if_zyd.c revision 1.45.2.2 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.45.2.2 2018/07/28 04:37:58 pgoyette Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.45.2.2 2018/07/28 04:37:58 pgoyette Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
148 ZYD_ZD1211B_DEV(USR, USR5423),
149 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
153 ZYD_ZD1211B_DEV(ZYXEL, M202),
154 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
155 };
156 #define zyd_lookup(v, p) \
157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163 extern struct cfdriver zyd_cd;
164
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166 zyd_attach, zyd_detach, zyd_activate);
167
168 Static void zyd_attachhook(device_t);
169 Static int zyd_complete_attach(struct zyd_softc *);
170 Static int zyd_open_pipes(struct zyd_softc *);
171 Static void zyd_close_pipes(struct zyd_softc *);
172 Static int zyd_alloc_tx_list(struct zyd_softc *);
173 Static void zyd_free_tx_list(struct zyd_softc *);
174 Static int zyd_alloc_rx_list(struct zyd_softc *);
175 Static void zyd_free_rx_list(struct zyd_softc *);
176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int zyd_media_change(struct ifnet *);
178 Static void zyd_next_scan(void *);
179 Static void zyd_task(void *);
180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 void *, int, u_int);
183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void zyd_lock_phy(struct zyd_softc *);
189 Static void zyd_unlock_phy(struct zyd_softc *);
190 Static int zyd_rfmd_init(struct zyd_rf *);
191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_al2230_init(struct zyd_rf *);
194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2230_init_b(struct zyd_rf *);
197 Static int zyd_al7230B_init(struct zyd_rf *);
198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_al2210_init(struct zyd_rf *);
201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_gct_init(struct zyd_rf *);
204 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_maxim_init(struct zyd_rf *);
207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int zyd_maxim2_init(struct zyd_rf *);
210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int zyd_hw_init(struct zyd_softc *);
215 Static int zyd_read_eeprom(struct zyd_softc *);
216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int zyd_switch_radio(struct zyd_softc *, int);
219 Static void zyd_set_led(struct zyd_softc *, int, int);
220 Static int zyd_set_rxfilter(struct zyd_softc *);
221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t zyd_plcp_signal(int);
224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 struct ieee80211_node *);
230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 struct ieee80211_node *);
232 Static void zyd_start(struct ifnet *);
233 Static void zyd_watchdog(struct ifnet *);
234 Static int zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int zyd_init(struct ifnet *);
236 Static void zyd_stop(struct ifnet *, int);
237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void zyd_iter_func(void *, struct ieee80211_node *);
239 Static void zyd_amrr_timeout(void *);
240 Static void zyd_newassoc(struct ieee80211_node *, int);
241
242 int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 struct usb_attach_arg *uaa = aux;
246
247 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 struct zyd_softc *sc = device_private(self);
255 firmware_handle_t fwh;
256 const char *fwname;
257 u_char *fw;
258 size_t size;
259 int error;
260
261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "failed to open firmware %s (error=%d)\n", fwname, error);
265 return;
266 }
267 size = firmware_get_size(fwh);
268 fw = firmware_malloc(size);
269 if (fw == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to allocate firmware memory\n");
272 firmware_close(fwh);
273 return;
274 }
275 error = firmware_read(fwh, 0, fw, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "failed to read firmware (error %d)\n", error);
280 firmware_free(fw, size);
281 return;
282 }
283
284 error = zyd_loadfirmware(sc, fw, size);
285 if (error != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "could not load firmware (error=%d)\n", error);
288 firmware_free(fw, size);
289 return;
290 }
291
292 firmware_free(fw, size);
293
294 /* complete the attach process */
295 if ((error = zyd_complete_attach(sc)) == 0)
296 sc->attached = 1;
297 return;
298 }
299
300 void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 struct zyd_softc *sc = device_private(self);
304 struct usb_attach_arg *uaa = aux;
305 char *devinfop;
306 usb_device_descriptor_t* ddesc;
307 struct ifnet *ifp = &sc->sc_if;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311
312 aprint_naive("\n");
313 aprint_normal("\n");
314
315 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 aprint_normal_dev(self, "%s\n", devinfop);
317 usbd_devinfo_free(devinfop);
318
319 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320
321 ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 aprint_error_dev(self, "device version mismatch: 0x%x "
324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 return;
326 }
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = zyd_init;
331 ifp->if_ioctl = zyd_ioctl;
332 ifp->if_start = zyd_start;
333 ifp->if_watchdog = zyd_watchdog;
334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337
338 SIMPLEQ_INIT(&sc->sc_rqh);
339
340 /* defer configrations after file system is ready to load firmware */
341 config_mountroot(self, zyd_attachhook);
342 }
343
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 struct ieee80211com *ic = &sc->sc_ic;
348 struct ifnet *ifp = &sc->sc_if;
349 usbd_status error;
350 int i;
351
352 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
353 callout_init(&(sc->sc_scan_ch), 0);
354
355 sc->amrr.amrr_min_success_threshold = 1;
356 sc->amrr.amrr_max_success_threshold = 10;
357 callout_init(&sc->sc_amrr_ch, 0);
358
359 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 if (error != 0) {
361 aprint_error_dev(sc->sc_dev, "failed to set configuration"
362 ", err=%s\n", usbd_errstr(error));
363 goto fail;
364 }
365
366 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
367 &sc->sc_iface);
368 if (error != 0) {
369 aprint_error_dev(sc->sc_dev,
370 "getting interface handle failed\n");
371 goto fail;
372 }
373
374 if ((error = zyd_open_pipes(sc)) != 0) {
375 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
376 goto fail;
377 }
378
379 if ((error = zyd_read_eeprom(sc)) != 0) {
380 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
381 goto fail;
382 }
383
384 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
385 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
386 goto fail;
387 }
388
389 if ((error = zyd_hw_init(sc)) != 0) {
390 aprint_error_dev(sc->sc_dev,
391 "hardware initialization failed\n");
392 goto fail;
393 }
394
395 aprint_normal_dev(sc->sc_dev,
396 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
397 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
398 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
399 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
400
401 ic->ic_ifp = ifp;
402 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
403 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
404 ic->ic_state = IEEE80211_S_INIT;
405
406 /* set device capabilities */
407 ic->ic_caps =
408 IEEE80211_C_MONITOR | /* monitor mode supported */
409 IEEE80211_C_TXPMGT | /* tx power management */
410 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
411 IEEE80211_C_WEP; /* s/w WEP */
412
413 /* set supported .11b and .11g rates */
414 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
415 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
416
417 /* set supported .11b and .11g channels (1 through 14) */
418 for (i = 1; i <= 14; i++) {
419 ic->ic_channels[i].ic_freq =
420 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
421 ic->ic_channels[i].ic_flags =
422 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 }
425
426 if_attach(ifp);
427 ieee80211_ifattach(ic);
428 ic->ic_node_alloc = zyd_node_alloc;
429 ic->ic_newassoc = zyd_newassoc;
430
431 /* override state transition machine */
432 sc->sc_newstate = ic->ic_newstate;
433 ic->ic_newstate = zyd_newstate;
434 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
435
436 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
437 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 &sc->sc_drvbpf);
439
440 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
443
444 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
447
448 ieee80211_announce(ic);
449
450 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
451
452 fail: return error;
453 }
454
455 int
456 zyd_detach(device_t self, int flags)
457 {
458 struct zyd_softc *sc = device_private(self);
459 struct ieee80211com *ic = &sc->sc_ic;
460 struct ifnet *ifp = &sc->sc_if;
461 int s;
462
463 if (!sc->attached)
464 return 0;
465
466 s = splusb();
467
468 zyd_stop(ifp, 1);
469 usb_rem_task(sc->sc_udev, &sc->sc_task);
