if_zyd.c revision 1.55 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.55 2020/01/15 08:21:00 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.55 2020/01/15 08:21:00 skrll Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
145 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
146 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
147 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
148 ZYD_ZD1211B_DEV(USR, USR5423),
149 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
150 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
152 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
153 ZYD_ZD1211B_DEV(ZYXEL, M202),
154 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
155 };
156 #define zyd_lookup(v, p) \
157 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
158
159 static int zyd_match(device_t, cfdata_t, void *);
160 static void zyd_attach(device_t, device_t, void *);
161 static int zyd_detach(device_t, int);
162 static int zyd_activate(device_t, enum devact);
163
164
165 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
166 zyd_attach, zyd_detach, zyd_activate);
167
168 Static void zyd_attachhook(device_t);
169 Static int zyd_complete_attach(struct zyd_softc *);
170 Static int zyd_open_pipes(struct zyd_softc *);
171 Static void zyd_close_pipes(struct zyd_softc *);
172 Static int zyd_alloc_tx_list(struct zyd_softc *);
173 Static void zyd_free_tx_list(struct zyd_softc *);
174 Static int zyd_alloc_rx_list(struct zyd_softc *);
175 Static void zyd_free_rx_list(struct zyd_softc *);
176 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
177 Static int zyd_media_change(struct ifnet *);
178 Static void zyd_next_scan(void *);
179 Static void zyd_task(void *);
180 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
181 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
182 void *, int, u_int);
183 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
184 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
185 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
186 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
187 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
188 Static void zyd_lock_phy(struct zyd_softc *);
189 Static void zyd_unlock_phy(struct zyd_softc *);
190 Static int zyd_rfmd_init(struct zyd_rf *);
191 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
192 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_al2230_init(struct zyd_rf *);
194 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
195 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_al2230_init_b(struct zyd_rf *);
197 Static int zyd_al7230B_init(struct zyd_rf *);
198 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
199 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_al2210_init(struct zyd_rf *);
201 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
202 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_gct_init(struct zyd_rf *);
204 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
205 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_maxim_init(struct zyd_rf *);
207 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
208 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
209 Static int zyd_maxim2_init(struct zyd_rf *);
210 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
211 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
212 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
213 Static const char *zyd_rf_name(uint8_t);
214 Static int zyd_hw_init(struct zyd_softc *);
215 Static int zyd_read_eeprom(struct zyd_softc *);
216 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
217 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
218 Static int zyd_switch_radio(struct zyd_softc *, int);
219 Static void zyd_set_led(struct zyd_softc *, int, int);
220 Static int zyd_set_rxfilter(struct zyd_softc *);
221 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
222 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
223 Static uint8_t zyd_plcp_signal(int);
224 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
225 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
226 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
227 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
228 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
229 struct ieee80211_node *);
230 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
231 struct ieee80211_node *);
232 Static void zyd_start(struct ifnet *);
233 Static void zyd_watchdog(struct ifnet *);
234 Static int zyd_ioctl(struct ifnet *, u_long, void *);
235 Static int zyd_init(struct ifnet *);
236 Static void zyd_stop(struct ifnet *, int);
237 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
238 Static void zyd_iter_func(void *, struct ieee80211_node *);
239 Static void zyd_amrr_timeout(void *);
240 Static void zyd_newassoc(struct ieee80211_node *, int);
241
242 static int
243 zyd_match(device_t parent, cfdata_t match, void *aux)
244 {
245 struct usb_attach_arg *uaa = aux;
246
247 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
249 }
250
251 Static void
252 zyd_attachhook(device_t self)
253 {
254 struct zyd_softc *sc = device_private(self);
255 firmware_handle_t fwh;
256 const char *fwname;
257 u_char *fw;
258 size_t size;
259 int error;
260
261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "failed to open firmware %s (error=%d)\n", fwname, error);
265 return;
266 }
267 size = firmware_get_size(fwh);
268 fw = firmware_malloc(size);
269 if (fw == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to allocate firmware memory\n");
272 firmware_close(fwh);
273 return;
274 }
275 error = firmware_read(fwh, 0, fw, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "failed to read firmware (error %d)\n", error);
280 firmware_free(fw, size);
281 return;
282 }
283
284 error = zyd_loadfirmware(sc, fw, size);
285 if (error != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "could not load firmware (error=%d)\n", error);
288 firmware_free(fw, size);
289 return;
290 }
291
292 firmware_free(fw, size);
293
294 /* complete the attach process */
295 if ((error = zyd_complete_attach(sc)) == 0)
296 sc->attached = 1;
297 return;
298 }
299
300 static void
301 zyd_attach(device_t parent, device_t self, void *aux)
302 {
303 struct zyd_softc *sc = device_private(self);
304 struct usb_attach_arg *uaa = aux;
305 char *devinfop;
306 usb_device_descriptor_t* ddesc;
307 struct ifnet *ifp = &sc->sc_if;
308
309 sc->sc_dev = self;
310 sc->sc_udev = uaa->uaa_device;
311
312 aprint_naive("\n");
313 aprint_normal("\n");
314
315 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
316 aprint_normal_dev(self, "%s\n", devinfop);
317 usbd_devinfo_free(devinfop);
318
319 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
320
321 ddesc = usbd_get_device_descriptor(sc->sc_udev);
322 if (UGETW(ddesc->bcdDevice) < 0x4330) {
323 aprint_error_dev(self, "device version mismatch: 0x%x "
324 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
325 return;
326 }
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = zyd_init;
331 ifp->if_ioctl = zyd_ioctl;
332 ifp->if_start = zyd_start;
333 ifp->if_watchdog = zyd_watchdog;
334 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
337
338 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
339 cv_init(&sc->sc_cmdcv, "zydcmd");
340 SIMPLEQ_INIT(&sc->sc_rqh);
341
342 /* defer configrations after file system is ready to load firmware */
343 config_mountroot(self, zyd_attachhook);
344 }
345
346 Static int
347 zyd_complete_attach(struct zyd_softc *sc)
348 {
349 struct ieee80211com *ic = &sc->sc_ic;
350 struct ifnet *ifp = &sc->sc_if;
351 usbd_status error;
352 int i;
353
354 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
355 callout_init(&(sc->sc_scan_ch), 0);
356
357 sc->amrr.amrr_min_success_threshold = 1;
358 sc->amrr.amrr_max_success_threshold = 10;
359 callout_init(&sc->sc_amrr_ch, 0);
360
361 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
362 if (error != 0) {
363 aprint_error_dev(sc->sc_dev, "failed to set configuration"
364 ", err=%s\n", usbd_errstr(error));
365 goto fail;
366 }
367
368 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
369 &sc->sc_iface);
370 if (error != 0) {
371 aprint_error_dev(sc->sc_dev,
372 "getting interface handle failed\n");
373 goto fail;
374 }
375
376 if ((error = zyd_open_pipes(sc)) != 0) {
377 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
378 goto fail;
379 }
380
381 if ((error = zyd_read_eeprom(sc)) != 0) {
382 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
383 goto fail;
384 }
385
386 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
387 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
388 goto fail;
389 }
390
391 if ((error = zyd_hw_init(sc)) != 0) {
392 aprint_error_dev(sc->sc_dev,
393 "hardware initialization failed\n");
394 goto fail;
395 }
396
397 aprint_normal_dev(sc->sc_dev,
398 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
399 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
400 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
401 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
402
403 ic->ic_ifp = ifp;
404 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
405 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
