if_zyd.c revision 1.54 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.54 2020/01/15 08:20:13 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.54 2020/01/15 08:20:13 skrll Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
148 ZYD_ZD1211B_DEV(USR, USR5423),
149 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
153 ZYD_ZD1211B_DEV(ZYXEL, M202),
154 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
155 };
156 #define zyd_lookup(v, p) \
157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158
159 static int zyd_match(device_t, cfdata_t, void *);
160 static void zyd_attach(device_t, device_t, void *);
161 static int zyd_detach(device_t, int);
162 static int zyd_activate(device_t, enum devact);
163
164
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166 zyd_attach, zyd_detach, zyd_activate);
167
168 Static void zyd_attachhook(device_t);
169 Static int zyd_complete_attach(struct zyd_softc *);
170 Static int zyd_open_pipes(struct zyd_softc *);
171 Static void zyd_close_pipes(struct zyd_softc *);
172 Static int zyd_alloc_tx_list(struct zyd_softc *);
173 Static void zyd_free_tx_list(struct zyd_softc *);
174 Static int zyd_alloc_rx_list(struct zyd_softc *);
175 Static void zyd_free_rx_list(struct zyd_softc *);
176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int zyd_media_change(struct ifnet *);
178 Static void zyd_next_scan(void *);
179 Static void zyd_task(void *);
180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 void *, int, u_int);
183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void zyd_lock_phy(struct zyd_softc *);
189 Static void zyd_unlock_phy(struct zyd_softc *);
190 Static int zyd_rfmd_init(struct zyd_rf *);
191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_al2230_init(struct zyd_rf *);
194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2230_init_b(struct zyd_rf *);
197 Static int zyd_al7230B_init(struct zyd_rf *);
198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_al2210_init(struct zyd_rf *);
201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_gct_init(struct zyd_rf *);
204 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_maxim_init(struct zyd_rf *);
207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int zyd_maxim2_init(struct zyd_rf *);
210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int zyd_hw_init(struct zyd_softc *);
215 Static int zyd_read_eeprom(struct zyd_softc *);
216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int zyd_switch_radio(struct zyd_softc *, int);
219 Static void zyd_set_led(struct zyd_softc *, int, int);
220 Static int zyd_set_rxfilter(struct zyd_softc *);
221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t zyd_plcp_signal(int);
224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 struct ieee80211_node *);
230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 struct ieee80211_node *);
232 Static void zyd_start(struct ifnet *);
233 Static void zyd_watchdog(struct ifnet *);
234 Static int zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int zyd_init(struct ifnet *);
236 Static void zyd_stop(struct ifnet *, int);
237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void zyd_iter_func(void *, struct ieee80211_node *);
239 Static void zyd_amrr_timeout(void *);
240 Static void zyd_newassoc(struct ieee80211_node *, int);
241
242 static int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 struct usb_attach_arg *uaa = aux;
246
247 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 struct zyd_softc *sc = device_private(self);
255 firmware_handle_t fwh;
256 const char *fwname;
257 u_char *fw;
258 size_t size;
259 int error;
260
261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "failed to open firmware %s (error=%d)\n", fwname, error);
265 return;
266 }
267 size = firmware_get_size(fwh);
268 fw = firmware_malloc(size);
269 if (fw == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to allocate firmware memory\n");
272 firmware_close(fwh);
273 return;
274 }
275 error = firmware_read(fwh, 0, fw, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "failed to read firmware (error %d)\n", error);
280 firmware_free(fw, size);
281 return;
282 }
283
284 error = zyd_loadfirmware(sc, fw, size);
285 if (error != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "could not load firmware (error=%d)\n", error);
288 firmware_free(fw, size);
289 return;
290 }
291
292 firmware_free(fw, size);
293
294 /* complete the attach process */
295 if ((error = zyd_complete_attach(sc)) == 0)
296 sc->attached = 1;
297 return;
298 }
299
300 static void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 struct zyd_softc *sc = device_private(self);
304 struct usb_attach_arg *uaa = aux;
305 char *devinfop;
306 usb_device_descriptor_t* ddesc;
307 struct ifnet *ifp = &sc->sc_if;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311
312 aprint_naive("\n");
313 aprint_normal("\n");
314
315 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 aprint_normal_dev(self, "%s\n", devinfop);
317 usbd_devinfo_free(devinfop);
318
319 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320
321 ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 aprint_error_dev(self, "device version mismatch: 0x%x "
324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 return;
326 }
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = zyd_init;
331 ifp->if_ioctl = zyd_ioctl;
332 ifp->if_start = zyd_start;
333 ifp->if_watchdog = zyd_watchdog;
334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337
338 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
339 cv_init(&sc->sc_cmdcv, "zydcmd");
340 SIMPLEQ_INIT(&sc->sc_rqh);
341
342 /* defer configrations after file system is ready to load firmware */
343 config_mountroot(self, zyd_attachhook);
344 }
345
346 Static int
347 zyd_complete_attach(struct zyd_softc *sc)
348 {
349 struct ieee80211com *ic = &sc->sc_ic;
350 struct ifnet *ifp = &sc->sc_if;
351 usbd_status error;
352 int i;
353
354 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
355 callout_init(&(sc->sc_scan_ch), 0);
356
357 sc->amrr.amrr_min_success_threshold = 1;
358 sc->amrr.amrr_max_success_threshold = 10;
359 callout_init(&sc->sc_amrr_ch, 0);
360
361 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
362 if (error != 0) {
363 aprint_error_dev(sc->sc_dev, "failed to set configuration"
364 ", err=%s\n", usbd_errstr(error));
365 goto fail;
366 }
367
368 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
369 &sc->sc_iface);
370 if (error != 0) {
371 aprint_error_dev(sc->sc_dev,
372 "getting interface handle failed\n");
373 goto fail;
374 }
375
376 if ((error = zyd_open_pipes(sc)) != 0) {
377 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
378 goto fail;
379 }
380
381 if ((error = zyd_read_eeprom(sc)) != 0) {
382 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
383 goto fail;
384 }
385
386 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
387 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
388 goto fail;
389 }
390
391 if ((error = zyd_hw_init(sc)) != 0) {
392 aprint_error_dev(sc->sc_dev,
393 "hardware initialization failed\n");
394 goto fail;
395 }
396
397 aprint_normal_dev(sc->sc_dev,
398 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
399 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
400 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
401 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
402
403 ic->ic_ifp = ifp;
404 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
405 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
406 ic->ic_state = IEEE80211_S_INIT;
407
408 /* set device capabilities */
409 ic->ic_caps =
410 IEEE80211_C_MONITOR | /* monitor mode supported */
411 IEEE80211_C_TXPMGT | /* tx power management */
412 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
413 IEEE80211_C_WEP; /* s/w WEP */
414
415 /* set supported .11b and .11g rates */
416 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
417 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
418
419 /* set supported .11b and .11g channels (1 through 14) */
420 for (i = 1; i <= 14; i++) {
421 ic->ic_channels[i].ic_freq =
422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
423 ic->ic_channels[i].ic_flags =
424 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
425 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 }
427
428 if_attach(ifp);
429 ieee80211_ifattach(ic);
430 ic->ic_node_alloc = zyd_node_alloc;
