if_zyd.c revision 1.52 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.52 2019/05/05 03:17:54 mrg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.52 2019/05/05 03:17:54 mrg Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
148 ZYD_ZD1211B_DEV(USR, USR5423),
149 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
153 ZYD_ZD1211B_DEV(ZYXEL, M202),
154 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
155 };
156 #define zyd_lookup(v, p) \
157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158
159 int zyd_match(device_t, cfdata_t, void *);
160 void zyd_attach(device_t, device_t, void *);
161 int zyd_detach(device_t, int);
162 int zyd_activate(device_t, enum devact);
163
164
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166 zyd_attach, zyd_detach, zyd_activate);
167
168 Static void zyd_attachhook(device_t);
169 Static int zyd_complete_attach(struct zyd_softc *);
170 Static int zyd_open_pipes(struct zyd_softc *);
171 Static void zyd_close_pipes(struct zyd_softc *);
172 Static int zyd_alloc_tx_list(struct zyd_softc *);
173 Static void zyd_free_tx_list(struct zyd_softc *);
174 Static int zyd_alloc_rx_list(struct zyd_softc *);
175 Static void zyd_free_rx_list(struct zyd_softc *);
176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int zyd_media_change(struct ifnet *);
178 Static void zyd_next_scan(void *);
179 Static void zyd_task(void *);
180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 void *, int, u_int);
183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void zyd_lock_phy(struct zyd_softc *);
189 Static void zyd_unlock_phy(struct zyd_softc *);
190 Static int zyd_rfmd_init(struct zyd_rf *);
191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_al2230_init(struct zyd_rf *);
194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2230_init_b(struct zyd_rf *);
197 Static int zyd_al7230B_init(struct zyd_rf *);
198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_al2210_init(struct zyd_rf *);
201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_gct_init(struct zyd_rf *);
204 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_maxim_init(struct zyd_rf *);
207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int zyd_maxim2_init(struct zyd_rf *);
210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int zyd_hw_init(struct zyd_softc *);
215 Static int zyd_read_eeprom(struct zyd_softc *);
216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int zyd_switch_radio(struct zyd_softc *, int);
219 Static void zyd_set_led(struct zyd_softc *, int, int);
220 Static int zyd_set_rxfilter(struct zyd_softc *);
221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t zyd_plcp_signal(int);
224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 struct ieee80211_node *);
230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 struct ieee80211_node *);
232 Static void zyd_start(struct ifnet *);
233 Static void zyd_watchdog(struct ifnet *);
234 Static int zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int zyd_init(struct ifnet *);
236 Static void zyd_stop(struct ifnet *, int);
237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void zyd_iter_func(void *, struct ieee80211_node *);
239 Static void zyd_amrr_timeout(void *);
240 Static void zyd_newassoc(struct ieee80211_node *, int);
241
242 int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 struct usb_attach_arg *uaa = aux;
246
247 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 struct zyd_softc *sc = device_private(self);
255 firmware_handle_t fwh;
256 const char *fwname;
257 u_char *fw;
258 size_t size;
259 int error;
260
261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "failed to open firmware %s (error=%d)\n", fwname, error);
265 return;
266 }
267 size = firmware_get_size(fwh);
268 fw = firmware_malloc(size);
269 if (fw == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to allocate firmware memory\n");
272 firmware_close(fwh);
273 return;
274 }
275 error = firmware_read(fwh, 0, fw, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "failed to read firmware (error %d)\n", error);
280 firmware_free(fw, size);
281 return;
282 }
283
284 error = zyd_loadfirmware(sc, fw, size);
285 if (error != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "could not load firmware (error=%d)\n", error);
288 firmware_free(fw, size);
289 return;
290 }
291
292 firmware_free(fw, size);
293
294 /* complete the attach process */
295 if ((error = zyd_complete_attach(sc)) == 0)
296 sc->attached = 1;
297 return;
298 }
299
300 void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 struct zyd_softc *sc = device_private(self);
304 struct usb_attach_arg *uaa = aux;
305 char *devinfop;
306 usb_device_descriptor_t* ddesc;
307 struct ifnet *ifp = &sc->sc_if;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311
312 aprint_naive("\n");
313 aprint_normal("\n");
314
315 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 aprint_normal_dev(self, "%s\n", devinfop);
317 usbd_devinfo_free(devinfop);
318
319 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320
321 ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 aprint_error_dev(self, "device version mismatch: 0x%x "
324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 return;
326 }
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = zyd_init;
331 ifp->if_ioctl = zyd_ioctl;
332 ifp->if_start = zyd_start;
333 ifp->if_watchdog = zyd_watchdog;
334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337
338 SIMPLEQ_INIT(&sc->sc_rqh);
339
340 /* defer configrations after file system is ready to load firmware */
341 config_mountroot(self, zyd_attachhook);
342 }
343
344 Static int
345 zyd_complete_attach(struct zyd_softc *sc)
346 {
347 struct ieee80211com *ic = &sc->sc_ic;
348 struct ifnet *ifp = &sc->sc_if;
349 usbd_status error;
350 int i;
351
352 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
353 callout_init(&(sc->sc_scan_ch), 0);
354
355 sc->amrr.amrr_min_success_threshold = 1;
356 sc->amrr.amrr_max_success_threshold = 10;
357 callout_init(&sc->sc_amrr_ch, 0);
358
359 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
360 if (error != 0) {
361 aprint_error_dev(sc->sc_dev, "failed to set configuration"
362 ", err=%s\n", usbd_errstr(error));
363 goto fail;
364 }
365
366 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
367 &sc->sc_iface);
368 if (error != 0) {
369 aprint_error_dev(sc->sc_dev,
370 "getting interface handle failed\n");
371 goto fail;
372 }
373
374 if ((error = zyd_open_pipes(sc)) != 0) {
375 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
376 goto fail;
377 }
378
379 if ((error = zyd_read_eeprom(sc)) != 0) {
380 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
381 goto fail;
382 }
383
384 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
385 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
386 goto fail;
387 }
388
389 if ((error = zyd_hw_init(sc)) != 0) {
390 aprint_error_dev(sc->sc_dev,
391 "hardware initialization failed\n");
392 goto fail;
393 }
394
395 aprint_normal_dev(sc->sc_dev,
396 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
397 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
398 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
399 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
400
401 ic->ic_ifp = ifp;
402 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
403 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
404 ic->ic_state = IEEE80211_S_INIT;
405
406 /* set device capabilities */
407 ic->ic_caps =
408 IEEE80211_C_MONITOR | /* monitor mode supported */
409 IEEE80211_C_TXPMGT | /* tx power management */
410 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
411 IEEE80211_C_WEP; /* s/w WEP */
412
413 /* set supported .11b and .11g rates */
414 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
415 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
416
417 /* set supported .11b and .11g channels (1 through 14) */
418 for (i = 1; i <= 14; i++) {
419 ic->ic_channels[i].ic_freq =
420 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
421 ic->ic_channels[i].ic_flags =
422 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 }
425