470 callout_stop(&sc->sc_scan_ch);
471 callout_stop(&sc->sc_amrr_ch);
472
473 /* Abort, etc. done by zyd_stop */
474 zyd_close_pipes(sc);
475
476 sc->attached = 0;
477
478 bpf_detach(ifp);
479 ieee80211_ifdetach(ic);
480 if_detach(ifp);
481
482 splx(s);
483
484 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
485
486 return 0;
487 }
488
489 Static int
490 zyd_open_pipes(struct zyd_softc *sc)
491 {
492 usb_endpoint_descriptor_t *edesc;
493 usbd_status error;
494
495 /* interrupt in */
496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 if (edesc == NULL)
498 return EINVAL;
499
500 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
501 if (sc->ibuf_size == 0) /* should not happen */
502 return EINVAL;
503
504 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
505
506 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
507 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
508 USBD_DEFAULT_INTERVAL);
509 if (error != 0) {
510 printf("%s: open rx intr pipe failed: %s\n",
511 device_xname(sc->sc_dev), usbd_errstr(error));
512 goto fail;
513 }
514
515 /* interrupt out (not necessarily an interrupt pipe) */
516 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
517 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
518 if (error != 0) {
519 printf("%s: open tx intr pipe failed: %s\n",
520 device_xname(sc->sc_dev), usbd_errstr(error));
521 goto fail;
522 }
523
524 /* bulk in */
525 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
526 &sc->zyd_ep[ZYD_ENDPT_BIN]);
527 if (error != 0) {
528 printf("%s: open rx pipe failed: %s\n",
529 device_xname(sc->sc_dev), usbd_errstr(error));
530 goto fail;
531 }
532
533 /* bulk out */
534 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
535 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
536 if (error != 0) {
537 printf("%s: open tx pipe failed: %s\n",
538 device_xname(sc->sc_dev), usbd_errstr(error));
539 goto fail;
540 }
541
542 return 0;
543
544 fail: zyd_close_pipes(sc);
545 return error;
546 }
547
548 Static void
549 zyd_close_pipes(struct zyd_softc *sc)
550 {
551 int i;
552
553 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
554 if (sc->zyd_ep[i] != NULL) {
555 usbd_close_pipe(sc->zyd_ep[i]);
556 sc->zyd_ep[i] = NULL;
557 }
558 }
559 if (sc->ibuf != NULL) {
560 kmem_free(sc->ibuf, sc->ibuf_size);
561 sc->ibuf = NULL;
562 }
563 }
564
565 Static int
566 zyd_alloc_tx_list(struct zyd_softc *sc)
567 {
568 int i, error;
569
570 sc->tx_queued = 0;
571
572 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
573 struct zyd_tx_data *data = &sc->tx_data[i];
574
575 data->sc = sc; /* backpointer for callbacks */
576
577 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
578 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
579 if (error) {
580 printf("%s: could not allocate tx xfer\n",
581 device_xname(sc->sc_dev));
582 goto fail;
583 }
584 data->buf = usbd_get_buffer(data->xfer);
585
586 /* clear Tx descriptor */
587 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
588 }
589 return 0;
590
591 fail: zyd_free_tx_list(sc);
592 return error;
593 }
594
595 Static void
596 zyd_free_tx_list(struct zyd_softc *sc)
597 {
598 int i;
599
600 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
601 struct zyd_tx_data *data = &sc->tx_data[i];
602
603 if (data->xfer != NULL) {
604 usbd_destroy_xfer(data->xfer);
605 data->xfer = NULL;
606 }
607 if (data->ni != NULL) {
608 ieee80211_free_node(data->ni);
609 data->ni = NULL;
610 }
611 }
612 }
613
614 Static int
615 zyd_alloc_rx_list(struct zyd_softc *sc)
616 {
617 int i, error;
618
619 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
620 struct zyd_rx_data *data = &sc->rx_data[i];
621
622 data->sc = sc; /* backpointer for callbacks */
623
624 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
625 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
626 if (error) {
627 printf("%s: could not allocate rx xfer\n",
628 device_xname(sc->sc_dev));
629 goto fail;
630 }
631 data->buf = usbd_get_buffer(data->xfer);
632 }
633 return 0;
634
635 fail: zyd_free_rx_list(sc);
636 return error;
637 }
638
639 Static void
640 zyd_free_rx_list(struct zyd_softc *sc)
641 {
642 int i;
643
644 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
645 struct zyd_rx_data *data = &sc->rx_data[i];
646
647 if (data->xfer != NULL) {
648 usbd_destroy_xfer(data->xfer);
649 data->xfer = NULL;
650 }
651 }
652 }
653
654 /* ARGUSED */
655 Static struct ieee80211_node *
656 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
657 {
658 struct zyd_node *zn;
659
660 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
661
662 return &zn->ni;
663 }
664
665 Static int
666 zyd_media_change(struct ifnet *ifp)
667 {
668 int error;
669
670 error = ieee80211_media_change(ifp);
671 if (error != ENETRESET)
672 return error;
673
674 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
675 zyd_init(ifp);
676
677 return 0;
678 }
679
680 /*
681 * This function is called periodically (every 200ms) during scanning to
682 * switch from one channel to another.
683 */
684 Static void
685 zyd_next_scan(void *arg)
686 {
687 struct zyd_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689
690 if (ic->ic_state == IEEE80211_S_SCAN)
691 ieee80211_next_scan(ic);
692 }
693
694 Static void
695 zyd_task(void *arg)
696 {
697 struct zyd_softc *sc = arg;
698 struct ieee80211com *ic = &sc->sc_ic;
699 enum ieee80211_state ostate;
700
701 ostate = ic->ic_state;
702
703 switch (sc->sc_state) {
704 case IEEE80211_S_INIT:
705 if (ostate == IEEE80211_S_RUN) {
706 /* turn link LED off */
707 zyd_set_led(sc, ZYD_LED1, 0);
708
709 /* stop data LED from blinking */
710 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
711 }
712 break;
713
714 case IEEE80211_S_SCAN:
715 zyd_set_chan(sc, ic->ic_curchan);
716 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
717 break;
718
719 case IEEE80211_S_AUTH:
720 case IEEE80211_S_ASSOC:
721 zyd_set_chan(sc, ic->ic_curchan);
722 break;
723
724 case IEEE80211_S_RUN:
725 {
726 struct ieee80211_node *ni = ic->ic_bss;
727
728 zyd_set_chan(sc, ic->ic_curchan);
729
730 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
731 /* turn link LED on */
732 zyd_set_led(sc, ZYD_LED1, 1);
733
734 /* make data LED blink upon Tx */
735 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
736
737 zyd_set_bssid(sc, ni->ni_bssid);
738 }
739
740 if (ic->ic_opmode == IEEE80211_M_STA) {
741 /* fake a join to init the tx rate */
742 zyd_newassoc(ni, 1);
743 }
744
745 /* start automatic rate control timer */
746 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
747 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
748
749 break;
750 }
751 }
752
753 sc->sc_newstate(ic, sc->sc_state, -1);
754 }
755
756 Static int
757 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
758 {
759 struct zyd_softc *sc = ic->ic_ifp->if_softc;
760
761 if (!sc->attached)
762 return ENXIO;
763
764 usb_rem_task(sc->sc_udev, &sc->sc_task);
765 callout_stop(&sc->sc_scan_ch);
766 callout_stop(&sc->sc_amrr_ch);
767
768 /* do it in a process context */
769 sc->sc_state = nstate;
770 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
771
772 return 0;
773 }
774
775 Static int
776 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
777 void *odata, int olen, u_int flags)
778 {
779 struct usbd_xfer *xfer;
780 struct zyd_cmd cmd;
781 struct rq rq;
782 uint16_t xferflags;
783 int error;
784 usbd_status uerror;
785 int s = 0;
786
787 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
788 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
789 if (error)
790 return error;
791
792 cmd.code = htole16(code);
793 memcpy(cmd.data, idata, ilen);
794
795 xferflags = USBD_FORCE_SHORT_XFER;
796 if (!(flags & ZYD_CMD_FLAG_READ))
797 xferflags |= USBD_SYNCHRONOUS;
798 else {
799 s = splusb();
800 rq.idata = idata;
801 rq.odata = odata;
802 rq.len = olen / sizeof(struct zyd_pair);
803 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
804 }
805
806 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
807 ZYD_INTR_TIMEOUT, NULL);
808 uerror = usbd_transfer(xfer);
809 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
810 if (flags & ZYD_CMD_FLAG_READ)
811 splx(s);
812 printf("%s: could not send command (error=%s)\n",
813 device_xname(sc->sc_dev), usbd_errstr(uerror));
814 (void)usbd_destroy_xfer(xfer);
815 return EIO;
816 }
817 if (!(flags & ZYD_CMD_FLAG_READ)) {
818 (void)usbd_destroy_xfer(xfer);
819 return 0; /* write: don't wait for reply */
820 }
821 /* wait at most one second for command reply */
822 error = tsleep(odata, PCATCH, "zydcmd", hz);
823 if (error == EWOULDBLOCK)
824 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
825 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
826 splx(s);
827
828 (void)usbd_destroy_xfer(xfer);
829 return error;
830 }
831
832 Static int
833 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
834 {
835 struct zyd_pair tmp;
836 int error;
837
838 reg = htole16(reg);
839 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