431 ic->ic_newassoc = zyd_newassoc;
432
433 /* override state transition machine */
434 sc->sc_newstate = ic->ic_newstate;
435 ic->ic_newstate = zyd_newstate;
436 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
437
438 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
439 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
440 &sc->sc_drvbpf);
441
442 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
443 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
444 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
445
446 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
447 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
448 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
449
450 ieee80211_announce(ic);
451
452 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
453
454 fail: return error;
455 }
456
457 static int
458 zyd_detach(device_t self, int flags)
459 {
460 struct zyd_softc *sc = device_private(self);
461 struct ieee80211com *ic = &sc->sc_ic;
462 struct ifnet *ifp = &sc->sc_if;
463
464 if (!sc->attached)
465 return 0;
466
467 mutex_enter(&sc->sc_lock);
468
469 zyd_stop(ifp, 1);
470 callout_halt(&sc->sc_scan_ch, NULL);
471 callout_halt(&sc->sc_amrr_ch, NULL);
472 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
473
474 /* Abort, etc. done by zyd_stop */
475 zyd_close_pipes(sc);
476
477 sc->attached = 0;
478
479 bpf_detach(ifp);
480 ieee80211_ifdetach(ic);
481 if_detach(ifp);
482
483 mutex_exit(&sc->sc_lock);
484
485 mutex_destroy(&sc->sc_lock);
486 cv_destroy(&sc->sc_cmdcv);
487
488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
489
490 return 0;
491 }
492
493 Static int
494 zyd_open_pipes(struct zyd_softc *sc)
495 {
496 usb_endpoint_descriptor_t *edesc;
497 usbd_status error;
498
499 /* interrupt in */
500 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
501 if (edesc == NULL)
502 return EINVAL;
503
504 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
505 if (sc->ibuf_size == 0) /* should not happen */
506 return EINVAL;
507
508 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
509
510 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
511 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
512 USBD_DEFAULT_INTERVAL);
513 if (error != 0) {
514 printf("%s: open rx intr pipe failed: %s\n",
515 device_xname(sc->sc_dev), usbd_errstr(error));
516 goto fail;
517 }
518
519 /* interrupt out (not necessarily an interrupt pipe) */
520 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
521 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
522 if (error != 0) {
523 printf("%s: open tx intr pipe failed: %s\n",
524 device_xname(sc->sc_dev), usbd_errstr(error));
525 goto fail;
526 }
527
528 /* bulk in */
529 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
530 &sc->zyd_ep[ZYD_ENDPT_BIN]);
531 if (error != 0) {
532 printf("%s: open rx pipe failed: %s\n",
533 device_xname(sc->sc_dev), usbd_errstr(error));
534 goto fail;
535 }
536
537 /* bulk out */
538 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
539 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
540 if (error != 0) {
541 printf("%s: open tx pipe failed: %s\n",
542 device_xname(sc->sc_dev), usbd_errstr(error));
543 goto fail;
544 }
545
546 return 0;
547
548 fail: zyd_close_pipes(sc);
549 return error;
550 }
551
552 Static void
553 zyd_close_pipes(struct zyd_softc *sc)
554 {
555 int i;
556
557 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
558 if (sc->zyd_ep[i] != NULL) {
559 usbd_close_pipe(sc->zyd_ep[i]);
560 sc->zyd_ep[i] = NULL;
561 }
562 }
563 if (sc->ibuf != NULL) {
564 kmem_free(sc->ibuf, sc->ibuf_size);
565 sc->ibuf = NULL;
566 }
567 }
568
569 Static int
570 zyd_alloc_tx_list(struct zyd_softc *sc)
571 {
572 int i, error;
573
574 sc->tx_queued = 0;
575
576 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
577 struct zyd_tx_data *data = &sc->tx_data[i];
578
579 data->sc = sc; /* backpointer for callbacks */
580
581 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
582 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
583 if (error) {
584 printf("%s: could not allocate tx xfer\n",
585 device_xname(sc->sc_dev));
586 goto fail;
587 }
588 data->buf = usbd_get_buffer(data->xfer);
589
590 /* clear Tx descriptor */
591 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
592 }
593 return 0;
594
595 fail: zyd_free_tx_list(sc);
596 return error;
597 }
598
599 Static void
600 zyd_free_tx_list(struct zyd_softc *sc)
601 {
602 int i;
603
604 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
605 struct zyd_tx_data *data = &sc->tx_data[i];
606
607 if (data->xfer != NULL) {
608 usbd_destroy_xfer(data->xfer);
609 data->xfer = NULL;
610 }
611 if (data->ni != NULL) {
612 ieee80211_free_node(data->ni);
613 data->ni = NULL;
614 }
615 }
616 }
617
618 Static int
619 zyd_alloc_rx_list(struct zyd_softc *sc)
620 {
621 int i, error;
622
623 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
624 struct zyd_rx_data *data = &sc->rx_data[i];
625
626 data->sc = sc; /* backpointer for callbacks */
627
628 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
629 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
630 if (error) {
631 printf("%s: could not allocate rx xfer\n",
632 device_xname(sc->sc_dev));
633 goto fail;
634 }
635 data->buf = usbd_get_buffer(data->xfer);
636 }
637 return 0;
638
639 fail: zyd_free_rx_list(sc);
640 return error;
641 }
642
643 Static void
644 zyd_free_rx_list(struct zyd_softc *sc)
645 {
646 int i;
647
648 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
649 struct zyd_rx_data *data = &sc->rx_data[i];
650
651 if (data->xfer != NULL) {
652 usbd_destroy_xfer(data->xfer);
653 data->xfer = NULL;
654 }
655 }
656 }
657
658 /* ARGUSED */
659 Static struct ieee80211_node *
660 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
661 {
662 struct zyd_node *zn;
663
664 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
665
666 return &zn->ni;
667 }
668
669 Static int
670 zyd_media_change(struct ifnet *ifp)
671 {
672 int error;
673
674 error = ieee80211_media_change(ifp);
675 if (error != ENETRESET)
676 return error;
677
678 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
679 zyd_init(ifp);
680
681 return 0;
682 }
683
684 /*
685 * This function is called periodically (every 200ms) during scanning to
686 * switch from one channel to another.
687 */
688 Static void
689 zyd_next_scan(void *arg)
690 {
691 struct zyd_softc *sc = arg;
692 struct ieee80211com *ic = &sc->sc_ic;
693
694 if (ic->ic_state == IEEE80211_S_SCAN)
695 ieee80211_next_scan(ic);
696 }
697
698 Static void
699 zyd_task(void *arg)
700 {
701 struct zyd_softc *sc = arg;
702 struct ieee80211com *ic = &sc->sc_ic;
703 enum ieee80211_state ostate;
704
705 ostate = ic->ic_state;
706
707 switch (sc->sc_state) {
708 case IEEE80211_S_INIT:
709 if (ostate == IEEE80211_S_RUN) {
710 /* turn link LED off */
711 zyd_set_led(sc, ZYD_LED1, 0);
712
713 /* stop data LED from blinking */
714 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
715 }
716 break;
717
718 case IEEE80211_S_SCAN:
719 zyd_set_chan(sc, ic->ic_curchan);
720 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
721 break;
722
723 case IEEE80211_S_AUTH:
724 case IEEE80211_S_ASSOC:
725 zyd_set_chan(sc, ic->ic_curchan);
726 break;
727
728 case IEEE80211_S_RUN:
729 {
730 struct ieee80211_node *ni = ic->ic_bss;
731
732 zyd_set_chan(sc, ic->ic_curchan);
733
734 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
735 /* turn link LED on */
736 zyd_set_led(sc, ZYD_LED1, 1);
737
738 /* make data LED blink upon Tx */
739 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
740
741 zyd_set_bssid(sc, ni->ni_bssid);
742 }
743
744 if (ic->ic_opmode == IEEE80211_M_STA) {
745 /* fake a join to init the tx rate */
746 zyd_newassoc(ni, 1);
747 }
748
749 /* start automatic rate control timer */
750 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
751 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
752
753 break;
754 }
755 }
756
757 sc->sc_newstate(ic, sc->sc_state, -1);
758 }
759
760 Static int
761 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
762 {
763 struct zyd_softc *sc = ic->ic_ifp->if_softc;
764
765 if (!sc->attached)
766 return ENXIO;
767
768 /*
769 * XXXSMP: This does not wait for the task, if it is in flight,
770 * to complete. If this code works at all, it must rely on the
771 * kernel lock to serialize with the USB task thread.
