ni = ni;
2234
2235 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2236 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2237
2238 /* fill Tx descriptor */
2239 desc->len = htole16(totlen);
2240
2241 desc->flags = ZYD_TX_FLAG_BACKOFF;
2242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2243 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2244 if (totlen > ic->ic_rtsthreshold) {
2245 desc->flags |= ZYD_TX_FLAG_RTS;
2246 } else if (ZYD_RATE_IS_OFDM(rate) &&
2247 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2248 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2249 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2250 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2251 desc->flags |= ZYD_TX_FLAG_RTS;
2252 }
2253 } else
2254 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2255
2256 if ((wh->i_fc[0] &
2257 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2258 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2259 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2260
2261 desc->phy = zyd_plcp_signal(rate);
2262 if (ZYD_RATE_IS_OFDM(rate)) {
2263 desc->phy |= ZYD_TX_PHY_OFDM;
2264 if (ic->ic_curmode == IEEE80211_MODE_11A)
2265 desc->phy |= ZYD_TX_PHY_5GHZ;
2266 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2267 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2268
2269 /* actual transmit length (XXX why +10?) */
2270 pktlen = sizeof(struct zyd_tx_desc) + 10;
2271 if (sc->mac_rev == ZYD_ZD1211)
2272 pktlen += totlen;
2273 desc->pktlen = htole16(pktlen);
2274
2275 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2276 desc->plcp_service = 0;
2277 if (rate == 22) {
2278 const int remainder = (16 * totlen) % 22;
2279 if (remainder != 0 && remainder < 7)
2280 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2281 }
2282
2283 if (sc->sc_drvbpf != NULL) {
2284 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2285
2286 tap->wt_flags = 0;
2287 tap->wt_rate = rate;
2288 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2289 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2290
2291 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2292 }
2293
2294 m_copydata(m0, 0, m0->m_pkthdr.len,
2295 data->buf + sizeof(struct zyd_tx_desc));
2296
2297 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2298 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2299
2300 m_freem(m0); /* mbuf no longer needed */
2301
2302 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2303 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2304 error = usbd_transfer(data->xfer);
2305 if (error != USBD_IN_PROGRESS && error != 0) {
2306 ifp->if_oerrors++;
2307 return EIO;
2308 }
2309 sc->tx_queued++;
2310
2311 return 0;
2312 }
2313
2314 Static void
2315 zyd_start(struct ifnet *ifp)
2316 {
2317 struct zyd_softc *sc = ifp->if_softc;
2318 struct ieee80211com *ic = &sc->sc_ic;
2319 struct ether_header *eh;
2320 struct ieee80211_node *ni;
2321 struct mbuf *m0;
2322
2323 for (;;) {
2324 IF_POLL(&ic->ic_mgtq, m0);
2325 if (m0 != NULL) {
2326 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2327 ifp->if_flags |= IFF_OACTIVE;
2328 break;
2329 }
2330 IF_DEQUEUE(&ic->ic_mgtq, m0);
2331
2332 ni = M_GETCTX(m0, struct ieee80211_node *);
2333 M_CLEARCTX(m0);
2334 bpf_mtap3(ic->ic_rawbpf, m0);
2335 if (zyd_tx_mgt(sc, m0, ni) != 0)
2336 break;
2337 } else {
2338 if (ic->ic_state != IEEE80211_S_RUN)
2339 break;
2340 IFQ_POLL(&ifp->if_snd, m0);
2341 if (m0 == NULL)
2342 break;
2343 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2344 ifp->if_flags |= IFF_OACTIVE;
2345 break;
2346 }
2347 IFQ_DEQUEUE(&ifp->if_snd, m0);
2348
2349 if (m0->m_len < sizeof(struct ether_header) &&
2350 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2351 continue;
2352
2353 eh = mtod(m0, struct ether_header *);
2354 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2355 if (ni == NULL) {
2356 m_freem(m0);
2357 continue;
2358 }
2359 bpf_mtap(ifp, m0);