840 ZYD_CMD_FLAG_READ);
841 if (error == 0)
842 *val = le16toh(tmp.val);
843 else
844 *val = 0;
845 return error;
846 }
847
848 Static int
849 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
850 {
851 struct zyd_pair tmp[2];
852 uint16_t regs[2];
853 int error;
854
855 regs[0] = htole16(ZYD_REG32_HI(reg));
856 regs[1] = htole16(ZYD_REG32_LO(reg));
857 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
858 ZYD_CMD_FLAG_READ);
859 if (error == 0)
860 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
861 else
862 *val = 0;
863 return error;
864 }
865
866 Static int
867 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
868 {
869 struct zyd_pair pair;
870
871 pair.reg = htole16(reg);
872 pair.val = htole16(val);
873
874 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
875 }
876
877 Static int
878 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
879 {
880 struct zyd_pair pair[2];
881
882 pair[0].reg = htole16(ZYD_REG32_HI(reg));
883 pair[0].val = htole16(val >> 16);
884 pair[1].reg = htole16(ZYD_REG32_LO(reg));
885 pair[1].val = htole16(val & 0xffff);
886
887 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
888 }
889
890 Static int
891 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
892 {
893 struct zyd_rf *rf = &sc->sc_rf;
894 struct zyd_rfwrite req;
895 uint16_t cr203;
896 int i;
897
898 (void)zyd_read16(sc, ZYD_CR203, &cr203);
899 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
900
901 req.code = htole16(2);
902 req.width = htole16(rf->width);
903 for (i = 0; i < rf->width; i++) {
904 req.bit[i] = htole16(cr203);
905 if (val & (1 << (rf->width - 1 - i)))
906 req.bit[i] |= htole16(ZYD_RF_DATA);
907 }
908 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
909 }
910
911 Static void
912 zyd_lock_phy(struct zyd_softc *sc)
913 {
914 uint32_t tmp;
915
916 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
917 tmp &= ~ZYD_UNLOCK_PHY_REGS;
918 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
919 }
920
921 Static void
922 zyd_unlock_phy(struct zyd_softc *sc)
923 {
924 uint32_t tmp;
925
926 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 tmp |= ZYD_UNLOCK_PHY_REGS;
928 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930
931 /*
932 * RFMD RF methods.
933 */
934 Static int
935 zyd_rfmd_init(struct zyd_rf *rf)
936 {
937 struct zyd_softc *sc = rf->rf_sc;
938 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
939 static const uint32_t rfini[] = ZYD_RFMD_RF;
940 int error;
941 size_t i;
942
943 /* init RF-dependent PHY registers */
944 for (i = 0; i < __arraycount(phyini); i++) {
945 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
946 if (error != 0)
947 return error;
948 }
949
950 /* init RFMD radio */
951 for (i = 0; i < __arraycount(rfini); i++) {
952 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
953 return error;
954 }
955 return 0;
956 }
957
958 Static int
959 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
960 {
961 struct zyd_softc *sc = rf->rf_sc;
962
963 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
964 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
965
966 return 0;
967 }
968
969 Static int
970 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
971 {
972 struct zyd_softc *sc = rf->rf_sc;
973 static const struct {
974 uint32_t r1, r2;
975 } rfprog[] = ZYD_RFMD_CHANTABLE;
976
977 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
978 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
979
980 return 0;
981 }
982
983 /*
984 * AL2230 RF methods.
985 */
986 Static int
987 zyd_al2230_init(struct zyd_rf *rf)
988 {
989 struct zyd_softc *sc = rf->rf_sc;
990 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
991 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
992 static const uint32_t rfini[] = ZYD_AL2230_RF;
993 int error;
994 size_t i;
995
996 /* init RF-dependent PHY registers */
997 for (i = 0; i < __arraycount(phyini); i++) {
998 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
999 if (error != 0)
1000 return error;
1001 }
1002
1003 if (sc->rf_rev == ZYD_RF_AL2230S) {
1004 for (i = 0; i < __arraycount(phy2230s); i++) {
1005 error = zyd_write16(sc, phy2230s[i].reg,
1006 phy2230s[i].val);
1007 if (error != 0)
1008 return error;
1009 }
1010 }
1011
1012 /* init AL2230 radio */
1013 for (i = 0; i < __arraycount(rfini); i++) {
1014 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1015 return error;
1016 }
1017 return 0;
1018 }
1019
1020 Static int
1021 zyd_al2230_init_b(struct zyd_rf *rf)
1022 {
1023 struct zyd_softc *sc = rf->rf_sc;
1024 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1025 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1026 int error;
1027 size_t i;
1028
1029 /* init RF-dependent PHY registers */
1030 for (i = 0; i < __arraycount(phyini); i++) {
1031 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1032 if (error != 0)
1033 return error;
1034 }
1035
1036 /* init AL2230 radio */
1037 for (i = 0; i < __arraycount(rfini); i++) {
1038 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1039 return error;
1040 }
1041 return 0;
1042 }
1043
1044 Static int
1045 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1046 {
1047 struct zyd_softc *sc = rf->rf_sc;
1048 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1049
1050 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1051 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1052
1053 return 0;
1054 }
1055
1056 Static int
1057 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1058 {
1059 struct zyd_softc *sc = rf->rf_sc;
1060 static const struct {
1061 uint32_t r1, r2, r3;
1062 } rfprog[] = ZYD_AL2230_CHANTABLE;
1063
1064 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1065 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1066 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1067
1068 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1069 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1070
1071 return 0;
1072 }
1073
1074 /*
1075 * AL7230B RF methods.
1076 */
1077 Static int
1078 zyd_al7230B_init(struct zyd_rf *rf)
1079 {
1080 struct zyd_softc *sc = rf->rf_sc;
1081 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1082 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1083 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1084 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1085 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1086 int error;
1087 size_t i;
1088
1089 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1090
1091 /* init RF-dependent PHY registers, part one */
1092 for (i = 0; i < __arraycount(phyini_1); i++) {
1093 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1094 if (error != 0)
1095 return error;
1096 }
1097 /* init AL7230B radio, part one */
1098 for (i = 0; i < __arraycount(rfini_1); i++) {
1099 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1100 return error;
1101 }
1102 /* init RF-dependent PHY registers, part two */
1103 for (i = 0; i < __arraycount(phyini_2); i++) {
1104 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1105 if (error != 0)
1106 return error;
1107 }
1108 /* init AL7230B radio, part two */
1109 for (i = 0; i < __arraycount(rfini_2); i++) {
1110 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1111 return error;
1112 }
1113 /* init RF-dependent PHY registers, part three */
1114 for (i = 0; i < __arraycount(phyini_3); i++) {
1115 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1116 if (error != 0)
1117 return error;
1118 }
1119
1120 return 0;
1121 }
1122
1123 Static int
1124 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1125 {
1126 struct zyd_softc *sc = rf->rf_sc;
1127
1128 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1129 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1130
1131 return 0;
1132 }
1133
1134 Static int
1135 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1136 {
1137 struct zyd_softc *sc = rf->rf_sc;
1138 static const struct {
1139 uint32_t r1, r2;
1140 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1141 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1142 int error;
1143 size_t i;
1144
1145 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1146 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1147
1148 for (i = 0; i < __arraycount(rfsc); i++) {
1149 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1150 return error;
1151 }
1152
1153 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1154 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1155 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1156 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1157 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1158
1159 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1160 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1161 (void)zyd_rfwrite(sc, 0x3c9000);
1162
1163 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1164 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1165 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * AL2210 RF methods.