772 */
773 usb_rem_task(sc->sc_udev, &sc->sc_task);
774 callout_stop(&sc->sc_scan_ch);
775 callout_stop(&sc->sc_amrr_ch);
776
777 /* do it in a process context */
778 sc->sc_state = nstate;
779 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
780
781 return 0;
782 }
783
784 Static int
785 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
786 void *odata, int olen, u_int flags)
787 {
788 struct usbd_xfer *xfer;
789 struct zyd_cmd cmd;
790 struct rq rq;
791 uint16_t xferflags;
792 int error;
793 usbd_status uerror;
794
795 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
796 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
797 if (error)
798 return error;
799
800 cmd.code = htole16(code);
801 memcpy(cmd.data, idata, ilen);
802
803 xferflags = USBD_FORCE_SHORT_XFER;
804 if (!(flags & ZYD_CMD_FLAG_READ))
805 xferflags |= USBD_SYNCHRONOUS;
806 else {
807 rq.idata = idata;
808 rq.odata = odata;
809 rq.len = olen / sizeof(struct zyd_pair);
810 mutex_enter(&sc->sc_lock);
811 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
812 mutex_exit(&sc->sc_lock);
813 }
814
815 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
816 ZYD_INTR_TIMEOUT, NULL);
817 uerror = usbd_transfer(xfer);
818 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
819 printf("%s: could not send command (error=%s)\n",
820 device_xname(sc->sc_dev), usbd_errstr(uerror));
821 (void)usbd_destroy_xfer(xfer);
822 return EIO;
823 }
824 if (!(flags & ZYD_CMD_FLAG_READ)) {
825 (void)usbd_destroy_xfer(xfer);
826 return 0; /* write: don't wait for reply */
827 }
828 /* wait at most one second for command reply */
829 mutex_enter(&sc->sc_lock);
830 error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
831 if (error == EWOULDBLOCK)
832 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
833 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
834 mutex_exit(&sc->sc_lock);
835
836 (void)usbd_destroy_xfer(xfer);
837 return error;
838 }
839
840 Static int
841 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
842 {
843 struct zyd_pair tmp;
844 int error;
845
846 reg = htole16(reg);
847 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
848 ZYD_CMD_FLAG_READ);
849 if (error == 0)
850 *val = le16toh(tmp.val);
851 else
852 *val = 0;
853 return error;
854 }
855
856 Static int
857 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
858 {
859 struct zyd_pair tmp[2];
860 uint16_t regs[2];
861 int error;
862
863 regs[0] = htole16(ZYD_REG32_HI(reg));
864 regs[1] = htole16(ZYD_REG32_LO(reg));
865 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
866 ZYD_CMD_FLAG_READ);
867 if (error == 0)
868 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
869 else
870 *val = 0;
871 return error;
872 }
873
874 Static int
875 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
876 {
877 struct zyd_pair pair;
878
879 pair.reg = htole16(reg);
880 pair.val = htole16(val);
881
882 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
883 }
884
885 Static int
886 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
887 {
888 struct zyd_pair pair[2];
889
890 pair[0].reg = htole16(ZYD_REG32_HI(reg));
891 pair[0].val = htole16(val >> 16);
892 pair[1].reg = htole16(ZYD_REG32_LO(reg));
893 pair[1].val = htole16(val & 0xffff);
894
895 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
896 }
897
898 Static int
899 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
900 {
901 struct zyd_rf *rf = &sc->sc_rf;
902 struct zyd_rfwrite req;
903 uint16_t cr203;
904 int i;
905
906 (void)zyd_read16(sc, ZYD_CR203, &cr203);
907 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
908
909 req.code = htole16(2);
910 req.width = htole16(rf->width);
911 for (i = 0; i < rf->width; i++) {
912 req.bit[i] = htole16(cr203);
913 if (val & (1 << (rf->width - 1 - i)))
914 req.bit[i] |= htole16(ZYD_RF_DATA);
915 }
916 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
917 }
918
919 Static void
920 zyd_lock_phy(struct zyd_softc *sc)
921 {
922 uint32_t tmp;
923
924 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
925 tmp &= ~ZYD_UNLOCK_PHY_REGS;
926 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
927 }
928
929 Static void
930 zyd_unlock_phy(struct zyd_softc *sc)
931 {
932 uint32_t tmp;
933
934 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
935 tmp |= ZYD_UNLOCK_PHY_REGS;
936 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
937 }
938
939 /*
940 * RFMD RF methods.
941 */
942 Static int
943 zyd_rfmd_init(struct zyd_rf *rf)
944 {
945 struct zyd_softc *sc = rf->rf_sc;
946 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
947 static const uint32_t rfini[] = ZYD_RFMD_RF;
948 int error;
949 size_t i;
950
951 /* init RF-dependent PHY registers */
952 for (i = 0; i < __arraycount(phyini); i++) {
953 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
954 if (error != 0)
955 return error;
956 }
957
958 /* init RFMD radio */
959 for (i = 0; i < __arraycount(rfini); i++) {
960 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
961 return error;
962 }
963 return 0;
964 }
965
966 Static int
967 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
968 {
969 struct zyd_softc *sc = rf->rf_sc;
970
971 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
972 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
973
974 return 0;
975 }
976
977 Static int
978 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
979 {
980 struct zyd_softc *sc = rf->rf_sc;
981 static const struct {
982 uint32_t r1, r2;
983 } rfprog[] = ZYD_RFMD_CHANTABLE;
984
985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
986 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
987
988 return 0;
989 }
990
991 /*
992 * AL2230 RF methods.
993 */
994 Static int
995 zyd_al2230_init(struct zyd_rf *rf)
996 {
997 struct zyd_softc *sc = rf->rf_sc;
998 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
999 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1000 static const uint32_t rfini[] = ZYD_AL2230_RF;
1001 int error;
1002 size_t i;
1003
1004 /* init RF-dependent PHY registers */
1005 for (i = 0; i < __arraycount(phyini); i++) {
1006 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1007 if (error != 0)
1008 return error;
1009 }
1010
1011 if (sc->rf_rev == ZYD_RF_AL2230S) {
1012 for (i = 0; i < __arraycount(phy2230s); i++) {
1013 error = zyd_write16(sc, phy2230s[i].reg,
1014 phy2230s[i].val);
1015 if (error != 0)
1016 return error;
1017 }
1018 }
1019
1020 /* init AL2230 radio */
1021 for (i = 0; i < __arraycount(rfini); i++) {
1022 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1023 return error;
1024 }
1025 return 0;
1026 }
1027
1028 Static int
1029 zyd_al2230_init_b(struct zyd_rf *rf)
1030 {
1031 struct zyd_softc *sc = rf->rf_sc;
1032 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1033 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1034 int error;
1035 size_t i;
1036
1037 /* init RF-dependent PHY registers */
1038 for (i = 0; i < __arraycount(phyini); i++) {
1039 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1040 if (error != 0)
1041 return error;
1042 }
1043
1044 /* init AL2230 radio */
1045 for (i = 0; i < __arraycount(rfini); i++) {
1046 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1047 return error;
1048 }
1049 return 0;
1050 }
1051
1052 Static int
1053 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1054 {
1055 struct zyd_softc *sc = rf->rf_sc;
1056 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1057
1058 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1059 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1060
1061 return 0;
1062 }
1063
1064 Static int
1065 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1066 {
1067 struct zyd_softc *sc = rf->rf_sc;
1068 static const struct {
1069 uint32_t r1, r2, r3;
1070 } rfprog[] = ZYD_AL2230_CHANTABLE;
1071
1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1073 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1074 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1075
1076 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1077 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1078
1079 return 0;
1080 }
1081
1082 /*
1083 * AL7230B RF methods.
1084 */
1085 Static int
1086 zyd_al7230B_init(struct zyd_rf *rf)
1087 {
1088 struct zyd_softc *sc = rf->rf_sc;
1089 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1090 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1091 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1092 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1093 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1094 int error;
1095 size_t i;
1096
1097 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1098
1099 /* init RF-dependent PHY registers, part one */
1100 for (i = 0; i < __arraycount(phyini_1); i++) {
1101 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1102 if (error != 0)
1103 return error;
1104 }
1105 /* init AL7230B radio, part one */
1106 for (i = 0; i < __arraycount(rfini_1); i++) {
1107 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1108 return error;
1109 }
1110 /* init RF-dependent PHY registers, part two */
1111 for (i = 0; i < __arraycount(phyini_2); i++) {
1112 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1113 if (error != 0)
1114 return error;
1115 }
1116 /* init AL7230B radio, part two */
1117 for (i = 0; i < __arraycount(rfini_2); i++) {
1118 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1119 return error;
1120 }
1121 /* init RF-dependent PHY registers, part three */
1122 for (i = 0; i < __arraycount(phyini_3); i++) {
1123 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1124 if (error != 0)
1125 return error;
1126 }
1127
1128 return 0;
1129 }
1130
1131 Static int
1132 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1133 {
1134 struct zyd_softc *sc = rf->rf_sc;
1135
1136 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1137 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1138
1139 return 0;
1140 }
1141
1142 Static int
1143 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1144 {
1145 struct zyd_softc *sc = rf->rf_sc;
1146 static const struct {
1147 uint32_t r1, r2;
1148 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1149 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1150 int error;
1151 size_t i;
1152
1153 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1154 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1155
1156 for (i = 0; i < __arraycount(rfsc); i++) {
1157 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1158 return error;
1159 }
1160
1161 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1162 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1163 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1164 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1165 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1166
1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1168 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1169 (void)zyd_rfwrite(sc, 0x3c9000);
1170
1171 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1172 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1173 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * AL2210 RF methods.