426 if_attach(ifp);
427 ieee80211_ifattach(ic);
428 ic->ic_node_alloc = zyd_node_alloc;
429 ic->ic_newassoc = zyd_newassoc;
430
431 /* override state transition machine */
432 sc->sc_newstate = ic->ic_newstate;
433 ic->ic_newstate = zyd_newstate;
434 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
435
436 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
437 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 &sc->sc_drvbpf);
439
440 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
443
444 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
447
448 ieee80211_announce(ic);
449
450 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
451
452 fail: return error;
453 }
454
455 int
456 zyd_detach(device_t self, int flags)
457 {
458 struct zyd_softc *sc = device_private(self);
459 struct ieee80211com *ic = &sc->sc_ic;
460 struct ifnet *ifp = &sc->sc_if;
461 int s;
462
463 if (!sc->attached)
464 return 0;
465
466 s = splusb();
467
468 zyd_stop(ifp, 1);
469 callout_halt(&sc->sc_scan_ch, NULL);
470 callout_halt(&sc->sc_amrr_ch, NULL);
471 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
472
473 /* Abort, etc. done by zyd_stop */
474 zyd_close_pipes(sc);
475
476 sc->attached = 0;
477
478 bpf_detach(ifp);
479 ieee80211_ifdetach(ic);
480 if_detach(ifp);
481
482 splx(s);
483
484 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
485
486 return 0;
487 }
488
489 Static int
490 zyd_open_pipes(struct zyd_softc *sc)
491 {
492 usb_endpoint_descriptor_t *edesc;
493 usbd_status error;
494
495 /* interrupt in */
496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 if (edesc == NULL)
498 return EINVAL;
499
500 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
501 if (sc->ibuf_size == 0) /* should not happen */
502 return EINVAL;
503
504 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
505
506 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
507 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
508 USBD_DEFAULT_INTERVAL);
509 if (error != 0) {
510 printf("%s: open rx intr pipe failed: %s\n",
511 device_xname(sc->sc_dev), usbd_errstr(error));
512 goto fail;
513 }
514
515 /* interrupt out (not necessarily an interrupt pipe) */
516 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
517 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
518 if (error != 0) {
519 printf("%s: open tx intr pipe failed: %s\n",
520 device_xname(sc->sc_dev), usbd_errstr(error));
521 goto fail;
522 }
523
524 /* bulk in */
525 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
526 &sc->zyd_ep[ZYD_ENDPT_BIN]);
527 if (error != 0) {
528 printf("%s: open rx pipe failed: %s\n",
529 device_xname(sc->sc_dev), usbd_errstr(error));
530 goto fail;
531 }
532
533 /* bulk out */
534 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
535 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
536 if (error != 0) {
537 printf("%s: open tx pipe failed: %s\n",
538 device_xname(sc->sc_dev), usbd_errstr(error));
539 goto fail;
540 }
541
542 return 0;
543
544 fail: zyd_close_pipes(sc);
545 return error;
546 }
547
548 Static void
549 zyd_close_pipes(struct zyd_softc *sc)
550 {
551 int i;
552
553 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
554 if (sc->zyd_ep[i] != NULL) {
555 usbd_close_pipe(sc->zyd_ep[i]);
556 sc->zyd_ep[i] = NULL;
557 }
558 }
559 if (sc->ibuf != NULL) {
560 kmem_free(sc->ibuf, sc->ibuf_size);
561 sc->ibuf = NULL;
562 }
563 }
564
565 Static int
566 zyd_alloc_tx_list(struct zyd_softc *sc)
567 {
568 int i, error;
569
570 sc->tx_queued = 0;
571
572 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
573 struct zyd_tx_data *data = &sc->tx_data[i];
574
575 data->sc = sc; /* backpointer for callbacks */
576
577 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
578 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
579 if (error) {
580 printf("%s: could not allocate tx xfer\n",
581 device_xname(sc->sc_dev));
582 goto fail;
583 }
584 data->buf = usbd_get_buffer(data->xfer);
585
586 /* clear Tx descriptor */
587 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
588 }
589 return 0;
590
591 fail: zyd_free_tx_list(sc);
592 return error;
593 }
594
595 Static void
596 zyd_free_tx_list(struct zyd_softc *sc)
597 {
598 int i;
599
600 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
601 struct zyd_tx_data *data = &sc->tx_data[i];
602
603 if (data->xfer != NULL) {
604 usbd_destroy_xfer(data->xfer);
605 data->xfer = NULL;
606 }
607 if (data->ni != NULL) {
608 ieee80211_free_node(data->ni);
609 data->ni = NULL;
610 }
611 }
612 }
613
614 Static int
615 zyd_alloc_rx_list(struct zyd_softc *sc)
616 {
617 int i, error;
618
619 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
620 struct zyd_rx_data *data = &sc->rx_data[i];
621
622 data->sc = sc; /* backpointer for callbacks */
623
624 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
625 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
626 if (error) {
627 printf("%s: could not allocate rx xfer\n",
628 device_xname(sc->sc_dev));
629 goto fail;
630 }
631 data->buf = usbd_get_buffer(data->xfer);
632 }
633 return 0;
634
635 fail: zyd_free_rx_list(sc);
636 return error;
637 }
638
639 Static void
640 zyd_free_rx_list(struct zyd_softc *sc)
641 {
642 int i;
643
644 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
645 struct zyd_rx_data *data = &sc->rx_data[i];
646
647 if (data->xfer != NULL) {
648 usbd_destroy_xfer(data->xfer);
649 data->xfer = NULL;
650 }
651 }
652 }
653
654 /* ARGUSED */
655 Static struct ieee80211_node *
656 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
657 {
658 struct zyd_node *zn;
659
660 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
661
662 return &zn->ni;
663 }
664
665 Static int
666 zyd_media_change(struct ifnet *ifp)
667 {
668 int error;
669
670 error = ieee80211_media_change(ifp);
671 if (error != ENETRESET)
672 return error;
673
674 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
675 zyd_init(ifp);
676
677 return 0;
678 }
679
680 /*
681 * This function is called periodically (every 200ms) during scanning to
682 * switch from one channel to another.
683 */
684 Static void
685 zyd_next_scan(void *arg)
686 {
687 struct zyd_softc *sc = arg;
688 struct ieee80211com *ic = &sc->sc_ic;
689
690 if (ic->ic_state == IEEE80211_S_SCAN)
691 ieee80211_next_scan(ic);
692 }
693
694 Static void
695 zyd_task(void *arg)
696 {
697 struct zyd_softc *sc = arg;
698 struct ieee80211com *ic = &sc->sc_ic;
699 enum ieee80211_state ostate;
700
701 ostate = ic->ic_state;
702
703 switch (sc->sc_state) {
704 case IEEE80211_S_INIT:
705 if (ostate == IEEE80211_S_RUN) {
706 /* turn link LED off */
707 zyd_set_led(sc, ZYD_LED1, 0);
708
709 /* stop data LED from blinking */
710 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
711 }
712 break;
713
714 case IEEE80211_S_SCAN:
715 zyd_set_chan(sc, ic->ic_curchan);
716 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
717 break;
718
719 case IEEE80211_S_AUTH:
720 case IEEE80211_S_ASSOC:
721 zyd_set_chan(sc, ic->ic_curchan);
722 break;
723
724 case IEEE80211_S_RUN:
725 {
726 struct ieee80211_node *ni = ic->ic_bss;
727
728 zyd_set_chan(sc, ic->ic_curchan);
729
730 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
731 /* turn link LED on */
732 zyd_set_led(sc, ZYD_LED1, 1);
733
734 /* make data LED blink upon Tx */
735 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
736
737 zyd_set_bssid(sc, ni->ni_bssid);
738 }
739
740 if (ic->ic_opmode == IEEE80211_M_STA) {
741 /* fake a join to init the tx rate */
742 zyd_newassoc(ni, 1);
743 }
744
745 /* start automatic rate control timer */
746 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
747 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
748
749 break;
750 }
751 }
752
753 sc->sc_newstate(ic, sc->sc_state, -1);
754 }
755
756 Static int
757 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
758 {
759 struct zyd_softc *sc = ic->ic_ifp->if_softc;
760
761 if (!sc->attached)
762 return ENXIO;
763
764 /*
765 * XXXSMP: This does not wait for the task, if it is in flight,
766 * to complete. If this code works at all, it must rely on the
767 * kernel lock to serialize with the USB task thread.