406 ic->ic_state = IEEE80211_S_INIT;
407
408 /* set device capabilities */
409 ic->ic_caps =
410 IEEE80211_C_MONITOR | /* monitor mode supported */
411 IEEE80211_C_TXPMGT | /* tx power management */
412 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
413 IEEE80211_C_WEP; /* s/w WEP */
414
415 /* set supported .11b and .11g rates */
416 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
417 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
418
419 /* set supported .11b and .11g channels (1 through 14) */
420 for (i = 1; i <= 14; i++) {
421 ic->ic_channels[i].ic_freq =
422 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
423 ic->ic_channels[i].ic_flags =
424 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
425 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 }
427
428 if_attach(ifp);
429 ieee80211_ifattach(ic);
430 ic->ic_node_alloc = zyd_node_alloc;
431 ic->ic_newassoc = zyd_newassoc;
432
433 /* override state transition machine */
434 sc->sc_newstate = ic->ic_newstate;
435 ic->ic_newstate = zyd_newstate;
436 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
437
438 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
439 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
440 &sc->sc_drvbpf);
441
442 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
443 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
444 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
445
446 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
447 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
448 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
449
450 ieee80211_announce(ic);
451
452 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
453
454 fail: return error;
455 }
456
457 static int
458 zyd_detach(device_t self, int flags)
459 {
460 struct zyd_softc *sc = device_private(self);
461 struct ieee80211com *ic = &sc->sc_ic;
462 struct ifnet *ifp = &sc->sc_if;
463
464 if (!sc->attached)
465 return 0;
466
467 mutex_enter(&sc->sc_lock);
468
469 zyd_stop(ifp, 1);
470 callout_halt(&sc->sc_scan_ch, NULL);
471 callout_halt(&sc->sc_amrr_ch, NULL);
472 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
473
474 /* Abort, etc. done by zyd_stop */
475 zyd_close_pipes(sc);
476
477 sc->attached = 0;
478
479 bpf_detach(ifp);
480 ieee80211_ifdetach(ic);
481 if_detach(ifp);
482
483 mutex_exit(&sc->sc_lock);
484
485 mutex_destroy(&sc->sc_lock);
486 cv_destroy(&sc->sc_cmdcv);
487
488 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
489
490 return 0;
491 }
492
493 Static int
494 zyd_open_pipes(struct zyd_softc *sc)
495 {
496 usb_endpoint_descriptor_t *edesc;
497 usbd_status error;
498
499 /* interrupt in */
500 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
501 if (edesc == NULL)
502 return EINVAL;
503
504 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
505 if (sc->ibuf_size == 0) /* should not happen */
506 return EINVAL;
507
508 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
509
510 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
511 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
512 USBD_DEFAULT_INTERVAL);
513 if (error != 0) {
514 printf("%s: open rx intr pipe failed: %s\n",
515 device_xname(sc->sc_dev), usbd_errstr(error));
516 goto fail;
517 }
518
519 /* interrupt out (not necessarily an interrupt pipe) */
520 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
521 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
522 if (error != 0) {
523 printf("%s: open tx intr pipe failed: %s\n",
524 device_xname(sc->sc_dev), usbd_errstr(error));
525 goto fail;
526 }
527
528 /* bulk in */
529 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
530 &sc->zyd_ep[ZYD_ENDPT_BIN]);
531 if (error != 0) {
532 printf("%s: open rx pipe failed: %s\n",
533 device_xname(sc->sc_dev), usbd_errstr(error));
534 goto fail;
535 }
536
537 /* bulk out */
538 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
539 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
540 if (error != 0) {
541 printf("%s: open tx pipe failed: %s\n",
542 device_xname(sc->sc_dev), usbd_errstr(error));
543 goto fail;
544 }
545
546 return 0;
547
548 fail: zyd_close_pipes(sc);
549 return error;
550 }
551
552 Static void
553 zyd_close_pipes(struct zyd_softc *sc)
554 {
555 int i;
556
557 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
558 if (sc->zyd_ep[i] != NULL) {
559 usbd_close_pipe(sc->zyd_ep[i]);
560 sc->zyd_ep[i] = NULL;
561 }
562 }
563 if (sc->ibuf != NULL) {
564 kmem_free(sc->ibuf, sc->ibuf_size);
565 sc->ibuf = NULL;
566 }
567 }
568
569 Static int
570 zyd_alloc_tx_list(struct zyd_softc *sc)
571 {
572 int i, error;
573
574 sc->tx_queued = 0;
575
576 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
577 struct zyd_tx_data *data = &sc->tx_data[i];
578
579 data->sc = sc; /* backpointer for callbacks */
580
581 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
582 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
583 if (error) {
584 printf("%s: could not allocate tx xfer\n",
585 device_xname(sc->sc_dev));
586 goto fail;
587 }
588 data->buf = usbd_get_buffer(data->xfer);
589
590 /* clear Tx descriptor */
591 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
592 }
593 return 0;
594
595 fail: zyd_free_tx_list(sc);
596 return error;
597 }
598
599 Static void
600 zyd_free_tx_list(struct zyd_softc *sc)
601 {
602 int i;
603
604 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
605 struct zyd_tx_data *data = &sc->tx_data[i];
606
607 if (data->xfer != NULL) {
608 usbd_destroy_xfer(data->xfer);
609 data->xfer = NULL;
610 }
611 if (data->ni != NULL) {
612 ieee80211_free_node(data->ni);
613 data->ni = NULL;
614 }
615 }
616 }
617
618 Static int
619 zyd_alloc_rx_list(struct zyd_softc *sc)
620 {
621 int i, error;
622
623 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
624 struct zyd_rx_data *data = &sc->rx_data[i];
625
626 data->sc = sc; /* backpointer for callbacks */
627
628 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
629 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
630 if (error) {
631 printf("%s: could not allocate rx xfer\n",
632 device_xname(sc->sc_dev));
633 goto fail;
634 }
635 data->buf = usbd_get_buffer(data->xfer);
636 }
637 return 0;
638
639 fail: zyd_free_rx_list(sc);
640 return error;
641 }
642
643 Static void
644 zyd_free_rx_list(struct zyd_softc *sc)
645 {
646 int i;
647
648 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
649 struct zyd_rx_data *data = &sc->rx_data[i];
650
651 if (data->xfer != NULL) {
652 usbd_destroy_xfer(data->xfer);
653 data->xfer = NULL;
654 }
655 }
656 }
657
658 /* ARGUSED */
659 Static struct ieee80211_node *
660 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
661 {
662 struct zyd_node *zn;
663
664 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
665 return zn ? &zn->ni : NULL;
666 }
667
668 Static int
669 zyd_media_change(struct ifnet *ifp)
670 {
671 int error;
672
673 error = ieee80211_media_change(ifp);
674 if (error != ENETRESET)
675 return error;
676
677 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
678 zyd_init(ifp);
679
680 return 0;
681 }
682
683 /*
684 * This function is called periodically (every 200ms) during scanning to
685 * switch from one channel to another.
686 */
687 Static void
688 zyd_next_scan(void *arg)
689 {
690 struct zyd_softc *sc = arg;
691 struct ieee80211com *ic = &sc->sc_ic;
692
693 if (ic->ic_state == IEEE80211_S_SCAN)
694 ieee80211_next_scan(ic);
695 }
696
697 Static void
698 zyd_task(void *arg)
699 {
700 struct zyd_softc *sc = arg;
701 struct ieee80211com *ic = &sc->sc_ic;
702 enum ieee80211_state ostate;
703
704 ostate = ic->ic_state;
705
706 switch (sc->sc_state) {
707 case IEEE80211_S_INIT:
708 if (ostate == IEEE80211_S_RUN) {
709 /* turn link LED off */
710 zyd_set_led(sc, ZYD_LED1, 0);
711
712 /* stop data LED from blinking */
713 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
714 }
715 break;
716
717 case IEEE80211_S_SCAN:
718 zyd_set_chan(sc, ic->ic_curchan);
719 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
720 break;
721
722 case IEEE80211_S_AUTH:
723 case IEEE80211_S_ASSOC:
724 zyd_set_chan(sc, ic->ic_curchan);
725 break;
726
727 case IEEE80211_S_RUN:
728 {
729 struct ieee80211_node *ni = ic->ic_bss;
730
731 zyd_set_chan(sc, ic->ic_curchan);
732
733 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
734 /* turn link LED on */
735 zyd_set_led(sc, ZYD_LED1, 1);
736
737 /* make data LED blink upon Tx */
738 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
739
740 zyd_set_bssid(sc, ni->ni_bssid);
741 }
742
743 if (ic->ic_opmode == IEEE80211_M_STA) {
744 /* fake a join to init the tx rate */
745 zyd_newassoc(ni, 1);
746 }
747
748 /* start automatic rate control timer */
749 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
750 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
751
752 break;
753 }
754 }
755
756 sc->sc_newstate(ic, sc->sc_state, -1);
757 }
758
759 Static int
760 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
761 {
762 struct zyd_softc *sc = ic->ic_ifp->if_softc;
763
764 if (!sc->attached)
765 return ENXIO;
766
767 /*
768 * XXXSMP: This does not wait for the task, if it is in flight,
769 * to complete. If this code works at all, it must rely on the
770 * kernel lock to serialize with the USB task thread.