1180 */
1181 Static int
1182 zyd_al2210_init(struct zyd_rf *rf)
1183 {
1184 struct zyd_softc *sc = rf->rf_sc;
1185 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1186 static const uint32_t rfini[] = ZYD_AL2210_RF;
1187 uint32_t tmp;
1188 int error;
1189 size_t i;
1190
1191 (void)zyd_write32(sc, ZYD_CR18, 2);
1192
1193 /* init RF-dependent PHY registers */
1194 for (i = 0; i < __arraycount(phyini); i++) {
1195 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1196 if (error != 0)
1197 return error;
1198 }
1199 /* init AL2210 radio */
1200 for (i = 0; i < __arraycount(rfini); i++) {
1201 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1202 return error;
1203 }
1204 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1205 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1207 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1209 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1210 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1211 (void)zyd_write32(sc, ZYD_CR18, 3);
1212
1213 return 0;
1214 }
1215
1216 Static int
1217 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1218 {
1219 /* vendor driver does nothing for this RF chip */
1220
1221 return 0;
1222 }
1223
1224 Static int
1225 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1226 {
1227 struct zyd_softc *sc = rf->rf_sc;
1228 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1229 uint32_t tmp;
1230
1231 (void)zyd_write32(sc, ZYD_CR18, 2);
1232 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1233 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1234 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1235 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1236 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1237
1238 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1239 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1240
1241 /* actually set the channel */
1242 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1243
1244 (void)zyd_write32(sc, ZYD_CR18, 3);
1245
1246 return 0;
1247 }
1248
1249 /*
1250 * GCT RF methods.
1251 */
1252 Static int
1253 zyd_gct_init(struct zyd_rf *rf)
1254 {
1255 struct zyd_softc *sc = rf->rf_sc;
1256 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1257 static const uint32_t rfini[] = ZYD_GCT_RF;
1258 int error;
1259 size_t i;
1260
1261 /* init RF-dependent PHY registers */
1262 for (i = 0; i < __arraycount(phyini); i++) {
1263 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1264 if (error != 0)
1265 return error;
1266 }
1267 /* init cgt radio */
1268 for (i = 0; i < __arraycount(rfini); i++) {
1269 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1270 return error;
1271 }
1272 return 0;
1273 }
1274
1275 Static int
1276 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1277 {
1278 /* vendor driver does nothing for this RF chip */
1279
1280 return 0;
1281 }
1282
1283 Static int
1284 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1285 {
1286 struct zyd_softc *sc = rf->rf_sc;
1287 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1288
1289 (void)zyd_rfwrite(sc, 0x1c0000);
1290 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1291 (void)zyd_rfwrite(sc, 0x1c0008);
1292
1293 return 0;
1294 }
1295
1296 /*
1297 * Maxim RF methods.
1298 */
1299 Static int
1300 zyd_maxim_init(struct zyd_rf *rf)
1301 {
1302 struct zyd_softc *sc = rf->rf_sc;
1303 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1304 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1305 uint16_t tmp;
1306 int error;
1307 size_t i;
1308
1309 /* init RF-dependent PHY registers */
1310 for (i = 0; i < __arraycount(phyini); i++) {
1311 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1312 if (error != 0)
1313 return error;
1314 }
1315 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1316 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1317
1318 /* init maxim radio */
1319 for (i = 0; i < __arraycount(rfini); i++) {
1320 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1321 return error;
1322 }
1323 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1324 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1325
1326 return 0;
1327 }
1328
1329 Static int
1330 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1331 {
1332 /* vendor driver does nothing for this RF chip */
1333
1334 return 0;
1335 }
1336
1337 Static int
1338 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1339 {
1340 struct zyd_softc *sc = rf->rf_sc;
1341 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1342 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1343 static const struct {
1344 uint32_t r1, r2;
1345 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1346 uint16_t tmp;
1347 int error;
1348 size_t i;
1349
1350 /*
1351 * Do the same as we do when initializing it, except for the channel
1352 * values coming from the two channel tables.
1353 */
1354
1355 /* init RF-dependent PHY registers */
1356 for (i = 0; i < __arraycount(phyini); i++) {
1357 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1358 if (error != 0)
1359 return error;
1360 }
1361 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1362 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1363
1364 /* first two values taken from the chantables */
1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1366 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1367
1368 /* init maxim radio - skipping the two first values */
1369 for (i = 2; i < __arraycount(rfini); i++) {
1370 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1371 return error;
1372 }
1373 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1374 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1375
1376 return 0;
1377 }
1378
1379 /*
1380 * Maxim2 RF methods.
1381 */
1382 Static int
1383 zyd_maxim2_init(struct zyd_rf *rf)
1384 {
1385 struct zyd_softc *sc = rf->rf_sc;
1386 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1387 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1388 uint16_t tmp;
1389 int error;
1390 size_t i;
1391
1392 /* init RF-dependent PHY registers */
1393 for (i = 0; i < __arraycount(phyini); i++) {
1394 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1395 if (error != 0)
1396 return error;
1397 }
1398 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1400
1401 /* init maxim2 radio */
1402 for (i = 0; i < __arraycount(rfini); i++) {
1403 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1404 return error;
1405 }
1406 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1407 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1408
1409 return 0;
1410 }
1411
1412 Static int
1413 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1414 {
1415 /* vendor driver does nothing for this RF chip */
1416
1417 return 0;
1418 }
1419
1420 Static int
1421 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1422 {
1423 struct zyd_softc *sc = rf->rf_sc;
1424 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1425 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1426 static const struct {
1427 uint32_t r1, r2;
1428 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1429 uint16_t tmp;
1430 int error;
1431 size_t i;
1432
1433 /*
1434 * Do the same as we do when initializing it, except for the channel
1435 * values coming from the two channel tables.