2360 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2361 ieee80211_free_node(ni);
2362 ifp->if_oerrors++;
2363 continue;
2364 }
2365 bpf_mtap3(ic->ic_rawbpf, m0);
2366 if (zyd_tx_data(sc, m0, ni) != 0) {
2367 ieee80211_free_node(ni);
2368 ifp->if_oerrors++;
2369 break;
2370 }
2371 }
2372
2373 sc->tx_timer = 5;
2374 ifp->if_timer = 1;
2375 }
2376 }
2377
2378 Static void
2379 zyd_watchdog(struct ifnet *ifp)
2380 {
2381 struct zyd_softc *sc = ifp->if_softc;
2382 struct ieee80211com *ic = &sc->sc_ic;
2383
2384 ifp->if_timer = 0;
2385
2386 if (sc->tx_timer > 0) {
2387 if (--sc->tx_timer == 0) {
2388 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2389 /* zyd_init(ifp); XXX needs a process context ? */
2390 ifp->if_oerrors++;
2391 return;
2392 }
2393 ifp->if_timer = 1;
2394 }
2395
2396 ieee80211_watchdog(ic);
2397 }
2398
2399 Static int
2400 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2401 {
2402 struct zyd_softc *sc = ifp->if_softc;
2403 struct ieee80211com *ic = &sc->sc_ic;
2404 int s, error = 0;
2405
2406 s = splnet();
2407
2408 switch (cmd) {
2409 case SIOCSIFFLAGS:
2410 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2411 break;
2412 /* XXX re-use ether_ioctl() */
2413 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2414 case IFF_UP:
2415 zyd_init(ifp);
2416 break;
2417 case IFF_RUNNING:
2418 zyd_stop(ifp, 1);
2419 break;
2420 default:
2421 break;
2422 }
2423 break;
2424
2425 default:
2426 error = ieee80211_ioctl(ic, cmd, data);
2427 }
2428
2429 if (error == ENETRESET) {
2430 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2431 (IFF_RUNNING | IFF_UP))
2432 zyd_init(ifp);
2433 error = 0;
2434 }
2435
2436 splx(s);
2437
2438 return error;
2439 }
2440
2441 Static int
2442 zyd_init(struct ifnet *ifp)
2443 {
2444 struct zyd_softc *sc = ifp->if_softc;
2445 struct ieee80211com *ic = &sc->sc_ic;
2446 int i, error;
2447
2448 zyd_stop(ifp, 0);
2449
2450 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2451 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2452 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2453 if (error != 0)
2454 return error;
2455
2456 /* we'll do software WEP decryption for now */
2457 DPRINTF(("setting encryption type\n"));
2458 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2459 if (error != 0)
2460 return error;
2461
2462 /* promiscuous mode */
2463 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2464 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2465
2466 (void)zyd_set_rxfilter(sc);
2467
2468 /* switch radio transmitter ON */
2469 (void)zyd_switch_radio(sc, 1);
2470
2471 /* set basic rates */
2472 if (ic->ic_curmode == IEEE80211_MODE_11B)
2473 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2474 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2475 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2476 else /* assumes 802.11b/g */
2477 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2478
2479 /* set mandatory rates */
2480 if (ic->ic_curmode == IEEE80211_MODE_11B)
2481 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2482 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2483 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2484 else /* assumes 802.11b/g */
2485 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2486
2487 /* set default BSS channel */
2488 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2489 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2490
2491 /* enable interrupts */
2492 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2493
2494 /*
2495 * Allocate Tx and Rx xfer queues.
2496 */
2497 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2498 printf("%s: could not allocate Tx list\n",
2499 device_xname(sc->sc_dev));
2500 goto fail;
2501 }
2502 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2503 printf("%s: could not allocate Rx list\n",
2504 device_xname(sc->sc_dev));
2505 goto fail;
2506 }
2507
2508 /*
2509 * Start up the receive pipe.