1172 */
1173 Static int
1174 zyd_al2210_init(struct zyd_rf *rf)
1175 {
1176 struct zyd_softc *sc = rf->rf_sc;
1177 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1178 static const uint32_t rfini[] = ZYD_AL2210_RF;
1179 uint32_t tmp;
1180 int error;
1181 size_t i;
1182
1183 (void)zyd_write32(sc, ZYD_CR18, 2);
1184
1185 /* init RF-dependent PHY registers */
1186 for (i = 0; i < __arraycount(phyini); i++) {
1187 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1188 if (error != 0)
1189 return error;
1190 }
1191 /* init AL2210 radio */
1192 for (i = 0; i < __arraycount(rfini); i++) {
1193 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1194 return error;
1195 }
1196 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1197 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1198 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1199 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1200 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1201 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1202 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1203 (void)zyd_write32(sc, ZYD_CR18, 3);
1204
1205 return 0;
1206 }
1207
1208 Static int
1209 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1210 {
1211 /* vendor driver does nothing for this RF chip */
1212
1213 return 0;
1214 }
1215
1216 Static int
1217 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1218 {
1219 struct zyd_softc *sc = rf->rf_sc;
1220 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1221 uint32_t tmp;
1222
1223 (void)zyd_write32(sc, ZYD_CR18, 2);
1224 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1225 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1226 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1227 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1228 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1229
1230 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1231 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1232
1233 /* actually set the channel */
1234 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1235
1236 (void)zyd_write32(sc, ZYD_CR18, 3);
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * GCT RF methods.
1243 */
1244 Static int
1245 zyd_gct_init(struct zyd_rf *rf)
1246 {
1247 struct zyd_softc *sc = rf->rf_sc;
1248 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1249 static const uint32_t rfini[] = ZYD_GCT_RF;
1250 int error;
1251 size_t i;
1252
1253 /* init RF-dependent PHY registers */
1254 for (i = 0; i < __arraycount(phyini); i++) {
1255 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1256 if (error != 0)
1257 return error;
1258 }
1259 /* init cgt radio */
1260 for (i = 0; i < __arraycount(rfini); i++) {
1261 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1262 return error;
1263 }
1264 return 0;
1265 }
1266
1267 Static int
1268 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1269 {
1270 /* vendor driver does nothing for this RF chip */
1271
1272 return 0;
1273 }
1274
1275 Static int
1276 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1277 {
1278 struct zyd_softc *sc = rf->rf_sc;
1279 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1280
1281 (void)zyd_rfwrite(sc, 0x1c0000);
1282 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1283 (void)zyd_rfwrite(sc, 0x1c0008);
1284
1285 return 0;
1286 }
1287
1288 /*
1289 * Maxim RF methods.
1290 */
1291 Static int
1292 zyd_maxim_init(struct zyd_rf *rf)
1293 {
1294 struct zyd_softc *sc = rf->rf_sc;
1295 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1296 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1297 uint16_t tmp;
1298 int error;
1299 size_t i;
1300
1301 /* init RF-dependent PHY registers */
1302 for (i = 0; i < __arraycount(phyini); i++) {
1303 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1304 if (error != 0)
1305 return error;
1306 }
1307 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1308 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1309
1310 /* init maxim radio */
1311 for (i = 0; i < __arraycount(rfini); i++) {
1312 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1313 return error;
1314 }
1315 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1316 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1317
1318 return 0;
1319 }
1320
1321 Static int
1322 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1323 {
1324 /* vendor driver does nothing for this RF chip */
1325
1326 return 0;
1327 }
1328
1329 Static int
1330 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1331 {
1332 struct zyd_softc *sc = rf->rf_sc;
1333 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1334 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1335 static const struct {
1336 uint32_t r1, r2;
1337 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1338 uint16_t tmp;
1339 int error;
1340 size_t i;
1341
1342 /*
1343 * Do the same as we do when initializing it, except for the channel
1344 * values coming from the two channel tables.
1345 */
1346
1347 /* init RF-dependent PHY registers */
1348 for (i = 0; i < __arraycount(phyini); i++) {
1349 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1350 if (error != 0)
1351 return error;
1352 }
1353 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1354 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1355
1356 /* first two values taken from the chantables */
1357 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1358 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1359
1360 /* init maxim radio - skipping the two first values */
1361 for (i = 2; i < __arraycount(rfini); i++) {
1362 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1363 return error;
1364 }
1365 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1366 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * Maxim2 RF methods.
1373 */
1374 Static int
1375 zyd_maxim2_init(struct zyd_rf *rf)
1376 {
1377 struct zyd_softc *sc = rf->rf_sc;
1378 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1379 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1380 uint16_t tmp;
1381 int error;
1382 size_t i;
1383
1384 /* init RF-dependent PHY registers */
1385 for (i = 0; i < __arraycount(phyini); i++) {
1386 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1387 if (error != 0)
1388 return error;
1389 }
1390 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1391 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1392
1393 /* init maxim2 radio */
1394 for (i = 0; i < __arraycount(rfini); i++) {
1395 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1396 return error;
1397 }
1398 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1400
1401 return 0;
1402 }
1403
1404 Static int
1405 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1406 {
1407 /* vendor driver does nothing for this RF chip */
1408
1409 return 0;
1410 }
1411
1412 Static int
1413 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1414 {
1415 struct zyd_softc *sc = rf->rf_sc;
1416 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1417 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1418 static const struct {
1419 uint32_t r1, r2;
1420 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1421 uint16_t tmp;
1422 int error;
1423 size_t i;
1424
1425 /*
1426 * Do the same as we do when initializing it, except for the channel
1427 * values coming from the two channel tables.