771 */
772 usb_rem_task(sc->sc_udev, &sc->sc_task);
773 callout_stop(&sc->sc_scan_ch);
774 callout_stop(&sc->sc_amrr_ch);
775
776 /* do it in a process context */
777 sc->sc_state = nstate;
778 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
779
780 return 0;
781 }
782
783 Static int
784 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
785 void *odata, int olen, u_int flags)
786 {
787 struct usbd_xfer *xfer;
788 struct zyd_cmd cmd;
789 struct rq rq;
790 uint16_t xferflags;
791 int error;
792 usbd_status uerror;
793
794 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
795 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
796 if (error)
797 return error;
798
799 cmd.code = htole16(code);
800 memcpy(cmd.data, idata, ilen);
801
802 xferflags = USBD_FORCE_SHORT_XFER;
803 if (!(flags & ZYD_CMD_FLAG_READ))
804 xferflags |= USBD_SYNCHRONOUS;
805 else {
806 rq.idata = idata;
807 rq.odata = odata;
808 rq.len = olen / sizeof(struct zyd_pair);
809 mutex_enter(&sc->sc_lock);
810 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
811 mutex_exit(&sc->sc_lock);
812 }
813
814 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
815 ZYD_INTR_TIMEOUT, NULL);
816 uerror = usbd_transfer(xfer);
817 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
818 printf("%s: could not send command (error=%s)\n",
819 device_xname(sc->sc_dev), usbd_errstr(uerror));
820 (void)usbd_destroy_xfer(xfer);
821 return EIO;
822 }
823 if (!(flags & ZYD_CMD_FLAG_READ)) {
824 (void)usbd_destroy_xfer(xfer);
825 return 0; /* write: don't wait for reply */
826 }
827 /* wait at most one second for command reply */
828 mutex_enter(&sc->sc_lock);
829 error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
830 if (error == EWOULDBLOCK)
831 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
832 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
833 mutex_exit(&sc->sc_lock);
834
835 (void)usbd_destroy_xfer(xfer);
836 return error;
837 }
838
839 Static int
840 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
841 {
842 struct zyd_pair tmp;
843 int error;
844
845 reg = htole16(reg);
846 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
847 ZYD_CMD_FLAG_READ);
848 if (error == 0)
849 *val = le16toh(tmp.val);
850 else
851 *val = 0;
852 return error;
853 }
854
855 Static int
856 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
857 {
858 struct zyd_pair tmp[2];
859 uint16_t regs[2];
860 int error;
861
862 regs[0] = htole16(ZYD_REG32_HI(reg));
863 regs[1] = htole16(ZYD_REG32_LO(reg));
864 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
865 ZYD_CMD_FLAG_READ);
866 if (error == 0)
867 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
868 else
869 *val = 0;
870 return error;
871 }
872
873 Static int
874 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
875 {
876 struct zyd_pair pair;
877
878 pair.reg = htole16(reg);
879 pair.val = htole16(val);
880
881 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
882 }
883
884 Static int
885 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
886 {
887 struct zyd_pair pair[2];
888
889 pair[0].reg = htole16(ZYD_REG32_HI(reg));
890 pair[0].val = htole16(val >> 16);
891 pair[1].reg = htole16(ZYD_REG32_LO(reg));
892 pair[1].val = htole16(val & 0xffff);
893
894 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
895 }
896
897 Static int
898 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
899 {
900 struct zyd_rf *rf = &sc->sc_rf;
901 struct zyd_rfwrite req;
902 uint16_t cr203;
903 int i;
904
905 (void)zyd_read16(sc, ZYD_CR203, &cr203);
906 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
907
908 req.code = htole16(2);
909 req.width = htole16(rf->width);
910 for (i = 0; i < rf->width; i++) {
911 req.bit[i] = htole16(cr203);
912 if (val & (1 << (rf->width - 1 - i)))
913 req.bit[i] |= htole16(ZYD_RF_DATA);
914 }
915 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
916 }
917
918 Static void
919 zyd_lock_phy(struct zyd_softc *sc)
920 {
921 uint32_t tmp;
922
923 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
924 tmp &= ~ZYD_UNLOCK_PHY_REGS;
925 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
926 }
927
928 Static void
929 zyd_unlock_phy(struct zyd_softc *sc)
930 {
931 uint32_t tmp;
932
933 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
934 tmp |= ZYD_UNLOCK_PHY_REGS;
935 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
936 }
937
938 /*
939 * RFMD RF methods.
940 */
941 Static int
942 zyd_rfmd_init(struct zyd_rf *rf)
943 {
944 struct zyd_softc *sc = rf->rf_sc;
945 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
946 static const uint32_t rfini[] = ZYD_RFMD_RF;
947 int error;
948 size_t i;
949
950 /* init RF-dependent PHY registers */
951 for (i = 0; i < __arraycount(phyini); i++) {
952 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
953 if (error != 0)
954 return error;
955 }
956
957 /* init RFMD radio */
958 for (i = 0; i < __arraycount(rfini); i++) {
959 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
960 return error;
961 }
962 return 0;
963 }
964
965 Static int
966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
967 {
968 struct zyd_softc *sc = rf->rf_sc;
969
970 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
971 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
972
973 return 0;
974 }
975
976 Static int
977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
978 {
979 struct zyd_softc *sc = rf->rf_sc;
980 static const struct {
981 uint32_t r1, r2;
982 } rfprog[] = ZYD_RFMD_CHANTABLE;
983
984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
986
987 return 0;
988 }
989
990 /*
991 * AL2230 RF methods.
992 */
993 Static int
994 zyd_al2230_init(struct zyd_rf *rf)
995 {
996 struct zyd_softc *sc = rf->rf_sc;
997 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
998 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
999 static const uint32_t rfini[] = ZYD_AL2230_RF;
1000 int error;
1001 size_t i;
1002
1003 /* init RF-dependent PHY registers */
1004 for (i = 0; i < __arraycount(phyini); i++) {
1005 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1006 if (error != 0)
1007 return error;
1008 }
1009
1010 if (sc->rf_rev == ZYD_RF_AL2230S) {
1011 for (i = 0; i < __arraycount(phy2230s); i++) {
1012 error = zyd_write16(sc, phy2230s[i].reg,
1013 phy2230s[i].val);
1014 if (error != 0)
1015 return error;
1016 }
1017 }
1018
1019 /* init AL2230 radio */
1020 for (i = 0; i < __arraycount(rfini); i++) {
1021 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1022 return error;
1023 }
1024 return 0;
1025 }
1026
1027 Static int
1028 zyd_al2230_init_b(struct zyd_rf *rf)
1029 {
1030 struct zyd_softc *sc = rf->rf_sc;
1031 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1032 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1033 int error;
1034 size_t i;
1035
1036 /* init RF-dependent PHY registers */
1037 for (i = 0; i < __arraycount(phyini); i++) {
1038 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1039 if (error != 0)
1040 return error;
1041 }
1042
1043 /* init AL2230 radio */
1044 for (i = 0; i < __arraycount(rfini); i++) {
1045 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1046 return error;
1047 }
1048 return 0;
1049 }
1050
1051 Static int
1052 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1053 {
1054 struct zyd_softc *sc = rf->rf_sc;
1055 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1056
1057 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1058 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1059
1060 return 0;
1061 }
1062
1063 Static int
1064 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1065 {
1066 struct zyd_softc *sc = rf->rf_sc;
1067 static const struct {
1068 uint32_t r1, r2, r3;
1069 } rfprog[] = ZYD_AL2230_CHANTABLE;
1070
1071 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1072 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1073 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1074
1075 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1076 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * AL7230B RF methods.