768 */
769 usb_rem_task(sc->sc_udev, &sc->sc_task);
770 callout_stop(&sc->sc_scan_ch);
771 callout_stop(&sc->sc_amrr_ch);
772
773 /* do it in a process context */
774 sc->sc_state = nstate;
775 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
776
777 return 0;
778 }
779
780 Static int
781 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
782 void *odata, int olen, u_int flags)
783 {
784 struct usbd_xfer *xfer;
785 struct zyd_cmd cmd;
786 struct rq rq;
787 uint16_t xferflags;
788 int error;
789 usbd_status uerror;
790 int s = 0;
791
792 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
793 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
794 if (error)
795 return error;
796
797 cmd.code = htole16(code);
798 memcpy(cmd.data, idata, ilen);
799
800 xferflags = USBD_FORCE_SHORT_XFER;
801 if (!(flags & ZYD_CMD_FLAG_READ))
802 xferflags |= USBD_SYNCHRONOUS;
803 else {
804 s = splusb();
805 rq.idata = idata;
806 rq.odata = odata;
807 rq.len = olen / sizeof(struct zyd_pair);
808 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
809 }
810
811 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
812 ZYD_INTR_TIMEOUT, NULL);
813 uerror = usbd_transfer(xfer);
814 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
815 if (flags & ZYD_CMD_FLAG_READ)
816 splx(s);
817 printf("%s: could not send command (error=%s)\n",
818 device_xname(sc->sc_dev), usbd_errstr(uerror));
819 (void)usbd_destroy_xfer(xfer);
820 return EIO;
821 }
822 if (!(flags & ZYD_CMD_FLAG_READ)) {
823 (void)usbd_destroy_xfer(xfer);
824 return 0; /* write: don't wait for reply */
825 }
826 /* wait at most one second for command reply */
827 error = tsleep(odata, PCATCH, "zydcmd", hz);
828 if (error == EWOULDBLOCK)
829 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
830 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
831 splx(s);
832
833 (void)usbd_destroy_xfer(xfer);
834 return error;
835 }
836
837 Static int
838 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
839 {
840 struct zyd_pair tmp;
841 int error;
842
843 reg = htole16(reg);
844 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
845 ZYD_CMD_FLAG_READ);
846 if (error == 0)
847 *val = le16toh(tmp.val);
848 else
849 *val = 0;
850 return error;
851 }
852
853 Static int
854 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
855 {
856 struct zyd_pair tmp[2];
857 uint16_t regs[2];
858 int error;
859
860 regs[0] = htole16(ZYD_REG32_HI(reg));
861 regs[1] = htole16(ZYD_REG32_LO(reg));
862 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
863 ZYD_CMD_FLAG_READ);
864 if (error == 0)
865 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
866 else
867 *val = 0;
868 return error;
869 }
870
871 Static int
872 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
873 {
874 struct zyd_pair pair;
875
876 pair.reg = htole16(reg);
877 pair.val = htole16(val);
878
879 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
880 }
881
882 Static int
883 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
884 {
885 struct zyd_pair pair[2];
886
887 pair[0].reg = htole16(ZYD_REG32_HI(reg));
888 pair[0].val = htole16(val >> 16);
889 pair[1].reg = htole16(ZYD_REG32_LO(reg));
890 pair[1].val = htole16(val & 0xffff);
891
892 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
893 }
894
895 Static int
896 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
897 {
898 struct zyd_rf *rf = &sc->sc_rf;
899 struct zyd_rfwrite req;
900 uint16_t cr203;
901 int i;
902
903 (void)zyd_read16(sc, ZYD_CR203, &cr203);
904 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
905
906 req.code = htole16(2);
907 req.width = htole16(rf->width);
908 for (i = 0; i < rf->width; i++) {
909 req.bit[i] = htole16(cr203);
910 if (val & (1 << (rf->width - 1 - i)))
911 req.bit[i] |= htole16(ZYD_RF_DATA);
912 }
913 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
914 }
915
916 Static void
917 zyd_lock_phy(struct zyd_softc *sc)
918 {
919 uint32_t tmp;
920
921 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
922 tmp &= ~ZYD_UNLOCK_PHY_REGS;
923 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
924 }
925
926 Static void
927 zyd_unlock_phy(struct zyd_softc *sc)
928 {
929 uint32_t tmp;
930
931 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
932 tmp |= ZYD_UNLOCK_PHY_REGS;
933 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
934 }
935
936 /*
937 * RFMD RF methods.
938 */
939 Static int
940 zyd_rfmd_init(struct zyd_rf *rf)
941 {
942 struct zyd_softc *sc = rf->rf_sc;
943 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
944 static const uint32_t rfini[] = ZYD_RFMD_RF;
945 int error;
946 size_t i;
947
948 /* init RF-dependent PHY registers */
949 for (i = 0; i < __arraycount(phyini); i++) {
950 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
951 if (error != 0)
952 return error;
953 }
954
955 /* init RFMD radio */
956 for (i = 0; i < __arraycount(rfini); i++) {
957 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
958 return error;
959 }
960 return 0;
961 }
962
963 Static int
964 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
965 {
966 struct zyd_softc *sc = rf->rf_sc;
967
968 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
969 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
970
971 return 0;
972 }
973
974 Static int
975 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
976 {
977 struct zyd_softc *sc = rf->rf_sc;
978 static const struct {
979 uint32_t r1, r2;
980 } rfprog[] = ZYD_RFMD_CHANTABLE;
981
982 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
983 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
984
985 return 0;
986 }
987
988 /*
989 * AL2230 RF methods.
990 */
991 Static int
992 zyd_al2230_init(struct zyd_rf *rf)
993 {
994 struct zyd_softc *sc = rf->rf_sc;
995 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
996 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
997 static const uint32_t rfini[] = ZYD_AL2230_RF;
998 int error;
999 size_t i;
1000
1001 /* init RF-dependent PHY registers */
1002 for (i = 0; i < __arraycount(phyini); i++) {
1003 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1004 if (error != 0)
1005 return error;
1006 }
1007
1008 if (sc->rf_rev == ZYD_RF_AL2230S) {
1009 for (i = 0; i < __arraycount(phy2230s); i++) {
1010 error = zyd_write16(sc, phy2230s[i].reg,
1011 phy2230s[i].val);
1012 if (error != 0)
1013 return error;
1014 }
1015 }
1016
1017 /* init AL2230 radio */
1018 for (i = 0; i < __arraycount(rfini); i++) {
1019 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1020 return error;
1021 }
1022 return 0;
1023 }
1024
1025 Static int
1026 zyd_al2230_init_b(struct zyd_rf *rf)
1027 {
1028 struct zyd_softc *sc = rf->rf_sc;
1029 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1030 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1031 int error;
1032 size_t i;
1033
1034 /* init RF-dependent PHY registers */
1035 for (i = 0; i < __arraycount(phyini); i++) {
1036 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1037 if (error != 0)
1038 return error;
1039 }
1040
1041 /* init AL2230 radio */
1042 for (i = 0; i < __arraycount(rfini); i++) {
1043 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1044 return error;
1045 }
1046 return 0;
1047 }
1048
1049 Static int
1050 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1051 {
1052 struct zyd_softc *sc = rf->rf_sc;
1053 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1054
1055 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1056 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1057
1058 return 0;
1059 }
1060
1061 Static int
1062 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1063 {
1064 struct zyd_softc *sc = rf->rf_sc;
1065 static const struct {
1066 uint32_t r1, r2, r3;
1067 } rfprog[] = ZYD_AL2230_CHANTABLE;
1068
1069 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1070 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1072
1073 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1074 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * AL7230B RF methods.
1081 */
1082 Static int
1083 zyd_al7230B_init(struct zyd_rf *rf)
1084 {
1085 struct zyd_softc *sc = rf->rf_sc;
1086 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1087 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1088 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1089 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1090 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1091 int error;
1092 size_t i;
1093
1094 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1095
1096 /* init RF-dependent PHY registers, part one */
1097 for (i = 0; i < __arraycount(phyini_1); i++) {
1098 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1099 if (error != 0)
1100 return error;
1101 }
1102 /* init AL7230B radio, part one */
1103 for (i = 0; i < __arraycount(rfini_1); i++) {
1104 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1105 return error;
1106 }
1107 /* init RF-dependent PHY registers, part two */
1108 for (i = 0; i < __arraycount(phyini_2); i++) {
1109 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1110 if (error != 0)
1111 return error;
1112 }
1113 /* init AL7230B radio, part two */
1114 for (i = 0; i < __arraycount(rfini_2); i++) {
1115 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1116 return error;
1117 }
1118 /* init RF-dependent PHY registers, part three */
1119 for (i = 0; i < __arraycount(phyini_3); i++) {
1120 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1121 if (error != 0)
1122 return error;
1123 }
1124
1125 return 0;
1126 }
1127
1128 Static int
1129 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1130 {
1131 struct zyd_softc *sc = rf->rf_sc;
1132
1133 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1134 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1135
1136 return 0;
1137 }
1138
1139 Static int
1140 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1141 {
1142 struct zyd_softc *sc = rf->rf_sc;
1143 static const struct {
1144 uint32_t r1, r2;
1145 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1146 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1147 int error;
1148 size_t i;
1149
1150 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1151 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1152
1153 for (i = 0; i < __arraycount(rfsc); i++) {
1154 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1155 return error;
1156 }
1157
1158 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1159 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1160 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1161 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1162 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1163
1164 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1165 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1166 (void)zyd_rfwrite(sc, 0x3c9000);
1167
1168 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1169 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1170 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * AL2210 RF methods.