1428 */
1429
1430 /* init RF-dependent PHY registers */
1431 for (i = 0; i < __arraycount(phyini); i++) {
1432 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1433 if (error != 0)
1434 return error;
1435 }
1436 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1437 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1438
1439 /* first two values taken from the chantables */
1440 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1441 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1442
1443 /* init maxim2 radio - skipping the two first values */
1444 for (i = 2; i < __arraycount(rfini); i++) {
1445 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1446 return error;
1447 }
1448 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1449 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1450
1451 return 0;
1452 }
1453
1454 Static int
1455 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1456 {
1457 struct zyd_rf *rf = &sc->sc_rf;
1458
1459 rf->rf_sc = sc;
1460
1461 switch (type) {
1462 case ZYD_RF_RFMD:
1463 rf->init = zyd_rfmd_init;
1464 rf->switch_radio = zyd_rfmd_switch_radio;
1465 rf->set_channel = zyd_rfmd_set_channel;
1466 rf->width = 24; /* 24-bit RF values */
1467 break;
1468 case ZYD_RF_AL2230:
1469 case ZYD_RF_AL2230S:
1470 if (sc->mac_rev == ZYD_ZD1211B)
1471 rf->init = zyd_al2230_init_b;
1472 else
1473 rf->init = zyd_al2230_init;
1474 rf->switch_radio = zyd_al2230_switch_radio;
1475 rf->set_channel = zyd_al2230_set_channel;
1476 rf->width = 24; /* 24-bit RF values */
1477 break;
1478 case ZYD_RF_AL7230B:
1479 rf->init = zyd_al7230B_init;
1480 rf->switch_radio = zyd_al7230B_switch_radio;
1481 rf->set_channel = zyd_al7230B_set_channel;
1482 rf->width = 24; /* 24-bit RF values */
1483 break;
1484 case ZYD_RF_AL2210:
1485 rf->init = zyd_al2210_init;
1486 rf->switch_radio = zyd_al2210_switch_radio;
1487 rf->set_channel = zyd_al2210_set_channel;
1488 rf->width = 24; /* 24-bit RF values */
1489 break;
1490 case ZYD_RF_GCT:
1491 rf->init = zyd_gct_init;
1492 rf->switch_radio = zyd_gct_switch_radio;
1493 rf->set_channel = zyd_gct_set_channel;
1494 rf->width = 21; /* 21-bit RF values */
1495 break;
1496 case ZYD_RF_MAXIM_NEW:
1497 rf->init = zyd_maxim_init;
1498 rf->switch_radio = zyd_maxim_switch_radio;
1499 rf->set_channel = zyd_maxim_set_channel;
1500 rf->width = 18; /* 18-bit RF values */
1501 break;
1502 case ZYD_RF_MAXIM_NEW2:
1503 rf->init = zyd_maxim2_init;
1504 rf->switch_radio = zyd_maxim2_switch_radio;
1505 rf->set_channel = zyd_maxim2_set_channel;
1506 rf->width = 18; /* 18-bit RF values */
1507 break;
1508 default:
1509 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1510 device_xname(sc->sc_dev), zyd_rf_name(type));
1511 return EINVAL;
1512 }
1513 return 0;
1514 }
1515
1516 Static const char *
1517 zyd_rf_name(uint8_t type)
1518 {
1519 static const char * const zyd_rfs[] = {
1520 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1521 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1522 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1523 "PHILIPS"
1524 };
1525
1526 return zyd_rfs[(type > 15) ? 0 : type];
1527 }
1528
1529 Static int
1530 zyd_hw_init(struct zyd_softc *sc)
1531 {
1532 struct zyd_rf *rf = &sc->sc_rf;
1533 const struct zyd_phy_pair *phyp;
1534 int error;
1535
1536 /* specify that the plug and play is finished */
1537 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1538
1539 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1540 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1541
1542 /* retrieve firmware revision number */
1543 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1544
1545 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1546 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1547
1548 /* disable interrupts */
1549 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1550
1551 /* PHY init */
1552 zyd_lock_phy(sc);
1553 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1554 for (; phyp->reg != 0; phyp++) {
1555 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1556 goto fail;
1557 }
1558 zyd_unlock_phy(sc);
1559
1560 /* HMAC init */
1561 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1562 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1563
1564 if (sc->mac_rev == ZYD_ZD1211) {
1565 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1566 } else {
1567 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1568 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1569 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1570 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1571 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1572 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1573 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1574 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1575 }
1576
1577 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1578 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1579 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1580 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1581 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1582 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1583 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1584 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1586 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1587 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1588 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1589 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1590 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1591 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1592 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1593 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1594
1595 /* RF chip init */
1596 zyd_lock_phy(sc);
1597 error = (*rf->init)(rf);
1598 zyd_unlock_phy(sc);
1599 if (error != 0) {
1600 printf("%s: radio initialization failed\n",
1601 device_xname(sc->sc_dev));
1602 goto fail;
1603 }
1604
1605 /* init beacon interval to 100ms */
1606 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1607 goto fail;
1608
1609 fail: return error;
1610 }
1611
1612 Static int
1613 zyd_read_eeprom(struct zyd_softc *sc)
1614 {
1615 struct ieee80211com *ic = &sc->sc_ic;
1616 uint32_t tmp;
1617 uint16_t val;
1618 int i;
1619
1620 /* read MAC address */
1621 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1622 ic->ic_myaddr[0] = tmp & 0xff;
1623 ic->ic_myaddr[1] = tmp >> 8;
1624 ic->ic_myaddr[2] = tmp >> 16;
1625 ic->ic_myaddr[3] = tmp >> 24;
1626 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1627 ic->ic_myaddr[4] = tmp & 0xff;
1628 ic->ic_myaddr[5] = tmp >> 8;
1629
1630 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1631 sc->rf_rev = tmp & 0x0f;
1632 sc->pa_rev = (tmp >> 16) & 0x0f;
1633
1634 /* read regulatory domain (currently unused) */
1635 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1636 sc->regdomain = tmp >> 16;
1637 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1638
1639 /* read Tx power calibration tables */
1640 for (i = 0; i < 7; i++) {
1641 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1642 sc->pwr_cal[i * 2] = val >> 8;
1643 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1644
1645 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1646 sc->pwr_int[i * 2] = val >> 8;
1647 sc->pwr_int[i * 2 + 1] = val & 0xff;
1648
1649 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1650 sc->ofdm36_cal[i * 2] = val >> 8;
1651 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1652
1653 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1654 sc->ofdm48_cal[i * 2] = val >> 8;
1655 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1656
1657 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1658 sc->ofdm54_cal[i * 2] = val >> 8;
1659 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1660 }
1661 return 0;
1662 }
1663
1664 Static int
1665 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1666 {
1667 uint32_t tmp;
1668
1669 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1670 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1671
1672 tmp = addr[5] << 8 | addr[4];
1673 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1674
1675 return 0;
1676 }
1677
1678 Static int
1679 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1680 {
1681 uint32_t tmp;
1682
1683 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1684 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1685
1686 tmp = addr[5] << 8 | addr[4];
1687 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1688
1689 return 0;
1690 }
1691
1692 Static int
1693 zyd_switch_radio(struct zyd_softc *sc, int on)
1694 {
1695 struct zyd_rf *rf = &sc->sc_rf;
1696 int error;
1697
1698 zyd_lock_phy(sc);
1699 error = (*rf->switch_radio)(rf, on);
1700 zyd_unlock_phy(sc);
1701
1702 return error;
1703 }
1704
1705 Static void
1706 zyd_set_led(struct zyd_softc *sc, int which, int on)
1707 {
1708 uint32_t tmp;
1709
1710 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1711 tmp &= ~which;
1712 if (on)
1713 tmp |= which;
1714 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1715 }
1716
1717 Static int
1718 zyd_set_rxfilter(struct zyd_softc *sc)
1719 {
1720 uint32_t rxfilter;
1721
1722 switch (sc->sc_ic.ic_opmode) {
1723 case IEEE80211_M_STA:
1724 rxfilter = ZYD_FILTER_BSS;
1725 break;
1726 case IEEE80211_M_IBSS:
1727 case IEEE80211_M_HOSTAP:
1728 rxfilter = ZYD_FILTER_HOSTAP;
1729 break;
1730 case IEEE80211_M_MONITOR:
1731 rxfilter = ZYD_FILTER_MONITOR;
1732 break;
1733 default:
1734 /* should not get there */
1735 return EINVAL;
1736 }
1737 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1738 }
1739
1740 Static void
1741 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1742 {
1743 struct ieee80211com *ic = &sc->sc_ic;
1744 struct zyd_rf *rf = &sc->sc_rf;
1745 u_int chan;
1746
1747 chan = ieee80211_chan2ieee(ic, c);
1748 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1749 return;
1750
1751 zyd_lock_phy(sc);
1752
1753 (*rf->set_channel)(rf, chan);
1754
1755 /* update Tx power */
1756 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1757 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1758
1759 if (sc->mac_rev == ZYD_ZD1211B) {
1760 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1761 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1762 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1763
1764 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1765 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1766 }
1767
1768 zyd_unlock_phy(sc);
1769 }
1770
1771 Static int
1772 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1773 {
1774 /* XXX this is probably broken.. */
1775 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1776 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1777 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1778
1779 return 0;
1780 }
1781
1782 Static uint8_t
1783 zyd_plcp_signal(int rate)
1784 {
1785 switch (rate) {
1786 /* CCK rates (returned values are device-dependent) */
1787 case 2: return 0x0;
1788 case 4: return 0x1;
1789 case 11: return 0x2;
1790 case 22: return 0x3;
1791
1792 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1793 case 12: return 0xb;
1794 case 18: return 0xf;
1795 case 24: return 0xa;
1796 case 36: return 0xe;
1797 case 48: return 0x9;
1798 case 72: return 0xd;
1799 case 96: return 0x8;
1800 case 108: return 0xc;
1801
1802 /* unsupported rates (should not get there) */
1803 default: return 0xff;
1804 }
1805 }
1806
1807 Static void
1808 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1809 {
1810 struct zyd_softc *sc = (struct zyd_softc *)priv;
1811 struct zyd_cmd *cmd;
1812 uint32_t datalen;
1813
1814 if (status != USBD_NORMAL_COMPLETION) {
1815 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1816 return;
1817
1818 if (status == USBD_STALLED) {
1819 usbd_clear_endpoint_stall_async(
1820 sc->zyd_ep[ZYD_ENDPT_IIN]);
1821 }
1822 return;
1823 }
1824
1825 cmd = (struct zyd_cmd *)sc->ibuf;
1826
1827 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1828 struct zyd_notif_retry *retry =
1829 (struct zyd_notif_retry *)cmd->data;
1830 struct ieee80211com *ic = &sc->sc_ic;
1831 struct ifnet *ifp = &sc->sc_if;
1832 struct ieee80211_node *ni;
1833
1834 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1835 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1836 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1837
1838 /*
1839 * Find the node to which the packet was sent and update its
1840 * retry statistics. In BSS mode, this node is the AP we're
1841 * associated to so no lookup is actually needed.