1083 */
1084 Static int
1085 zyd_al7230B_init(struct zyd_rf *rf)
1086 {
1087 struct zyd_softc *sc = rf->rf_sc;
1088 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1089 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1090 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1091 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1092 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1093 int error;
1094 size_t i;
1095
1096 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1097
1098 /* init RF-dependent PHY registers, part one */
1099 for (i = 0; i < __arraycount(phyini_1); i++) {
1100 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1101 if (error != 0)
1102 return error;
1103 }
1104 /* init AL7230B radio, part one */
1105 for (i = 0; i < __arraycount(rfini_1); i++) {
1106 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1107 return error;
1108 }
1109 /* init RF-dependent PHY registers, part two */
1110 for (i = 0; i < __arraycount(phyini_2); i++) {
1111 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1112 if (error != 0)
1113 return error;
1114 }
1115 /* init AL7230B radio, part two */
1116 for (i = 0; i < __arraycount(rfini_2); i++) {
1117 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1118 return error;
1119 }
1120 /* init RF-dependent PHY registers, part three */
1121 for (i = 0; i < __arraycount(phyini_3); i++) {
1122 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1123 if (error != 0)
1124 return error;
1125 }
1126
1127 return 0;
1128 }
1129
1130 Static int
1131 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1132 {
1133 struct zyd_softc *sc = rf->rf_sc;
1134
1135 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1136 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1137
1138 return 0;
1139 }
1140
1141 Static int
1142 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1143 {
1144 struct zyd_softc *sc = rf->rf_sc;
1145 static const struct {
1146 uint32_t r1, r2;
1147 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1148 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1149 int error;
1150 size_t i;
1151
1152 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1153 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1154
1155 for (i = 0; i < __arraycount(rfsc); i++) {
1156 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1157 return error;
1158 }
1159
1160 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1161 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1162 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1163 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1164 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1165
1166 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1167 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1168 (void)zyd_rfwrite(sc, 0x3c9000);
1169
1170 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1171 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1172 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * AL2210 RF methods.
1179 */
1180 Static int
1181 zyd_al2210_init(struct zyd_rf *rf)
1182 {
1183 struct zyd_softc *sc = rf->rf_sc;
1184 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1185 static const uint32_t rfini[] = ZYD_AL2210_RF;
1186 uint32_t tmp;
1187 int error;
1188 size_t i;
1189
1190 (void)zyd_write32(sc, ZYD_CR18, 2);
1191
1192 /* init RF-dependent PHY registers */
1193 for (i = 0; i < __arraycount(phyini); i++) {
1194 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1195 if (error != 0)
1196 return error;
1197 }
1198 /* init AL2210 radio */
1199 for (i = 0; i < __arraycount(rfini); i++) {
1200 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1201 return error;
1202 }
1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1208 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1209 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1210 (void)zyd_write32(sc, ZYD_CR18, 3);
1211
1212 return 0;
1213 }
1214
1215 Static int
1216 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1217 {
1218 /* vendor driver does nothing for this RF chip */
1219
1220 return 0;
1221 }
1222
1223 Static int
1224 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1225 {
1226 struct zyd_softc *sc = rf->rf_sc;
1227 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1228 uint32_t tmp;
1229
1230 (void)zyd_write32(sc, ZYD_CR18, 2);
1231 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1232 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1233 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1234 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1235 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1236
1237 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1238 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1239
1240 /* actually set the channel */
1241 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1242
1243 (void)zyd_write32(sc, ZYD_CR18, 3);
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * GCT RF methods.
1250 */
1251 Static int
1252 zyd_gct_init(struct zyd_rf *rf)
1253 {
1254 struct zyd_softc *sc = rf->rf_sc;
1255 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1256 static const uint32_t rfini[] = ZYD_GCT_RF;
1257 int error;
1258 size_t i;
1259
1260 /* init RF-dependent PHY registers */
1261 for (i = 0; i < __arraycount(phyini); i++) {
1262 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1263 if (error != 0)
1264 return error;
1265 }
1266 /* init cgt radio */
1267 for (i = 0; i < __arraycount(rfini); i++) {
1268 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1269 return error;
1270 }
1271 return 0;
1272 }
1273
1274 Static int
1275 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1276 {
1277 /* vendor driver does nothing for this RF chip */
1278
1279 return 0;
1280 }
1281
1282 Static int
1283 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1284 {
1285 struct zyd_softc *sc = rf->rf_sc;
1286 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1287
1288 (void)zyd_rfwrite(sc, 0x1c0000);
1289 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1290 (void)zyd_rfwrite(sc, 0x1c0008);
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Maxim RF methods.
1297 */
1298 Static int
1299 zyd_maxim_init(struct zyd_rf *rf)
1300 {
1301 struct zyd_softc *sc = rf->rf_sc;
1302 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1303 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1304 uint16_t tmp;
1305 int error;
1306 size_t i;
1307
1308 /* init RF-dependent PHY registers */
1309 for (i = 0; i < __arraycount(phyini); i++) {
1310 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1311 if (error != 0)
1312 return error;
1313 }
1314 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1315 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1316
1317 /* init maxim radio */
1318 for (i = 0; i < __arraycount(rfini); i++) {
1319 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1320 return error;
1321 }
1322 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1323 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1324
1325 return 0;
1326 }
1327
1328 Static int
1329 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1330 {
1331 /* vendor driver does nothing for this RF chip */
1332
1333 return 0;
1334 }
1335
1336 Static int
1337 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1338 {
1339 struct zyd_softc *sc = rf->rf_sc;
1340 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1341 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1342 static const struct {
1343 uint32_t r1, r2;
1344 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1345 uint16_t tmp;
1346 int error;
1347 size_t i;
1348
1349 /*
1350 * Do the same as we do when initializing it, except for the channel
1351 * values coming from the two channel tables.
1352 */
1353
1354 /* init RF-dependent PHY registers */
1355 for (i = 0; i < __arraycount(phyini); i++) {
1356 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1357 if (error != 0)
1358 return error;
1359 }
1360 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1361 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1362
1363 /* first two values taken from the chantables */
1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1366
1367 /* init maxim radio - skipping the two first values */
1368 for (i = 2; i < __arraycount(rfini); i++) {
1369 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1370 return error;
1371 }
1372 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1373 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1374
1375 return 0;
1376 }
1377
1378 /*
1379 * Maxim2 RF methods.
1380 */
1381 Static int
1382 zyd_maxim2_init(struct zyd_rf *rf)
1383 {
1384 struct zyd_softc *sc = rf->rf_sc;
1385 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1386 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1387 uint16_t tmp;
1388 int error;
1389 size_t i;
1390
1391 /* init RF-dependent PHY registers */
1392 for (i = 0; i < __arraycount(phyini); i++) {
1393 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1394 if (error != 0)
1395 return error;
1396 }
1397 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1398 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1399
1400 /* init maxim2 radio */
1401 for (i = 0; i < __arraycount(rfini); i++) {
1402 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1403 return error;
1404 }
1405 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1406 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1407
1408 return 0;
1409 }
1410
1411 Static int
1412 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1413 {
1414 /* vendor driver does nothing for this RF chip */
1415
1416 return 0;
1417 }
1418
1419 Static int
1420 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1421 {
1422 struct zyd_softc *sc = rf->rf_sc;
1423 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1424 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1425 static const struct {
1426 uint32_t r1, r2;
1427 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1428 uint16_t tmp;
1429 int error;
1430 size_t i;
1431
1432 /*
1433 * Do the same as we do when initializing it, except for the channel
1434 * values coming from the two channel tables.