1436 */
1437
1438 /* init RF-dependent PHY registers */
1439 for (i = 0; i < __arraycount(phyini); i++) {
1440 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1441 if (error != 0)
1442 return error;
1443 }
1444 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1445 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1446
1447 /* first two values taken from the chantables */
1448 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1449 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1450
1451 /* init maxim2 radio - skipping the two first values */
1452 for (i = 2; i < __arraycount(rfini); i++) {
1453 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1454 return error;
1455 }
1456 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1457 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1458
1459 return 0;
1460 }
1461
1462 Static int
1463 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1464 {
1465 struct zyd_rf *rf = &sc->sc_rf;
1466
1467 rf->rf_sc = sc;
1468
1469 switch (type) {
1470 case ZYD_RF_RFMD:
1471 rf->init = zyd_rfmd_init;
1472 rf->switch_radio = zyd_rfmd_switch_radio;
1473 rf->set_channel = zyd_rfmd_set_channel;
1474 rf->width = 24; /* 24-bit RF values */
1475 break;
1476 case ZYD_RF_AL2230:
1477 case ZYD_RF_AL2230S:
1478 if (sc->mac_rev == ZYD_ZD1211B)
1479 rf->init = zyd_al2230_init_b;
1480 else
1481 rf->init = zyd_al2230_init;
1482 rf->switch_radio = zyd_al2230_switch_radio;
1483 rf->set_channel = zyd_al2230_set_channel;
1484 rf->width = 24; /* 24-bit RF values */
1485 break;
1486 case ZYD_RF_AL7230B:
1487 rf->init = zyd_al7230B_init;
1488 rf->switch_radio = zyd_al7230B_switch_radio;
1489 rf->set_channel = zyd_al7230B_set_channel;
1490 rf->width = 24; /* 24-bit RF values */
1491 break;
1492 case ZYD_RF_AL2210:
1493 rf->init = zyd_al2210_init;
1494 rf->switch_radio = zyd_al2210_switch_radio;
1495 rf->set_channel = zyd_al2210_set_channel;
1496 rf->width = 24; /* 24-bit RF values */
1497 break;
1498 case ZYD_RF_GCT:
1499 rf->init = zyd_gct_init;
1500 rf->switch_radio = zyd_gct_switch_radio;
1501 rf->set_channel = zyd_gct_set_channel;
1502 rf->width = 21; /* 21-bit RF values */
1503 break;
1504 case ZYD_RF_MAXIM_NEW:
1505 rf->init = zyd_maxim_init;
1506 rf->switch_radio = zyd_maxim_switch_radio;
1507 rf->set_channel = zyd_maxim_set_channel;
1508 rf->width = 18; /* 18-bit RF values */
1509 break;
1510 case ZYD_RF_MAXIM_NEW2:
1511 rf->init = zyd_maxim2_init;
1512 rf->switch_radio = zyd_maxim2_switch_radio;
1513 rf->set_channel = zyd_maxim2_set_channel;
1514 rf->width = 18; /* 18-bit RF values */
1515 break;
1516 default:
1517 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1518 device_xname(sc->sc_dev), zyd_rf_name(type));
1519 return EINVAL;
1520 }
1521 return 0;
1522 }
1523
1524 Static const char *
1525 zyd_rf_name(uint8_t type)
1526 {
1527 static const char * const zyd_rfs[] = {
1528 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1529 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1530 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1531 "PHILIPS"
1532 };
1533
1534 return zyd_rfs[(type > 15) ? 0 : type];
1535 }
1536
1537 Static int
1538 zyd_hw_init(struct zyd_softc *sc)
1539 {
1540 struct zyd_rf *rf = &sc->sc_rf;
1541 const struct zyd_phy_pair *phyp;
1542 int error;
1543
1544 /* specify that the plug and play is finished */
1545 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1546
1547 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1548 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1549
1550 /* retrieve firmware revision number */
1551 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1552
1553 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1554 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1555
1556 /* disable interrupts */
1557 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1558
1559 /* PHY init */
1560 zyd_lock_phy(sc);
1561 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1562 for (; phyp->reg != 0; phyp++) {
1563 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1564 goto fail;
1565 }
1566 zyd_unlock_phy(sc);
1567
1568 /* HMAC init */
1569 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1570 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1571
1572 if (sc->mac_rev == ZYD_ZD1211) {
1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1574 } else {
1575 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1580 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1581 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1582 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1583 }
1584
1585 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1587 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1588 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1589 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1590 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1591 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1592 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1593 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1594 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1595 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1596 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1597 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1598 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1599 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1600 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1601 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1602
1603 /* RF chip init */
1604 zyd_lock_phy(sc);
1605 error = (*rf->init)(rf);
1606 zyd_unlock_phy(sc);
1607 if (error != 0) {
1608 printf("%s: radio initialization failed\n",
1609 device_xname(sc->sc_dev));
1610 goto fail;
1611 }
1612
1613 /* init beacon interval to 100ms */
1614 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1615 goto fail;
1616
1617 fail: return error;
1618 }
1619
1620 Static int
1621 zyd_read_eeprom(struct zyd_softc *sc)
1622 {
1623 struct ieee80211com *ic = &sc->sc_ic;
1624 uint32_t tmp;
1625 uint16_t val;
1626 int i;
1627
1628 /* read MAC address */
1629 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1630 ic->ic_myaddr[0] = tmp & 0xff;
1631 ic->ic_myaddr[1] = tmp >> 8;
1632 ic->ic_myaddr[2] = tmp >> 16;
1633 ic->ic_myaddr[3] = tmp >> 24;
1634 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1635 ic->ic_myaddr[4] = tmp & 0xff;
1636 ic->ic_myaddr[5] = tmp >> 8;
1637
1638 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1639 sc->rf_rev = tmp & 0x0f;
1640 sc->pa_rev = (tmp >> 16) & 0x0f;
1641
1642 /* read regulatory domain (currently unused) */
1643 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1644 sc->regdomain = tmp >> 16;
1645 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1646
1647 /* read Tx power calibration tables */
1648 for (i = 0; i < 7; i++) {
1649 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1650 sc->pwr_cal[i * 2] = val >> 8;
1651 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1652
1653 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1654 sc->pwr_int[i * 2] = val >> 8;
1655 sc->pwr_int[i * 2 + 1] = val & 0xff;
1656
1657 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1658 sc->ofdm36_cal[i * 2] = val >> 8;
1659 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1660
1661 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1662 sc->ofdm48_cal[i * 2] = val >> 8;
1663 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1664
1665 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1666 sc->ofdm54_cal[i * 2] = val >> 8;
1667 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1668 }
1669 return 0;
1670 }
1671
1672 Static int
1673 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1674 {
1675 uint32_t tmp;
1676
1677 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1678 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1679
1680 tmp = addr[5] << 8 | addr[4];
1681 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1682
1683 return 0;
1684 }
1685
1686 Static int
1687 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1688 {
1689 uint32_t tmp;
1690
1691 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1692 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1693
1694 tmp = addr[5] << 8 | addr[4];
1695 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1696
1697 return 0;
1698 }
1699
1700 Static int
1701 zyd_switch_radio(struct zyd_softc *sc, int on)
1702 {
1703 struct zyd_rf *rf = &sc->sc_rf;
1704 int error;
1705
1706 zyd_lock_phy(sc);
1707 error = (*rf->switch_radio)(rf, on);
1708 zyd_unlock_phy(sc);
1709
1710 return error;
1711 }
1712
1713 Static void
1714 zyd_set_led(struct zyd_softc *sc, int which, int on)
1715 {
1716 uint32_t tmp;
1717
1718 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1719 tmp &= ~which;
1720 if (on)
1721 tmp |= which;
1722 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1723 }
1724
1725 Static int
1726 zyd_set_rxfilter(struct zyd_softc *sc)
1727 {
1728 uint32_t rxfilter;
1729
1730 switch (sc->sc_ic.ic_opmode) {
1731 case IEEE80211_M_STA:
1732 rxfilter = ZYD_FILTER_BSS;
1733 break;
1734 case IEEE80211_M_IBSS:
1735 case IEEE80211_M_HOSTAP:
1736 rxfilter = ZYD_FILTER_HOSTAP;
1737 break;
1738 case IEEE80211_M_MONITOR:
1739 rxfilter = ZYD_FILTER_MONITOR;
1740 break;
1741 default:
1742 /* should not get there */
1743 return EINVAL;
1744 }
1745 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1746 }
1747
1748 Static void
1749 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1750 {
1751 struct ieee80211com *ic = &sc->sc_ic;
1752 struct zyd_rf *rf = &sc->sc_rf;
1753 u_int chan;
1754
1755 chan = ieee80211_chan2ieee(ic, c);
1756 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1757 return;
1758
1759 zyd_lock_phy(sc);
1760
1761 (*rf->set_channel)(rf, chan);
1762
1763 /* update Tx power */
1764 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1765 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1766
1767 if (sc->mac_rev == ZYD_ZD1211B) {
1768 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1769 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1770 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1771
1772 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1773 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1774 }
1775
1776 zyd_unlock_phy(sc);
1777 }
1778
1779 Static int
1780 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1781 {
1782 /* XXX this is probably broken.. */
1783 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1784 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1785 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1786
1787 return 0;
1788 }
1789
1790 Static uint8_t
1791 zyd_plcp_signal(int rate)
1792 {
1793 switch (rate) {
1794 /* CCK rates (returned values are device-dependent) */
1795 case 2: return 0x0;
1796 case 4: return 0x1;
1797 case 11: return 0x2;
1798 case 22: return 0x3;
1799
1800 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1801 case 12: return 0xb;
1802 case 18: return 0xf;
1803 case 24: return 0xa;
1804 case 36: return 0xe;
1805 case 48: return 0x9;
1806 case 72: return 0xd;
1807 case 96: return 0x8;
1808 case 108: return 0xc;
1809
1810 /* unsupported rates (should not get there) */
1811 default: return 0xff;
1812 }
1813 }
1814
1815 Static void
1816 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1817 {
1818 struct zyd_softc *sc = (struct zyd_softc *)priv;
1819 struct zyd_cmd *cmd;
1820 uint32_t datalen;
1821
1822 if (status != USBD_NORMAL_COMPLETION) {
1823 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1824 return;
1825
1826 if (status == USBD_STALLED) {
1827 usbd_clear_endpoint_stall_async(
1828 sc->zyd_ep[ZYD_ENDPT_IIN]);
1829 }
1830 return;
1831 }
1832
1833 cmd = (struct zyd_cmd *)sc->ibuf;
1834
1835 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1836 struct zyd_notif_retry *retry =
1837 (struct zyd_notif_retry *)cmd->data;
1838 struct ieee80211com *ic = &sc->sc_ic;
1839 struct ifnet *ifp = &sc->sc_if;
1840 struct ieee80211_node *ni;
1841
1842 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1843 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1844 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1845
1846 /*
1847 * Find the node to which the packet was sent and update its
1848 * retry statistics. In BSS mode, this node is the AP we're
1849 * associated to so no lookup is actually needed.