1842 */
1843 if (ic->ic_opmode != IEEE80211_M_STA) {
1844 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1845 if (ni == NULL)
1846 return; /* just ignore */
1847 } else
1848 ni = ic->ic_bss;
1849
1850 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1851
1852 if (le16toh(retry->count) & 0x100)
1853 ifp->if_oerrors++; /* too many retries */
1854
1855 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1856 struct rq *rqp;
1857
1858 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1859 return; /* HMAC interrupt */
1860
1861 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1862 datalen -= sizeof(cmd->code);
1863 datalen -= 2; /* XXX: padding? */
1864
1865 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1866 int i;
1867
1868 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1869 continue;
1870 for (i = 0; i < rqp->len; i++) {
1871 if (*(((const uint16_t *)rqp->idata) + i) !=
1872 (((struct zyd_pair *)cmd->data) + i)->reg)
1873 break;
1874 }
1875 if (i != rqp->len)
1876 continue;
1877
1878 /* copy answer into caller-supplied buffer */
1879 memcpy(rqp->odata, cmd->data,
1880 sizeof(struct zyd_pair) * rqp->len);
1881 wakeup(rqp->odata); /* wakeup caller */
1882
1883 return;
1884 }
1885 return; /* unexpected IORD notification */
1886 } else {
1887 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1888 le16toh(cmd->code));
1889 }
1890 }
1891
1892 Static void
1893 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1894 {
1895 struct ieee80211com *ic = &sc->sc_ic;
1896 struct ifnet *ifp = &sc->sc_if;
1897 struct ieee80211_node *ni;
1898 struct ieee80211_frame *wh;
1899 const struct zyd_plcphdr *plcp;
1900 const struct zyd_rx_stat *stat;
1901 struct mbuf *m;
1902 int rlen, s;
1903
1904 if (len < ZYD_MIN_FRAGSZ) {
1905 printf("%s: frame too short (length=%d)\n",
1906 device_xname(sc->sc_dev), len);
1907 ifp->if_ierrors++;
1908 return;
1909 }
1910
1911 plcp = (const struct zyd_plcphdr *)buf;
1912 stat = (const struct zyd_rx_stat *)
1913 (buf + len - sizeof(struct zyd_rx_stat));
1914
1915 if (stat->flags & ZYD_RX_ERROR) {
1916 DPRINTF(("%s: RX status indicated error (%x)\n",
1917 device_xname(sc->sc_dev), stat->flags));
1918 ifp->if_ierrors++;
1919 return;
1920 }
1921
1922 /* compute actual frame length */
1923 rlen = len - sizeof(struct zyd_plcphdr) -
1924 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1925
1926 /* allocate a mbuf to store the frame */
1927 MGETHDR(m, M_DONTWAIT, MT_DATA);
1928 if (m == NULL) {
1929 printf("%s: could not allocate rx mbuf\n",
1930 device_xname(sc->sc_dev));
1931 ifp->if_ierrors++;
1932 return;
1933 }
1934 if (rlen > MHLEN) {
1935 MCLGET(m, M_DONTWAIT);
1936 if (!(m->m_flags & M_EXT)) {
1937 printf("%s: could not allocate rx mbuf cluster\n",
1938 device_xname(sc->sc_dev));
1939 m_freem(m);
1940 ifp->if_ierrors++;
1941 return;
1942 }
1943 }
1944 m_set_rcvif(m, ifp);
1945 m->m_pkthdr.len = m->m_len = rlen;
1946 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1947
1948 s = splnet();
1949
1950 if (sc->sc_drvbpf != NULL) {
1951 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1952 static const uint8_t rates[] = {
1953 /* reverse function of zyd_plcp_signal() */
1954 2, 4, 11, 22, 0, 0, 0, 0,
1955 96, 48, 24, 12, 108, 72, 36, 18
1956 };
1957
1958 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1959 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1960 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1961 tap->wr_rssi = stat->rssi;
1962 tap->wr_rate = rates[plcp->signal & 0xf];
1963
1964 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1965 }
1966
1967 wh = mtod(m, struct ieee80211_frame *);
1968 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1969 ieee80211_input(ic, m, ni, stat->rssi, 0);
1970
1971 /* node is no longer needed */
1972 ieee80211_free_node(ni);
1973
1974 splx(s);
1975 }
1976
1977 Static void
1978 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1979 {
1980 struct zyd_rx_data *data = priv;
1981 struct zyd_softc *sc = data->sc;
1982 struct ifnet *ifp = &sc->sc_if;
1983 const struct zyd_rx_desc *desc;
1984 int len;
1985
1986 if (status != USBD_NORMAL_COMPLETION) {
1987 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1988 return;
1989
1990 if (status == USBD_STALLED)
1991 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1992
1993 goto skip;
1994 }
1995 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1996
1997 if (len < ZYD_MIN_RXBUFSZ) {
1998 printf("%s: xfer too short (length=%d)\n",
1999 device_xname(sc->sc_dev), len);
2000 ifp->if_ierrors++;
2001 goto skip;
2002 }
2003
2004 desc = (const struct zyd_rx_desc *)
2005 (data->buf + len - sizeof(struct zyd_rx_desc));
2006
2007 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2008 const uint8_t *p = data->buf, *end = p + len;
2009 int i;
2010
2011 DPRINTFN(3, ("received multi-frame transfer\n"));
2012
2013 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2014 const uint16_t len16 = UGETW(desc->len[i]);
2015
2016 if (len16 == 0 || p + len16 > end)
2017 break;
2018
2019 zyd_rx_data(sc, p, len16);
2020 /* next frame is aligned on a 32-bit boundary */
2021 p += (len16 + 3) & ~3;
2022 }
2023 } else {
2024 DPRINTFN(3, ("received single-frame transfer\n"));
2025
2026 zyd_rx_data(sc, data->buf, len);
2027 }
2028
2029 skip: /* setup a new transfer */
2030
2031 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2032 USBD_NO_TIMEOUT, zyd_rxeof);
2033 (void)usbd_transfer(xfer);
2034 }
2035
2036 Static int
2037 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2038 {
2039 struct ieee80211com *ic = &sc->sc_ic;
2040 struct ifnet *ifp = &sc->sc_if;
2041 struct zyd_tx_desc *desc;
2042 struct zyd_tx_data *data;
2043 struct ieee80211_frame *wh;
2044 struct ieee80211_key *k;
2045 int xferlen, totlen, rate;
2046 uint16_t pktlen;
2047 usbd_status error;
2048
2049 data = &sc->tx_data[0];
2050 desc = (struct zyd_tx_desc *)data->buf;
2051
2052 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2053
2054 wh = mtod(m0, struct ieee80211_frame *);
2055
2056 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2057 k = ieee80211_crypto_encap(ic, ni, m0);
2058 if (k == NULL) {
2059 m_freem(m0);
2060 return ENOBUFS;
2061 }
2062 }
2063
2064 data->ni = ni;
2065
2066 wh = mtod(m0, struct ieee80211_frame *);
2067
2068 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2069 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2070
2071 /* fill Tx descriptor */
2072 desc->len = htole16(totlen);
2073
2074 desc->flags = ZYD_TX_FLAG_BACKOFF;
2075 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2076 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2077 if (totlen > ic->ic_rtsthreshold) {
2078 desc->flags |= ZYD_TX_FLAG_RTS;
2079 } else if (ZYD_RATE_IS_OFDM(rate) &&
2080 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2081 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2082 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2083 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2084 desc->flags |= ZYD_TX_FLAG_RTS;
2085 }
2086 } else
2087 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2088
2089 if ((wh->i_fc[0] &
2090 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2091 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2092 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2093
2094 desc->phy = zyd_plcp_signal(rate);
2095 if (ZYD_RATE_IS_OFDM(rate)) {
2096 desc->phy |= ZYD_TX_PHY_OFDM;
2097 if (ic->ic_curmode == IEEE80211_MODE_11A)
2098 desc->phy |= ZYD_TX_PHY_5GHZ;
2099 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2100 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2101
2102 /* actual transmit length (XXX why +10?) */
2103 pktlen = sizeof(struct zyd_tx_desc) + 10;
2104 if (sc->mac_rev == ZYD_ZD1211)