1435 */
1436
1437 /* init RF-dependent PHY registers */
1438 for (i = 0; i < __arraycount(phyini); i++) {
1439 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1440 if (error != 0)
1441 return error;
1442 }
1443 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1444 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1445
1446 /* first two values taken from the chantables */
1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1448 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1449
1450 /* init maxim2 radio - skipping the two first values */
1451 for (i = 2; i < __arraycount(rfini); i++) {
1452 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1453 return error;
1454 }
1455 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1456 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1457
1458 return 0;
1459 }
1460
1461 Static int
1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1463 {
1464 struct zyd_rf *rf = &sc->sc_rf;
1465
1466 rf->rf_sc = sc;
1467
1468 switch (type) {
1469 case ZYD_RF_RFMD:
1470 rf->init = zyd_rfmd_init;
1471 rf->switch_radio = zyd_rfmd_switch_radio;
1472 rf->set_channel = zyd_rfmd_set_channel;
1473 rf->width = 24; /* 24-bit RF values */
1474 break;
1475 case ZYD_RF_AL2230:
1476 case ZYD_RF_AL2230S:
1477 if (sc->mac_rev == ZYD_ZD1211B)
1478 rf->init = zyd_al2230_init_b;
1479 else
1480 rf->init = zyd_al2230_init;
1481 rf->switch_radio = zyd_al2230_switch_radio;
1482 rf->set_channel = zyd_al2230_set_channel;
1483 rf->width = 24; /* 24-bit RF values */
1484 break;
1485 case ZYD_RF_AL7230B:
1486 rf->init = zyd_al7230B_init;
1487 rf->switch_radio = zyd_al7230B_switch_radio;
1488 rf->set_channel = zyd_al7230B_set_channel;
1489 rf->width = 24; /* 24-bit RF values */
1490 break;
1491 case ZYD_RF_AL2210:
1492 rf->init = zyd_al2210_init;
1493 rf->switch_radio = zyd_al2210_switch_radio;
1494 rf->set_channel = zyd_al2210_set_channel;
1495 rf->width = 24; /* 24-bit RF values */
1496 break;
1497 case ZYD_RF_GCT:
1498 rf->init = zyd_gct_init;
1499 rf->switch_radio = zyd_gct_switch_radio;
1500 rf->set_channel = zyd_gct_set_channel;
1501 rf->width = 21; /* 21-bit RF values */
1502 break;
1503 case ZYD_RF_MAXIM_NEW:
1504 rf->init = zyd_maxim_init;
1505 rf->switch_radio = zyd_maxim_switch_radio;
1506 rf->set_channel = zyd_maxim_set_channel;
1507 rf->width = 18; /* 18-bit RF values */
1508 break;
1509 case ZYD_RF_MAXIM_NEW2:
1510 rf->init = zyd_maxim2_init;
1511 rf->switch_radio = zyd_maxim2_switch_radio;
1512 rf->set_channel = zyd_maxim2_set_channel;
1513 rf->width = 18; /* 18-bit RF values */
1514 break;
1515 default:
1516 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1517 device_xname(sc->sc_dev), zyd_rf_name(type));
1518 return EINVAL;
1519 }
1520 return 0;
1521 }
1522
1523 Static const char *
1524 zyd_rf_name(uint8_t type)
1525 {
1526 static const char * const zyd_rfs[] = {
1527 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1528 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1529 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1530 "PHILIPS"
1531 };
1532
1533 return zyd_rfs[(type > 15) ? 0 : type];
1534 }
1535
1536 Static int
1537 zyd_hw_init(struct zyd_softc *sc)
1538 {
1539 struct zyd_rf *rf = &sc->sc_rf;
1540 const struct zyd_phy_pair *phyp;
1541 int error;
1542
1543 /* specify that the plug and play is finished */
1544 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1545
1546 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1547 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1548
1549 /* retrieve firmware revision number */
1550 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1551
1552 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1553 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1554
1555 /* disable interrupts */
1556 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1557
1558 /* PHY init */
1559 zyd_lock_phy(sc);
1560 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1561 for (; phyp->reg != 0; phyp++) {
1562 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1563 goto fail;
1564 }
1565 zyd_unlock_phy(sc);
1566
1567 /* HMAC init */
1568 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1569 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1570
1571 if (sc->mac_rev == ZYD_ZD1211) {
1572 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1573 } else {
1574 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1580 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1581 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1582 }
1583
1584 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1587 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1588 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1589 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1590 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1591 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1592 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1593 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1594 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1595 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1596 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1597 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1598 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1599 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1600 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1601
1602 /* RF chip init */
1603 zyd_lock_phy(sc);
1604 error = (*rf->init)(rf);
1605 zyd_unlock_phy(sc);
1606 if (error != 0) {
1607 printf("%s: radio initialization failed\n",
1608 device_xname(sc->sc_dev));
1609 goto fail;
1610 }
1611
1612 /* init beacon interval to 100ms */
1613 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1614 goto fail;
1615
1616 fail: return error;
1617 }
1618
1619 Static int
1620 zyd_read_eeprom(struct zyd_softc *sc)
1621 {
1622 struct ieee80211com *ic = &sc->sc_ic;
1623 uint32_t tmp;
1624 uint16_t val;
1625 int i;
1626
1627 /* read MAC address */
1628 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1629 ic->ic_myaddr[0] = tmp & 0xff;
1630 ic->ic_myaddr[1] = tmp >> 8;
1631 ic->ic_myaddr[2] = tmp >> 16;
1632 ic->ic_myaddr[3] = tmp >> 24;
1633 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1634 ic->ic_myaddr[4] = tmp & 0xff;
1635 ic->ic_myaddr[5] = tmp >> 8;
1636
1637 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1638 sc->rf_rev = tmp & 0x0f;
1639 sc->pa_rev = (tmp >> 16) & 0x0f;
1640
1641 /* read regulatory domain (currently unused) */
1642 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1643 sc->regdomain = tmp >> 16;
1644 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1645
1646 /* read Tx power calibration tables */
1647 for (i = 0; i < 7; i++) {
1648 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1649 sc->pwr_cal[i * 2] = val >> 8;
1650 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1651
1652 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1653 sc->pwr_int[i * 2] = val >> 8;
1654 sc->pwr_int[i * 2 + 1] = val & 0xff;
1655
1656 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1657 sc->ofdm36_cal[i * 2] = val >> 8;
1658 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1659
1660 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1661 sc->ofdm48_cal[i * 2] = val >> 8;
1662 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1663
1664 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1665 sc->ofdm54_cal[i * 2] = val >> 8;
1666 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1667 }
1668 return 0;
1669 }
1670
1671 Static int
1672 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1673 {
1674 uint32_t tmp;
1675
1676 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1677 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1678
1679 tmp = addr[5] << 8 | addr[4];
1680 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1681
1682 return 0;
1683 }
1684
1685 Static int
1686 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1687 {
1688 uint32_t tmp;
1689
1690 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1691 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1692
1693 tmp = addr[5] << 8 | addr[4];
1694 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1695
1696 return 0;
1697 }
1698
1699 Static int
1700 zyd_switch_radio(struct zyd_softc *sc, int on)
1701 {
1702 struct zyd_rf *rf = &sc->sc_rf;
1703 int error;
1704
1705 zyd_lock_phy(sc);
1706 error = (*rf->switch_radio)(rf, on);
1707 zyd_unlock_phy(sc);
1708
1709 return error;
1710 }
1711
1712 Static void
1713 zyd_set_led(struct zyd_softc *sc, int which, int on)
1714 {
1715 uint32_t tmp;
1716
1717 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1718 tmp &= ~which;
1719 if (on)
1720 tmp |= which;
1721 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1722 }
1723
1724 Static int
1725 zyd_set_rxfilter(struct zyd_softc *sc)
1726 {
1727 uint32_t rxfilter;
1728
1729 switch (sc->sc_ic.ic_opmode) {
1730 case IEEE80211_M_STA:
1731 rxfilter = ZYD_FILTER_BSS;
1732 break;
1733 case IEEE80211_M_IBSS:
1734 case IEEE80211_M_HOSTAP:
1735 rxfilter = ZYD_FILTER_HOSTAP;
1736 break;
1737 case IEEE80211_M_MONITOR:
1738 rxfilter = ZYD_FILTER_MONITOR;
1739 break;
1740 default:
1741 /* should not get there */
1742 return EINVAL;
1743 }
1744 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1745 }
1746
1747 Static void
1748 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1749 {
1750 struct ieee80211com *ic = &sc->sc_ic;
1751 struct zyd_rf *rf = &sc->sc_rf;
1752 u_int chan;
1753
1754 chan = ieee80211_chan2ieee(ic, c);
1755 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1756 return;
1757
1758 zyd_lock_phy(sc);
1759
1760 (*rf->set_channel)(rf, chan);
1761
1762 /* update Tx power */
1763 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1764 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1765
1766 if (sc->mac_rev == ZYD_ZD1211B) {
1767 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1768 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1769 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1770
1771 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1772 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1773 }
1774
1775 zyd_unlock_phy(sc);
1776 }
1777
1778 Static int
1779 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1780 {
1781 /* XXX this is probably broken.. */
1782 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1783 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1784 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1785
1786 return 0;
1787 }
1788
1789 Static uint8_t
1790 zyd_plcp_signal(int rate)
1791 {
1792 switch (rate) {
1793 /* CCK rates (returned values are device-dependent) */
1794 case 2: return 0x0;
1795 case 4: return 0x1;
1796 case 11: return 0x2;
1797 case 22: return 0x3;
1798
1799 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1800 case 12: return 0xb;
1801 case 18: return 0xf;
1802 case 24: return 0xa;
1803 case 36: return 0xe;
1804 case 48: return 0x9;
1805 case 72: return 0xd;
1806 case 96: return 0x8;
1807 case 108: return 0xc;
1808
1809 /* unsupported rates (should not get there) */
1810 default: return 0xff;
1811 }
1812 }
1813
1814 Static void
1815 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1816 {
1817 struct zyd_softc *sc = (struct zyd_softc *)priv;
1818 struct zyd_cmd *cmd;
1819 uint32_t datalen;
1820
1821 if (status != USBD_NORMAL_COMPLETION) {
1822 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1823 return;
1824
1825 if (status == USBD_STALLED) {
1826 usbd_clear_endpoint_stall_async(
1827 sc->zyd_ep[ZYD_ENDPT_IIN]);
1828 }
1829 return;
1830 }
1831
1832 cmd = (struct zyd_cmd *)sc->ibuf;
1833
1834 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1835 struct zyd_notif_retry *retry =
1836 (struct zyd_notif_retry *)cmd->data;
1837 struct ieee80211com *ic = &sc->sc_ic;
1838 struct ifnet *ifp = &sc->sc_if;
1839 struct ieee80211_node *ni;
1840
1841 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1842 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1843 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1844
1845 /*
1846 * Find the node to which the packet was sent and update its
1847 * retry statistics. In BSS mode, this node is the AP we're
1848 * associated to so no lookup is actually needed.