1177 */
1178 Static int
1179 zyd_al2210_init(struct zyd_rf *rf)
1180 {
1181 struct zyd_softc *sc = rf->rf_sc;
1182 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1183 static const uint32_t rfini[] = ZYD_AL2210_RF;
1184 uint32_t tmp;
1185 int error;
1186 size_t i;
1187
1188 (void)zyd_write32(sc, ZYD_CR18, 2);
1189
1190 /* init RF-dependent PHY registers */
1191 for (i = 0; i < __arraycount(phyini); i++) {
1192 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1193 if (error != 0)
1194 return error;
1195 }
1196 /* init AL2210 radio */
1197 for (i = 0; i < __arraycount(rfini); i++) {
1198 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1199 return error;
1200 }
1201 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1202 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1203 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1204 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1205 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1206 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1207 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1208 (void)zyd_write32(sc, ZYD_CR18, 3);
1209
1210 return 0;
1211 }
1212
1213 Static int
1214 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1215 {
1216 /* vendor driver does nothing for this RF chip */
1217
1218 return 0;
1219 }
1220
1221 Static int
1222 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1223 {
1224 struct zyd_softc *sc = rf->rf_sc;
1225 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1226 uint32_t tmp;
1227
1228 (void)zyd_write32(sc, ZYD_CR18, 2);
1229 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1230 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1231 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1232 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1233 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1234
1235 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1236 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1237
1238 /* actually set the channel */
1239 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1240
1241 (void)zyd_write32(sc, ZYD_CR18, 3);
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * GCT RF methods.
1248 */
1249 Static int
1250 zyd_gct_init(struct zyd_rf *rf)
1251 {
1252 struct zyd_softc *sc = rf->rf_sc;
1253 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1254 static const uint32_t rfini[] = ZYD_GCT_RF;
1255 int error;
1256 size_t i;
1257
1258 /* init RF-dependent PHY registers */
1259 for (i = 0; i < __arraycount(phyini); i++) {
1260 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1261 if (error != 0)
1262 return error;
1263 }
1264 /* init cgt radio */
1265 for (i = 0; i < __arraycount(rfini); i++) {
1266 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1267 return error;
1268 }
1269 return 0;
1270 }
1271
1272 Static int
1273 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1274 {
1275 /* vendor driver does nothing for this RF chip */
1276
1277 return 0;
1278 }
1279
1280 Static int
1281 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1282 {
1283 struct zyd_softc *sc = rf->rf_sc;
1284 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1285
1286 (void)zyd_rfwrite(sc, 0x1c0000);
1287 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1288 (void)zyd_rfwrite(sc, 0x1c0008);
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Maxim RF methods.
1295 */
1296 Static int
1297 zyd_maxim_init(struct zyd_rf *rf)
1298 {
1299 struct zyd_softc *sc = rf->rf_sc;
1300 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1301 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1302 uint16_t tmp;
1303 int error;
1304 size_t i;
1305
1306 /* init RF-dependent PHY registers */
1307 for (i = 0; i < __arraycount(phyini); i++) {
1308 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1309 if (error != 0)
1310 return error;
1311 }
1312 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1313 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1314
1315 /* init maxim radio */
1316 for (i = 0; i < __arraycount(rfini); i++) {
1317 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1318 return error;
1319 }
1320 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1321 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1322
1323 return 0;
1324 }
1325
1326 Static int
1327 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1328 {
1329 /* vendor driver does nothing for this RF chip */
1330
1331 return 0;
1332 }
1333
1334 Static int
1335 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1336 {
1337 struct zyd_softc *sc = rf->rf_sc;
1338 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1339 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1340 static const struct {
1341 uint32_t r1, r2;
1342 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1343 uint16_t tmp;
1344 int error;
1345 size_t i;
1346
1347 /*
1348 * Do the same as we do when initializing it, except for the channel
1349 * values coming from the two channel tables.
1350 */
1351
1352 /* init RF-dependent PHY registers */
1353 for (i = 0; i < __arraycount(phyini); i++) {
1354 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1355 if (error != 0)
1356 return error;
1357 }
1358 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1359 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1360
1361 /* first two values taken from the chantables */
1362 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1363 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1364
1365 /* init maxim radio - skipping the two first values */
1366 for (i = 2; i < __arraycount(rfini); i++) {
1367 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1368 return error;
1369 }
1370 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1371 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1372
1373 return 0;
1374 }
1375
1376 /*
1377 * Maxim2 RF methods.
1378 */
1379 Static int
1380 zyd_maxim2_init(struct zyd_rf *rf)
1381 {
1382 struct zyd_softc *sc = rf->rf_sc;
1383 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1384 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1385 uint16_t tmp;
1386 int error;
1387 size_t i;
1388
1389 /* init RF-dependent PHY registers */
1390 for (i = 0; i < __arraycount(phyini); i++) {
1391 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1392 if (error != 0)
1393 return error;
1394 }
1395 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1396 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1397
1398 /* init maxim2 radio */
1399 for (i = 0; i < __arraycount(rfini); i++) {
1400 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1401 return error;
1402 }
1403 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1404 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1405
1406 return 0;
1407 }
1408
1409 Static int
1410 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1411 {
1412 /* vendor driver does nothing for this RF chip */
1413
1414 return 0;
1415 }
1416
1417 Static int
1418 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1419 {
1420 struct zyd_softc *sc = rf->rf_sc;
1421 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1422 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1423 static const struct {
1424 uint32_t r1, r2;
1425 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1426 uint16_t tmp;
1427 int error;
1428 size_t i;
1429
1430 /*
1431 * Do the same as we do when initializing it, except for the channel
1432 * values coming from the two channel tables.