2105 pktlen += totlen;
2106 desc->pktlen = htole16(pktlen);
2107
2108 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2109 desc->plcp_service = 0;
2110 if (rate == 22) {
2111 const int remainder = (16 * totlen) % 22;
2112 if (remainder != 0 && remainder < 7)
2113 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2114 }
2115
2116 if (sc->sc_drvbpf != NULL) {
2117 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2118
2119 tap->wt_flags = 0;
2120 tap->wt_rate = rate;
2121 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2122 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2123
2124 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2125 }
2126
2127 m_copydata(m0, 0, m0->m_pkthdr.len,
2128 data->buf + sizeof(struct zyd_tx_desc));
2129
2130 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2131 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2132
2133 m_freem(m0); /* mbuf no longer needed */
2134
2135 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2136 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2137 error = usbd_transfer(data->xfer);
2138 if (error != USBD_IN_PROGRESS && error != 0) {
2139 ifp->if_oerrors++;
2140 return EIO;
2141 }
2142 sc->tx_queued++;
2143
2144 return 0;
2145 }
2146
2147 Static void
2148 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2149 {
2150 struct zyd_tx_data *data = priv;
2151 struct zyd_softc *sc = data->sc;
2152 struct ifnet *ifp = &sc->sc_if;
2153 int s;
2154
2155 if (status != USBD_NORMAL_COMPLETION) {
2156 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2157 return;
2158
2159 printf("%s: could not transmit buffer: %s\n",
2160 device_xname(sc->sc_dev), usbd_errstr(status));
2161
2162 if (status == USBD_STALLED) {
2163 usbd_clear_endpoint_stall_async(
2164 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2165 }
2166 ifp->if_oerrors++;
2167 return;
2168 }
2169
2170 s = splnet();
2171
2172 /* update rate control statistics */
2173 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2174
2175 ieee80211_free_node(data->ni);
2176 data->ni = NULL;
2177
2178 sc->tx_queued--;
2179 ifp->if_opackets++;
2180
2181 sc->tx_timer = 0;
2182 ifp->if_flags &= ~IFF_OACTIVE;
2183 zyd_start(ifp);
2184
2185 splx(s);
2186 }
2187
2188 Static int
2189 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2190 {
2191 struct ieee80211com *ic = &sc->sc_ic;
2192 struct ifnet *ifp = &sc->sc_if;
2193 struct zyd_tx_desc *desc;
2194 struct zyd_tx_data *data;
2195 struct ieee80211_frame *wh;
2196 struct ieee80211_key *k;
2197 int xferlen, totlen, rate;
2198 uint16_t pktlen;
2199 usbd_status error;
2200
2201 wh = mtod(m0, struct ieee80211_frame *);
2202
2203 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2204 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2205 else
2206 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2207 rate &= IEEE80211_RATE_VAL;
2208
2209 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2210 k = ieee80211_crypto_encap(ic, ni, m0);
2211 if (k == NULL) {
2212 m_freem(m0);
2213 return ENOBUFS;
2214 }
2215
2216 /* packet header may have moved, reset our local pointer */
2217 wh = mtod(m0, struct ieee80211_frame *);
2218 }
2219
2220 data = &sc->tx_data[0];
2221 desc = (struct zyd_tx_desc *)data->buf;
2222
2223 data->ni = ni;
2224
2225 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2226 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2227
2228 /* fill Tx descriptor */
2229 desc->len = htole16(totlen);
2230
2231 desc->flags = ZYD_TX_FLAG_BACKOFF;
2232 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2233 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2234 if (totlen > ic->ic_rtsthreshold) {
2235 desc->flags |= ZYD_TX_FLAG_RTS;
2236 } else if (ZYD_RATE_IS_OFDM(rate) &&
2237 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2238 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2239 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2240 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2241 desc->flags |= ZYD_TX_FLAG_RTS;
2242 }
2243 } else
2244 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2245
2246 if ((wh->i_fc[0] &
2247 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2248 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2249 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2250
2251 desc->phy = zyd_plcp_signal(rate);
2252 if (ZYD_RATE_IS_OFDM(rate)) {
2253 desc->phy |= ZYD_TX_PHY_OFDM;
2254 if (ic->ic_curmode == IEEE80211_MODE_11A)
2255 desc->phy |= ZYD_TX_PHY_5GHZ;
2256 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2257 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2258
2259 /* actual transmit length (XXX why +10?) */
2260 pktlen = sizeof(struct zyd_tx_desc) + 10;
2261 if (sc->mac_rev == ZYD_ZD1211)
2262 pktlen += totlen;
2263 desc->pktlen = htole16(pktlen);
2264
2265 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2266 desc->plcp_service = 0;
2267 if (rate == 22) {
2268 const int remainder = (16 * totlen) % 22;
2269 if (remainder != 0 && remainder < 7)
2270 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2271 }
2272
2273 if (sc->sc_drvbpf != NULL) {
2274 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2275
2276 tap->wt_flags = 0;
2277 tap->wt_rate = rate;
2278 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2279 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2280
2281 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2282 }
2283
2284 m_copydata(m0, 0, m0->m_pkthdr.len,
2285 data->buf + sizeof(struct zyd_tx_desc));
2286
2287 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2288 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2289
2290 m_freem(m0); /* mbuf no longer needed */
2291
2292 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2293 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2294 error = usbd_transfer(data->xfer);
2295 if (error != USBD_IN_PROGRESS && error != 0) {
2296 ifp->if_oerrors++;
2297 return EIO;
2298 }
2299 sc->tx_queued++;
2300
2301 return 0;
2302 }
2303
2304 Static void
2305 zyd_start(struct ifnet *ifp)
2306 {
2307 struct zyd_softc *sc = ifp->if_softc;
2308 struct ieee80211com *ic = &sc->sc_ic;
2309 struct ether_header *eh;
2310 struct ieee80211_node *ni;
2311 struct mbuf *m0;
2312
2313 for (;;) {
2314 IF_POLL(&ic->ic_mgtq, m0);
2315 if (m0 != NULL) {
2316 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2317 ifp->if_flags |= IFF_OACTIVE;
2318 break;
2319 }
2320 IF_DEQUEUE(&ic->ic_mgtq, m0);
2321
2322 ni = M_GETCTX(m0, struct ieee80211_node *);
2323 M_CLEARCTX(m0);
2324 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2325 if (zyd_tx_mgt(sc, m0, ni) != 0)
2326 break;
2327 } else {
2328 if (ic->ic_state != IEEE80211_S_RUN)
2329 break;
2330 IFQ_POLL(&ifp->if_snd, m0);
2331 if (m0 == NULL)
2332 break;
2333 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2334 ifp->if_flags |= IFF_OACTIVE;
2335 break;
2336 }
2337 IFQ_DEQUEUE(&ifp->if_snd, m0);
2338
2339 if (m0->m_len < sizeof(struct ether_header) &&
2340 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2341 continue;
2342
2343 eh = mtod(m0, struct ether_header *);
2344 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2345 if (ni == NULL) {
2346 m_freem(m0);
2347 continue;
2348 }
2349 bpf_mtap(ifp, m0, BPF_D_OUT);
2350 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2351 ieee80211_free_node(ni);
2352 ifp->if_oerrors++;
2353 continue;
2354 }
2355 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2356 if (zyd_tx_data(sc, m0, ni) != 0) {
2357 ieee80211_free_node(ni);
2358 ifp->if_oerrors++;
2359 break;
2360 }
2361 }
2362
2363 sc->tx_timer = 5;
2364 ifp->if_timer = 1;
2365 }
2366 }
2367
2368 Static void
2369 zyd_watchdog(struct ifnet *ifp)
2370 {
2371 struct zyd_softc *sc = ifp->if_softc;