1849 */
1850 if (ic->ic_opmode != IEEE80211_M_STA) {
1851 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1852 if (ni == NULL)
1853 return; /* just ignore */
1854 } else
1855 ni = ic->ic_bss;
1856
1857 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1858
1859 if (le16toh(retry->count) & 0x100)
1860 ifp->if_oerrors++; /* too many retries */
1861
1862 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1863 struct rq *rqp;
1864
1865 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1866 return; /* HMAC interrupt */
1867
1868 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1869 datalen -= sizeof(cmd->code);
1870 datalen -= 2; /* XXX: padding? */
1871
1872 mutex_enter(&sc->sc_lock);
1873 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1874 int i;
1875
1876 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1877 continue;
1878 for (i = 0; i < rqp->len; i++) {
1879 if (*(((const uint16_t *)rqp->idata) + i) !=
1880 (((struct zyd_pair *)cmd->data) + i)->reg)
1881 break;
1882 }
1883 if (i != rqp->len)
1884 continue;
1885
1886 /* copy answer into caller-supplied buffer */
1887 memcpy(rqp->odata, cmd->data,
1888 sizeof(struct zyd_pair) * rqp->len);
1889 cv_signal(&sc->sc_cmdcv);
1890 mutex_exit(&sc->sc_lock);
1891 return;
1892 }
1893 mutex_exit(&sc->sc_lock);
1894 return; /* unexpected IORD notification */
1895 } else {
1896 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1897 le16toh(cmd->code));
1898 }
1899 }
1900
1901 Static void
1902 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1903 {
1904 struct ieee80211com *ic = &sc->sc_ic;
1905 struct ifnet *ifp = &sc->sc_if;
1906 struct ieee80211_node *ni;
1907 struct ieee80211_frame *wh;
1908 const struct zyd_plcphdr *plcp;
1909 const struct zyd_rx_stat *stat;
1910 struct mbuf *m;
1911 int rlen, s;
1912
1913 if (len < ZYD_MIN_FRAGSZ) {
1914 printf("%s: frame too short (length=%d)\n",
1915 device_xname(sc->sc_dev), len);
1916 ifp->if_ierrors++;
1917 return;
1918 }
1919
1920 plcp = (const struct zyd_plcphdr *)buf;
1921 stat = (const struct zyd_rx_stat *)
1922 (buf + len - sizeof(struct zyd_rx_stat));
1923
1924 if (stat->flags & ZYD_RX_ERROR) {
1925 DPRINTF(("%s: RX status indicated error (%x)\n",
1926 device_xname(sc->sc_dev), stat->flags));
1927 ifp->if_ierrors++;
1928 return;
1929 }
1930
1931 /* compute actual frame length */
1932 rlen = len - sizeof(struct zyd_plcphdr) -
1933 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1934
1935 /* allocate a mbuf to store the frame */
1936 MGETHDR(m, M_DONTWAIT, MT_DATA);
1937 if (m == NULL) {
1938 printf("%s: could not allocate rx mbuf\n",
1939 device_xname(sc->sc_dev));
1940 ifp->if_ierrors++;
1941 return;
1942 }
1943 if (rlen > MHLEN) {
1944 MCLGET(m, M_DONTWAIT);
1945 if (!(m->m_flags & M_EXT)) {
1946 printf("%s: could not allocate rx mbuf cluster\n",
1947 device_xname(sc->sc_dev));
1948 m_freem(m);
1949 ifp->if_ierrors++;
1950 return;
1951 }
1952 }
1953 m_set_rcvif(m, ifp);
1954 m->m_pkthdr.len = m->m_len = rlen;
1955 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1956
1957 s = splnet();
1958
1959 if (sc->sc_drvbpf != NULL) {
1960 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1961 static const uint8_t rates[] = {
1962 /* reverse function of zyd_plcp_signal() */
1963 2, 4, 11, 22, 0, 0, 0, 0,
1964 96, 48, 24, 12, 108, 72, 36, 18
1965 };
1966
1967 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1968 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1969 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1970 tap->wr_rssi = stat->rssi;
1971 tap->wr_rate = rates[plcp->signal & 0xf];
1972
1973 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1974 }
1975
1976 wh = mtod(m, struct ieee80211_frame *);
1977 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1978 ieee80211_input(ic, m, ni, stat->rssi, 0);
1979
1980 /* node is no longer needed */
1981 ieee80211_free_node(ni);
1982
1983 splx(s);
1984 }
1985
1986 Static void
1987 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1988 {
1989 struct zyd_rx_data *data = priv;
1990 struct zyd_softc *sc = data->sc;
1991 struct ifnet *ifp = &sc->sc_if;
1992 const struct zyd_rx_desc *desc;
1993 int len;
1994
1995 if (status != USBD_NORMAL_COMPLETION) {
1996 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1997 return;
1998
1999 if (status == USBD_STALLED)
2000 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2001
2002 goto skip;
2003 }
2004 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2005
2006 if (len < ZYD_MIN_RXBUFSZ) {
2007 printf("%s: xfer too short (length=%d)\n",
2008 device_xname(sc->sc_dev), len);
2009 ifp->if_ierrors++;
2010 goto skip;
2011 }
2012
2013 desc = (const struct zyd_rx_desc *)
2014 (data->buf + len - sizeof(struct zyd_rx_desc));
2015
2016 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2017 const uint8_t *p = data->buf, *end = p + len;
2018 int i;
2019
2020 DPRINTFN(3, ("received multi-frame transfer\n"));
2021
2022 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2023 const uint16_t len16 = UGETW(desc->len[i]);
2024
2025 if (len16 == 0 || p + len16 > end)
2026 break;
2027
2028 zyd_rx_data(sc, p, len16);
2029 /* next frame is aligned on a 32-bit boundary */
2030 p += (len16 + 3) & ~3;
2031 }
2032 } else {
2033 DPRINTFN(3, ("received single-frame transfer\n"));
2034
2035 zyd_rx_data(sc, data->buf, len);
2036 }
2037
2038 skip: /* setup a new transfer */
2039
2040 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2041 USBD_NO_TIMEOUT, zyd_rxeof);
2042 (void)usbd_transfer(xfer);
2043 }
2044
2045 Static int
2046 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2047 {
2048 struct ieee80211com *ic = &sc->sc_ic;
2049 struct ifnet *ifp = &sc->sc_if;
2050 struct zyd_tx_desc *desc;
2051 struct zyd_tx_data *data;
2052 struct ieee80211_frame *wh;
2053 struct ieee80211_key *k;
2054 int xferlen, totlen, rate;
2055 uint16_t pktlen;
2056 usbd_status error;
2057
2058 data = &sc->tx_data[0];
2059 desc = (struct zyd_tx_desc *)data->buf;
2060
2061 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2062
2063 wh = mtod(m0, struct ieee80211_frame *);
2064
2065 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2066 k = ieee80211_crypto_encap(ic, ni, m0);
2067 if (k == NULL) {
2068 m_freem(m0);
2069 return ENOBUFS;
2070 }
2071 }
2072
2073 data->ni = ni;
2074
2075 wh = mtod(m0, struct ieee80211_frame *);
2076
2077 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2078 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2079
2080 /* fill Tx descriptor */
2081 desc->len = htole16(totlen);
2082
2083 desc->flags = ZYD_TX_FLAG_BACKOFF;
2084 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2085 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2086 if (totlen > ic->ic_rtsthreshold) {
2087 desc->flags |= ZYD_TX_FLAG_RTS;
2088 } else if (ZYD_RATE_IS_OFDM(rate) &&
2089 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2090 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2091 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2092 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2093 desc->flags |= ZYD_TX_FLAG_RTS;
2094 }
2095 } else
2096 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2097
2098 if ((wh->i_fc[0] &
2099 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2100 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2101 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2102
2103 desc->phy = zyd_plcp_signal(rate);
2104 if (ZYD_RATE_IS_OFDM(rate)) {
2105 desc->phy |= ZYD_TX_PHY_OFDM;
2106 if (ic->ic_curmode == IEEE80211_MODE_11A)
2107 desc->phy |= ZYD_TX_PHY_5GHZ;
2108 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2109 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2110
2111 /* actual transmit length (XXX why +10?) */
2112 pktlen = sizeof(struct zyd_tx_desc) + 10;