2510 */
2511 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2512 struct zyd_rx_data *data = &sc->rx_data[i];
2513
2514 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2515 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2516 error = usbd_transfer(data->xfer);
2517 if (error != USBD_IN_PROGRESS && error != 0) {
2518 printf("%s: could not queue Rx transfer\n",
2519 device_xname(sc->sc_dev));
2520 goto fail;
2521 }
2522 }
2523
2524 ifp->if_flags &= ~IFF_OACTIVE;
2525 ifp->if_flags |= IFF_RUNNING;
2526
2527 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2528 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2529 else
2530 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2531
2532 return 0;
2533
2534 fail: zyd_stop(ifp, 1);
2535 return error;
2536 }
2537
2538 Static void
2539 zyd_stop(struct ifnet *ifp, int disable)
2540 {
2541 struct zyd_softc *sc = ifp->if_softc;
2542 struct ieee80211com *ic = &sc->sc_ic;
2543
2544 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2545
2546 sc->tx_timer = 0;
2547 ifp->if_timer = 0;
2548 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2549
2550 /* switch radio transmitter OFF */
2551 (void)zyd_switch_radio(sc, 0);
2552
2553 /* disable Rx */
2554 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2555
2556 /* disable interrupts */
2557 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2558
2559 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2560 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2561
2562 zyd_free_rx_list(sc);
2563 zyd_free_tx_list(sc);
2564 }
2565
2566 Static int
2567 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2568 {
2569 usb_device_request_t req;
2570 uint16_t addr;
2571 uint8_t stat;
2572
2573 DPRINTF(("firmware size=%zu\n", size));
2574
2575 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2576 req.bRequest = ZYD_DOWNLOADREQ;
2577 USETW(req.wIndex, 0);
2578
2579 addr = ZYD_FIRMWARE_START_ADDR;
2580 while (size > 0) {
2581 #if 0
2582 const int mlen = min(size, 4096);
2583 #else
2584 /*
2585 * XXXX: When the transfer size is 4096 bytes, it is not
2586 * likely to be able to transfer it.
2587 * The cause is port or machine or chip?
2588 */
2589 const int mlen = min(size, 64);
2590 #endif
2591
2592 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2593 addr));
2594
2595 USETW(req.wValue, addr);
2596 USETW(req.wLength, mlen);
2597 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2598 return EIO;
2599
2600 addr += mlen / 2;
2601 fw += mlen;
2602 size -= mlen;
2603 }
2604
2605 /* check whether the upload succeeded */
2606 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2607 req.bRequest = ZYD_DOWNLOADSTS;
2608 USETW(req.wValue, 0);
2609 USETW(req.wIndex, 0);
2610 USETW(req.wLength, sizeof(stat));
2611 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2612 return EIO;
2613
2614 return (stat & 0x80) ? EIO : 0;
2615 }
2616
2617 Static void
2618 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2619 {
2620 struct zyd_softc *sc = arg;
2621 struct zyd_node *zn = (struct zyd_node *)ni;
2622
2623 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2624 }
2625
2626 Static void
2627 zyd_amrr_timeout(void *arg)
2628 {
2629 struct zyd_softc *sc = arg;
2630 struct ieee80211com *ic = &sc->sc_ic;
2631 int s;
2632
2633 s = splnet();
2634 if (ic->ic_opmode == IEEE80211_M_STA)
2635 zyd_iter_func(sc, ic->ic_bss);
2636 else
2637 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2638 splx(s);
2639
2640 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2641 }
2642
2643 Static void
2644 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2645 {
2646 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2647 int i;
2648
2649 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2650
2651 /* set rate to some reasonable initial value */
2652 for (i = ni->ni_rates.rs_nrates - 1;
2653 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2654 i--);
2655 ni->ni_txrate = i;
2656 }
2657
2658 int
2659 zyd_activate(device_t self, enum devact act)
2660 {
2661 struct zyd_softc *sc = device_private(self);
2662
2663 switch (act) {
2664 case DVACT_DEACTIVATE:
2665 if_deactivate(&sc->sc_if);
2666 return 0;
2667 default:
2668 return EOPNOTSUPP;
2669 }
2670 }
2671