1433 */
1434
1435 /* init RF-dependent PHY registers */
1436 for (i = 0; i < __arraycount(phyini); i++) {
1437 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1438 if (error != 0)
1439 return error;
1440 }
1441 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1442 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1443
1444 /* first two values taken from the chantables */
1445 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1447
1448 /* init maxim2 radio - skipping the two first values */
1449 for (i = 2; i < __arraycount(rfini); i++) {
1450 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1451 return error;
1452 }
1453 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1454 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1455
1456 return 0;
1457 }
1458
1459 Static int
1460 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1461 {
1462 struct zyd_rf *rf = &sc->sc_rf;
1463
1464 rf->rf_sc = sc;
1465
1466 switch (type) {
1467 case ZYD_RF_RFMD:
1468 rf->init = zyd_rfmd_init;
1469 rf->switch_radio = zyd_rfmd_switch_radio;
1470 rf->set_channel = zyd_rfmd_set_channel;
1471 rf->width = 24; /* 24-bit RF values */
1472 break;
1473 case ZYD_RF_AL2230:
1474 case ZYD_RF_AL2230S:
1475 if (sc->mac_rev == ZYD_ZD1211B)
1476 rf->init = zyd_al2230_init_b;
1477 else
1478 rf->init = zyd_al2230_init;
1479 rf->switch_radio = zyd_al2230_switch_radio;
1480 rf->set_channel = zyd_al2230_set_channel;
1481 rf->width = 24; /* 24-bit RF values */
1482 break;
1483 case ZYD_RF_AL7230B:
1484 rf->init = zyd_al7230B_init;
1485 rf->switch_radio = zyd_al7230B_switch_radio;
1486 rf->set_channel = zyd_al7230B_set_channel;
1487 rf->width = 24; /* 24-bit RF values */
1488 break;
1489 case ZYD_RF_AL2210:
1490 rf->init = zyd_al2210_init;
1491 rf->switch_radio = zyd_al2210_switch_radio;
1492 rf->set_channel = zyd_al2210_set_channel;
1493 rf->width = 24; /* 24-bit RF values */
1494 break;
1495 case ZYD_RF_GCT:
1496 rf->init = zyd_gct_init;
1497 rf->switch_radio = zyd_gct_switch_radio;
1498 rf->set_channel = zyd_gct_set_channel;
1499 rf->width = 21; /* 21-bit RF values */
1500 break;
1501 case ZYD_RF_MAXIM_NEW:
1502 rf->init = zyd_maxim_init;
1503 rf->switch_radio = zyd_maxim_switch_radio;
1504 rf->set_channel = zyd_maxim_set_channel;
1505 rf->width = 18; /* 18-bit RF values */
1506 break;
1507 case ZYD_RF_MAXIM_NEW2:
1508 rf->init = zyd_maxim2_init;
1509 rf->switch_radio = zyd_maxim2_switch_radio;
1510 rf->set_channel = zyd_maxim2_set_channel;
1511 rf->width = 18; /* 18-bit RF values */
1512 break;
1513 default:
1514 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1515 device_xname(sc->sc_dev), zyd_rf_name(type));
1516 return EINVAL;
1517 }
1518 return 0;
1519 }
1520
1521 Static const char *
1522 zyd_rf_name(uint8_t type)
1523 {
1524 static const char * const zyd_rfs[] = {
1525 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1526 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1527 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1528 "PHILIPS"
1529 };
1530
1531 return zyd_rfs[(type > 15) ? 0 : type];
1532 }
1533
1534 Static int
1535 zyd_hw_init(struct zyd_softc *sc)
1536 {
1537 struct zyd_rf *rf = &sc->sc_rf;
1538 const struct zyd_phy_pair *phyp;
1539 int error;
1540
1541 /* specify that the plug and play is finished */
1542 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1543
1544 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1545 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1546
1547 /* retrieve firmware revision number */
1548 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1549
1550 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1551 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1552
1553 /* disable interrupts */
1554 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1555
1556 /* PHY init */
1557 zyd_lock_phy(sc);
1558 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1559 for (; phyp->reg != 0; phyp++) {
1560 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1561 goto fail;
1562 }
1563 zyd_unlock_phy(sc);
1564
1565 /* HMAC init */
1566 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1567 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1568
1569 if (sc->mac_rev == ZYD_ZD1211) {
1570 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1571 } else {
1572 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1573 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1577 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1579 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1580 }
1581
1582 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1583 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1584 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1586 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1587 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1588 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1589 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1590 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1591 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1593 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1594 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1595 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1596 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1597 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1598 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1599
1600 /* RF chip init */
1601 zyd_lock_phy(sc);
1602 error = (*rf->init)(rf);
1603 zyd_unlock_phy(sc);
1604 if (error != 0) {
1605 printf("%s: radio initialization failed\n",
1606 device_xname(sc->sc_dev));
1607 goto fail;
1608 }
1609
1610 /* init beacon interval to 100ms */
1611 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1612 goto fail;
1613
1614 fail: return error;
1615 }
1616
1617 Static int
1618 zyd_read_eeprom(struct zyd_softc *sc)
1619 {
1620 struct ieee80211com *ic = &sc->sc_ic;
1621 uint32_t tmp;
1622 uint16_t val;
1623 int i;
1624
1625 /* read MAC address */
1626 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1627 ic->ic_myaddr[0] = tmp & 0xff;
1628 ic->ic_myaddr[1] = tmp >> 8;
1629 ic->ic_myaddr[2] = tmp >> 16;
1630 ic->ic_myaddr[3] = tmp >> 24;
1631 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1632 ic->ic_myaddr[4] = tmp & 0xff;
1633 ic->ic_myaddr[5] = tmp >> 8;
1634
1635 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1636 sc->rf_rev = tmp & 0x0f;
1637 sc->pa_rev = (tmp >> 16) & 0x0f;
1638
1639 /* read regulatory domain (currently unused) */
1640 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1641 sc->regdomain = tmp >> 16;
1642 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1643
1644 /* read Tx power calibration tables */
1645 for (i = 0; i < 7; i++) {
1646 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1647 sc->pwr_cal[i * 2] = val >> 8;
1648 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1649
1650 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1651 sc->pwr_int[i * 2] = val >> 8;
1652 sc->pwr_int[i * 2 + 1] = val & 0xff;
1653
1654 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1655 sc->ofdm36_cal[i * 2] = val >> 8;
1656 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1657
1658 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1659 sc->ofdm48_cal[i * 2] = val >> 8;
1660 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1661
1662 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1663 sc->ofdm54_cal[i * 2] = val >> 8;
1664 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1665 }
1666 return 0;
1667 }
1668
1669 Static int
1670 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1671 {
1672 uint32_t tmp;
1673
1674 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1675 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1676
1677 tmp = addr[5] << 8 | addr[4];
1678 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1679
1680 return 0;
1681 }
1682
1683 Static int
1684 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1685 {
1686 uint32_t tmp;
1687
1688 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1689 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1690
1691 tmp = addr[5] << 8 | addr[4];
1692 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1693
1694 return 0;
1695 }
1696
1697 Static int
1698 zyd_switch_radio(struct zyd_softc *sc, int on)
1699 {
1700 struct zyd_rf *rf = &sc->sc_rf;
1701 int error;
1702
1703 zyd_lock_phy(sc);
1704 error = (*rf->switch_radio)(rf, on);
1705 zyd_unlock_phy(sc);
1706
1707 return error;
1708 }
1709
1710 Static void
1711 zyd_set_led(struct zyd_softc *sc, int which, int on)
1712 {
1713 uint32_t tmp;
1714
1715 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1716 tmp &= ~which;
1717 if (on)
1718 tmp |= which;
1719 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1720 }
1721
1722 Static int
1723 zyd_set_rxfilter(struct zyd_softc *sc)
1724 {
1725 uint32_t rxfilter;
1726
1727 switch (sc->sc_ic.ic_opmode) {
1728 case IEEE80211_M_STA:
1729 rxfilter = ZYD_FILTER_BSS;
1730 break;
1731 case IEEE80211_M_IBSS:
1732 case IEEE80211_M_HOSTAP:
1733 rxfilter = ZYD_FILTER_HOSTAP;
1734 break;
1735 case IEEE80211_M_MONITOR:
1736 rxfilter = ZYD_FILTER_MONITOR;
1737 break;
1738 default:
1739 /* should not get there */
1740 return EINVAL;
1741 }
1742 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1743 }
1744
1745 Static void
1746 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1747 {
1748 struct ieee80211com *ic = &sc->sc_ic;
1749 struct zyd_rf *rf = &sc->sc_rf;
1750 u_int chan;
1751
1752 chan = ieee80211_chan2ieee(ic, c);
1753 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1754 return;
1755
1756 zyd_lock_phy(sc);
1757
1758 (*rf->set_channel)(rf, chan);
1759
1760 /* update Tx power */
1761 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1762 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1763
1764 if (sc->mac_rev == ZYD_ZD1211B) {
1765 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1766 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1768
1769 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1770 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1771 }
1772
1773 zyd_unlock_phy(sc);
1774 }
1775
1776 Static int
1777 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1778 {
1779 /* XXX this is probably broken.. */
1780 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1781 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1782 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1783
1784 return 0;
1785 }
1786
1787 Static uint8_t
1788 zyd_plcp_signal(int rate)
1789 {
1790 switch (rate) {
1791 /* CCK rates (returned values are device-dependent) */
1792 case 2: return 0x0;
1793 case 4: return 0x1;
1794 case 11: return 0x2;
1795 case 22: return 0x3;
1796
1797 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1798 case 12: return 0xb;
1799 case 18: return 0xf;
1800 case 24: return 0xa;
1801 case 36: return 0xe;
1802 case 48: return 0x9;
1803 case 72: return 0xd;
1804 case 96: return 0x8;
1805 case 108: return 0xc;
1806
1807 /* unsupported rates (should not get there) */
1808 default: return 0xff;
1809 }
1810 }
1811
1812 Static void
1813 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1814 {
1815 struct zyd_softc *sc = (struct zyd_softc *)priv;
1816 struct zyd_cmd *cmd;
1817 uint32_t datalen;
1818
1819 if (status != USBD_NORMAL_COMPLETION) {
1820 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1821 return;
1822
1823 if (status == USBD_STALLED) {
1824 usbd_clear_endpoint_stall_async(
1825 sc->zyd_ep[ZYD_ENDPT_IIN]);
1826 }
1827 return;
1828 }
1829
1830 cmd = (struct zyd_cmd *)sc->ibuf;
1831
1832 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1833 struct zyd_notif_retry *retry =
1834 (struct zyd_notif_retry *)cmd->data;
1835 struct ieee80211com *ic = &sc->sc_ic;
1836 struct ifnet *ifp = &sc->sc_if;
1837 struct ieee80211_node *ni;
1838
1839 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1840 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1841 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1842
1843 /*
1844 * Find the node to which the packet was sent and update its
1845 * retry statistics. In BSS mode, this node is the AP we're
1846 * associated to so no lookup is actually needed.