2113 if (sc->mac_rev == ZYD_ZD1211)
2114 pktlen += totlen;
2115 desc->pktlen = htole16(pktlen);
2116
2117 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2118 desc->plcp_service = 0;
2119 if (rate == 22) {
2120 const int remainder = (16 * totlen) % 22;
2121 if (remainder != 0 && remainder < 7)
2122 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2123 }
2124
2125 if (sc->sc_drvbpf != NULL) {
2126 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2127
2128 tap->wt_flags = 0;
2129 tap->wt_rate = rate;
2130 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2131 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2132
2133 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2134 }
2135
2136 m_copydata(m0, 0, m0->m_pkthdr.len,
2137 data->buf + sizeof(struct zyd_tx_desc));
2138
2139 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2140 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2141
2142 m_freem(m0); /* mbuf no longer needed */
2143
2144 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2145 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2146 error = usbd_transfer(data->xfer);
2147 if (error != USBD_IN_PROGRESS && error != 0) {
2148 ifp->if_oerrors++;
2149 return EIO;
2150 }
2151 sc->tx_queued++;
2152
2153 return 0;
2154 }
2155
2156 Static void
2157 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2158 {
2159 struct zyd_tx_data *data = priv;
2160 struct zyd_softc *sc = data->sc;
2161 struct ifnet *ifp = &sc->sc_if;
2162 int s;
2163
2164 if (status != USBD_NORMAL_COMPLETION) {
2165 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2166 return;
2167
2168 printf("%s: could not transmit buffer: %s\n",
2169 device_xname(sc->sc_dev), usbd_errstr(status));
2170
2171 if (status == USBD_STALLED) {
2172 usbd_clear_endpoint_stall_async(
2173 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2174 }
2175 ifp->if_oerrors++;
2176 return;
2177 }
2178
2179 s = splnet();
2180
2181 /* update rate control statistics */
2182 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2183
2184 ieee80211_free_node(data->ni);
2185 data->ni = NULL;
2186
2187 sc->tx_queued--;
2188 ifp->if_opackets++;
2189
2190 sc->tx_timer = 0;
2191 ifp->if_flags &= ~IFF_OACTIVE;
2192 zyd_start(ifp);
2193
2194 splx(s);
2195 }
2196
2197 Static int
2198 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2199 {
2200 struct ieee80211com *ic = &sc->sc_ic;
2201 struct ifnet *ifp = &sc->sc_if;
2202 struct zyd_tx_desc *desc;
2203 struct zyd_tx_data *data;
2204 struct ieee80211_frame *wh;
2205 struct ieee80211_key *k;
2206 int xferlen, totlen, rate;
2207 uint16_t pktlen;
2208 usbd_status error;
2209
2210 wh = mtod(m0, struct ieee80211_frame *);
2211
2212 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2213 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2214 else
2215 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2216 rate &= IEEE80211_RATE_VAL;
2217
2218 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2219 k = ieee80211_crypto_encap(ic, ni, m0);
2220 if (k == NULL) {
2221 m_freem(m0);
2222 return ENOBUFS;
2223 }
2224
2225 /* packet header may have moved, reset our local pointer */
2226 wh = mtod(m0, struct ieee80211_frame *);
2227 }
2228
2229 data = &sc->tx_data[0];
2230 desc = (struct zyd_tx_desc *)data->buf;
2231
2232 data->ni = ni;
2233
2234 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2235 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2236
2237 /* fill Tx descriptor */
2238 desc->len = htole16(totlen);
2239
2240 desc->flags = ZYD_TX_FLAG_BACKOFF;
2241 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2242 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2243 if (totlen > ic->ic_rtsthreshold) {
2244 desc->flags |= ZYD_TX_FLAG_RTS;
2245 } else if (ZYD_RATE_IS_OFDM(rate) &&
2246 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2247 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2248 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2249 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2250 desc->flags |= ZYD_TX_FLAG_RTS;
2251 }
2252 } else
2253 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2254
2255 if ((wh->i_fc[0] &
2256 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2257 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2258 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2259
2260 desc->phy = zyd_plcp_signal(rate);
2261 if (ZYD_RATE_IS_OFDM(rate)) {
2262 desc->phy |= ZYD_TX_PHY_OFDM;
2263 if (ic->ic_curmode == IEEE80211_MODE_11A)
2264 desc->phy |= ZYD_TX_PHY_5GHZ;
2265 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2266 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2267
2268 /* actual transmit length (XXX why +10?) */
2269 pktlen = sizeof(struct zyd_tx_desc) + 10;
2270 if (sc->mac_rev == ZYD_ZD1211)
2271 pktlen += totlen;
2272 desc->pktlen = htole16(pktlen);
2273
2274 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2275 desc->plcp_service = 0;
2276 if (rate == 22) {
2277 const int remainder = (16 * totlen) % 22;
2278 if (remainder != 0 && remainder < 7)
2279 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2280 }
2281
2282 if (sc->sc_drvbpf != NULL) {
2283 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2284
2285 tap->wt_flags = 0;
2286 tap->wt_rate = rate;
2287 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2288 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2289
2290 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2291 }
2292
2293 m_copydata(m0, 0, m0->m_pkthdr.len,
2294 data->buf + sizeof(struct zyd_tx_desc));
2295
2296 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2297 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2298
2299 m_freem(m0); /* mbuf no longer needed */
2300
2301 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2302 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2303 error = usbd_transfer(data->xfer);
2304 if (error != USBD_IN_PROGRESS && error != 0) {
2305 ifp->if_oerrors++;
2306 return EIO;
2307 }
2308 sc->tx_queued++;
2309
2310 return 0;
2311 }
2312
2313 Static void
2314 zyd_start(struct ifnet *ifp)
2315 {
2316 struct zyd_softc *sc = ifp->if_softc;
2317 struct ieee80211com *ic = &sc->sc_ic;
2318 struct ether_header *eh;
2319 struct ieee80211_node *ni;
2320 struct mbuf *m0;
2321
2322 for (;;) {
2323 IF_POLL(&ic->ic_mgtq, m0);
2324 if (m0 != NULL) {
2325 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2326 ifp->if_flags |= IFF_OACTIVE;
2327 break;
2328 }
2329 IF_DEQUEUE(&ic->ic_mgtq, m0);
2330
2331 ni = M_GETCTX(m0, struct ieee80211_node *);
2332 M_CLEARCTX(m0);
2333 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2334 if (zyd_tx_mgt(sc, m0, ni) != 0)
2335 break;
2336 } else {
2337 if (ic->ic_state != IEEE80211_S_RUN)
2338 break;
2339 IFQ_POLL(&ifp->if_snd, m0);
2340 if (m0 == NULL)
2341 break;
2342 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2343 ifp->if_flags |= IFF_OACTIVE;
2344 break;
2345 }
2346 IFQ_DEQUEUE(&ifp->if_snd, m0);
2347
2348 if (m0->m_len < sizeof(struct ether_header) &&
2349 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2350 continue;
2351
2352 eh = mtod(m0, struct ether_header *);
2353 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2354 if (ni == NULL) {
2355 m_freem(m0);
2356 continue;
2357 }
2358 bpf_mtap(ifp, m0, BPF_D_OUT);
2359 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2360 ieee80211_free_node(ni);
2361 ifp->if_oerrors++;
2362 continue;
2363 }
2364 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2365 if (zyd_tx_data(sc, m0, ni) != 0) {
2366 ieee80211_free_node(ni);
2367 ifp->if_oerrors++;
2368 break;
2369 }
2370 }
2371
2372 sc->tx_timer = 5;
2373 ifp->if_timer = 1;
2374 }
2375 }
2376
2377 Static void
2378 zyd_watchdog(struct ifnet *ifp)
2379 {