1850 */
1851 if (ic->ic_opmode != IEEE80211_M_STA) {
1852 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1853 if (ni == NULL)
1854 return; /* just ignore */
1855 } else
1856 ni = ic->ic_bss;
1857
1858 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1859
1860 if (le16toh(retry->count) & 0x100)
1861 ifp->if_oerrors++; /* too many retries */
1862
1863 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1864 struct rq *rqp;
1865
1866 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1867 return; /* HMAC interrupt */
1868
1869 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1870 datalen -= sizeof(cmd->code);
1871 datalen -= 2; /* XXX: padding? */
1872
1873 mutex_enter(&sc->sc_lock);
1874 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1875 int i;
1876
1877 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1878 continue;
1879 for (i = 0; i < rqp->len; i++) {
1880 if (*(((const uint16_t *)rqp->idata) + i) !=
1881 (((struct zyd_pair *)cmd->data) + i)->reg)
1882 break;
1883 }
1884 if (i != rqp->len)
1885 continue;
1886
1887 /* copy answer into caller-supplied buffer */
1888 memcpy(rqp->odata, cmd->data,
1889 sizeof(struct zyd_pair) * rqp->len);
1890 cv_signal(&sc->sc_cmdcv);
1891 mutex_exit(&sc->sc_lock);
1892 return;
1893 }
1894 mutex_exit(&sc->sc_lock);
1895 return; /* unexpected IORD notification */
1896 } else {
1897 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1898 le16toh(cmd->code));
1899 }
1900 }
1901
1902 Static void
1903 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1904 {
1905 struct ieee80211com *ic = &sc->sc_ic;
1906 struct ifnet *ifp = &sc->sc_if;
1907 struct ieee80211_node *ni;
1908 struct ieee80211_frame *wh;
1909 const struct zyd_plcphdr *plcp;
1910 const struct zyd_rx_stat *stat;
1911 struct mbuf *m;
1912 int rlen, s;
1913
1914 if (len < ZYD_MIN_FRAGSZ) {
1915 printf("%s: frame too short (length=%d)\n",
1916 device_xname(sc->sc_dev), len);
1917 ifp->if_ierrors++;
1918 return;
1919 }
1920
1921 plcp = (const struct zyd_plcphdr *)buf;
1922 stat = (const struct zyd_rx_stat *)
1923 (buf + len - sizeof(struct zyd_rx_stat));
1924
1925 if (stat->flags & ZYD_RX_ERROR) {
1926 DPRINTF(("%s: RX status indicated error (%x)\n",
1927 device_xname(sc->sc_dev), stat->flags));
1928 ifp->if_ierrors++;
1929 return;
1930 }
1931
1932 /* compute actual frame length */
1933 rlen = len - sizeof(struct zyd_plcphdr) -
1934 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1935
1936 /* allocate a mbuf to store the frame */
1937 MGETHDR(m, M_DONTWAIT, MT_DATA);
1938 if (m == NULL) {
1939 printf("%s: could not allocate rx mbuf\n",
1940 device_xname(sc->sc_dev));
1941 ifp->if_ierrors++;
1942 return;
1943 }
1944 if (rlen > MHLEN) {
1945 MCLGET(m, M_DONTWAIT);
1946 if (!(m->m_flags & M_EXT)) {
1947 printf("%s: could not allocate rx mbuf cluster\n",
1948 device_xname(sc->sc_dev));
1949 m_freem(m);
1950 ifp->if_ierrors++;
1951 return;
1952 }
1953 }
1954 m_set_rcvif(m, ifp);
1955 m->m_pkthdr.len = m->m_len = rlen;
1956 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1957
1958 s = splnet();
1959
1960 if (sc->sc_drvbpf != NULL) {
1961 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1962 static const uint8_t rates[] = {
1963 /* reverse function of zyd_plcp_signal() */
1964 2, 4, 11, 22, 0, 0, 0, 0,
1965 96, 48, 24, 12, 108, 72, 36, 18
1966 };
1967
1968 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1969 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1970 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1971 tap->wr_rssi = stat->rssi;
1972 tap->wr_rate = rates[plcp->signal & 0xf];
1973
1974 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1975 }
1976
1977 wh = mtod(m, struct ieee80211_frame *);
1978 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1979 ieee80211_input(ic, m, ni, stat->rssi, 0);
1980
1981 /* node is no longer needed */
1982 ieee80211_free_node(ni);
1983
1984 splx(s);
1985 }
1986
1987 Static void
1988 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1989 {
1990 struct zyd_rx_data *data = priv;
1991 struct zyd_softc *sc = data->sc;
1992 struct ifnet *ifp = &sc->sc_if;
1993 const struct zyd_rx_desc *desc;
1994 int len;
1995
1996 if (status != USBD_NORMAL_COMPLETION) {
1997 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1998 return;
1999
2000 if (status == USBD_STALLED)
2001 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2002
2003 goto skip;
2004 }
2005 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2006
2007 if (len < ZYD_MIN_RXBUFSZ) {
2008 printf("%s: xfer too short (length=%d)\n",
2009 device_xname(sc->sc_dev), len);
2010 ifp->if_ierrors++;
2011 goto skip;
2012 }
2013
2014 desc = (const struct zyd_rx_desc *)
2015 (data->buf + len - sizeof(struct zyd_rx_desc));
2016
2017 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2018 const uint8_t *p = data->buf, *end = p + len;
2019 int i;
2020
2021 DPRINTFN(3, ("received multi-frame transfer\n"));
2022
2023 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2024 const uint16_t len16 = UGETW(desc->len[i]);
2025
2026 if (len16 == 0 || p + len16 > end)
2027 break;
2028
2029 zyd_rx_data(sc, p, len16);
2030 /* next frame is aligned on a 32-bit boundary */
2031 p += (len16 + 3) & ~3;
2032 }
2033 } else {
2034 DPRINTFN(3, ("received single-frame transfer\n"));
2035
2036 zyd_rx_data(sc, data->buf, len);
2037 }
2038
2039 skip: /* setup a new transfer */
2040
2041 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2042 USBD_NO_TIMEOUT, zyd_rxeof);
2043 (void)usbd_transfer(xfer);
2044 }
2045
2046 Static int
2047 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2048 {
2049 struct ieee80211com *ic = &sc->sc_ic;
2050 struct ifnet *ifp = &sc->sc_if;
2051 struct zyd_tx_desc *desc;
2052 struct zyd_tx_data *data;
2053 struct ieee80211_frame *wh;
2054 struct ieee80211_key *k;
2055 int xferlen, totlen, rate;
2056 uint16_t pktlen;
2057 usbd_status error;
2058
2059 data = &sc->tx_data[0];
2060 desc = (struct zyd_tx_desc *)data->buf;
2061
2062 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2063
2064 wh = mtod(m0, struct ieee80211_frame *);
2065
2066 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2067 k = ieee80211_crypto_encap(ic, ni, m0);
2068 if (k == NULL) {
2069 m_freem(m0);
2070 return ENOBUFS;
2071 }
2072 }
2073
2074 data->ni = ni;
2075
2076 wh = mtod(m0, struct ieee80211_frame *);
2077
2078 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2079 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2080
2081 /* fill Tx descriptor */
2082 desc->len = htole16(totlen);
2083
2084 desc->flags = ZYD_TX_FLAG_BACKOFF;
2085 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2086 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2087 if (totlen > ic->ic_rtsthreshold) {
2088 desc->flags |= ZYD_TX_FLAG_RTS;
2089 } else if (ZYD_RATE_IS_OFDM(rate) &&
2090 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2091 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2092 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2093 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2094 desc->flags |= ZYD_TX_FLAG_RTS;
2095 }
2096 } else
2097 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2098
2099 if ((wh->i_fc[0] &
2100 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2101 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2102 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2103
2104 desc->phy = zyd_plcp_signal(rate);
2105 if (ZYD_RATE_IS_OFDM(rate)) {
2106 desc->phy |= ZYD_TX_PHY_OFDM;
2107 if (ic->ic_curmode == IEEE80211_MODE_11A)
2108 desc->phy |= ZYD_TX_PHY_5GHZ;
2109 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2110 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2111
2112 /* actual transmit length (XXX why +10?) */
2113 pktlen = sizeof(struct zyd_tx_desc) + 10;