1847 */
1848 if (ic->ic_opmode != IEEE80211_M_STA) {
1849 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1850 if (ni == NULL)
1851 return; /* just ignore */
1852 } else
1853 ni = ic->ic_bss;
1854
1855 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1856
1857 if (le16toh(retry->count) & 0x100)
1858 ifp->if_oerrors++; /* too many retries */
1859
1860 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1861 struct rq *rqp;
1862
1863 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1864 return; /* HMAC interrupt */
1865
1866 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1867 datalen -= sizeof(cmd->code);
1868 datalen -= 2; /* XXX: padding? */
1869
1870 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1871 int i;
1872
1873 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1874 continue;
1875 for (i = 0; i < rqp->len; i++) {
1876 if (*(((const uint16_t *)rqp->idata) + i) !=
1877 (((struct zyd_pair *)cmd->data) + i)->reg)
1878 break;
1879 }
1880 if (i != rqp->len)
1881 continue;
1882
1883 /* copy answer into caller-supplied buffer */
1884 memcpy(rqp->odata, cmd->data,
1885 sizeof(struct zyd_pair) * rqp->len);
1886 wakeup(rqp->odata); /* wakeup caller */
1887
1888 return;
1889 }
1890 return; /* unexpected IORD notification */
1891 } else {
1892 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1893 le16toh(cmd->code));
1894 }
1895 }
1896
1897 Static void
1898 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1899 {
1900 struct ieee80211com *ic = &sc->sc_ic;
1901 struct ifnet *ifp = &sc->sc_if;
1902 struct ieee80211_node *ni;
1903 struct ieee80211_frame *wh;
1904 const struct zyd_plcphdr *plcp;
1905 const struct zyd_rx_stat *stat;
1906 struct mbuf *m;
1907 int rlen, s;
1908
1909 if (len < ZYD_MIN_FRAGSZ) {
1910 printf("%s: frame too short (length=%d)\n",
1911 device_xname(sc->sc_dev), len);
1912 ifp->if_ierrors++;
1913 return;
1914 }
1915
1916 plcp = (const struct zyd_plcphdr *)buf;
1917 stat = (const struct zyd_rx_stat *)
1918 (buf + len - sizeof(struct zyd_rx_stat));
1919
1920 if (stat->flags & ZYD_RX_ERROR) {
1921 DPRINTF(("%s: RX status indicated error (%x)\n",
1922 device_xname(sc->sc_dev), stat->flags));
1923 ifp->if_ierrors++;
1924 return;
1925 }
1926
1927 /* compute actual frame length */
1928 rlen = len - sizeof(struct zyd_plcphdr) -
1929 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1930
1931 /* allocate a mbuf to store the frame */
1932 MGETHDR(m, M_DONTWAIT, MT_DATA);
1933 if (m == NULL) {
1934 printf("%s: could not allocate rx mbuf\n",
1935 device_xname(sc->sc_dev));
1936 ifp->if_ierrors++;
1937 return;
1938 }
1939 if (rlen > MHLEN) {
1940 MCLGET(m, M_DONTWAIT);
1941 if (!(m->m_flags & M_EXT)) {
1942 printf("%s: could not allocate rx mbuf cluster\n",
1943 device_xname(sc->sc_dev));
1944 m_freem(m);
1945 ifp->if_ierrors++;
1946 return;
1947 }
1948 }
1949 m_set_rcvif(m, ifp);
1950 m->m_pkthdr.len = m->m_len = rlen;
1951 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1952
1953 s = splnet();
1954
1955 if (sc->sc_drvbpf != NULL) {
1956 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1957 static const uint8_t rates[] = {
1958 /* reverse function of zyd_plcp_signal() */
1959 2, 4, 11, 22, 0, 0, 0, 0,
1960 96, 48, 24, 12, 108, 72, 36, 18
1961 };
1962
1963 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1964 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1965 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1966 tap->wr_rssi = stat->rssi;
1967 tap->wr_rate = rates[plcp->signal & 0xf];
1968
1969 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1970 }
1971
1972 wh = mtod(m, struct ieee80211_frame *);
1973 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1974 ieee80211_input(ic, m, ni, stat->rssi, 0);
1975
1976 /* node is no longer needed */
1977 ieee80211_free_node(ni);
1978
1979 splx(s);
1980 }
1981
1982 Static void
1983 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1984 {
1985 struct zyd_rx_data *data = priv;
1986 struct zyd_softc *sc = data->sc;
1987 struct ifnet *ifp = &sc->sc_if;
1988 const struct zyd_rx_desc *desc;
1989 int len;
1990
1991 if (status != USBD_NORMAL_COMPLETION) {
1992 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1993 return;
1994
1995 if (status == USBD_STALLED)
1996 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
1997
1998 goto skip;
1999 }
2000 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2001
2002 if (len < ZYD_MIN_RXBUFSZ) {
2003 printf("%s: xfer too short (length=%d)\n",
2004 device_xname(sc->sc_dev), len);
2005 ifp->if_ierrors++;
2006 goto skip;
2007 }
2008
2009 desc = (const struct zyd_rx_desc *)
2010 (data->buf + len - sizeof(struct zyd_rx_desc));
2011
2012 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2013 const uint8_t *p = data->buf, *end = p + len;
2014 int i;
2015
2016 DPRINTFN(3, ("received multi-frame transfer\n"));
2017
2018 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2019 const uint16_t len16 = UGETW(desc->len[i]);
2020
2021 if (len16 == 0 || p + len16 > end)
2022 break;
2023
2024 zyd_rx_data(sc, p, len16);
2025 /* next frame is aligned on a 32-bit boundary */
2026 p += (len16 + 3) & ~3;
2027 }
2028 } else {
2029 DPRINTFN(3, ("received single-frame transfer\n"));
2030
2031 zyd_rx_data(sc, data->buf, len);
2032 }
2033
2034 skip: /* setup a new transfer */
2035
2036 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2037 USBD_NO_TIMEOUT, zyd_rxeof);
2038 (void)usbd_transfer(xfer);
2039 }
2040
2041 Static int
2042 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2043 {
2044 struct ieee80211com *ic = &sc->sc_ic;
2045 struct ifnet *ifp = &sc->sc_if;
2046 struct zyd_tx_desc *desc;
2047 struct zyd_tx_data *data;
2048 struct ieee80211_frame *wh;
2049 struct ieee80211_key *k;
2050 int xferlen, totlen, rate;
2051 uint16_t pktlen;
2052 usbd_status error;
2053
2054 data = &sc->tx_data[0];
2055 desc = (struct zyd_tx_desc *)data->buf;
2056
2057 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2058
2059 wh = mtod(m0, struct ieee80211_frame *);
2060
2061 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2062 k = ieee80211_crypto_encap(ic, ni, m0);
2063 if (k == NULL) {
2064 m_freem(m0);
2065 return ENOBUFS;
2066 }
2067 }
2068
2069 data->ni = ni;
2070
2071 wh = mtod(m0, struct ieee80211_frame *);
2072
2073 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2074 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2075
2076 /* fill Tx descriptor */
2077 desc->len = htole16(totlen);
2078
2079 desc->flags = ZYD_TX_FLAG_BACKOFF;
2080 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2081 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2082 if (totlen > ic->ic_rtsthreshold) {
2083 desc->flags |= ZYD_TX_FLAG_RTS;
2084 } else if (ZYD_RATE_IS_OFDM(rate) &&
2085 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2086 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2087 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2088 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2089 desc->flags |= ZYD_TX_FLAG_RTS;
2090 }
2091 } else
2092 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2093
2094 if ((wh->i_fc[0] &
2095 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2096 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2097 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2098
2099 desc->phy = zyd_plcp_signal(rate);
2100 if (ZYD_RATE_IS_OFDM(rate)) {
2101 desc->phy |= ZYD_TX_PHY_OFDM;
2102 if (ic->ic_curmode == IEEE80211_MODE_11A)
2103 desc->phy |= ZYD_TX_PHY_5GHZ;
2104 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2105 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2106
2107 /* actual transmit length (XXX why +10?) */
2108 pktlen = sizeof(struct zyd_tx_desc) + 10;