2380 struct zyd_softc *sc = ifp->if_softc;
2381 struct ieee80211com *ic = &sc->sc_ic;
2382
2383 ifp->if_timer = 0;
2384
2385 if (sc->tx_timer > 0) {
2386 if (--sc->tx_timer == 0) {
2387 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2388 /* zyd_init(ifp); XXX needs a process context ? */
2389 ifp->if_oerrors++;
2390 return;
2391 }
2392 ifp->if_timer = 1;
2393 }
2394
2395 ieee80211_watchdog(ic);
2396 }
2397
2398 Static int
2399 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2400 {
2401 struct zyd_softc *sc = ifp->if_softc;
2402 struct ieee80211com *ic = &sc->sc_ic;
2403 int s, error = 0;
2404
2405 s = splnet();
2406
2407 switch (cmd) {
2408 case SIOCSIFFLAGS:
2409 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2410 break;
2411 /* XXX re-use ether_ioctl() */
2412 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2413 case IFF_UP:
2414 zyd_init(ifp);
2415 break;
2416 case IFF_RUNNING:
2417 zyd_stop(ifp, 1);
2418 break;
2419 default:
2420 break;
2421 }
2422 break;
2423
2424 default:
2425 error = ieee80211_ioctl(ic, cmd, data);
2426 }
2427
2428 if (error == ENETRESET) {
2429 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2430 (IFF_RUNNING | IFF_UP))
2431 zyd_init(ifp);
2432 error = 0;
2433 }
2434
2435 splx(s);
2436
2437 return error;
2438 }
2439
2440 Static int
2441 zyd_init(struct ifnet *ifp)
2442 {
2443 struct zyd_softc *sc = ifp->if_softc;
2444 struct ieee80211com *ic = &sc->sc_ic;
2445 int i, error;
2446
2447 zyd_stop(ifp, 0);
2448
2449 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2450 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2451 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2452 if (error != 0)
2453 return error;
2454
2455 /* we'll do software WEP decryption for now */
2456 DPRINTF(("setting encryption type\n"));
2457 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2458 if (error != 0)
2459 return error;
2460
2461 /* promiscuous mode */
2462 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2463 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2464
2465 (void)zyd_set_rxfilter(sc);
2466
2467 /* switch radio transmitter ON */
2468 (void)zyd_switch_radio(sc, 1);
2469
2470 /* set basic rates */
2471 if (ic->ic_curmode == IEEE80211_MODE_11B)
2472 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2473 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2474 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2475 else /* assumes 802.11b/g */
2476 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2477
2478 /* set mandatory rates */
2479 if (ic->ic_curmode == IEEE80211_MODE_11B)
2480 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2481 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2482 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2483 else /* assumes 802.11b/g */
2484 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2485
2486 /* set default BSS channel */
2487 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2488 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2489
2490 /* enable interrupts */
2491 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2492
2493 /*
2494 * Allocate Tx and Rx xfer queues.
2495 */
2496 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2497 printf("%s: could not allocate Tx list\n",
2498 device_xname(sc->sc_dev));
2499 goto fail;
2500 }
2501 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2502 printf("%s: could not allocate Rx list\n",
2503 device_xname(sc->sc_dev));
2504 goto fail;
2505 }
2506
2507 /*
2508 * Start up the receive pipe.
2509 */
2510 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2511 struct zyd_rx_data *data = &sc->rx_data[i];
2512
2513 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2514 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2515 error = usbd_transfer(data->xfer);
2516 if (error != USBD_IN_PROGRESS && error != 0) {
2517 printf("%s: could not queue Rx transfer\n",
2518 device_xname(sc->sc_dev));
2519 goto fail;
2520 }
2521 }
2522
2523 ifp->if_flags &= ~IFF_OACTIVE;
2524 ifp->if_flags |= IFF_RUNNING;
2525
2526 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2527 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2528 else
2529 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2530
2531 return 0;
2532
2533 fail: zyd_stop(ifp, 1);
2534 return error;
2535 }
2536
2537 Static void
2538 zyd_stop(struct ifnet *ifp, int disable)
2539 {
2540 struct zyd_softc *sc = ifp->if_softc;
2541 struct ieee80211com *ic = &sc->sc_ic;
2542
2543 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2544
2545 sc->tx_timer = 0;
2546 ifp->if_timer = 0;
2547 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2548
2549 /* switch radio transmitter OFF */
2550 (void)zyd_switch_radio(sc, 0);
2551
2552 /* disable Rx */
2553 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2554
2555 /* disable interrupts */
2556 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2557
2558 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2559 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2560
2561 zyd_free_rx_list(sc);
2562 zyd_free_tx_list(sc);
2563 }
2564
2565 Static int
2566 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2567 {
2568 usb_device_request_t req;
2569 uint16_t addr;
2570 uint8_t stat;
2571
2572 DPRINTF(("firmware size=%zu\n", size));
2573
2574 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2575 req.bRequest = ZYD_DOWNLOADREQ;
2576 USETW(req.wIndex, 0);
2577
2578 addr = ZYD_FIRMWARE_START_ADDR;
2579 while (size > 0) {
2580 #if 0
2581 const int mlen = uimin(size, 4096);
2582 #else
2583 /*
2584 * XXXX: When the transfer size is 4096 bytes, it is not
2585 * likely to be able to transfer it.
2586 * The cause is port or machine or chip?
2587 */
2588 const int mlen = uimin(size, 64);
2589 #endif
2590
2591 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2592 addr));
2593
2594 USETW(req.wValue, addr);
2595 USETW(req.wLength, mlen);
2596 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2597 return EIO;
2598
2599 addr += mlen / 2;
2600 fw += mlen;
2601 size -= mlen;
2602 }
2603
2604 /* check whether the upload succeeded */
2605 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2606 req.bRequest = ZYD_DOWNLOADSTS;
2607 USETW(req.wValue, 0);
2608 USETW(req.wIndex, 0);
2609 USETW(req.wLength, sizeof(stat));
2610 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2611 return EIO;
2612
2613 return (stat & 0x80) ? EIO : 0;
2614 }
2615
2616 Static void
2617 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2618 {
2619 struct zyd_softc *sc = arg;
2620 struct zyd_node *zn = (struct zyd_node *)ni;
2621
2622 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2623 }
2624
2625 Static void
2626 zyd_amrr_timeout(void *arg)
2627 {
2628 struct zyd_softc *sc = arg;
2629 struct ieee80211com *ic = &sc->sc_ic;
2630 int s;
2631
2632 s = splnet();
2633 if (ic->ic_opmode == IEEE80211_M_STA)
2634 zyd_iter_func(sc, ic->ic_bss);
2635 else
2636 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2637 splx(s);
2638
2639 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2640 }
2641
2642 Static void
2643 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2644 {
2645 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2646 int i;
2647
2648 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2649
2650 /* set rate to some reasonable initial value */
2651 for (i = ni->ni_rates.rs_nrates - 1;
2652 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2653 i--);
2654 ni->ni_txrate = i;
2655 }
2656
2657 static int
2658 zyd_activate(device_t self, enum devact act)
2659 {
2660 struct zyd_softc *sc = device_private(self);
2661
2662 switch (act) {
2663 case DVACT_DEACTIVATE:
2664 if_deactivate(&sc->sc_if);
2665 return 0;
2666 default:
2667 return EOPNOTSUPP;
2668 }
2669 }
2670