2114 if (sc->mac_rev == ZYD_ZD1211)
2115 pktlen += totlen;
2116 desc->pktlen = htole16(pktlen);
2117
2118 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2119 desc->plcp_service = 0;
2120 if (rate == 22) {
2121 const int remainder = (16 * totlen) % 22;
2122 if (remainder != 0 && remainder < 7)
2123 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2124 }
2125
2126 if (sc->sc_drvbpf != NULL) {
2127 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2128
2129 tap->wt_flags = 0;
2130 tap->wt_rate = rate;
2131 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2132 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2133
2134 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2135 }
2136
2137 m_copydata(m0, 0, m0->m_pkthdr.len,
2138 data->buf + sizeof(struct zyd_tx_desc));
2139
2140 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2141 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2142
2143 m_freem(m0); /* mbuf no longer needed */
2144
2145 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2146 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2147 error = usbd_transfer(data->xfer);
2148 if (error != USBD_IN_PROGRESS && error != 0) {
2149 ifp->if_oerrors++;
2150 return EIO;
2151 }
2152 sc->tx_queued++;
2153
2154 return 0;
2155 }
2156
2157 Static void
2158 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2159 {
2160 struct zyd_tx_data *data = priv;
2161 struct zyd_softc *sc = data->sc;
2162 struct ifnet *ifp = &sc->sc_if;
2163 int s;
2164
2165 if (status != USBD_NORMAL_COMPLETION) {
2166 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2167 return;
2168
2169 printf("%s: could not transmit buffer: %s\n",
2170 device_xname(sc->sc_dev), usbd_errstr(status));
2171
2172 if (status == USBD_STALLED) {
2173 usbd_clear_endpoint_stall_async(
2174 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2175 }
2176 ifp->if_oerrors++;
2177 return;
2178 }
2179
2180 s = splnet();
2181
2182 /* update rate control statistics */
2183 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2184
2185 ieee80211_free_node(data->ni);
2186 data->ni = NULL;
2187
2188 sc->tx_queued--;
2189 ifp->if_opackets++;
2190
2191 sc->tx_timer = 0;
2192 ifp->if_flags &= ~IFF_OACTIVE;
2193 zyd_start(ifp);
2194
2195 splx(s);
2196 }
2197
2198 Static int
2199 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2200 {
2201 struct ieee80211com *ic = &sc->sc_ic;
2202 struct ifnet *ifp = &sc->sc_if;
2203 struct zyd_tx_desc *desc;
2204 struct zyd_tx_data *data;
2205 struct ieee80211_frame *wh;
2206 struct ieee80211_key *k;
2207 int xferlen, totlen, rate;
2208 uint16_t pktlen;
2209 usbd_status error;
2210
2211 wh = mtod(m0, struct ieee80211_frame *);
2212
2213 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2214 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2215 else
2216 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2217 rate &= IEEE80211_RATE_VAL;
2218
2219 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2220 k = ieee80211_crypto_encap(ic, ni, m0);
2221 if (k == NULL) {
2222 m_freem(m0);
2223 return ENOBUFS;
2224 }
2225
2226 /* packet header may have moved, reset our local pointer */
2227 wh = mtod(m0, struct ieee80211_frame *);
2228 }
2229
2230 data = &sc->tx_data[0];
2231 desc = (struct zyd_tx_desc *)data->buf;
2232
2233 data->ni = ni;
2234
2235 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2236 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2237
2238 /* fill Tx descriptor */
2239 desc->len = htole16(totlen);
2240
2241 desc->flags = ZYD_TX_FLAG_BACKOFF;
2242 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2243 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2244 if (totlen > ic->ic_rtsthreshold) {
2245 desc->flags |= ZYD_TX_FLAG_RTS;
2246 } else if (ZYD_RATE_IS_OFDM(rate) &&
2247 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2248 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2249 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2250 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2251 desc->flags |= ZYD_TX_FLAG_RTS;
2252 }
2253 } else
2254 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2255
2256 if ((wh->i_fc[0] &
2257 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2258 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2259 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2260
2261 desc->phy = zyd_plcp_signal(rate);
2262 if (ZYD_RATE_IS_OFDM(rate)) {
2263 desc->phy |= ZYD_TX_PHY_OFDM;
2264 if (ic->ic_curmode == IEEE80211_MODE_11A)
2265 desc->phy |= ZYD_TX_PHY_5GHZ;
2266 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2267 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2268
2269 /* actual transmit length (XXX why +10?) */
2270 pktlen = sizeof(struct zyd_tx_desc) + 10;
2271 if (sc->mac_rev == ZYD_ZD1211)
2272 pktlen += totlen;
2273 desc->pktlen = htole16(pktlen);
2274
2275 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2276 desc->plcp_service = 0;
2277 if (rate == 22) {
2278 const int remainder = (16 * totlen) % 22;
2279 if (remainder != 0 && remainder < 7)
2280 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2281 }
2282
2283 if (sc->sc_drvbpf != NULL) {
2284 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2285
2286 tap->wt_flags = 0;
2287 tap->wt_rate = rate;
2288 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2289 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2290
2291 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2292 }
2293
2294 m_copydata(m0, 0, m0->m_pkthdr.len,
2295 data->buf + sizeof(struct zyd_tx_desc));
2296
2297 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2298 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2299
2300 m_freem(m0); /* mbuf no longer needed */
2301
2302 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2303 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2304 error = usbd_transfer(data->xfer);
2305 if (error != USBD_IN_PROGRESS && error != 0) {
2306 ifp->if_oerrors++;
2307 return EIO;
2308 }
2309 sc->tx_queued++;
2310
2311 return 0;
2312 }
2313
2314 Static void
2315 zyd_start(struct ifnet *ifp)
2316 {
2317 struct zyd_softc *sc = ifp->if_softc;
2318 struct ieee80211com *ic = &sc->sc_ic;
2319 struct ether_header *eh;
2320 struct ieee80211_node *ni;
2321 struct mbuf *m0;
2322
2323 for (;;) {
2324 IF_POLL(&ic->ic_mgtq, m0);
2325 if (m0 != NULL) {
2326 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2327 ifp->if_flags |= IFF_OACTIVE;
2328 break;
2329 }
2330 IF_DEQUEUE(&ic->ic_mgtq, m0);
2331
2332 ni = M_GETCTX(m0, struct ieee80211_node *);
2333 M_CLEARCTX(m0);
2334 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2335 if (zyd_tx_mgt(sc, m0, ni) != 0)
2336 break;
2337 } else {
2338 if (ic->ic_state != IEEE80211_S_RUN)
2339 break;
2340 IFQ_POLL(&ifp->if_snd, m0);
2341 if (m0 == NULL)
2342 break;
2343 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2344 ifp->if_flags |= IFF_OACTIVE;
2345 break;
2346 }
2347 IFQ_DEQUEUE(&ifp->if_snd, m0);
2348
2349 if (m0->m_len < sizeof(struct ether_header) &&
2350 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2351 continue;
2352
2353 eh = mtod(m0, struct ether_header *);
2354 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2355 if (ni == NULL) {
2356 m_freem(m0);
2357 continue;
2358 }
2359 bpf_mtap(ifp, m0, BPF_D_OUT);
2360 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2361 ieee80211_free_node(ni);
2362 ifp->if_oerrors++;
2363 continue;
2364 }
2365 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2366 if (zyd_tx_data(sc, m0, ni) != 0) {
2367 ieee80211_free_node(ni);
2368 ifp->if_oerrors++;
2369 break;
2370 }
2371 }
2372
2373 sc->tx_timer = 5;
2374 ifp->if_timer = 1;
2375 }
2376 }
2377
2378 Static void
2379 zyd_watchdog(struct ifnet *ifp)
2380 {