2109 if (sc->mac_rev == ZYD_ZD1211)
2110 pktlen += totlen;
2111 desc->pktlen = htole16(pktlen);
2112
2113 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2114 desc->plcp_service = 0;
2115 if (rate == 22) {
2116 const int remainder = (16 * totlen) % 22;
2117 if (remainder != 0 && remainder < 7)
2118 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2119 }
2120
2121 if (sc->sc_drvbpf != NULL) {
2122 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2123
2124 tap->wt_flags = 0;
2125 tap->wt_rate = rate;
2126 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2127 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2128
2129 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2130 }
2131
2132 m_copydata(m0, 0, m0->m_pkthdr.len,
2133 data->buf + sizeof(struct zyd_tx_desc));
2134
2135 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2136 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2137
2138 m_freem(m0); /* mbuf no longer needed */
2139
2140 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2141 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2142 error = usbd_transfer(data->xfer);
2143 if (error != USBD_IN_PROGRESS && error != 0) {
2144 ifp->if_oerrors++;
2145 return EIO;
2146 }
2147 sc->tx_queued++;
2148
2149 return 0;
2150 }
2151
2152 Static void
2153 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2154 {
2155 struct zyd_tx_data *data = priv;
2156 struct zyd_softc *sc = data->sc;
2157 struct ifnet *ifp = &sc->sc_if;
2158 int s;
2159
2160 if (status != USBD_NORMAL_COMPLETION) {
2161 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2162 return;
2163
2164 printf("%s: could not transmit buffer: %s\n",
2165 device_xname(sc->sc_dev), usbd_errstr(status));
2166
2167 if (status == USBD_STALLED) {
2168 usbd_clear_endpoint_stall_async(
2169 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2170 }
2171 ifp->if_oerrors++;
2172 return;
2173 }
2174
2175 s = splnet();
2176
2177 /* update rate control statistics */
2178 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2179
2180 ieee80211_free_node(data->ni);
2181 data->ni = NULL;
2182
2183 sc->tx_queued--;
2184 ifp->if_opackets++;
2185
2186 sc->tx_timer = 0;
2187 ifp->if_flags &= ~IFF_OACTIVE;
2188 zyd_start(ifp);
2189
2190 splx(s);
2191 }
2192
2193 Static int
2194 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2195 {
2196 struct ieee80211com *ic = &sc->sc_ic;
2197 struct ifnet *ifp = &sc->sc_if;
2198 struct zyd_tx_desc *desc;
2199 struct zyd_tx_data *data;
2200 struct ieee80211_frame *wh;
2201 struct ieee80211_key *k;
2202 int xferlen, totlen, rate;
2203 uint16_t pktlen;
2204 usbd_status error;
2205
2206 wh = mtod(m0, struct ieee80211_frame *);
2207
2208 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2209 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2210 else
2211 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2212 rate &= IEEE80211_RATE_VAL;
2213
2214 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2215 k = ieee80211_crypto_encap(ic, ni, m0);
2216 if (k == NULL) {
2217 m_freem(m0);
2218 return ENOBUFS;
2219 }
2220
2221 /* packet header may have moved, reset our local pointer */
2222 wh = mtod(m0, struct ieee80211_frame *);
2223 }
2224
2225 data = &sc->tx_data[0];
2226 desc = (struct zyd_tx_desc *)data->buf;
2227
2228 data->ni = ni;
2229
2230 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2231 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2232
2233 /* fill Tx descriptor */
2234 desc->len = htole16(totlen);
2235
2236 desc->flags = ZYD_TX_FLAG_BACKOFF;
2237 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2238 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2239 if (totlen > ic->ic_rtsthreshold) {
2240 desc->flags |= ZYD_TX_FLAG_RTS;
2241 } else if (ZYD_RATE_IS_OFDM(rate) &&
2242 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2243 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2244 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2245 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2246 desc->flags |= ZYD_TX_FLAG_RTS;
2247 }
2248 } else
2249 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2250
2251 if ((wh->i_fc[0] &
2252 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2253 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2254 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2255
2256 desc->phy = zyd_plcp_signal(rate);
2257 if (ZYD_RATE_IS_OFDM(rate)) {
2258 desc->phy |= ZYD_TX_PHY_OFDM;
2259 if (ic->ic_curmode == IEEE80211_MODE_11A)
2260 desc->phy |= ZYD_TX_PHY_5GHZ;
2261 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2262 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2263
2264 /* actual transmit length (XXX why +10?) */
2265 pktlen = sizeof(struct zyd_tx_desc) + 10;
2266 if (sc->mac_rev == ZYD_ZD1211)
2267 pktlen += totlen;
2268 desc->pktlen = htole16(pktlen);
2269
2270 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2271 desc->plcp_service = 0;
2272 if (rate == 22) {
2273 const int remainder = (16 * totlen) % 22;
2274 if (remainder != 0 && remainder < 7)
2275 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2276 }
2277
2278 if (sc->sc_drvbpf != NULL) {
2279 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2280
2281 tap->wt_flags = 0;
2282 tap->wt_rate = rate;
2283 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2284 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2285
2286 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2287 }
2288
2289 m_copydata(m0, 0, m0->m_pkthdr.len,
2290 data->buf + sizeof(struct zyd_tx_desc));
2291
2292 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2293 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2294
2295 m_freem(m0); /* mbuf no longer needed */
2296
2297 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2298 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2299 error = usbd_transfer(data->xfer);
2300 if (error != USBD_IN_PROGRESS && error != 0) {
2301 ifp->if_oerrors++;
2302 return EIO;
2303 }
2304 sc->tx_queued++;
2305
2306 return 0;
2307 }
2308
2309 Static void
2310 zyd_start(struct ifnet *ifp)
2311 {
2312 struct zyd_softc *sc = ifp->if_softc;
2313 struct ieee80211com *ic = &sc->sc_ic;
2314 struct ether_header *eh;
2315 struct ieee80211_node *ni;
2316 struct mbuf *m0;
2317
2318 for (;;) {
2319 IF_POLL(&ic->ic_mgtq, m0);
2320 if (m0 != NULL) {
2321 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2322 ifp->if_flags |= IFF_OACTIVE;
2323 break;
2324 }
2325 IF_DEQUEUE(&ic->ic_mgtq, m0);
2326
2327 ni = M_GETCTX(m0, struct ieee80211_node *);
2328 M_CLEARCTX(m0);
2329 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2330 if (zyd_tx_mgt(sc, m0, ni) != 0)
2331 break;
2332 } else {
2333 if (ic->ic_state != IEEE80211_S_RUN)
2334 break;
2335 IFQ_POLL(&ifp->if_snd, m0);
2336 if (m0 == NULL)
2337 break;
2338 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2339 ifp->if_flags |= IFF_OACTIVE;
2340 break;
2341 }
2342 IFQ_DEQUEUE(&ifp->if_snd, m0);
2343
2344 if (m0->m_len < sizeof(struct ether_header) &&
2345 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2346 continue;
2347
2348 eh = mtod(m0, struct ether_header *);
2349 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2350 if (ni == NULL) {
2351 m_freem(m0);
2352 continue;
2353 }
2354 bpf_mtap(ifp, m0, BPF_D_OUT);
2355 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2356 ieee80211_free_node(ni);
2357 ifp->if_oerrors++;
2358 continue;
2359 }
2360 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2361 if (zyd_tx_data(sc, m0, ni) != 0) {
2362 ieee80211_free_node(ni);
2363 ifp->if_oerrors++;
2364 break;
2365 }
2366 }
2367
2368 sc->tx_timer = 5;
2369 ifp->if_timer = 1;
2370 }
2371 }
2372
2373 Static void
2374 zyd_watchdog(struct ifnet *ifp)
2375 {