2372 struct ieee80211com *ic = &sc->sc_ic;
2373
2374 ifp->if_timer = 0;
2375
2376 if (sc->tx_timer > 0) {
2377 if (--sc->tx_timer == 0) {
2378 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2379 /* zyd_init(ifp); XXX needs a process context ? */
2380 ifp->if_oerrors++;
2381 return;
2382 }
2383 ifp->if_timer = 1;
2384 }
2385
2386 ieee80211_watchdog(ic);
2387 }
2388
2389 Static int
2390 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2391 {
2392 struct zyd_softc *sc = ifp->if_softc;
2393 struct ieee80211com *ic = &sc->sc_ic;
2394 int s, error = 0;
2395
2396 s = splnet();
2397
2398 switch (cmd) {
2399 case SIOCSIFFLAGS:
2400 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2401 break;
2402 /* XXX re-use ether_ioctl() */
2403 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2404 case IFF_UP:
2405 zyd_init(ifp);
2406 break;
2407 case IFF_RUNNING:
2408 zyd_stop(ifp, 1);
2409 break;
2410 default:
2411 break;
2412 }
2413 break;
2414
2415 default:
2416 error = ieee80211_ioctl(ic, cmd, data);
2417 }
2418
2419 if (error == ENETRESET) {
2420 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2421 (IFF_RUNNING | IFF_UP))
2422 zyd_init(ifp);
2423 error = 0;
2424 }
2425
2426 splx(s);
2427
2428 return error;
2429 }
2430
2431 Static int
2432 zyd_init(struct ifnet *ifp)
2433 {
2434 struct zyd_softc *sc = ifp->if_softc;
2435 struct ieee80211com *ic = &sc->sc_ic;
2436 int i, error;
2437
2438 zyd_stop(ifp, 0);
2439
2440 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2441 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2442 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2443 if (error != 0)
2444 return error;
2445
2446 /* we'll do software WEP decryption for now */
2447 DPRINTF(("setting encryption type\n"));
2448 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2449 if (error != 0)
2450 return error;
2451
2452 /* promiscuous mode */
2453 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2454 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2455
2456 (void)zyd_set_rxfilter(sc);
2457
2458 /* switch radio transmitter ON */
2459 (void)zyd_switch_radio(sc, 1);
2460
2461 /* set basic rates */
2462 if (ic->ic_curmode == IEEE80211_MODE_11B)
2463 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2464 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2465 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2466 else /* assumes 802.11b/g */
2467 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2468
2469 /* set mandatory rates */
2470 if (ic->ic_curmode == IEEE80211_MODE_11B)
2471 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2472 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2473 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2474 else /* assumes 802.11b/g */
2475 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2476
2477 /* set default BSS channel */
2478 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2479 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2480
2481 /* enable interrupts */
2482 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2483
2484 /*
2485 * Allocate Tx and Rx xfer queues.
2486 */
2487 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2488 printf("%s: could not allocate Tx list\n",
2489 device_xname(sc->sc_dev));
2490 goto fail;
2491 }
2492 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2493 printf("%s: could not allocate Rx list\n",
2494 device_xname(sc->sc_dev));
2495 goto fail;
2496 }
2497
2498 /*
2499 * Start up the receive pipe.
2500 */
2501 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2502 struct zyd_rx_data *data = &sc->rx_data[i];
2503
2504 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2505 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2506 error = usbd_transfer(data->xfer);
2507 if (error != USBD_IN_PROGRESS && error != 0) {
2508 printf("%s: could not queue Rx transfer\n",
2509 device_xname(sc->sc_dev));
2510 goto fail;
2511 }
2512 }
2513
2514 ifp->if_flags &= ~IFF_OACTIVE;
2515 ifp->if_flags |= IFF_RUNNING;
2516
2517 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2518 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2519 else
2520 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2521
2522 return 0;
2523
2524 fail: zyd_stop(ifp, 1);
2525 return error;
2526 }
2527
2528 Static void
2529 zyd_stop(struct ifnet *ifp, int disable)
2530 {
2531 struct zyd_softc *sc = ifp->if_softc;
2532 struct ieee80211com *ic = &sc->sc_ic;
2533
2534 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2535
2536 sc->tx_timer = 0;
2537 ifp->if_timer = 0;
2538 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2539
2540 /* switch radio transmitter OFF */
2541 (void)zyd_switch_radio(sc, 0);
2542
2543 /* disable Rx */
2544 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2545
2546 /* disable interrupts */
2547 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2548
2549 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2550 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2551
2552 zyd_free_rx_list(sc);
2553 zyd_free_tx_list(sc);
2554 }
2555
2556 Static int
2557 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2558 {
2559 usb_device_request_t req;
2560 uint16_t addr;
2561 uint8_t stat;
2562
2563 DPRINTF(("firmware size=%zu\n", size));
2564
2565 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2566 req.bRequest = ZYD_DOWNLOADREQ;
2567 USETW(req.wIndex, 0);
2568
2569 addr = ZYD_FIRMWARE_START_ADDR;
2570 while (size > 0) {
2571 #if 0
2572 const int mlen = min(size, 4096);
2573 #else
2574 /*
2575 * XXXX: When the transfer size is 4096 bytes, it is not
2576 * likely to be able to transfer it.
2577 * The cause is port or machine or chip?
2578 */
2579 const int mlen = min(size, 64);
2580 #endif
2581
2582 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2583 addr));
2584
2585 USETW(req.wValue, addr);
2586 USETW(req.wLength, mlen);
2587 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2588 return EIO;
2589
2590 addr += mlen / 2;
2591 fw += mlen;
2592 size -= mlen;
2593 }
2594
2595 /* check whether the upload succeeded */
2596 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2597 req.bRequest = ZYD_DOWNLOADSTS;
2598 USETW(req.wValue, 0);
2599 USETW(req.wIndex, 0);
2600 USETW(req.wLength, sizeof(stat));
2601 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2602 return EIO;
2603
2604 return (stat & 0x80) ? EIO : 0;
2605 }
2606
2607 Static void
2608 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2609 {
2610 struct zyd_softc *sc = arg;
2611 struct zyd_node *zn = (struct zyd_node *)ni;
2612
2613 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2614 }
2615
2616 Static void
2617 zyd_amrr_timeout(void *arg)
2618 {
2619 struct zyd_softc *sc = arg;
2620 struct ieee80211com *ic = &sc->sc_ic;
2621 int s;
2622
2623 s = splnet();
2624 if (ic->ic_opmode == IEEE80211_M_STA)
2625 zyd_iter_func(sc, ic->ic_bss);
2626 else
2627 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2628 splx(s);
2629
2630 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2631 }
2632
2633 Static void
2634 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2635 {
2636 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2637 int i;
2638
2639 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2640
2641 /* set rate to some reasonable initial value */
2642 for (i = ni->ni_rates.rs_nrates - 1;
2643 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2644 i--);
2645 ni->ni_txrate = i;
2646 }
2647
2648 int
2649 zyd_activate(device_t self, enum devact act)
2650 {
2651 struct zyd_softc *sc = device_private(self);
2652
2653 switch (act) {
2654 case DVACT_DEACTIVATE:
2655 if_deactivate(&sc->sc_if);
2656 return 0;
2657 default:
2658 return EOPNOTSUPP;
2659 }
2660 }
2661