2381 struct zyd_softc *sc = ifp->if_softc;
2382 struct ieee80211com *ic = &sc->sc_ic;
2383
2384 ifp->if_timer = 0;
2385
2386 if (sc->tx_timer > 0) {
2387 if (--sc->tx_timer == 0) {
2388 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2389 /* zyd_init(ifp); XXX needs a process context ? */
2390 ifp->if_oerrors++;
2391 return;
2392 }
2393 ifp->if_timer = 1;
2394 }
2395
2396 ieee80211_watchdog(ic);
2397 }
2398
2399 Static int
2400 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2401 {
2402 struct zyd_softc *sc = ifp->if_softc;
2403 struct ieee80211com *ic = &sc->sc_ic;
2404 int s, error = 0;
2405
2406 s = splnet();
2407
2408 switch (cmd) {
2409 case SIOCSIFFLAGS:
2410 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2411 break;
2412 /* XXX re-use ether_ioctl() */
2413 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2414 case IFF_UP:
2415 zyd_init(ifp);
2416 break;
2417 case IFF_RUNNING:
2418 zyd_stop(ifp, 1);
2419 break;
2420 default:
2421 break;
2422 }
2423 break;
2424
2425 default:
2426 error = ieee80211_ioctl(ic, cmd, data);
2427 }
2428
2429 if (error == ENETRESET) {
2430 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2431 (IFF_RUNNING | IFF_UP))
2432 zyd_init(ifp);
2433 error = 0;
2434 }
2435
2436 splx(s);
2437
2438 return error;
2439 }
2440
2441 Static int
2442 zyd_init(struct ifnet *ifp)
2443 {
2444 struct zyd_softc *sc = ifp->if_softc;
2445 struct ieee80211com *ic = &sc->sc_ic;
2446 int i, error;
2447
2448 zyd_stop(ifp, 0);
2449
2450 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2451 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2452 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2453 if (error != 0)
2454 return error;
2455
2456 /* we'll do software WEP decryption for now */
2457 DPRINTF(("setting encryption type\n"));
2458 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2459 if (error != 0)
2460 return error;
2461
2462 /* promiscuous mode */
2463 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2464 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2465
2466 (void)zyd_set_rxfilter(sc);
2467
2468 /* switch radio transmitter ON */
2469 (void)zyd_switch_radio(sc, 1);
2470
2471 /* set basic rates */
2472 if (ic->ic_curmode == IEEE80211_MODE_11B)
2473 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2474 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2475 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2476 else /* assumes 802.11b/g */
2477 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2478
2479 /* set mandatory rates */
2480 if (ic->ic_curmode == IEEE80211_MODE_11B)
2481 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2482 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2483 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2484 else /* assumes 802.11b/g */
2485 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2486
2487 /* set default BSS channel */
2488 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2489 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2490
2491 /* enable interrupts */
2492 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2493
2494 /*
2495 * Allocate Tx and Rx xfer queues.
2496 */
2497 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2498 printf("%s: could not allocate Tx list\n",
2499 device_xname(sc->sc_dev));
2500 goto fail;
2501 }
2502 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2503 printf("%s: could not allocate Rx list\n",
2504 device_xname(sc->sc_dev));
2505 goto fail;
2506 }
2507
2508 /*
2509 * Start up the receive pipe.
2510 */
2511 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2512 struct zyd_rx_data *data = &sc->rx_data[i];
2513
2514 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2515 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2516 error = usbd_transfer(data->xfer);
2517 if (error != USBD_IN_PROGRESS && error != 0) {
2518 printf("%s: could not queue Rx transfer\n",
2519 device_xname(sc->sc_dev));
2520 goto fail;
2521 }
2522 }
2523
2524 ifp->if_flags &= ~IFF_OACTIVE;
2525 ifp->if_flags |= IFF_RUNNING;
2526
2527 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2528 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2529 else
2530 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2531
2532 return 0;
2533
2534 fail: zyd_stop(ifp, 1);
2535 return error;
2536 }
2537
2538 Static void
2539 zyd_stop(struct ifnet *ifp, int disable)
2540 {
2541 struct zyd_softc *sc = ifp->if_softc;
2542 struct ieee80211com *ic = &sc->sc_ic;
2543
2544 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2545
2546 sc->tx_timer = 0;
2547 ifp->if_timer = 0;
2548 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2549
2550 /* switch radio transmitter OFF */
2551 (void)zyd_switch_radio(sc, 0);
2552
2553 /* disable Rx */
2554 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2555
2556 /* disable interrupts */
2557 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2558
2559 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2560 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2561
2562 zyd_free_rx_list(sc);
2563 zyd_free_tx_list(sc);
2564 }
2565
2566 Static int
2567 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2568 {
2569 usb_device_request_t req;
2570 uint16_t addr;
2571 uint8_t stat;
2572
2573 DPRINTF(("firmware size=%zu\n", size));
2574
2575 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2576 req.bRequest = ZYD_DOWNLOADREQ;
2577 USETW(req.wIndex, 0);
2578
2579 addr = ZYD_FIRMWARE_START_ADDR;
2580 while (size > 0) {
2581 #if 0
2582 const int mlen = uimin(size, 4096);
2583 #else
2584 /*
2585 * XXXX: When the transfer size is 4096 bytes, it is not
2586 * likely to be able to transfer it.
2587 * The cause is port or machine or chip?
2588 */
2589 const int mlen = uimin(size, 64);
2590 #endif
2591
2592 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2593 addr));
2594
2595 USETW(req.wValue, addr);
2596 USETW(req.wLength, mlen);
2597 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2598 return EIO;
2599
2600 addr += mlen / 2;
2601 fw += mlen;
2602 size -= mlen;
2603 }
2604
2605 /* check whether the upload succeeded */
2606 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2607 req.bRequest = ZYD_DOWNLOADSTS;
2608 USETW(req.wValue, 0);
2609 USETW(req.wIndex, 0);
2610 USETW(req.wLength, sizeof(stat));
2611 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2612 return EIO;
2613
2614 return (stat & 0x80) ? EIO : 0;
2615 }
2616
2617 Static void
2618 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2619 {
2620 struct zyd_softc *sc = arg;
2621 struct zyd_node *zn = (struct zyd_node *)ni;
2622
2623 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2624 }
2625
2626 Static void
2627 zyd_amrr_timeout(void *arg)
2628 {
2629 struct zyd_softc *sc = arg;
2630 struct ieee80211com *ic = &sc->sc_ic;
2631 int s;
2632
2633 s = splnet();
2634 if (ic->ic_opmode == IEEE80211_M_STA)
2635 zyd_iter_func(sc, ic->ic_bss);
2636 else
2637 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2638 splx(s);
2639
2640 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2641 }
2642
2643 Static void
2644 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2645 {
2646 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2647 int i;
2648
2649 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2650
2651 /* set rate to some reasonable initial value */
2652 for (i = ni->ni_rates.rs_nrates - 1;
2653 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2654 i--);
2655 ni->ni_txrate = i;
2656 }
2657
2658 static int
2659 zyd_activate(device_t self, enum devact act)
2660 {
2661 struct zyd_softc *sc = device_private(self);
2662
2663 switch (act) {
2664 case DVACT_DEACTIVATE:
2665 if_deactivate(&sc->sc_if);
2666 return 0;
2667 default:
2668 return EOPNOTSUPP;
2669 }
2670 }
2671