2376 struct zyd_softc *sc = ifp->if_softc;
2377 struct ieee80211com *ic = &sc->sc_ic;
2378
2379 ifp->if_timer = 0;
2380
2381 if (sc->tx_timer > 0) {
2382 if (--sc->tx_timer == 0) {
2383 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2384 /* zyd_init(ifp); XXX needs a process context ? */
2385 ifp->if_oerrors++;
2386 return;
2387 }
2388 ifp->if_timer = 1;
2389 }
2390
2391 ieee80211_watchdog(ic);
2392 }
2393
2394 Static int
2395 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2396 {
2397 struct zyd_softc *sc = ifp->if_softc;
2398 struct ieee80211com *ic = &sc->sc_ic;
2399 int s, error = 0;
2400
2401 s = splnet();
2402
2403 switch (cmd) {
2404 case SIOCSIFFLAGS:
2405 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2406 break;
2407 /* XXX re-use ether_ioctl() */
2408 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2409 case IFF_UP:
2410 zyd_init(ifp);
2411 break;
2412 case IFF_RUNNING:
2413 zyd_stop(ifp, 1);
2414 break;
2415 default:
2416 break;
2417 }
2418 break;
2419
2420 default:
2421 error = ieee80211_ioctl(ic, cmd, data);
2422 }
2423
2424 if (error == ENETRESET) {
2425 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2426 (IFF_RUNNING | IFF_UP))
2427 zyd_init(ifp);
2428 error = 0;
2429 }
2430
2431 splx(s);
2432
2433 return error;
2434 }
2435
2436 Static int
2437 zyd_init(struct ifnet *ifp)
2438 {
2439 struct zyd_softc *sc = ifp->if_softc;
2440 struct ieee80211com *ic = &sc->sc_ic;
2441 int i, error;
2442
2443 zyd_stop(ifp, 0);
2444
2445 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2446 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2447 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2448 if (error != 0)
2449 return error;
2450
2451 /* we'll do software WEP decryption for now */
2452 DPRINTF(("setting encryption type\n"));
2453 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2454 if (error != 0)
2455 return error;
2456
2457 /* promiscuous mode */
2458 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2459 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2460
2461 (void)zyd_set_rxfilter(sc);
2462
2463 /* switch radio transmitter ON */
2464 (void)zyd_switch_radio(sc, 1);
2465
2466 /* set basic rates */
2467 if (ic->ic_curmode == IEEE80211_MODE_11B)
2468 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2469 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2470 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2471 else /* assumes 802.11b/g */
2472 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2473
2474 /* set mandatory rates */
2475 if (ic->ic_curmode == IEEE80211_MODE_11B)
2476 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2477 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2479 else /* assumes 802.11b/g */
2480 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2481
2482 /* set default BSS channel */
2483 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2484 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2485
2486 /* enable interrupts */
2487 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2488
2489 /*
2490 * Allocate Tx and Rx xfer queues.
2491 */
2492 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2493 printf("%s: could not allocate Tx list\n",
2494 device_xname(sc->sc_dev));
2495 goto fail;
2496 }
2497 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2498 printf("%s: could not allocate Rx list\n",
2499 device_xname(sc->sc_dev));
2500 goto fail;
2501 }
2502
2503 /*
2504 * Start up the receive pipe.
2505 */
2506 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2507 struct zyd_rx_data *data = &sc->rx_data[i];
2508
2509 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2510 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2511 error = usbd_transfer(data->xfer);
2512 if (error != USBD_IN_PROGRESS && error != 0) {
2513 printf("%s: could not queue Rx transfer\n",
2514 device_xname(sc->sc_dev));
2515 goto fail;
2516 }
2517 }
2518
2519 ifp->if_flags &= ~IFF_OACTIVE;
2520 ifp->if_flags |= IFF_RUNNING;
2521
2522 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2523 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2524 else
2525 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2526
2527 return 0;
2528
2529 fail: zyd_stop(ifp, 1);
2530 return error;
2531 }
2532
2533 Static void
2534 zyd_stop(struct ifnet *ifp, int disable)
2535 {
2536 struct zyd_softc *sc = ifp->if_softc;
2537 struct ieee80211com *ic = &sc->sc_ic;
2538
2539 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2540
2541 sc->tx_timer = 0;
2542 ifp->if_timer = 0;
2543 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2544
2545 /* switch radio transmitter OFF */
2546 (void)zyd_switch_radio(sc, 0);
2547
2548 /* disable Rx */
2549 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2550
2551 /* disable interrupts */
2552 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2553
2554 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2555 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2556
2557 zyd_free_rx_list(sc);
2558 zyd_free_tx_list(sc);
2559 }
2560
2561 Static int
2562 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2563 {
2564 usb_device_request_t req;
2565 uint16_t addr;
2566 uint8_t stat;
2567
2568 DPRINTF(("firmware size=%zu\n", size));
2569
2570 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2571 req.bRequest = ZYD_DOWNLOADREQ;
2572 USETW(req.wIndex, 0);
2573
2574 addr = ZYD_FIRMWARE_START_ADDR;
2575 while (size > 0) {
2576 #if 0
2577 const int mlen = uimin(size, 4096);
2578 #else
2579 /*
2580 * XXXX: When the transfer size is 4096 bytes, it is not
2581 * likely to be able to transfer it.
2582 * The cause is port or machine or chip?
2583 */
2584 const int mlen = uimin(size, 64);
2585 #endif
2586
2587 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2588 addr));
2589
2590 USETW(req.wValue, addr);
2591 USETW(req.wLength, mlen);
2592 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2593 return EIO;
2594
2595 addr += mlen / 2;
2596 fw += mlen;
2597 size -= mlen;
2598 }
2599
2600 /* check whether the upload succeeded */
2601 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2602 req.bRequest = ZYD_DOWNLOADSTS;
2603 USETW(req.wValue, 0);
2604 USETW(req.wIndex, 0);
2605 USETW(req.wLength, sizeof(stat));
2606 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2607 return EIO;
2608
2609 return (stat & 0x80) ? EIO : 0;
2610 }
2611
2612 Static void
2613 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2614 {
2615 struct zyd_softc *sc = arg;
2616 struct zyd_node *zn = (struct zyd_node *)ni;
2617
2618 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2619 }
2620
2621 Static void
2622 zyd_amrr_timeout(void *arg)
2623 {
2624 struct zyd_softc *sc = arg;
2625 struct ieee80211com *ic = &sc->sc_ic;
2626 int s;
2627
2628 s = splnet();
2629 if (ic->ic_opmode == IEEE80211_M_STA)
2630 zyd_iter_func(sc, ic->ic_bss);
2631 else
2632 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2633 splx(s);
2634
2635 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2636 }
2637
2638 Static void
2639 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2640 {
2641 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2642 int i;
2643
2644 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2645
2646 /* set rate to some reasonable initial value */
2647 for (i = ni->ni_rates.rs_nrates - 1;
2648 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2649 i--);
2650 ni->ni_txrate = i;
2651 }
2652
2653 int
2654 zyd_activate(device_t self, enum devact act)
2655 {
2656 struct zyd_softc *sc = device_private(self);
2657
2658 switch (act) {
2659 case DVACT_DEACTIVATE:
2660 if_deactivate(&sc->sc_if);
2661 return 0;
2662 default:
2663 return EOPNOTSUPP;
2664 }
2665 }
2666